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ABSTRACT 

Objective High level of both Angiotensin (Ang) II and Tumor Necrosis Factor (TNF)-α heve been 

implicated in the pathogenesis of glomerular injury by affecting podocytes. The aim of this study 

was to investigate the Ang II-TNF-α relationship in human podocytes. 

Methods Immortalized podocytes were exposed to Ang II for 6 days in the absence or presence of 

either losartan or PD123,319 (both at 100 nM), AT1 and AT2 receptor antagonists, respectively. 

Results Ang II, after at least 72 h of repeated treatment, increased basal TNFA expression and 

cytokine release with a biphasic pattern and the maximum response at 10 nM. Losartan dampened 

the Ang II effects on TNF-α production throughout all the experimental period, demonstrating an 

AT1 contribution. PD123,319 affected the second TNF-α production peak showing even an AT2 

receptor contribution. Moreover, Ang II causes TNFR1 and TNFR2 over-expression in a time-

dependent manner. The functional interaction between Ang II and TNF-α has been demonstrated 

when the pro-proliferative effect of Ang II was antagonized by a neutralizing TNF-α antibody. 

Conclusions In conclusion, our results point out a functional interaction between Ang II and TNF-α 

and indicate this cytokine as a mediator in Ang II long-term pathoadaptive podocytes changes.  

 

 

Keywords podocytes, Tumor Necrosis Factor-α, angiotensin II 
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Clinical studies have shown that the angiotensin-converting-enzyme inhibitors (ACEi) and the 

angiotensin II-receptor blockers (ARB) exert significantly nephroprotective effects by decreasing 

proteinuria and disease progression both in patients affected by diabetic and non diabetic 

nephropathies [1, 2]. These data suggest a relevant contribution of the angiotensin (Ang) II signal to 

the development of glomerular dysfunction. Podocytes are terminally differentiated epithelial cells 

[3] and constituents of the glomerular filtration barrier (GFB). Their dysfunction and loss have been 

implicated in the onset and progression of glomerular diseases. These cells express all the 

components of the renin-angiotensin system (RAS) and are a major source of intraglomerular Ang 

II [4]. Ang II production results in being enhanced in podocytes following their exposure to 

mechanical stretch and hyperglycemia [5, 6]. Moreover, the expression of both AT1 and AT2 Ang II 

receptors on podocyte plasma membrane suggests that could be targeted by Ang II [7]. It has been 

demonstrated in podocytes that Ang II promotes actin rearrangement, tight junction protein ZO-1 

and nephrin protein down-regulation, thus leading to proteinuria, as well as an increase of vascular 

endothelial growth factor (VEGF) and transforming growth factor (TGF)-synthesis and, finally, it 

triggers apoptosis [8, 9]. Since podocyte response to Ang II may be a complex mixture of both 

direct and indirect effects, a further elucidation is warranted, particularly by testing the effects of a 

prolonged cell exposure to the vasopeptide with the aim of mimicking the clinical condition of a 

chronic exposure to high level of Ang II.  

The proinflammatory cytokine tumor necrosis factor (TNF)-α has been reported to participate in the 

pathogenesis of glomerular injury. In particular, high levels of TNF-α mRNA were found in the 

glomeruli of rodents and patients with diabetic nephropathy [10, 11], and this overexpression has 

been associated with the development of renal injury, leading to microalbuminuria [12, 13]. TNF-α 

is expressed and released not only by infiltrating leukocytes but also by resident cells, including 

endothelial, mesangial and tubular epithelial cells [14]. Among the many deleterious effects, TNF-α 

in the kidney promotes an inflammatory response and the accumulation of extracellular matrix thus 
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reducing the glomerular blood flow and damaging the GFB [15]. Recently, Bruggeman et al. (2011) 

have demonstrated that TNF-α, through the TNFR2-NF-κB pathway, contributes to the 

proliferative and pro-inflammatory phenotype of diseased podocytes [16]. The detrimental role of 

TNF-α in the pathogenesis of glomerular injury has been confirmed by the attempt to use TNF-α 

antagonists to treat glomerular diseases [17]. Infliximab, a chimeric monoclonal antibody against 

TNF-α, has been reported to significantly decrease albuminuria in a rat model of diabetic 

nephropathy [18].  

In vitro studies suggest that a functional linkage between Ang II and TNF-α may exist, having been 

demonstrated that Ang II induces TNF-α expression in endothelial and mesangial cells [19, 20]. 

However, at the best of our knowledge, whether Ang II could promote TNF-α production by 

podocytes remains still an unsolved question. As the high level of both Ang II and TNF-α have 

been reported in chronic progressive glomerular diseases, where podocytes dysfunction plays a 

critical role (i.e., hypertensive nephropathy, diabetic nephropathy, classic focal segmental 

glomerulosclerosis) [15, 21-23], the aim of this study was to investigate the Ang II-TNF-α 

relationship in human podocytes. 
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MATERIALS AND METHODS 

Drugs and chemicals 

Ang II, TNF-α, losartan, PD123,329 and all other reagents were from Sigma-Aldrich (Milan, Italy). 

Ang II receptor antagonists were dissolved in dimethylsulfoxide, TNF-α in water, as indicated by 

manufacturers’ instructions. Final drug concentrations were obtained by dilution of stock solutions 

in the experimental buffers. The final concentration of organic solvent was less than 0.1%, which 

has no effect on cell viability. In all experiments un-stimulated cells served as controls. 

 

Cell cultures 

Primary cultures of human podocytes were kindly provided by Prof. G. Camussi (Department of 

Internal Medicine and Center for Molecular Biotechnology, University of Turin, Turin, Italy). 

Podocytes were characterized and cultured as previously reported [24, 25]. 

 

Citokine release 

TNF-α release was evaluated by measuring cytokine concentration in the experimental medium by 

the Instant ELISA system (Bender MedSystems, GmbH, W., Austria) following the manufacturers’ 

instructions. All experiments were performed with 30 × 103 cells/well as initial cell density and 

results were corrected for the number of cells (cell growth) and are expressed as percent change 

over the control. 

 

RT-PCR and quantitative real-time PCR analysis 

The analyses were performed as previously described [25, 26]. Briefly, RT-PCR amplifications 

were performed in 25 µl reaction mixtures containing 1.0 µl of cDNA, 2.5 µl of 10× buffer, 1.0 µl 

of 50 mM MgCl2, 0.20 µl of 25 mM dNTPs mix, 0.05 U of EuroTaq DNA polymerase (Euroclone, 



7	
  
	
  

Milan, Italy), and 2.5 nM of each primer. PCR amplicons were resolved in an ethidium bromide-

stained agarose gel (2%-3%) by electrophoresis, and signals were quantified using NIH Image J 

1.41 software. β-actin expression was used as an internal control (Table 1). Real-time PCR 

experiments were performed in 25 µl reaction mixtures containing 10 ng of cDNA template, the 

Power SYBR® Green PCR Master Mix and the AmpliTaq Gold® DNA Polymerase LD (Applied 

Biosystems). Relative quantization of the products was performed using a 48-well StepOne™ Real 

Time System (Applied Biosystems). For all real-time PCR analyses, β-actin mRNA was used to 

normalize RNA inputs (Table 1).  

 

Western blot analysis 

Cell culture dishes were washed with phosphate-buffered saline (PBS) before adding ice-cold lysis 

buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 1% sodium 

deoxycholate, 5 mM EDTA, 1 µl/ml protease inhibitors, 0.1 mM ZnCl2, and 1 mM Ph-Me-Sul-Flu). 

Cell lysates were processed to determine protein concentrations using a BCA protein assay (Pierce 

Biotechnology Inc. Rockford, IL, USA) following the manufacturers’ instruction. Samples 

containing 20 µg of protein were subjected to SDS-PAGE using a 10% gel. Proteins were 

transferred to a PVDF membrane (Millipore, Bradford, USA), which was incubated with Super 

Block blocking buffer (Pierce Biotechnology Inc.). AT1R, TNFR1 and TNFR2 were detected 

following incubation with mouse monoclonal antibodies (Santa Cruz Biotechnology, CA, USA). 

ATR2 was detected following incubation with rabbit polyclonal antibody (Santa Cruz 

Biotechnology), according to the manufacturer’s instructions. To confirm the homogeneity of the 

proteins loaded, the membranes were stripped and incubated with an anti-β-actin monoclonal 

antibody (Sigma-Aldrich). The membranes were overlaid with Western Lightning 

Chemiluminescence Reagent Plus (PerkinElmer Life Science, Norwalk, CT, USA) and then 

exposed to Hyperfilm ECL film (Amersham Biosciences, Piscataway, NJ, USA).  
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Cell proliferation assay 

Podocytes (3000 cells/well) were exposed to Ang II 10 nM for 6 days according to an everyday 

medium changing protocol. In some experiments, at the day 3, a polyclonal goat anti-human IgG 

blocking TNF-α or a nonspecific polyclonal goat IgG (Santa Cruz Biotechnology) were added. The 

proliferative response was determined by counting the viable cells in a hemacytometer by the trypan 

blue exclusion test, blind by an observer.  

  

Data analysis 

Results are expressed as means ± SEM of at least three experiments. One-way analysis of variance 

(ANOVA) followed by the post hoc Dunnet's multiple comparison and Student –Newman-Keuls 

tests were used to determine significant differences between means. Differences were considered 

statistically significant when P < 0.05.  

 
 
RESULTS 
 
Effects of Ang II on TNF-α  production by human podocytes 

Our cell line posses both AT1 and AT2 receptors, as measured at both mRNA and protein level 

(Figure 1A and 1B). Their activation by Ang II stimulates TNF-α production as shown in Figure 2A 

and 2B. Cells were treated with Ang II (10 nM, 1-6 days) according to a daily exposure protocol 

and both TNFA expression and TNF-α release were measured (see materials and methods). The 

cytokine release showed a biphasic pattern with a first peak at the forth day and a second one at the 

sixth: medium TNF-α concentration was 14.9±3.0 pg/ml at day 0, 37.9±3.7 pg/ml at the forth day 

(about +150%; P<0.01) and 49.2±5.2 pg/ml at the sixth day (about +230%; P<0.01 vs both day 0 

and forth day). The same pattern was displayed by TNFA but with a ~24 h time-lag (Figure 2A).  

Ang II concentration-dependent curve (0.03-100 nM) disclosed a sigmoid shape with the maximum 

effect achieved from 10 nM and the EC50 at 0.43±0.02 nM (Figure 2B). These results demonstrate 
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that Ang II modulates TNF-α release by human podocytes in a time- and concentration-dependent 

manner. These effects are regulated at the gene level.  

 
Effects of losartan and PD123,319 on cytokine production induced by Ang II 

To evaluate whether AT1 and AT2 receptors contribute differently to Ang II response, podocytes 

were treated with the vasopeptide (10 nM, 1-6 days) in the presence or absence of selective AT1 or 

AT2 receptor antagonists, losartan (AT1) or PD123,319 (AT2), both at 100 nM (Figure 3). Only 

losartan was able to abolish Ang II effect on TNF-α release throughout all the experimental 

period. On the contrary, PD123,319 did not affect the first peak, but antagonized the second one 

(Figure 3). From these data it appears that Ang II response is differently and selectively mediated 

by both Ang II receptors. The same results were recorded by testing gene expression (data not 

shown). 

 

Effects of Ang II on TNF-α  receptor expression 

A further link between Ang II and TNF-α in human podocytes was discovered when the 

vasopeptide effect on TNF-α receptor expression was investigated at both mRNA and protein level. 

As previously, cells were exposed to 10 nM Ang II up to 6 days (Figure 4A and 4B). Ang II 

upregulated TNF-α receptors expression in a time-dependent manner starting respectively from the 

first day for TNFR2 and the third one for TNFR1.  

 

Effects of Ang II on human podocytes proliferation 

To evaluate whether the stimulatory agonism of Ang II on TNF-α production by human podocytes 

may have functional effects, the proliferative podocyte response to Ang II was tested. In 

comparison to medium alone, Ang II daily exposure increased cell growth rate: the cell number was 

significantly from the fourth day (Figure 5A). This effect was blunted by an αTNF-α neutralizing 
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antibody (at the third day; Figure 5B), thus suggesting that the Ang II induced proliferative response 

is mediated by TNF-α. 

 

 

DISCUSSION 

In this study we reported, in a concentration- and time-dependent manner, that Ang II inducesTNF-

α production by human podocytes. These results suggest that Ang II could activate a 

paracrine/autocrine loop centred on TNF-α. A similar positive effect of Ang II has been described 

in other kidney cells, such as cells from isolated tubules of rat medullary thick ascending limb and 

mesangial cells [19, 20], extending the evidence to the human podocytes. In our experiments Ang 

II, after at least 72 h of repeated treatment, increased basal TNFA expression and cytokine release 

with a biphasic pattern. Ang II-induced TNF-α release required a repeated exposure to the 

vasopeptide and it is related to the gene transcription. The analysis of the two kinetic profiles 

highlights a ~24 h-delay of release in comparison to gene expression, likely due to the multi-step 

process leading to mature TNF-α secretion [27]. Ang II up-regulates TNF-α in a concentration-

dependent manner (EC50s 0.43±0.02 nM) with the maximum response at 10 nM. Notably, these 

concentrations are within the intrarenal range reported to be ~one thousand times higher than the 

circulating one [28, 29]. Furthermore, our protocol, consisting of repeated stimulations, intended to 

mimic a chronic in vivo podocyte exposure to the vasopeptide. The everyday replacement of the 

medium with or without Ang II was planned to overcome Ang II catabolism [30]. Velez et al. 

(2007) have demonstrated that podocytes not only synthesize and release Ang II, but also convert it 

into the bioactive Ang (1-7) and Ang III [31]. The formation of these active metabolites has to be 

considered while discussing the data. However, as losartan, a selective AT1 antagonist, abolished 

the Ang II effects, the contribution of Ang (1-7), acting on the mas receptor [32], can be excluded. 

Even Ang III contribution can be rejected, because, even if it activates AT1 and AT2 receptors with 
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an affinity quite close to Ang II [32], its half life is ~5 fold shorter than the one of the parent peptide 

[31]. Thus, we may conclude that the observed effects are mainly due to Ang II. Taken these data 

together, our experimental conditions might be relevant to elucidate at least one of the podocytes 

pathoadaptive changes, TNF-α up-regulation, caused by a prolonged exposure to high concentration 

of Ang II, in the same way as it happens in chronic progressive glomerular disease where podocyte 

dysfunction plays a critical role (i.e., hypertensive nephropathy, diabetic nepfropathy, classic focal 

segmental glomerulosclerosis) [15, 21-23]. 

Previous findings indicate that in rat renal cortex [22, 33] and in human renal proximal tubular 

epithelial cells [34] the interaction between Ang II and TNF-α is mediated by AT1 receptors. These 

evidences have been confirmed by using a selective AT1 antagonist, such as losartan. Drug 

treatment dampened all the Ang II effects on TNF-α gene expression and release, throughout the 

entire experimental period. However, our results show that even AT2 receptors contribute to evoke 

the effects measured in the last period of the experimental observation, thus indicating a delayed 

involvement of theirs. This suggests that while the first peak reflects the AT1 receptor contribution 

on cytokine production, the second one seems to be driven by a more complex signaling.  

Another original result of this study is that Ang II, besides evoking TNF-α production, causes 

TNFR1 and TNFR2 over-expression, which might underlie an increased cell responsiveness to the 

cytokine. Actually, a functional interaction between Ang II and TNF-α has been demonstrated in 

our study when the pro-proliferative effect of Ang II was antagonized by a neutralizing TNF-α 

antibody. This experiment has been planned only to ascertain the cytokine role, being not able to 

elucidate the relative contribution of the two TNF-α receptor types. However, the kinetic data 

depicted in figure 4 indicate a more rapid and more intense modulation by Ang II of the TNFR2 

expression in comparison to that of TNFR1. Interestingly, while TNFR1 has been implicated in cell 

death processes [14, 27], recent data indicate the TNF-α-TNFR2 axis as a candidate pathway 

contributing to the development of a proliferative and pro-inflammatory podocyte phenotype, 
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associated with proliferative podocytopathies [16]. Ore data are derived from cultured immortalized 

human podocytes that are proliferating cells. Therefore these observations are not in keeping with 

that podocytes are postmitotic terminally differentiated cells with little or no capacity for 

regenerative replication [35]. However, proliferating podocytes have been observed in experimental 

models of glomerular injury [36], which may be explained admitting that some podocytes reengage 

the cell cycle as an adaptive response to injury in an attempt to mitigate their loss [37]. Further, 

indirect evidence for podocyte proliferation in human diabetes stems from the increased numbers of 

podocytes that are detected in the urine long before any reduction in glomerular podocyte numbers 

[38, 39]. In our study, we have demonstrated that our model leads to an Ang II induced proliferation 

of human podocytes. A critical aspect of our model is the use of immortalized podocytes, that are a 

cell type which is able to proliferate by itself. While recognizing this experimental bias, we have to 

stress that an increase in proliferation rate was observed in the presence of Ang II, as well as its 

reduction after αTNF-α. Our results, consistently with previous data indicate that TNF-α could act 

as a mitogenic stimulus on podocytes [16] and suggest that the TNF-α release and the TNFRs 

expression, could mediate the proliferative effects induced by Ang II on podocytes.  

In conclusion, our results point out a functional interaction between Ang II and TNF-α and indicate 

this cytokine as a mediator in Ang II long-term pathoadaptive podocytes changes. These results get 

more insight into the pathophysiological Ang II role in podocytes dysfunction leading to glomerular 

disease.  
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TITTLES AND LEGENDS 

Figure 1. Basal AT1 and AT2 receptor expression by human podocytes. Representative pictures of 

AGTR1 and AGTR2 mRNAs detected by RT-PCR (A) or AT1 and AT2 proteins by Western blot 

analysis (B).  

 

Figure 2. Effects of Ang II on TNF-α production by human podocytes. (A) Podocytes were 

exposed to Ang II. Experimental medium and Ang II were replaced every day. Cells were processed 

for quantitative real-time PCR analysis and cytokine concentration in the supernatants were 

measured by ELISA. Data are expressed as percent change over the control (untreated cells; day 0). 

(B) Podocytes were exposed to increasing Ang II concentrations (0.03 – 100 nM) for 4 days and 

TNF-α release was measured by ELISA. Data are expressed as percentage of the maximal effect. 

Data are the mean ± SEM of three independent experiments performed in duplicate. *P<0.01 vs. 

control and #P<0.01 vs. first peak. 

 

Figure 3. Effects of losartan and PD123,319 on TNF-α production induced by Ang II. Podocytes 

were exposed to Ang II (10 nM, 1-6 days) in presence of losartan (100 nM) or PD123,319 (100 

nM). Experimental medium, Ang II and antagonists were replaced every day. Cytokine 

concentration in the supernatants was measured by ELISA. Results are expressed as percent change 

over the control (untreated cells; day 0). Data are the mean ± SEM of three independent 

experiments performed in duplicate. *P<0.01 vs. control. 

 

Figure 4. Effects of Ang II on TNFR1 and TNFR2 receptor expression. Podocytes were exposed to 

Ang II. Experimental medium and Ang II were replaced every day and cells were processed for 

quantitative real-time PCR analysis (A) or Western blot analysis, pictures shown are representative 
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of three independent experiments (B). Results are expressed as percent change over the control 

(untreated cells; day 0). Data are the mean ± SEM of three independent experiments performed in 

duplicate. *P<0.01 vs. control. 

 

Figure 5. Effects of Ang II on proliferative response of human podocyte. (A) Cells were cultured in 

the absence or presence of Ang II (10 nM, 1-6 days) Experimental medium and Ang II were 

replaced every day. (B) Cells were cultured for 4 days, on the day 3 αTNF-α or nonspecific 

polyclonal goat IgG were added. Results are expressed as cells/well. Data are the mean ± SEM of 

three independent experiments performed in triplicate. *P<0.01 vs. control and #P<0.01 vs. αTNF-

α. 
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Table	
  1	
  Supplemental	
  material	
  

Oligonucleotides	
  and	
  PCR	
  conditions	
  used	
  in	
  this	
  study	
  

PCR primers  

 

Amplicon 

size(bp) 

Denaturation Annealing Extension Cycles 

TNFA 

 

F:5’-CAATGGCGTGGAGCTGAGAGA-3’ 

R:5’-CCAAAGTAGACCTGCCCAGAC-3’ 

344 95°C, 60 s 62°C, 60 s 72°C, 60 s 35 

Tnfr1 F:5’-TCTATGCCCGAGTCTCAACC-3’ 

R:5’-GGTGAGGGACCAGTCCAATA-3’ 

244 94°C, 30 s 55°C, 30 s 72°C, 120 s 35 

Tnfr2 F:5’-AACTGGGTTCCCGAGTGCTTG-3’ 

R:5’-AGTGCTGGGTTCTGGAGTTGG-3’ 

629 94°C, 30 s 64°C, 30 s 72°C, 120 s 35 

AGTR1 F:5’-AGCCAAATCCCACTCAAACCT-3’ 

R:5’-TCGAACATGTCACTCAACCTCA-3’ 

120 94°C, 30 s 

 

55°C, 30 s 72°C, 120 s 

 

35 

 

AGTR2 F:5’-AAGAAGAAATCCCTGGCAAGC-3’ 

R:5’-CCACGGCCTTGCTCTTGTT-3’ 

302 94°C, 30 s 

 

55°C, 30 s 72°C, 120 s 

 

35 

 

β-actin F:5’-TGACGGGGTCACCCACACTGTGCCCATCTA-3’ 

R:5’-CTAGAAGCATTTGCGGTGGACGATGGAGGG-3’ 

660 95°C, 45 s 60°C, 45 s 72°C, 90 s 25 

	
  

 


