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Six Pt(IV) bis(aromatic carboxylato) anticancer prodrugs based on cisplatin or oxaliplatin were 

tested for their antiproliferative activity against several cancer cell lines. They resulted very potent, 

but barely soluble in water. Inclusion systems containing β-cyclodextrin and the prototype 

[Pt(NH3)2Cl2(C6H5COO)2] have been characterized and tested on the same cell lines. 
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Highlights 

 Biological properties of bis(aromatic carboxylato) Pt(IV) complexes are reported 

 A clear structure-activity relationship cannot be drawn 

 Encapsulation with cyclodextrin (CD) was attempted to increase the water solubility 

 Presence of CD in solution does not significantly alter the antitumor activity 

 Aggregation in solid adducts is detrimental for cell accumulation and cytotoxicity 
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Abstract 

Two small series of Pt(IV) complexes of the general formula cis,cis,trans-

[PtA2Cl2L2] (A = 2×NH3, series 1, or cyclohexane-1R,2R-diamine, dach, series 2, L = 

aromatic carboxylate of different chain length, i.e. -OCO(CH2)nC6H5, n = 0 (a), 1(b), 

and 2(c)) were synthesized and fully characterized, including X-ray structure analysis of 

one of them. The antiproliferative activity of the complexes was evaluated against a 

panel of eight human cancer cell lines, proving to be at the nanomolar level for the 

platinum-sensitive A2780 and at the sub-micromolar level for the chemoresistant 

mesothelioma cell lines. In contrast with Pt(IV) complexes bearing aliphatic 

carboxylates, whose antiproliferative potency increases with the number of carbon 

atoms, a clear structure-activity relationship cannot be drawn in the bis(benzoato) series. 

The inclusion reaction with cyclodextrins (CDs), a widely accepted approach for drug 

formulation, was performed in order to obtain adducts able to bypass the limitations 

imposed by the low water solubility of bis(benzoato) complexes. Phase-solubility tests 

demonstrated that -CD was able to efficiently solubilize only the very active prototype 

[Pt(NH3)2Cl2(C6H5COO)2] 1a. Two methods were used to prepare the host-guest 

inclusion systems (i.e., simple solubilization at room temperature of 1a in solution 

containing excess of -CD or thermal reaction with subsequent isolation of a solid 

adduct) and the resulting adducts were tested for cytotoxicity against the cancer cell 

lines. The presence of -CD in solution did not decrease the remarkable antitumor 

activity of 1a, whereas the solid-state inclusion system underwent extensive 

aggregation, proving to be detrimental for Pt accumulation in the cells and, therefore, 

overall cytotoxicity. 
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1. Introduction 

 

In recent years, Pt(IV) complexes have emerged as a possible alternative to traditional 

Pt(II) anticancer drugs. They are generally considered prodrugs, as they are reduced in 

vivo (in the hypoxic tumor milieu) to the active Pt(II) metabolites after the loss of the 

two axial ligands (activation by reduction) [1]. Pt(IV) complexes exhibit higher 

chemical inertness than their Pt(II) counterparts and are therefore involved in fewer side 

(off-target) reactions, thus offering a better tolerability profile and the possibility for 

oral administration. The equatorial carrier groups are two ammonia molecules 

(cisplatin-based octahedral scaffold) or the chelating cyclohexane-1R,2R-diamine, dach 

(oxaliplatin-like-based octahedral scaffold) depending on the desired cellular selectivity, 

since the nature of the carrier groups determines the biological activity in the same 

manner as it does for the Pt(II) complexes [2]. The equatorial leaving groups are 

generally chlorides or carboxylates, modulating the kinetics of formation of the aquated 

Pt(II) metabolite. The two axial ligands (very often carboxylates) tune the 

physicochemical properties, such as lipophilicity and rate of reduction, and greatly 

influence the overall pharmacokinetic profile. 

Pt(IV) complexes bearing aryl carboxylates showed excellent results in vitro [3]. In a 

study on Pt(IV) complexes with aromatic carboxylates containing different 

functionalities on the ring, Dyson et al. found only a moderate correlation among 

lipophilicity, cellular accumulation and cytotoxic potency. Thus, other than that it 

confers lipophilicity, the effect of the benzoyl ligands on the activity of the resulting 

Pt(IV) complexes is not fully understood. Instead, the lipophilicity of Pt(IV) compounds 

bearing aliphatic carboxylates increases linearly as the number of carbon atoms in the 
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chain increases, enhancing cellular accumulation and cytotoxicity (at least in vitro) [4]. 

However, there is a limit to such an increase, since the corresponding drop in water 

solubility limits the bioavailability of the drug. In fact, high lipophilicity corresponds to 

low water solubility, making the administration of these compounds in vitro almost 

impossible without the (controversial) use of organic co-solvents. More importantly for 

possible clinical use, excessive lipophilicity may result in low intestinal epithelial 

permeability and, hence, in low oral absorption [5]. Drug performance may be enhanced 

by using cyclodextrins (CDs) in controlled-release formulations [6], to offset these 

limitations. 

CDs are a family of macrocyclic oligosaccharides, composed of five or more (-

1,4)-linked -D-glucopyranose units. Typical CDs contain 6 (-CD), 7 (-CD), or 8 (-

CD) monomers (Fig. 1). Due to the chair conformation of the glucopyranose units, CDs 

are shaped like a truncated cone: all the primary hydroxyl groups are located on one 

edge of the ring and the secondary ones on another. The cavity of the CDs is made up 

by skeletal carbons and ethereal oxygens and thus hydrophobic, whereas its exterior is 

hydrophilic [7]. The cavity can therefore form inclusion complexes with non-polar 

molecules (or part of them) of appropriate shape and size, thereby improving the water 

solubility of the guest. CDs and their substituted derivatives are widely used as delivery 

systems to increase the bioavailability of poorly soluble drugs and to increase their 

chemical and photochemical stability [8]. Although CDs were discovered over a century 

ago, only recently have they become available in pure enough form to be used in 

pharmaceutical applications. To date, about 40 different pharmaceutical formulations 

containing CDs are on the worldwide market [9]. 
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Fig. 1 

 

In the literature, only a limited number of papers deal with the use of CDs as 

encapsulatory vehicles for Pt complexes. The efficacy of CDs in enhancing the 

solubility of cisplatin [10], carboplatin, oxaliplatin and nedaplatin has been 

demonstrated [11,12,13] and patented [14,15,16]. 

In the field of Pt(IV) prodrugs, only one report on the formation of a 1:1 inclusion 

system between β-CD and a complex containing 1-adamantanemethylamine has 

appeared to date [17]. The resulting host-guest inclusion system proved to be active on 

human neuroblastoma SK-N-SH cells, although not as active as cisplatin. 

The present work studies two small series of Pt(IV) complexes with the “[PtA2Cl2]” 

(A = 2×NH3, series 1, or A = dach, series 2, Fig. 1) equatorial arrangement and bearing 

two axial aromatic carboxylates with different lengths of the spacer -(CH2)n- between 

phenyl and carboxylic groups (n = 0, 1, and 2). The series were numerically limited to 

compounds exhibiting acceptable water solubility for meaningful biological tests. The 

prototypal, highly cytotoxic complexes 1a and 2a have been previously reported [3,18]. 

The interaction between Pt(IV) drug candidates and CDs was assessed with the purpose 

of increasing their water solubility. The host-guest encapsulation was explored since the 

protruding phenyl ring of the axial ligands should be well-suited to fit the cavity of CDs 

[19].  

 

2. Experimental section 

 

2.1. General 



 7 

 

K2[PtCl4] (Johnson Matthey and Co.) and all other chemicals (Aldrich) were used 

without further purification. Cisplatin, 3, and oxaliplatin-like complex 4 were 

synthesized and purified according to a procedure in the literature [20]. 

The purity of the compounds was assessed by analytical RP-HPLC (see below), 

elemental analysis and determination of Pt content. Elemental analyses were carried out 

with an EA3000 CHN Elemental Analyzer (EuroVector, Milano, Italy). Platinum was 

quantified by means of a Spectro Genesis ICP-OES spectrometer (Spectro Analytical 

Instruments, Kleve, Germany) equipped with a crossflow nebulizer. To quantify the 

platinum concentration, the Pt 299.797 nm line was selected. A platinum standard stock 

solution of 1000 mg L-1 was diluted in 1.0% v/v nitric acid for preparation of calibration 

standards. 

The multinuclear NMR spectra were measured on a Bruker Advance III spectrometer 

operating at 500 MHz (1H), 125.7 MHz (13C) and 107.2 MHz (195Pt with a spectral 

window of 2000 ppm), respectively. 1H and 13C NMR chemical shifts were reported in 

parts per million (ppm) referenced to solvent resonances; for D2O measurements 1% 

methanol was added as 13C internal reference. 195Pt NMR spectra were recorded using a 

solution of K2PtCl4 in saturated aqueous KCl as the external reference. The shift for 

K2PtCl4 was adjusted to -1628 ppm from Na2PtCl6 ( = 0 ppm). 

RP-HPLC and mass analysis were performed using a Waters HPLC-MS instrument 

equipped with an Alliance 2695 separation module, a 2487 dual lambda absorbance 

detector, and a 3100 mass detector. Electrospray ionization mass spectra (ESI-MS) were 

obtained by delivering a diluted solution of the compound in methanol directly into the 

spectrometer source at 0.01 mL min−1. The source and desolvation temperatures were 
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set to 150 and 250 °C, respectively, with nitrogen used both as a drying and a 

nebulizing gas. The cone and the capillary voltages were usually 30 V and 2.70 kV, 

respectively. The quasi-molecular ion peaks were assigned on the basis of the m/z 

values and of the simulated isotope distribution patterns. 

UV-visible measurements were recorded with a JASCO V550 spectrophotometer. 

 

2.2 Synthesis of platinum complexes 

 

Complexes 1a [3] and 2a [18] were prepared according to procedures in the 

literature. Complexes 1b, 1c, 2b, and 2c were prepared using slight modifications of the 

previous methods, starting from the dihydroxido Pt(IV) complexes cis,cis,trans-

[PtCl2(NH3)2(OH)2] and cis,cis,trans-[PtCl2(dach)(OH)2] (dach = cyclohexane-1R,2R-

diamine) obtained by oxidation with hydrogen peroxide of 3 and 4, respectively [4,21]. 

Briefly, a solution of 2-phenylethanoyl chloride (1.02 mL, 7.8 mmol) or 3-

phenylpropanoyl chloride (1.16 mL, 7.8 mmol) in 5 mL of acetone was added dropwise 

to a suspension of cis,cis,trans-[PtCl2(NH3)2(OH)2] (100 mg, 0.30 mmol) or 

cis,cis,trans-[PtCl2(dach)(OH)2] (124 mg, 0.30 mmol) in 3 mL of acetone and 1 mL of 

pyridine. The reaction mixture was stirred at reflux for 4 h. After cooling the solution to 

RT, excess hexane was added and the resulting precipitate was eliminated by filtration. 

After removing the solvent under reduced pressure, diethyl ether was added, leading to 

the precipitation of a white solid. The product was washed with water and dried in 

vacuo. 

1b: Yield 77 mg, 0.14 mmol, 45%. 1H-NMR (CD3OD): δ 3.76 (s, 4H, 2 CH2), 7.28 

(tt, 2H, Hp, 
3J = 7.4 Hz, 4J = 1.4 Hz), 7.34 (t, 4H, Hm, 3J = 7.4 Hz), 7.38 (m, 4H, Ho) 
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ppm. 13C-NMR (CD3OD): δ 42.1 (CH2), 126.2 (Cp), 127.9 (Cm), 129.2 (Co), 135.9 (Cq), 

180.7 (C(O)O) ppm. 195Pt-NMR (CD3OD): δ 1086 ppm. ESI-MS (positive ion mode): 

571.4 m/z [M+H]+, 593.8 m/z [M+Na]+; calcd for C16H21Cl2N2O4Pt 571.33 m/z [M+H]+ 

and for C16H20Cl2N2NaO4Pt 593.31 m/z [M+Na]+. ESI-MS (negative ion mode): 569.3 

m/z [M-H]-; calcd for C16H19Cl2N2O4Pt 569.32 m/z [M-H]-. Anal. Calcd for 

(C16H20N2O4Cl2Pt): C 33.70, H 3.53, N 4.91, Pt 34.20; found: C 33.80, H 3.62, N 4.81, 

Pt, 34.35. RP-HPLC purity (80% MeOH, 20% H2O): 98.2 %. 

1c: Yield 68 mg, 0.11 mmol, 38%. 1H-NMR (CD3OD): δ 2.64 (t, 4H, CH2-Ph, 3J = 

7.9 Hz), 2.88 (t, 4H, CH2-C(O)O, 3J = 7.9 Hz), 7.16 (m, 2H, Hp), 7.21 (m, 8H, Ho/Hm) 

ppm. 13C-NMR (CD3OD): δ 31.6 (CH2-Ph), 37.3 (CH2-C(O)O), 125.6 (Cp), 127.9 (Cm), 

128.2 (Co), 141.9 (Cq), 181.7 (C(O)O) ppm. 195Pt-NMR (CD3OD): δ 1083 ppm. ESI-MS 

(positive ion mode): 599.3 m/z [M+H]+, 621.3 m/z [M+Na]+; calcd for C18H25Cl2N2O4Pt 

599.39 m/z [M+H]+ and for C18H24Cl2N2NaO4Pt 621.37 m/z [M+Na]+. ESI-MS 

(negative ion mode): 597.1 m/z [M-H]-; calcd for C18H23Cl2N2O4Pt 597.37 m/z [M-H]-. 

Anal. Calcd for (C18H24N2O4Cl2Pt): C 36.13, H 4.04, N 4.68, Pt 32.60; found: C 36.0, H 

3.57, N 4.46, Pt 32.54. RP-HPLC purity (80% MeOH, 20% H2O): 97.9 %. 

2b: Yield 69 mg, 0.11 mmol, 31%. 1H-NMR (dmso-d6): δ 0.97 (m, 2H, NH2-CH-

CH2-CH2(ax)), 1.22 (m, 2H, NH2-CH-CH2(ax)-CH2), 1.46 (m, 2H, NH2-CH-CH2-CH2(eq)), 

2.12 (m, 2H, NH2-CH-CH2(eq)-CH2), 2.44 (m, 2H, NH2-CH-CH2-CH2), 3.60 (s, 4H, 2 

CH2), 7.21-7.30 (m, 10H, Ho, Hm and Hp), 8.18 and 9.37 (m, 4H, NH2) ppm. 13C-NMR 

(dmso-d6): δ 23.4 (c), 31.9 (b), 42.8 (CH2), 62.5 (a), 126.4 (Cp), 128.1 (Cm), 129.2 (Co), 

135.7 (Cq), 180.9 (C(O)O) ppm. 195Pt-NMR (dmso-d6): δ 1088 ppm. ESI-MS (positive 

ion mode): 651.3 m/z [M+H]+, 673.3 m/z [M+Na]+; calcd C22H29Cl2N2O4Pt 650.12 m/z 

[M+H]+ and for C22H28Cl2N2NaO4Pt 672.10 m/z [M+Na]+. ESI-MS (negative ion 
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mode): 649.0 m/z [M-H]-; calcd for C22H27Cl2N2O4Pt 648.10 m/z [M-H]-. Anal. Calcd 

for (C22H28Cl2N2O4Pt): C 40.62, H 4.34, N 4.31, Pt 29.99; found: C 40.25, H 4.12, N 

4.09, Pt 29.64. RP-HPLC purity: 98.8 %. 

2c: Yield 67 mg, 0.10 mmol, 30%. 1H-NMR (dmso-d6): δ 0.99 (m, 2H, NH2-CH-

CH2-CH2(ax)), 1.18 (m, 2H, NH2-CH-CH2(ax)-CH2), 1.47 (m, 2H, NH2-CH-CH2-CH2(eq)), 

2.11 (m, 2H, NH2-CH-CH2(eq)-CH2), 2.32 (m, 2H, NH2-CH-CH2-CH2), 2.58 (t, 4H, 4 

CH2-Ph, 3J = 7.59), 2.76-2.83 (m, 4H, 4 CH2-C(O)O), 7.21-7.30 (m, 10H, Ho, Hm and 

Hp), 8.25 and 9.17 (m, 4H, NH2) ppm. 13C-NMR (dmso-d6): δ 23.26 (c), 30.05 (b, CH2-

Ph), 37.4 (CH2-C(O)O), 62.5 (a), 125.8 (Cp), 128.2 (Cm, Co), 140.9 (Cq), 182.2 (C(O)O) 

ppm. 195Pt-NMR (dmso-d6):  1090 ppm. ESI-MS (positive ion mode): 679.3 m/z 

[M+H]+, 701.3 m/z [M+Na]+; calcd for C24H33Cl2N2O4Pt 678.15 m/z [M+H]+ and for 

C24H32Cl2N2NaO4Pt 700.13 m/z [M+Na]+. ESI-MS (negative ion mode): 677.0 m/z [M-

H]-; calcd for C24H31Cl2N2O4Pt 677.13 m/z [M-H]-. Anal. Calcd for (C24H32Cl2N2O4Pt): 

C 42.48, H 4.75, N 4.13, Pt 28.75; found: C 42.23, H 4.51, N 3.98, Pt 28.25. RP-HPLC 

purity: 97.8 %. 

 

2.3 X-ray structure of 1b 

 

Suitable crystals were grown by slow evaporation of a methanol solution of complex 

1b. A single crystal measuring 0.5×0.2×0.2 mm, was mounted on top of a glass fiber 

and used for X-ray diffraction data collection on a SMART APEX2 diffractometer 

[λ(Mo-Ka) = 0.71073 Å]. The crystal proved to be monoclinic, space group P21/a and 

cell parameters of a = 13.098(1), b = 10.1625(8), c = 14.088(1) Å, β = 90.304(1)°, V = 

1875.2(2) Å3. The asymmetric unit is formed by one independent molecule of the 
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formula C16H20Cl2N2O4Pt, M = 570.33 Da, Z = 4, Dc = 2.02 g cm-3, μ = 7.79 mm-1, 

F(000) = 1096. A semi-empirical absorption correction based on multiple scanned 

equivalent reflections was applied and gave 0.3582 < T < 0.7464. A total of 23,052 

reflections were collected up to a θ range of 26.99° (±16 h, ±12 k, ±17 l), 4084 

independent reflections (Rint = 0.04). The SAINT software was used for integration of 

reflection intensity and scaling, and SADABS for absorption correction [22,23]. 

Structures were solved by direct methods using SIR97 [24] and refined by full-matrix 

least-squares on all F2 using SHELXL97 [25] implemented in the WinGX package 

[26]. All the non-hydrogen atoms in the molecules were refined anisotropically. The 

hydrogen atoms were placed in the ideal positions using riding models. Maximum and 

minimum transmission were 0.7464 and 0.3582 respectively with goodness of fit on F2 

= 1.038. Final R indices [I > 2σ(I)] were R1 = 0.023, wR2 = 0.064 for the 226 parameters 

refined. The largest difference peak 1.47 and hole -0.54 e Å-3 lie in close proximity of 

Pt. CCDC983761 contains the supplementary crystallographic data for this paper. These 

data can be obtained free of charge from The Cambridge Crystallographic Data Centre 

via http://www.ccdc.cam.ac.uk/data_request/cif. 

 

2.4 Lipophilicity 

 

Chromatographic analysis was used to evaluate the capacity factors of the 

compounds as reported elsewhere [27,28,29]. Briefly, a chromatogram for each 

complex (0.25 mM) with every different eluant composition (H2O/CH3OH, the 

methanol fraction, , ranging from 40 to 80%) was performed on a C18 column (5 µm 

Phenomenex Gemini® C18 column, 2503 mm ID). The corresponding retention time tR 
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was used to calculate log k’ (k’ = (tR – t0) / t0); KCl was the internal reference to 

determine the column dead-time, t0. From these data, extrapolation of the log k’ to 0% 

MeOH (log k’0), corresponding to the ideal capacity factor in pure water, was performed 

according to the following formula: 

log k’ = log k’0 - S 

where S is a constant related to solute, solvent, and stationary phase under 

consideration. 

 

2.5 Reduction with glutathione, α-tocopherol and ascorbic acid 

 

The rate of reduction between Pt(IV) complexes (0.5 mM) and glutathione (5 mM) 

was evaluated according to the previously reported UV-visible method within 48 h 

[30,31]. The reduction of Pt(IV) complexes with α-tocopherol ([Pt] = 0.5 mM and [α-

tocopherol] = 0.5 mM in 90/10 MeOH/HEPES solution) and with ascorbic acid ([Pt] = 

0.25 mM and [ascorbic acid] = 2.5 mM in 70/30 MeOH/HEPES solution) were studied 

by monitoring the decrease of the area of the Pt(IV) chromatographic peaks in HPLC-

MS (see lipophilicity measurements for chromatographic conditions). 

 

2.6 Water solubility of 1a-2c and phase-solubility diagrams (Higuchi-Connors method) 

 

Pt(IV) complexes were weighed into 2-mL Safe-Lock microcentrifuge tubes, then 1 

mL of milliQ water was added and the mixture continuously shaken at 25 °C for 24 h. 

The samples were filtered through a 0.22 m cellulose nitrate membrane filter, and the 

Pt content was measured by ICP-OES after proper dilution. According to this procedure, 
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the solubilities are: 1a 0.304 ± 0.015, 1b 0.312 ± 0.003, 1c 0.121 ± 0.005, 2a 

(1.06±0.32)×10-2, 2b 0.136±0.011, 2c (5.05±1.80)×10-2 mM, respectively. 

The phase-solubility diagrams were obtained according to the method reported by 

Higuchi and Connors [32]. Pt(IV) complexes were weighed into 15-mL Falcon tubes, 

adding 10 mL of milliQ water containing increasing concentrations of -CD (0.010-

0.100 M range), -CD (0.002-0.015 M range), and -CD (0.002-0.120 M range). In all 

cases, the maximum [CD] was near its solubility limits. These tubes were sealed and 

continuously shaken at 25 °C for 24 h. The samples were filtered with a syringe through 

a 0.22 m cellulose nitrate membrane filter, and the Pt content was measured by ICP-

OES. In the phase-solubility diagram [Pt] is reported vs. [CD]; each point is the mean of 

3 independent experiments ± standard deviation (SD). 

 

2.7 Determination of the stoichiometry of the CD inclusion complex 

 

The stoichiometry of the inclusion complex of 1a with -CD was determined using 

Job’s method, also known as the continuous variation method. In this experiment, seven 

samples were prepared from two stock solutions with equimolar concentrations of 1a in 

methanol and -CD in ultrapure water, by mixing different volumes of these two 

solutions and suitable volumes of water and methanol. The resulting samples have the 

following features: total concentration of host + guest ([1a] + [-CD]) = 1 mM, total 

volume and methanol/water ratio constant in all samples, and the molar fraction of the 

guest 1a (1a = [1a] / ([1a] + [-CD]) varying in the range 0.2-0.8 (0.2 < 1a < 0.8). The 

variation of an experimental measured property that is sensitive to the inclusion 

complex formation, in the actual case the maximum UV absorption at 233 nm, Asample, 
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is then monitored in all samples after their dilution to 30 µM with ultrapure water. The 

maximum in the plot of (A1a-Asample)1a (i.e. the difference between A233 of 1a and A233 

of each sample, multiplied by the molar fraction of the guest 1a) vs. the molar fraction 

of the host -CD (CD) gives the stoichiometry of the inclusion complex (Fig. S3, 

Supplementary data) [33]. 

 

2.8 Preparation of 1a-β-CD inclusion systems in solution (1aHC) and at the solid state 

(1aCD) 

 

The 1a-β-CD adduct in solution was obtained following the above-reported 

Higuchi-Connors procedure (see section 2.6). Complex 1a was weighed into 2-mL 

Safe-Lock microcentrifuge tubes, then 1 mL of milliQ water was added and the mixture 

continuously shaken at 25 °C for 24 h in the presence of a 15 mM concentration of β-

CD. The sample was filtered through a 0.22 m cellulose nitrate membrane filter; the 

solution (1aHC) contains β-CD and 1a in 15 mM and 1.13 mM concentration, 

respectively. 

The solid-state adduct 1a-β-CD was prepared by adding solid β-CD (209 mg, 0.18 

mmol) to a suspension of 1a (50 mg, 0.09 mmol) in 15 mL of water. The reaction 

mixture was stirred at 70 °C for 24 h to obtain a clear solution. Then, the solvent was 

removed under reduced pressure, and the product collected as a white solid (1aCD). 

 

2.9 Electrochemistry 
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An Autolab PGSTAT12 electrochemical analyzer (Eco Chemie, Utrecht, The 

Netherlands) interfaced to a personal computer running GPES 4.9 electrochemical 

software was used for the electrochemical measurements. A standard three-electrode 

cell was designed to allow the tip of the reference electrode (saturated calomel 

electrode, SCE) to closely approach the working electrode (a glassy carbon, GC, disk, 

diameter 0.1 cm, sealed in epoxy resin). The GC working electrode was polished with 

alumina followed by diamond paste, then rinsed with distilled water and dried. This 

process yielded an almost completely reproducible surface for all experiments. All 

measurements were carried out under nitrogen in 0.1 M NaClO4. The temperature of the 

solution was kept constant (25±1 °C) by circulation of a thermostated water/ethanol 

mixture through a jacketed cell. Positive-feedback iR compensation was applied 

routinely. Four different Higuchi-Connors solutions, containing [β-CD] = 0, 5, 10 and 

15 mM, prepared according to section 2.6, were tested. 

 

2.10 Cell culture and growth inhibition (IC50) 

 

All the compounds under investigation were tested on three primary MPM cancer 

cell lines, derived from the pleural effusion of previously untreated patients suffering 

from MPM, namely BR95 (epithelioid), MM98 (sarcomatoid) [34,35] and MG06 

(mixed with epithelioid predominance), and on a cisplatin-resistant cell line called 

MM98R derived from wild type MM98 by exposure to sub-lethal concentrations of 

cisplatin for several months [36]. Human mesothelial cells (HMC) were established by 

gently scraping the peritoneum of the inner wall of uncomplicated congenital hernia 

sacs surgically excised from premature babies (Pediatric Surgery Unit). This local 
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environment is usually devoid of significant inflammatory stimuli in the absence of 

complications and therefore the peritoneum remains thin and almost transparent and the 

uninjured HMCs are mostly in a normal resting state with a pavement-like appearance. 

All these cell lines were obtained from the Hospital of Alessandria (Pathology Unit). 

The human ovarian carcinoma cell line A2780, the human colon carcinoma cell line 

HCT 116, and the breast cancer cell line MCF-7 were purchased from ECACC 

(European Collection of Cell Cultures, UK). HMC and epithelioid (BR95 and MG06) 

cells were grown in Ham’s F10 cell medium (GIBCO, Invitrogen Life Science, San 

Giuliano Milanese, Italy), whereas DMEM (Sigma-Aldrich or Hy-Clone) was used for 

the sarcomatoid cells. A2780 cells were grown in RPMI1640, and MCF-7 were grown 

in DMEM supplemented with non-essential amino acids, whereas McCoy’s 5A was 

used for HCT 116 cells. All media were supplemented with L-glutamine (2 mM), 

penicillin 100 IU mL-1, streptomycin (100 mg L-1) and 10% fetal bovine serum (FBS). 

Cell culture and treatment were carried out at 37 °C in a 5% CO2 humidified chamber. 

Cells were challenged with the compounds under study for 72 h of continuous 

treatment. Cisplatin, 3, was dissolved in 0.9% w/v NaCl aqueous solution brought to pH 

= 3 with HCl (final stock concentration 1 mM). The Pt(IV) complexes (series 1 and 2) 

and 4 were dissolved in DMSO (final stock concentration 5 mM) and stored at -66 °C. 

The inclusion complex 1aCD was dissolved in ultrapure water (final stock 

concentration 1 mM), whereas 1aHC was used directly as the mother solution. The 

mother solutions were diluted in complete medium, to the required concentration range. 

In the case of co-solvent, the total DMSO concentration never exceeded 0.2% (this 

concentration was found to be non-toxic to the cells tested). 
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To assess the growth inhibition of the compounds under investigation, a cell 

viability test, i.e. the resazurin reduction assay was used [37]. Briefly, cells were seeded 

in black sterile tissue-culture treated 96-well plates. At the end of treatment, viability 

was assayed by 100 µg mL-1 resazurin (Acros Chemicals, France) in fresh medium for 1 

h at 37 °C, and the amount of the reduced product, resorufin, was measured by means of 

fluorescence (excitation 535 nm, emission 595 nm) with a Tecan Infinite F200Pro plate 

reader (Tecan Austria). In each experiment, cells were challenged with the drug 

candidates at different concentrations and the final data were calculated from at least 

three replicates of the same experiment performed in triplicate. The fluorescence of 8 

wells containing medium without cells were used as a blank. Fluorescence data were 

normalized to 100% cell viability for non-treated cells. Half inhibiting concentration 

(IC50), defined as the concentration of the drug reducing cell viability by 50%, was 

obtained from the dose-response sigmoid using Origin Pro (version 8, Microcal 

Software, Inc., Northampton, MA, USA). 

 

2.11 Cellular accumulation and accumulation ratio 

 

Cancer cells were treated for 4 h with all of the Pt(IV) complexes under 

investigation, with the Higuchi-Connors solution 1aHC, and with the solid inclusion 

complex 1aCD. The final platinum concentration in the medium was 10 µM in all 

cases.  

To investigate the possible role of the endocytosis process in the uptake of 1aHC, 

the effect a series of endocytosis inhibitors was tested. 
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To inhibit chlatrin-mediated endocytosis, HCT 116 cells were pre-treated 30 min 

with chlorpromazine (10 g mL-1) in complete medium [38]. Alternatively, cells were 

K+ depleted by a 5 min hypotonic shock (medium + milliQ 1:1), followed by 30 min in 

K+-free buffer (NaCl 140 mM, HEPES 20 mM, CaCl2 1 mM, MgCl2 1 mM, 1 mg mL-1 

D-glucose) or in the same buffer supplemented with KCl 10 mM. In addition, a 

hypertonic treatment was performed for 30 min with 0.45 M sucrose in complete 

medium [39]. 

To investigate the role of macropinocytosis, cells were pre-treated 30 min with 5 

mM amiloride hydrochloride [40], or 10 M cytochalasin D [41], and then washed with 

phosphate buffered saline (PBS). 

To investigate the role of caveolae-mediated endocytosis, cells were cholesterol-

depleted with a 30 min pre-treatment with methyl-β-cyclodextrin (2.5 mg mL-1) [42], 

and then washed with PBS. 

In all cases except for the controls, the cells were further challenged for 2 h with 

1aHC or 1a, in fresh serum-free medium. 

To take into account the adsorption of Pt(IV) complexes to sterile plasticware, 100 

µL of the culture medium was withdrawn immediately after treatment to measure the 

net extracellular Pt concentration. After treatment, the cells were washed three times in 

PBS and harvested by trypsinization. An automatic cell counting device (Countess®, 

Life Technologies) was used to measure the cell number and the mean diameter from 

every cell count. About 5×106 cells were transferred into a glass tube and spun at 1100 

rpm for 5 min at room temperature. The supernatant was carefully removed by 

aspiration, leaving about 200 µL of the supernatant in order to limit the cellular loss. 

Cellular pellets were stored at -20 °C until mineralization. After thawing, 70% HNO3 



 19 

was added and left for 1 h at 60 °C in an ultrasonic bath. Before the measurement, the 

HNO3 was diluted to a final 3% concentration. Platinum determination was performed 

by inductively coupled plasma-mass spectrometry (ICP-MS, Thermo Optek X Series 2). 

The instrument settings were optimized in order to yield maximum sensitivity for 

platinum. For quantitative determination, the most abundant isotopes of platinum and 

indium (used as internal standard) were measured at m/z 195 and 115, respectively. 

The level of Pt found in cells after the treatment was normalized to the cell number 

and the cellular volume, calculated from the actual mean cell diameter measured for 

each sample, in order to obtain the intracellular Pt concentration. The ratio between the 

intracellular and the known extracellular concentration of Pt is defined as the 

accumulation ratio, AR [43,44]. 

 

2.12 Apoptosis induction 

 

In order to detect caspase 3/7 activity, 20×103 A2780 cells were seeded in 96-well 

tissue culture plates the day before treatment and then challenged with concentrations of 

drugs approaching 1, 10, and 50IC50 values (namely, 0.5. 5 and 25 M for cisplatin 

(5, 50, 250 nM for 1a and 1aHC). After 24, 48 and 72 h, cells were washed with PBS, 

and then lysed with 25 µL lysis buffer (10 mM HEPES, 2 mM EDTA, 2 mM 

dithiothreitol, 0.1% CHAPS, pH 7.4). The caspase 3/7 inhibitor N-Acetyl-Asp-Glu-Val-

Asp-CHO (Ac-DEVD-CHO, final concentration 0.01 g L-1) was added to control wells. 

Then, 200 L of the caspase-3/7 fluorescent substrate N-Acetyl-Asp-Glu-Val-Asp-7-

amido-4-trifluoromethylcoumarin (Ac-DEVD-AFC, 0.01 g L-1 in lysis buffer) was 

added to all wells, mixed, and 200 L of each sample were transferred to a black 
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microtiter plate. The activity was observed for 1 h, by means of fluorescence at exc = 

390 nm and em = 520 nm, normalized over the blank [45]. Final activity was computed 

with respect to the control wells and normalized on the residual viability. 

Apoptosis was confirmed by means of annexin V / propidium iodide (PI) staining. 

Briefly, A2780 cells were treated for 72 h with 50IC50 of Pt complexes (i.e., 25 µM for 

cisplatin, 250 nM for 1a or 1aHC, respectively). After a PBS wash, cells were harvested 

by trypsinization, counted, and resuspended to a final concentration of 106 cell ml-1 in 

1annexin V binding buffer (10 mM HEPES/NaOH pH 7.4, 140 mM NaCl, 2.5 mM 

CaCl2). Cells (400 µL) were incubated 15 min in the dark with 20 µL of stock annexin 

V-FITC (Life Technologies) and 20 µL of PI stock (10 mg mL-1), then diluted to 2 ml 

with 1annexin V binding buffer and immediately analyzed. Flow cytometry analysis 

was performed using a Partec CyFlow Space (Partec GmbH, Muenster, Germany). 

 

2.13 Molecular modeling 

 

The crystallographic structure of 1a is available [3] and was used as the starting 

point for the conformational analysis available in Spartan ’10 (Wavefunction Inc., 

Irvine, CA, USA) with no further modifications. Briefly, the algorithm rotated each 

single acyclic bond by a specified angle and created a list of conformers that were 

submitted to a full minimization using PM6 semi-empirical Hamiltonian [46] and the 

default parameters [28]. Rotation angles were chosen so as to obtain a balance between 

an accurate exploration of conformational space and CPU time. 

The starting conformers of the three CDs were obtained from the Cambridge 

Structural Database (CSD) [47]. In particular WILJAC, TUXKUS and NUNRIX were 
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used for -, -, and -CD, respectively. The structures were used after deletion of 

ligands and solvent molecules. All the starting structures were submitted to a full 

minimization run using the same protocol adopted for complex 1a (see above). 

A well-known QM method [48] was used to search for the global minimum of the 

host-guest inclusion complexes of 1a with the three CDs. Briefly, the glycosidic oxygen 

atoms of the CDs were used to define the XY plane and the center of this plane was 

identified as the center of the coordinates system. Complex 1a was placed along the Z 

axis of the coordinates system with the platinum in the center, and then it was allowed 

to enter and pass through the CD molecule by steps. The guest was moved along the Z-

axis from -10 to 10 Å with respect to the initial coordinates. To further improve the 

accuracy of the approach, the guest molecule was rotated along the Z axis to find the 

optimal angle at each step. For each step, the complex was rotated by an angle 

corresponding to 360° divided by the number of glucose units. The geometry of the 

complex was fully optimized at each step as described above. 

The binding energy was evaluated as the difference between the total energy of the 

1a-CD adduct and the total energy of the single host (CD) and guest (1a) molecules in 

two conformations: i) the conformation of minimum energy in the adduct (adduct 

conformation) and ii) the free full-minimized conformation, respectively (Table 2). The 

lower the stabilization energy is, the more thermodynamically favorable is the inclusion 

complex [49]. 

 

2.14 Dynamic Light Scattering (DLS) measurements  
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Dynamic Light Scattering experiments were carried out on aqueous solutions at 298 

K, by using a Zetasizer NanoZS (Malvern, UK) operating in a particle size range from 

0.6 nm to 6 μm, and equipped with a He-Ne laser with λ = 633 nm. Before analysis, 

each sample was diluted with distilled water (final concentration ca. 1 mM). 

 

3. Results and Discussion 

 

3.1. Synthesis and characterization of complexes 1a-1c and 2a-2c 

 

The complexes were prepared according to the reaction scheme shown in Fig. 2. 

Cisplatin, 3, and [PtCl2(dach)], 4, obtained from K2PtCl4 using the standard Dhara 

synthesis [20], were oxidized to the dihydroxido complexes in aqueous solution using 

35% hydrogen peroxide. The final carboxylation reaction with benzoyl, 2-

phenylethanoyl or 3-phenylpropanoyl chloride was carried out in acetone at 70 °C 

producing the corresponding bis(carboxylato)platinum(IV) complexes 1a-1c and 2a-2c 

in good yields (Fig. 2). 

 

Fig. 2 

 

The new complexes 1b, 1c, 2b and 2c were fully characterized by elemental 

analysis, multinuclear NMR (1H, 13C, and 195Pt), HPLC, and ESI-MS, and in the case of 

1b also by X-ray diffraction. 1H and 13C, NMR signals are consistent with those already 

reported for 1a [3] and 2a [18], apart from additional methylenic signal/s. The 195Pt 

NMR spectra display a single resonance in the range of 1080-1090 ppm, which is 
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consistent with a “Cl2N2O2” core [3,18,27]. In the parent Pt(II) complexes 3 and 4 195Pt 

resonates at -2142 ppm (in D2O) and -2278 ppm (in DMSO), respectively, more than 

3200 ppm upfield relative to the Pt(IV) analogues. 

Finally, the identity of the complexes was confirmed using ESI-MS spectra (both 

measured in positive and negative ion modes). The peak assigned to [M+H]+ (positive 

ion mode) and [M-H]- (negative ion mode) usually exhibited the highest relative 

intensity. The m/z values and the isotopic patterns were in agreement with the expected 

chemical formulas. 

 

3.2 Crystal structure of complex 1b 

 

The crystal structure of compound 1b is shown in Fig. 3. As can be seen in the 

ORTEP plot, the Pt(IV) coordination geometry is a distorted octahedron. Two Cl atoms 

and two ammine groups lay cis to each other in a square-planar arrangement around the 

metal atom in a fashion similar to that of 3, whereas the two remaining trans positions 

are occupied by two carboxylate oxygen atoms belonging to the phenylacetate ligands. 

 

Fig. 3 

 

Both phenylacetate residues behave as monodentate ligands through an oxygen, but 

the two carboxylate moieties have different orientations with respect to the equatorial 

coordination plane. The non-coordinated carboxylic oxygen O4 is involved in tight 

hydrogen bonds with both ammine groups bound to the platinum ion, whereas the 

analogous O2 oxygen of the other phenylacetate group forms a single hydrogen bond 
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with only one ammine nitrogen. The other ammine nitrogen is instead involved in an 

additional hydrogen bond with a chlorine of an adjacent molecule in position -

x+1/2+1,+y-1/2,-z and this interaction produces a ribbon of molecules which can be 

considered the basic pattern of the crystal packing (Fig. S1, Supplementary data). 

Similar patterns were also observed in previously reported analogous compounds, 

where the crystal packing is also mainly determined by hydrogen bonds [3,18]. 

The novelty in this structure is that, thanks to the presence of the methylene spacer 

between the carboxyl group and the phenyl ring that prevents delocalization and allows 

a certain degree of freedom in rotation, interactions between the aromatic rings 

significantly contribute to determining the packing (Fig. S2, Supplementary data). The 

phenyl rings of one molecule interact through reciprocal face-to-edge phenyl 

interactions with a second molecule to form dimeric units. Further weak 

interconnections can be noticed between dimers through phenyl face-to-face 

interactions and the combination of these two π-π interaction types provide, along with 

the N-H…Cl hydrogen bond system cited above, a secondary pattern that characterizes 

this crystal packing. 

 

3.3 Lipophilicity 

 

Pt(IV) complexes are believed to cross the cellular membrane by passive diffusion 

alone, since their reactivity towards transport proteins has been found to be negligible 

[50]. Therefore, their high lipophilicity is expected to enhance cellular uptake, 

accumulation, and, possibly, cytotoxicity. A stringent correlation between lipophilicity 



 25 

and the antitumor activity of Pt(IV)-based drugs has been widely described for 

complexes containing aliphatic carboxylate axial ligands [4].  

The lipophilicity of a molecule is usually represented by the logarithmic value of 

the octanol/water partition coefficient of the compound (log Po/w) determined by the 

traditional shake-flask method. However, this procedure is not efficient in the case of 

extremely lipophilic or hydrophilic molecules, and is often surrogated by RP-HPLC 

measurements [51,52]. In this method, the lipophilicity index is derived from the 

logarithmic value of the HPLC retention factor (log k’) extrapolated to 100% water 

(log k0, see Experimental section), a parameter closer to log Po/w. Table 1 shows the 

log k0 values measured for the compounds of the two series. 

 

Table 1 

 

The title complexes are by far more lipophilic (higher log k0 values) than the 

corresponding Pt(II) parent compound (3 and 4, respectively). However, the differences 

between a-c complexes within the same series are small and irregular. In fact, the 

introduction of one or two methylene groups between the phenyl and the carboxylic 

group has an unpredictable effect on the final log k0 value; in contrast, aliphatic 

analogues of the general formula cis,cis,trans-[PtCl2(NH3)2(carboxylato)2] and 

cis,cis,trans-[PtCl2(dach)2(carboxylato)2] show a progressive increase of lipophilicity 

with the number of methylene groups in the axial ligands [4,28]. 

Nys and Rekker suggested a method for calculating lipophilicity classified as the 

“additive method”, where a molecule is dissected into basic fragments (functional 

groups or atoms) and its log Po/w value is obtained by adding the contributions of each 
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fragment [53]. Interestingly, this approach has been proven valid for Pt(IV) derivatives 

by Lippard et al. [54]. Considering a constant contribution by each "PtA2Cl2" moiety to 

log k0 value [55], this procedure reproduces the observed irregular trend: benzoic acid, 

log Po/w = 1.87, 2-phenylacetic acid log Po/w = 1.41, and 3-phenylpropionic acid log Po/w 

= 1.84 [56,57]. 

 

3.4 Reduction reactions 

 

The ability of 1a-1c and 2a-2c complexes to be "activated by reduction" in the 

presence of three biologically relevant reducing agents was studied. The three 

reductants were: a) ascorbic acid, AA, b) glutathione (γ-glutamylcysteinylglycine), 

GSH, both present in cytosol, and c) -tocopherol, found primarily in cell membranes. 

The reaction with GSH was followed by using UV-visible [30,31] and HPLC-MS 

measurements, whereas the reaction with -tocopherol was followed by HPLC-MS 

alone. The results show that none of the complexes are reduced by the two above-

mentioned agents within 48 h. 

On the other hand, AA proved to be an efficient reductant for such complexes. The 

kinetic measurements were performed with a 10-fold excess of AA (i.e., 0.25 mM of 

title complexes and 2.5 mM of AA in a 70/30 MeOH/HEPES solution) by monitoring 

the decrease of the area of the Pt(IV) chromatographic peaks. These experimental 

conditions represent the best compromise for solubilizing both Pt(IV) derivatives and 

AA. The resulting half-life times t1/2 (time required to reduce by half the initial 

chromatographic peak of complex under investigation) are affected by a high degree of 

uncertainty: 16.5 h for 1a, 38 h for 1b, 57 h for 1c, 12 h for 2a, 11 h for 2b, and 16 h for 
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2c. Interestingly, dach-based series 2 show a somewhat higher reduction rate with 

respect to the cisplatin-based series 1. Bulky equatorial ligands, such as dach, can 

destabilize the encumbered six-coordinated Pt core and allow a faster reduction to the 

less congested four-coordinated Pt(II) ones [58,59]. 

The ESI-MS spectra acquired during the reductions show the formation of 3 or 4 

from 1 and 2 series respectively, together with their corresponding solvolysis (i.e., 

monoaquo and diaquo) products. Thus, the reduction is not associated with any ligand 

rearrangements of the ligands as found in some similar processes [60,61]. 

 

3.5 Cell culture and growth inhibition (IC50) 

 

Series 1 and 2 were tested on several human cancer cell lines: three primary 

malignant pleural mesothelioma MPM (an extremely difficult form of cancer to treat), 

[62] namely BR95 (epithelioid), MG06 (mixed), and MM98 (sarcomatoid) together 

with its cisplatin-resistant subline MM98R; the nonmalignant human mesothelial cells 

(HMC), the ovarian carcinoma A2780 and the colon carcinoma HCT 116. The IC50 (i.e., 

the concentration of compound which reduces cell growth by 50%) values were 

determined by a cell viability assay (i.e., the resazurin assay). In addition, both the 

resistance factor (RF defined as the ratio between IC50 MM98R and IC50 MM98) and 

the selectivity index (SI, defined as the ratio between IC50 HMC and the mean of IC50 of 

BR95, MG06, and MM98) were calculated. All the data are reported in Table 1. Parent 

complexes 3 and 4 were added to the series for comparison. 

All of the Pt(IV) complexes are more active than their respective Pt(II) progenitors, 

namely 3 and 4, on all the cell lines. In particular, the IC50 values for the Pt-sensitive 
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A2780 cell line are about two orders of magnitude lower for the title complexes than for 

the corresponding Pt(II) counterparts, and about one order of magnitude lower for the 

chemoresistant MPM cell lines. As already observed for other Pt complexes, the 

epithelial-like MPM cell lines BR95 and MG06 proved more resistant than the 

sarcomatous counterpart (MM98) [62,63]. For the colon HCT 116 cell line, the increase 

in potency is more pronounced for oxaliplatin-like series 2 than for cisplatin-like series 

1, as expected for the better performance of the dach carrier ligand on this kind of 

tumor. In general, 2a-2c result more cytotoxic than 1a-1c because of the higher 

lipophilicity of dach with respect to NH3. The IC50 values within each series are instead 

quite similar. 

Finally, as far as the MPM cells are concerned, all of the title compounds show 

high SI values, suggesting good selectivity against tumor cells with respect to the 

nonmalignant counterparts and low RF, indicating an ability to overcome cross 

resistance with cisplatin. In particular, series 2 exhibits a much lower RF than those of 

series 1 by virtue of the presence of the dach ligand, having higher lipophilicity and, 

more importantly, generating structurally different Pt(II) metabolites (namely 3 from 

series 1 and 4 from series 2) [64]. 

 

3.6 Cellular accumulation 

 

The cellular Pt content is a key parameter in understanding the mechanism of action 

of a Pt-based drug. This cellular accumulation can be better expressed as a pure number, 

namely the accumulation ratio (AR), i.e., the ratio between the intracellular and the 

extracellular (in the culture medium) Pt concentration [43] 
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The cellular accumulation and AR values (Fig. 4) for complexes 1a-1c, 2a-2c, 3 

and 4 (10 M) were measured on HCT 116 cells after 4 h of treatment. Cellular 

accumulation in HCT 116 cells of all Pt(IV) complexes is far higher than that of their 

Pt(II) precursors; this explains their increase in cytotoxicity and their lower resistance 

factor. According to Kelland et al., satraplatin 

(bis(acetato)amminedichloridocyclohexylamineplatinum(IV)) and its congeners offer 

excellent in vitro performance when the resistance phenomenon is mainly due to a 

reduced influx or increased efflux of the drug [65].  

For these Pt(IV)-bis(benzoato) complexes, there is neither a simple relationship 

between lipophilicity and accumulation nor between accumulation and cytotoxicity, as 

already reported by Dyson et al. [3].  

 

Fig. 4 

 

3.7 Solubility studies 

 

It is well accepted that aqueous solubility (typically determined over 24 h) is a 

critical factor for any drug. The single-point water solubility of 1a-2c was determined 

from their saturated solutions at 25°C (solubility values < 0.3 mM). Thus, all of the 

complexes under investigation can be considered almost insoluble according to the 

United States Pharmacopoeia (USP), British Pharmacopoeia (BP) or European 

Pharmacopoeia (Ph. Eur.) solubility criteria. Thus, interaction between series 1 and 2 

and CDs was attempted for the purpose of increasing their water solubility. The pendant 

aromatic of the axial ligands should be well-suited to fit the cavity of CDs [66]. 
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The Higuchi-Connors phase-solubility diagrams [32] for 1a in the presence of -, 

-, and -CD, in water at 25 °C are shown in Fig. 5. The solubility of 1a increases due 

to the formation of inclusion complexes with CDs. The stability constants K were 

calculated from the slope of the initial linear portion of the phase-solubility diagrams 

using the equation K = slope / S0 (1-slope), where S0 is the solubility of 1a in water [67]. 

The K values are 64.7, 170, and 18.9 M-1, with -, -, and -CD, respectively. In all 

cases, the above-mentioned slope is less than one, indicating the formation of a 1:1 

Pt(IV)/CD complex. The stoichiometry of the Pt(IV)/CD complex was confirmed by 

Job's plot (Fig. S3, Supplementary data) [33], where a maximum at 0.5 indicates the 

existence of an adduct with a 1:1 molar ratio. 

 

Fig. 5 

 

The shape of solubility plot for 1a and both - and -CD shows an A-type profile 

that is obtained when the solubility of the guest increases with increasing host 

concentration. The AL-solubility curve obtained with -CD, together with its slope, 

further indicate that only a 1:1 inclusion complex is formed in solution. Instead, the AN-

type solubility curve obtained for -CD (where the guest solubility increases linearly 

with CD concentration but deviate negatively from the straight line at high [CD]), is 

much more difficult to interpret. The negative deviation from linearity may be 

associated with changes in adduct solubility or self-association of cyclodextrin 

molecules. Finally, the B-type curves obtained in the case of -CD indicate the 

formation of inclusion complexes with intrinsically limited solubility in water [6]. 

Among the three hosts, -CD shows the highest increase of solubility of 1a (about 4 
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times at [-CD] = 15 mM), whereas -CD offered worse results because of a lower K 

and -CD produced a scarcely soluble inclusion system. For these reasons, the 

remaining work focused only on the use of β-CD. 

For complexes 1b and 1c, a different scenario was seen. With -CD, a B-type 

phase-solubility diagram is observed, showing that a simple increase in the length of the 

-(CH2)n- (n = 1, 2) spacer between phenyl and carboxylic groups in the axial ligands 

leads to a dramatic decrease in the solubility of the corresponding adducts (Fig. S4, 

Supplementary data). Surprisingly, the spacer does not offer any advantage for the 

efficacy of inclusion, possibly due to bending of the chain and the resulting 

intramolecular hydrogen bonds. The same diagram shown for compound 1c was 

observed for all complexes belonging to series 2 (data not shown). 

 

3.8 Preparation of solution adduct 1aHc and solid-state adduct 1aCD from 1a and β-

CD  

 

The procedure for preparing adducts with CDs in aqueous solution is similar to that 

adopted in the Higuchi-Connors analysis. Only the promising inclusion adduct between 

1a and -CD (1aHC) was further investigated by means of UV-visible spectroscopy 

and electrochemical methods. Compound 1a shows a large band at max = 233 nm, but 

in the presence of β-CD the roto-vibrational profile of the phenyl ring is better resolved 

and red-shifted (Fig. S5, Supplementary data). The shift may be ascribed to the different 

polarity of the environment, whereas the profile is related to the interaction between the 

phenyl rings of 1a and the cavity of -CD, resulting in the restriction of the freedom of 

vibration and rotation of the guest [68]. Electrochemical measurements further 
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corroborated the formation of the inclusion system. Complex 1a shows the usual 

Pt(IV)  Pt(II) irreversible 2e reduction. The voltammetric responses of three different 

Higuchi-Connors solutions, containing increasing [-CD] (Fig. S6, Supplementary 

data), show a progressive cathodic shift of the peak potential as a consequence of the 

inclusion system formation. Additional energy is required in order to obtain free 1a 

from the adduct, so that the cathodic shift is inversely related to the stability constant 

and to the [-CD] concentration. At the same time, the adduct increases the 

concentration of [1a] near the electrode and, hence, the intensity (cathodic current) of 

the reduction peak. 

For preparation of solid-state formulations, the co-precipitation method, the 

neutralization method, the slurry method, the kneading method, and the grinding 

method were described, among others [69]. In the present case, simple heating (70 °C) 

of a 1:2 mixture of 1a and β-CD for 24 h followed by removal of the solvent under 

reduced pressure provided quantitatively the solid-state inclusion product 1aCD. 

 

3.9 NMR characterization 

 

NMR technique provides evidence for the host-guest interaction: the inclusion of a 

guest molecule in the hydrophobic CD cavity generally causes the shift of the signals of 

all protons directly involved [70]. 

In 1aHC the signals assigned to the ortho (Ho), meta (Hm), and para (Hp) aromatic 

protons are shifted with respect to those of free 1a (Fig. 6) but not doubled, suggesting a 

fast exchange (within the NMR time-scale) between the free and CD-included state of 
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1a. The differences in chemical shift between 1a and 1aHC are quite small, according 

to the low value of K1:1. 

The 1H-NMR spectra of β-CD and 1aCD show that the signals of protons H-3, H-5, 

and H-6, located inside the β-CD cavity, are also shifted, supporting the formation of 

the inclusion product (Fig. S7 and Table S1, Supplementary data). 

To further investigate the structure of the host-guest inclusion complex, a two-

dimensional 1H-NMR ROESY (Rotating frame Overhauser Effect SpectroscopY) 

experiment was performed to shed light on the dipolar interactions established between 

guest and host protons situated next to each other. The 2D ROESY spectrum (Fig. 6) 

shows several intermolecular cross-peaks between H-3, H-5, and H-6 protons of β-CD 

and Ho and Hm of the phenyl groups of 1a, demonstrating the inclusion of aromatic ring 

in the CD cavity. No correlations are observed between any internal proton of β-CD and 

Hp, indicating that this proton points out from the cavity (Fig. 6). 

 

Fig. 6 

 

3.10 Molecular modeling 

 

Figure 7 shows the lowest energy conformers of the three inclusion complexes of 

1a with -, -, and -CD, respectively. In all the complexes investigated, the ammine 

ligands of 1a form hydrogen bonds with the hydroxyl rims of the CDs. 

The platinum center is positioned on the primary hydroxyl rim in the case of -CD, 

whereas it is located on the secondary hydroxyl rim for -CD. In the case of -CD the 

bigger dimensions of the cavity allow 1a to enter more deeply into the host molecule 
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and to lodge near the center of CD. A few guest molecules penetrate CDs from the 

narrower primary hydroxyl rim [71]. The minimum energy structure of the adduct 1a--

CD is in agreement with NMR data, since the shortest distances are between the CD 

inner hydrogens and the ortho and para hydrogens as follows: Hm:H-5 (1.79 Å), Hm:H-6 

(2.49 Å), Ho:H-3 (2.23 Å) and Ho:H-5 (2.03 Å). Further, in order to quantify the 

interaction between 1a and CDs in the optimized geometries, the binding energy, E, 

was calculated using the following equation: 

E = Eadduct - (E1a + ECD) 

where Eadduct represents the calculated total energy of the optimized most stable 

inclusion complex, whereas E1a and ECD represent those of the free 1a and CD, 

respectively (see details in the Experimental section). The results reported in Table 2 

indicate that the inclusion process of 1a is thermodynamically favorable with all CDs, 

but adduct 1a--CD is the most stable. Moreover, 1a--CD shows a pronounced 

difference in binding energies E and E', the latter calculated taking into account the 

free full-minimized conformations for 1a and CDs. In particular, the most stable -CD 

conformation in the adduct is about 11 kcal mol-1 less stable than the free full-

minimized conformation. - and -CD show a less pronounced difference between the 

free and inclusion complex conformations (about 2 and 5 kcal mol-1, respectively) 

suggesting a better propensity of -CD to adapt its conformation to maximize the 

interaction with such a guest. 

 

Fig. 7 

 

Table 2 
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3.11 Dynamic light scattering (DLS) analysis of 1aHC and 1aCD 

 

Dynamic light scattering (DLS) analysis of 1aHC and 1aCD suggests that the two 

systems have completely different properties. The 1aHC adduct tends to form 

aggregates measuring ca. 170 nm, whereas the 1aCD solution is characterized by the 

presence of larger aggregates of around 1 μm. It is important to note that all DLS 

measurements were performed at only one fixed angle (173°), so the estimate may be  

for extremely large or small particle sizes. In fact, for large aggregates, with size of the 

order of the incident wavelength, the angular-dependence of the scattered light has to be 

considered [72]. In addition, the scattering intensity is proportional to the sixth power of 

the diameter of the particle; consequently, smaller particles at low concentrations are 

hardly detectable in such measurements, and their presence cannot be completely 

excluded [73]. 

Taking into account these limitations, the results show that the thermal treatment 

employed for synthesizing solid-state 1aCD causes the formation of large aggregates. It 

has been reported that in aqueous solutions CDs can self-assemble into nano/microsized 

aggregates [74]. The formation of aggregates increases with increasing CD 

concentration and stirring. Moreover, the formation of adducts can influence the self-

assembly process [75,76]. Unfortunately, due to the relatively low sensitivity of the 

method, DLS experiments at the very low concentrations employed in the biological 

experiments cannot be performed to verify the extent of the aggregation in such 

conditions. 
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3.12 Biological evaluation of β-CD interaction systems 1aHC and 1aCD 

 

Cyclodextrin adducts 1aHC and 1aCD were tested on the cell lines used in the 

previous experiments (see sections 3.5 and 3.6, and Table 1). The effect of -CD alone 

was initially measured at the highest concentration reached in the culture medium 

during the biological tests [77]. Cell viability was unaffected by -CD up to 0.27 mM, a 

concentration much higher than that administered with the adducts. The data show that 

1aHC is slightly less active (from ca. 1.7 to 2.7 times) than free 1a, whereas 1aCD 

offers the worst results in term of potency, with the ratio of IC50(1aCD) / IC50(1a) from 

100 to 500, depending on the cell line. 

It is worthy of note that in an alternative attempt to improve the aqueous solubility 

of aryl carboxylato Pt(IV) complexes, Ang et al. synthesized several axially 

unsymmetrical derivatives containing other more polar (hydrophilic) ligands besides the 

benzoates. All these modifications lowered the potency of the new complexes with 

respect to 1a [78].  

In order to verify whether the different level of cytotoxicity observed for the 

various adducts of 1a is affected by a different cell accumulation of the platinum drug, 

the AR values were determined on the HCT 116 cell line (Fig. 4). The AR of 1aHC is 

similar to that of 1a, in tune with the observed similar cytotoxic activity. Therefore, the 

1aHC formulation seems not to be significantly detrimental for the excellent 

performance of 1a. In contrast, the solid inclusion system 1aCD show a very low AR, 

which correlates to its negligible cytotoxicity. 

Since CDs and their host-guest adducts may enter cells by endocytosis [79], the Pt 

accumulation of 1aHC was compared with that of free 1a in the presence of a series of 
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inhibitors of micropinocytosis or chlatrin- and caveolae-mediated endocytosis (see 

Experimental Section). The results show that there are no significant differences in the 

accumulation for 1a with respect to the controls (as expected, since its uptake occurs via 

passive diffusion only) and also for 1aHC (p > 0.05, two sample t-test. Fig. S8, 

Supplementary data), thus ruling out a significant role for endocytosis in the 

accumulation of 1aHC. The mechanism of cellular uptake of 1aHC consists of the 

release of free 1a from the inclusion system 1aHC outside the cells, followed by 

passive diffusion (Fig. 8). This hypothesis is consistent with the low thermodynamic 

stability (K1:1 = 170 M-1) of 1aHC. 

In contrast, the heavy aggregation occurring in 1aCD hampers this dynamic 

equilibrium that releases free 1a from the host-guest system, resulting in very limited 

accumulation and biological activity. 

In principle, cisplatin, 1a and 1aHC should have an identical mechanism of action, 

as they are all DNA-damaging agents. Indeed, the host-guest adduct 1aHC releases free 

1a, which in turn generates cisplatin after intracellular reduction (Fig. 8). After cisplatin 

aquation, the subsequent formation of intra- and inter-strand Pt-DNA adducts activates 

cellular sensors of DNA-damage that eventually trigger the apoptotic cascade. As a 

matter of fact, cisplatin, 1a and 1aHC activated apoptosis (Fig. S9, Supplementary 

data). In particular, the maximum levels of apoptosis (evaluated by caspase 3/7 activity) 

were observed after 24 h of treatment with cisplatin and after 72 h of treatment with 1a 

or 1aHC. Annexin V/ propidium iodide assay confirmed the occurrence of apoptosis 

(Fig. S10, Supplementary data). 

 

Fig. 8 
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4. Conclusions 

 

Two short series of Pt(IV)-bis(benzoato) complexes, namely 1a-1c and 2a-2c, have 

been synthesized and characterized. There is an impressive improvement in 

lipophilicity, cellular accumulation and cytotoxic potency on passing from Pt(II) to 

Pt(IV) congeners. Moreover, the Pt(IV) complexes proved significantly active on 

chemoresistant MPM cell lines. Given the poor prognosis and dearth of effective 

treatments for this disease, the therapeutic potential of the title complexes warrants 

further investigation.  

A clear structure-activity relationship cannot be drawn for these Pt(IV)-

bis(benzoato) complexes in contrast with their aliphatic homologues [4,80]; it is 

possible that the aromatic ligands interact with cellular components through intricate 

pathways. 

A study of the host-guest encapsulation of the title compounds with CDs via the 

pendant aromatic ring reveals that the solubility of the final adducts is strongly 

dependent on the type of complex and CD. The interaction significantly increases the 

water solubility only in the case of 1a with -CD. Physicochemical experiments 

confirm the formation of an inclusion complex in solution, 1aHC, with a 1:1 

stoichiometric ratio (one phenyl ring is located inside the cavity of one CD) and with 

moderate thermodynamic stability (K1:1 = 170 M-1). The pharmacological formulation 

1aHC almost completely maintains the  excellent antiproliferative activity of free 1a, 

whereas the formation of the solid-state adduct 1aCD causes complete aggregation 

resulting in poor cellular accumulation and cytotoxicity. 



 39 

Uptake measurements in the presence of endocytosis inhibitors suggest that 1aHC 

quickly releases free 1a, which enters cells by passive diffusion only (Fig. 8). Finally, as 

expected, 1a, 1aHC and their metabolite cisplatin trigger apoptosis in the treated tumor 

cells, the most desirable way of eliminating them (Fig. 8). 

It is worth mentioning that a very elegant approach to the administration of 1a has 

been recently reported by Ang et al. [81]. Multi-walled carbon nanotubes entrapped 1a 

as a protective shell via hydrophobic interactions, and upon chemical reduction of 1a, 

cisplatin is released. At the moment, however, there are many concerns about the 

possible hazards of such nanoparticles [82], whereas pharmaceutical formulations with 

CDs are accepted worldwide [9]. 

 

5. Abbreviations 

AR accumulation ratio 

CD cyclodextrin 

dach cyclohexane-1R,2R-diamine 

DLS dynamic light scattering 

DMEM Dulbecco's modified Eagle's medium 

DMSO dimethyl sulfoxide 

ESI-MS  electrospray ionization mass spectrometry 

FBS fetal bovine serum 

GC glassy carbon 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPLC-MS high-performance liquid chromatography-mass spectrometry 

IC50 half inhibiting concentration 
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ICP-MS inductively coupled plasma-mass spectrometry 

ICP-OES inductively coupled plasma-optical emission spectroscopy 

K stability constant 

k’ HPLC retention factor 

MPM malignant pleural mesothelioma 

NMR nuclear magnetic resonance spectroscopy 

PBS phosphate buffered saline 

Po/w octanol-water partition coefficient 

QM quantum mechanics 

RF resistance factor 

ROESY rotating frame Overhauser effect spectroscopy 

RP-HPLC reverse-phase high-performance liquid chromatography 

RPMI1640 Roswell Park Memorial Institute medium 

SI selectivity index 

t0 column dead-time 

tR  retention time 

UV-visible ultraviolet-visible spectroscopy 
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Tables 

Table 1. Logarithmic value of the RP-HPLC retention factors extrapolated to 100% water (log k0) and IC50 (M) values after 72 h. Data are means ± 

standard deviation of at least three independent replicates 

Compound log k’0 
IC50 [M] 

A2780 HCT 116 BR95 MG06 MM98 MM98R HMC 

3 -0.567 0.5 ± 0.1 2.3 ± 0.3 6.2 ± 0.9 4.1 ± 1.5 3.2 ± 1.0 19.4 ± 2.8 [6.1] 6.7 ± 1.2 (1.5) 

1a 2.26 4.0 ± 0.1×10-3 54.0 ± 10.0×10-3 0.33 ± 0.09 0.48 ± 0.09 0.12 ± 0.03 0.47 ± 0.08 [3.9] 0.32 ± 0.05 (1.0) 

1b 2.34 49.6 ± 3.6×10-3 0.21 ± 0.05 1.97 ± 0.64 1.24 ± 0.57 0.64 ± 0.28 1.23 ± 0.33 [1.9] 4.16 ± 0.80 (3.2) 

1c 3.30 5.4 ± 0.1×10-3 51.0 ± 5.2×10-3 0.53 ± 0.27 0.71 ± 0.15 0.20 ± 0.07 0.44 ± 0.12 [2.2] 0.90 ± 0.42 (1.9) 

4 -0.131a 0.12 ± 0.04 0.27 ± 0.03 1.0 ± 0.2 0.8 ± 0.2 2.2 ± 0.4 2.5 ± 0.6 [1.1] 0.8 ± 0.1 (0.6) 

2a 3.02 2.2 ± 0.3×10-3 2.4 ± 0.7×10-3 21.7 ± 4.9×10-3 38.0 ± 20.8×10-3 15.0 ± 3.3×10-3 18.0 ± 3.5×10-3 [1.2] 0.13 ± 0.08 (5.2) 

2b 2.55 1.3 ± 0.1×10-3 2.7 ± 0.6×10-3 14.0 ± 7.1×10-3 82.0 ± 21.2×10-3 62.2 ± 17.9×10-3 71.6 ± 37.2×10-3 [1.2] 0.15 ± 0.08 (2.8) 

2c 3.68 3.6 ± 0.9×10-3 4.9 ± 1.1×10-3 19.3 ± 5.5×10-3 90.4 ± 8.0×10-3 58.1 ± 19.1×10-3 32.9 ± 9.7×10-3 [0.6] 0.23 ± 0.07 (4.1) 

1aHC - 7.0 ± 3.0×10-3 0.14 ± 0.01 1.3 ± 0.1 0.86 ± 0.01 0.31 ± 0.05 0.89 ± 0.03 [2.9] 0.77 ± 0.03 (0.94) 

1aCD - 1.41 ± 0.03 20.8 ± 3.5 53.2 ± 4.5 55.0 ± 21.2 60.6 ± 8.0 63.7 ± 29.9 [1.1] 42.1 ± 16.5 (0.75) 

a From ref. [29]. Data in brackets: Resistance factor, RF = (IC50 MM98R) / (IC50 MM98). Data in parenthesis: Selectivity Index, SI = the ratio between 

IC50 (HMC) and the average IC50 on BR95, MG06 and MM98. 
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Table 2. Calculated total energy E of molecules (inclusion systems, 1a and CDs) and binding 

energy, E [kcal mol-1] 

 

Adduct conformation Free full-minimized conformation 

Eadduct E1 ECD 
Binding Energya 

E 
E1' ECD' 

Binding Energyb 

E' 

-CD -1550.38 -174.69 -1350.37 -25.32 -174.69 -1352.59 -23.10 

-CD -1771.28 -171.87 -1556.41 -43.00 -174.64 -1567.88 -28.76 

-CD -1970.57 -174.55 -1772.67 -23.35 -174.55 -1777.13 -18.90 

a E = Eadduct – (E1 + ECD); b E' = Eadduct – (E1' + ECD') 
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Captions to Figures 

Fig. 1. Sketch of the Pt(IV) complexes under investigation (1a-1c and 2a-2c) and their 

corresponding Pt(II) parent compounds (3 and 4), along with molecular structures of the 

cyclodextrins (CDs) under investigation. The CD numbering scheme is reported. 

Fig. 2. Synthetic route to prepare complexes 1a-1c (A = NH3) and 2a-2c (A = dach): a) H2O2 

35%, water, RT, 24 h; b) aryl chloride, acetone, reflux 4 h. 

Fig. 3. ORTEP plot of compound 1b with ellipsoids at 50% probability. 

Fig. 4. Pt accumulation ratio (AR, see experimental section) in HCT 116 cells of the compounds 

under investigations and inclusion systems 1aHC and 1aCD (all 10 M, 4 h of 

treatment). Data are means ± standard deviations of at least 3 independent replicates and 

were compared by means of the two sample t-test (* p < 0.5;** p < 0.01; *** p < 0.001; 

n.s. = statistically not significant). 

Fig. 5. Phase-solubility diagrams for 1a in the presence of - (circles), - (squares), and -CD 

(triangles) in water solution at 25 °C. 

Fig. 6. Expanded region of the ROESY spectrum of 1aCD and proposed geometry for the 

inclusion of 1a into -CD. 

Fig. 7. Minimum energy conformation of the complex between 1a and (A) -, (B) - and (C) -

CD. CD molecules are oriented with the primary hydroxyl rims in the upper part of the 

figure whereas the secondary hydroxyl rims are in the lower part of the figure. The 

models have been obtained by means of molecular modeling calculations. 

Fig 8. Sketch of mechanism of action of 1aHC and its metabolites 1a and cisplatin (the two 

electrons come from cellular reductants). 
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Fig. 8 
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