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A MATHEURISTIC APPROACH FOR THE TWO-MACHINE

TOTAL COMPLETION TIME FLOW SHOP PROBLEM

FEDERICO DELLA CROCE1, ANDREA GROSSO2, FABIO SALASSA1

1. D.A.I., POLITECNICO DI TORINO, ITALY

2. DIP. INFORMATICA, UNIVERSITÀ DI TORINO, ITALY

Abstract. This paper deals with the two-machine total completion time flow

shop problem. We present a so-called matheuristic post processing procedure
that improves the objective function value with respect to the solutions pro-
vided by state of the art procedures. The proposed procedure is based on the
positional completion times integer programming formulation of the problem

with O(n2) variables and O(n) constraints.

1. Introduction

In the present work a matheuristic solution approach is proposed for minimizing
the total (or average) completion time in a 2-machine flow shop problem (F2| |

∑
Ci

in the three-fields notation of Graham et al. [12]). In a 2-machine flow-shop envi-
ronment a set of jobs N = {1, 2, . . . , n} is to be scheduled on two machines, and
each job i ∈ N is made up of two operations, the first one (respectively, the second)
requiring to run continuously for p1i (resp. p2i) units of time on the first (resp. sec-
ond) machine. For each job, the second operation cannot begin if the first one is
not completed. The completion time Ci of a job i ∈ N in a schedule S is defined
as the completion time of its second operation. The F2| |

∑
Ci problem calls for

finding a schedule S that minimizes

f(S) =
∑
i∈N

Ci(S).

The problem is known to be NP-complete; also, at least an optimal solution is
known to be a permutation schedule, where the (operations of the) jobs share the
same sequence on both machines. Thus we deal equivalently with the permutation
flow shop problem F2|perm|

∑
Ci. The flow shop problem is one of the oldest and

best known production scheduling models and the available literature is extensive.
We refer to [20, 19, 9, 16] for contributions related to the objective function tackled
in this work. Exact algorithms (mainly “ad-hoc” branch and bound, [7, 4, 2, 1,
15, 22]) and MILP-based approaches [21], have also been proposed, but due to
their important computational times, these methods are mainly suitable to solve
relatively small size instances.

This work concerns a novel heuristic approach to the F2| |
∑

Ci problem. To
the authors’ knowledge the best results – as far as heuristic approaches are consid-
ered — obtained for the F2| |

∑
Ci problem have been achieved by the Recovering

Beam Search method (RBS), a truncated implicit enumeration enhanced by local
search — see [5] for details. Also, Dong et al. [9] proposed a very effective Iter-
ated Local Search method for the more general m-machines permutation flow-shop
(Fm|perm|

∑
Ci), but computational experience is not reported for the 2-machine

case. Similarly, in [3] an hybrid, and very effective approach outperforming that
of [9] has been proposed for the same m-machines problem. Also in this case,
computational experience is not reported for the 2-machine case.
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Matheuristics are methods that recently attracted the attention of the commu-
nity of researchers, suddenly giving rise to an impressive amount of work in a few
years. Matheuristics lye on the general idea of exploiting the strength of both
metaheuristic algorithms and exact methods as well, leading to a “hybrid” ap-
proach (see [18]), but because of their novelty there is no unique classification nor
a consolidated working framework in the field; hence, it is hard to state a pure and
sharp definition of these methods.

A distinguishing feature is often the exploitation of nontrivial mathematical pro-
gramming tools as part of the solution process. For example, in [10] a sophisticated
Mixed-Integer Linear Programming (MILP) solver is used for analyzing very large
neighborhoods in the solution space.

A crucial issue also underlined in [18], is that the structure of these methods is
not a priori defined and in fact a solution approach can be built in many different
ways. As a general example, one can construct a matheuristic algorithm based
on an overarching well known Metaheuristic, a Variable Neighborhood Search for
example [8, 13], with search phases realized by an exact algorithm as well as by
a MILP solver. A different, more loosely coupled approach could be a two-stage
procedure: a first heuristic procedure is applied to the problem for generating
a starting solution and then a post processing “refinement” procedure is applied
exploiting, for example, some peculiar properties of the mathematical formulation
of the problem under analysis; this second example is the core idea of the present
work.

Pursuing the above sketched idea of a two-stage procedure, we couple a heuristic
algorithms like RBS with a neighborhood search based on a MILP formulation
solved by means of a commercial tool. The two-stage approach is appealing because
of its simplicity — allowing to tinker with building blocks plus some glue-code —
and for the possibility of concentrating more on modeling the neighborhood instead
of building up the search procedure. Exploiting this idea we get very good results,
improving solution’s quality over the state of the art heuristics.

The paper is organized as follows: in Section 2 a MILP model for the problem
is recalled and the proposed matheuristic procedure is described. In Section 3
computational results are reported, and final remarks are given in Section 4.

A preliminary version of the discussed results has been presented at the Evo-
Cop 2011 conference [6].

2. Basic model and matheuristic approach

Following the two-stage scheme we execute in the second stage an intensive neigh-
borhood search starting from the solution delivered in the first stage. We define a
neighborhood structure relying on a MILP model of the F2|perm|

∑
Cj problem;

we stand on the model with positional variables (see [17, 14]), since it offered better
performances with respect to other classical models based on disjunctive variables
and constraints.

Let Cki be variables representing the completion times of i-th job processed by
machine k = 1, 2 and xij 0/1 decision variables, where i, j ∈ {1, . . . , n}. A variable
xij is equal to 1 if job i is in position j of the sequence, zero otherwise.

The problem can be formulated as follows.

min

n∑
j=1

C2j(1)
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subject to

n∑
i=1

xij = 1 ∀j = 1, . . . , n(2)

n∑
j=1

xij = 1 ∀i = 1, . . . , n(3)

C11 =
n∑

i=1

p1ixi1(4)

C21 = C11 +
n∑

i=1

p2ixi1(5)

C1j = C1,j−1 +

n∑
i=1

p1ixij ∀j = 2, . . . , n(6)

C2j ≥ C1j +

n∑
i=1

p2ixij ∀j = 2, . . . , n(7)

C2j ≥ C2,j−1 +
n∑

i=1

p2ixij ∀j = 2, . . . , n(8)

xij ∈ {0, 1}(9)

where constraints (2)–(3) state that a job is chosen for each position in the sequence
and each job is processed exactly once. Constraints (4)–(6) set the completion time
of the first job on both machines. Constraints (7)–(8) forbid for each job the start of
the 2-nd operation on the corresponding machine two before its preceding operation
on machine one has completed.

The heuristic algorithm considered for the first stage is RBS from [5]; RBS is
a beam search technique combined with a limited neighborhood search typically
based on job extraction and reinsertion. For the F2| |

∑
Ci problem it offers high

execution speed combined with a good solution quality.
In designing a neighborhood concept for the second-stage search, a crucial issue is

that the structure of the neighborhood should be as much as possible “orthogonal”
to the structure of the neighborhoods used by the first-stage heuristic. That is,
we do not want the solution delivered by the first stage to be (close to) a local
optimum for the second stage. Hence we tried to design a neighborhood with many
more degrees of freedom, still keeping in mind that the perturbation of the current
solution should not fully disrupt its structure.

Consider a working sequence S̄; in model (1)–(9) this obviously corresponds to
a valid configuration x̄ = (x̄ij : i, j = 1, . . . , n) satisfying constraints (2)–(3), with
x̄ij = 1 iff job i appears in the j-th position of S̄. We define a neighborhood
N (S̄, r, h) by choosing a position r in the sequence and a “size” parameter h;
let S̄(r;h) = {[r], [r + 1], . . . , [r + h − 1]} be the index set of the jobs located
in the consecutive positions r, . . . , r + h − 1 of sequence S̄ — we call such run a
“job-window”. The choice of the best solution in the neighborhood N (S̄, r, h) is
accomplished by minimizing (1) subject to (2)–(9) and

(W) xij = x̄ij ∀ i /∈ S̄(r;h), j /∈ {r, . . . , r + h− 1}.

The resulting minimization program — we call it the window reoptimization
problem — is solved by means of an off-the-shelf MILP solver. The additional
constraints (W) state that in the new solution all jobs but those in the window
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are fixed in the position they have in the current solution, while the window gets
reoptimized — the idea is sketched in Figure 1.

Figure 1. Example of jobs window reoptimized

If no improved solution is found a new job-window is selected to be optimized
until all possible O(n) windows have been selected. The search is stopped because
of local optimality (no window reoptimization offers any improved solution) or
because a predefined time limit expires.

It is known that exact methods are usually not suited for this kind of problems
because of the amount of CPU time they need to solve a problem but this is true
for larger size problems while they can perform well only on relatively small size
instances. Exploiting this issue with our approach, a subproblem is generated
with few variables and in such case we know that commercial, open source or
custom exact methods can be well performing at analyzing large scale (exponential)
neighborhoods of a given solution.

With respect to the choice of the windows, a first-improvement strategy has
been implemented: as soon as an improved solution is found, solving a window
reoptimization problem, that solution becomes the new current. The choice of the
windows (the r index) is randomized — keeping track of the already examined
windows. The algorithm can be schematically described as follows.

x̄ = ⟨heuristic solution from 1st stage⟩
repeat

Set improved := false;
repeat

Pick r ∈ {1, . . . , n− h+ 1} randomly;
Compute S̄(r;h);
minimize (1) subject to (2)–(9) and (W)
Let x̂ be the optimal solution;
if f(x̄) > f(x̂) then

x̄ := x̂
Set improved := true;

end if
until improved or all r values have been tried

until not improved or time limit expired
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In order to limit the time to search a window we stop the window reoptimiza-
tion after a time limit Tw, concluding with the best incumbent available and the
neighborhood being only partially searched. We note anyway that for reasonable
values of Tw most of the times the window reoptimization can be fully performed.

Our design choices rest on top of a preliminary computational study, as we
outline below.

Tests performed in order to compare the performances of models based on dis-
junctive constraints against models with positional variables pointed out that win-
dow reoptimization becomes substantially less efficient, requiring higher computa-
tion time. This phenomenon was quite expected since disjunctive models are pop-
ularly considered weaker than positional models because of the substantial number
of “big-M” constraints involved in such formulations.

Decision taken about generating neighbors based on windows is justified by pre-
liminary tests conducted on a pool of instances of various sizes. In principle, an
even simpler neighborhood definition could require the reoptimization of a com-
pletely general subset of jobs — not necessarily consecutively sequenced. Anyway
it turned out that often the first-stage solutions delivered by RBS were nearly local
minima for neighborhoods based on rescheduling non consecutive jobs, thus miss-
ing the desired “orthogonality” between first and second-stage neighborhoods. This
phenomenon is much less common when using windows.

The window size h is the key parameter in our approach; its choice is dictated
by the need of trading off between the chances of improving a given solution and
the CPU time the solver needs to actually perform the reoptimization. A small
window size makes reoptimization faster, but of course it restricts the size of the
neighborhood; on the other hand the neighborhood should be, obviously, as large
as possible in order to have more chances of improving the current solution. After
testing the same pool of instances, we fixed h = 12; this value proved to be a robust
choice, giving good results through extensive computational tests (see Section 3)
on instances with 100, 300 and 500 jobs.

The value h = 12 should be considered only as an indication of the order of
magnitude for the parameter: note that the choice may also depend on the tech-
nology of the underlying solver — that is used in a “black-box” fashion, and whose
internals may not be fully known.

3. Computational Results

We ran tests on a Xeon processor at 2.33 GHz, with 8 GB of RAM; CPLEX
12.1 was used as MILP solver. CPLEX default parameters were kept, without at-
tempting to tune them. In order to generate the first stage solution of each instance
we ran RBS (from [5]) with beam size 10. Computational experience showed that
widening such parameter does not significantly improve the performances of RBS.

Tables 1–3 report the performances achieved by the two-stage procedure on
instances generated as in [5], for n = 100, 300, 500, with integer processing times
randomly drawn from the uniform distribution [1, 100]. The first stage (RBS) never
consumed more than 0.4, 4 and 15 seconds of CPU time respectively and we allowed
the second stage to run with a time limit of 60, 600, and 3600 seconds respectively
for the three problem sizes. The time limit Tw for the window reoptimization was
set to 10, 60 and 100 seconds for n = 100, 300, 500 respectively, but in all cases the
window reoptimization was achieved well before the limit. The tables compare the
objective value of solutions delivered by the matheuristic approach against those
delivered by pure RBS, ILS [9] and SAwGE [3].

Both the latter two algorithms use a neighborhood definition based on job swap
and job extraction/reinsertion; ILS executes repeated neighborhood searches, and
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restarts the search by randomly perturbing the best known solution after a prefixed
number of non-improving searches have been performed. SAwGE runs a “popu-
lation” of simulated annealing local searches with different parameters settings,
replacing such settings after they have been failed to improve the best known so-
lution for a given number of attempts; the algorithm is naturally designed for a
parallel computing environment, but runs on a single processor as well.

ILS and SAwGE ran for the same time limit given to the two-stage procedure;
the ILS code was kindly provided by the authors of [9] as well as results of SAwGE,
on all our test instances, were kindly provided by the author of [3]. We note that
the machine used for SAwGE (Intel i7 980X 3.33 GHz) can be estimated to be
approximately 40% faster than our processor. Also, the upper and lower bounds
provided by CPLEX branch and cut running on model (1)–(9) within the same
allowed time limits of 60, 600 and 3600 seconds are reported — the LB column
gives the minimum lower bound of the remaining open nodes.

Table 1 is related to the tests for n = 100. We note that CPLEX delivered,
after one minute of search, a solution whose quality is in most cases dominated
by that of ILS, RBS and SAwGE — hence we do not consider “pure” CPLEX
a strong competitor, and focus with the comparison with SAwGE, which is the
strongest one. Instead, we remark that running the second-stage search for the
same amount of time allows a more effective use of the solver. Columns 2 reports
the result of the first stage (namely RBS with beam size 10). Column 3 reports
the results of ILS within the time limit of 60 seconds. Columns 4 and 5 depict the
average results on 5 runs of the SAwGE approach and our matheuristic algorithm
within the same time limit of 60 seconds, while column 6 (MATHEUR*) reports
the results of our approach within a time limit of 300 seconds. The reason to test
our procedure against wider time limits is justified by the wish to verify if a local
minimum has been reached in the benchmark time limit or if the time limit stopped
the approach while improvements were still to be found. The next three columns
report the results of the best values among the 5 runs. Finally CPLEX LB and UB
are reported. For the case of n = 100 all heuristics allow for a narrow optimality
gap, in all cases but one the two-stage search strongly dominates all the other
compared approaches and if a larger time limit is considered, our approach is better
in all cases depicted with the italic character — this asserts the effectiveness of the
second-stage neighborhood, which offers large margins of improvements, although
these must be traded-off with CPU time. Moreover, only for four instances over
twenty, 60 seconds were sufficient to find a local minimum.

Same considerations can be replicated for Table 2 were we consider n = 300. In
this case the benchmark time limit is 600 seconds while the extended time limit is
1800 seconds. The matheuristic approach gave better results in all cases but two
while within the extended time limit our procedure was always better. Moreover,
600 seconds were never sufficient to certify a local minimum.

Results presented in Table 3 for n = 500 jobs were less effective than the other
tests. In this case, in fact, SAwGE performed better than our procedure on 13
instances over 20 within the time limit of 1 hour. Considering the extended time
limit of 2 hours our approach resulted to be better than SAwGE 12 times which
confirmed us that we were still far from a local minima for our procedure.

Although the comparison is done with time limits of 60, 600 and 3600 seconds
we note that, when MATHEUR is the winner, a solution with value below the
average value delivered by the main competitor SAwGE is found by MATHEUR
in a considerably shorter time: this happens on average after 16, 187, 1606 seconds
respectively for the tests with n = 100, 300, 500 jobs.
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Finally, we also tested the second-stage search within the time limit of one hour
on the solutions delivered by SAwGE for n = 500; the results are reported in Ta-
ble 4. Interestingly, for all instances, the solutions of SAwGE were not local min-
ima for our post-processing refinement, which confirmed us that the second-stage
neighborhood is also orthogonal to the SAwGE neghborhoods and can be robustly
cascaded to different metaheuristics or hybrid heuristics in order to improve their
performances.

Relying on the results achieved, the proposed approach can be claimed to strongly
outperform most of the state of the art heuristics on medium and large-sized in-
stances. On the very large 500-jobs instances the approach is strongly competitive
with SAwGE, while leaving room for improvement since the delivered solutions
within the allowed time limits are far from local optima. Performances on the
largest instances could be improved by further calibration of the window size —
only a mild effort has been devoted to it in this work — and/or incorporating some
diversification technique in the second-stage search, that up to now consists of pure
intensification.

4. Concluding Remarks

A matheuristic two-stage approach for minimizing total flowtime in a (permu-
tation) 2-machine flow shop has been developed and tested. The obtained results
confirm that even if, apparently, MILP approaches still cannot compete with ad-hoc
state of the art heuristics for such problem, an hybrid and simple approach imple-
menting a post-optimization refinement procedure by means of a MILP solver can
achieve valuable results, dominating the current state-of-the art heuristics. Prelim-
inary tests on the more general Fm|perm|

∑
Ci problem showed that the proposed

two-stage approach was apparently less successful at least with respect to results
and CPU times provided in [3]. This is probably due to the fact that the gap
between the ILP model solution value and the ILP model continuous relaxation so-
lution value increases as the number of machines increases inducing a much larger
effort for computing each neighbor in the second stage of our approach. Future
research will be devoted to incorporate diversification techniques and to better cal-
ibrate the window size in order to improve the performances on the Fm|perm|

∑
Ci

problem.
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Inst SAwGE MATHEUR

0 5141524 5140149
1 4986659 4985716
2 5026005 5024975
3 4901829 4900729
4 5001995 5000896
5 4837547 4836580
6 5006636 5005603
7 5069880 5068810
8 5061110 5059356
9 4836332 4835392
10 5087497 5086158
11 4759532 4758150
12 4906437 4905328
13 4793309 4792318
14 5033911 5032551
15 5259064 5257936
16 4791951 4790804
17 4956028 4955045
18 4851754 4850806
19 5055991 5054790

Table 4. Improvement obtained by the 2nd stage run on
SAwGE’s solution.


