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Abstract   

 

In the peri-Adriatic region, mélanges represent a significant component of the Apennine and Dinaride-Albanide-
Hellenide orogenic belts as well as ancient and present day accretionary wedges. Different mélange types in this 
broad region provide an excellent case study to investigate the mode and nature of main processes (tectonic, 
sedimentary and diapiric) involved in mélange formation in contrasting geodynamic settings. We present a 
preliminary subdivision and classification of the peri-Adriatic mélanges based on several years of field studies on 
chaotic rock bodies, including detailed structural and stratigraphic analyses. Six main categories of mélanges are 
distinguished on the basis of the processes and geodynamic settings of their formation. These mélange types are 
spatially and temporally associated with: 1) extensional tectonics, 2) passive margin evolution, 3) strike-slip 
tectonics, cases, there appears to have been a strong interplay and some overlap between tectonic, sedimentary, 
and diapiric processes during mélange formation; however, in highly deformed regions it is still possible to 
distinguish those mélanges that formed in different geodynamic environments and their main processes of 
formation.  This study shows that a strong relationship exists between mélange-forming processes and the 
paleogeographic settings and conditions of mélange formation. Given the differences in age, geographic location 
and evolutionary patterns, we document the relative importance of mélanges and broken formations in the 
tectonic evolution of the peri-Adriatic mountain belts. 
 
Key words: Mélange, olistostromes, broken formation, tectonosomes, mud diapirs, subduction processes, 
subduction channels, obduction, allochtonous nappes, Apennines, Dinarides-Albanides-Hellenides. 
 
 
Introduction 

 
In the peri-Adriatic region (Fig. 1), mélanges are common as part of the Apennines and Dinaride-Albanide-

Hellenide orogenic belts and accretionary wedges. Their formation and incorporation into these orogenic systems 
played a significant role in the Mesozoic-Cenozoic tectonic evolution of the central Mediterranean region. 

The term “mélange” was first coined by Greenly (1919) to describe a unit of highly disrupted rocks in North 
Wales (Anglesy Island). After its reintroduction by Hsü (1968), the term mélange has been applied worldwide to 
indicate chaotic, block-in-matrix rocks. In particular, the term has been used to indicate rock units associated with 
the subduction of oceanic crust in the circum-Pacific areas, such as the west coast of US, New Zealand, and Japan. 
Since its application to the circum-Mediterranean region, the term has been applied to different kinds of chaotic rock 
types containing a wide range of characteristics (see Camerlenghi and Pini, 2009 and references therein), that result 
from protracted cycles of rifting, drifting, oceanic subduction, continental collision and intracontinental deformation, 
different from the almost exclusively subduction-related Pacific mélanges. Moreover, the term mélange frequently 
flanks or substitutes for more traditional terms, such as wildflysch, schistes à blocs, agglomerates, argille scagliose, 
and olistostromes (see Camerlenghi and Pini, 2009 and references therein). The large majority of these indicate 
chaotic, mostly block-in-matrix rocks, related to a sedimentary origin, a complex sedimentary-tectonic origin, and/or 
to mud diapirism (Hsü, 1968, 1973; Abbate et al., 1970; Elter and Trevisan, 1973; Naylor, 1981; Castellarin et al., 
1998; Pini, 1999; Festa et al., 2005; Trümpy, 2006; Dela Pierre et al., 2007; Camerlenghi and Pini, 2009). 

Therefore, in the circum-Mediterranean mountain chains, the term mélanges has been frequently applied to 
rock units of sedimentary origins (see below), whereas in the Pacific realm the term has been always considered as 
related to a tectonic origin (i.e., Meschede et al.,1999; Chang et al., 2000; Wakabayashi, 2004; Ikesawa et al., 2005) 
with notable exceptions (Williams et al., 1984; Cowan, 1985; Barber et al., 1986; Brandon, 1989; Horton and Rast, 
1989; Brown, 1990; Cousineau, 1998; Yamamoto et al., 2000). Notably, some of these, non-Mediterranean 
exceptions used Mediterranean mélanges as paradigmatic examples (see, e.g, Hsü, 1965; 1974; Cowan, 1985). 

In this paper, we describe the mélange occurrence in the Apennine and Dinaride-Albanide-Hellenide 
mountain belts, both of which are part of the broad Alpine orogenic system. Given the differences in age, geographic 
location, and evolutionary patterns, we propose a new categorization of these mélanges, taking into account their 
geodynamic environments and processes of formation. We also document their relative importance in the evolution 
of these mountain belts and in the Tethyan system.  
 
Contribution of Apenninic geology to the mélange concept 
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Bianconi (1840) described the mesoscopic scaly texture of block-in-matrix rocks of the Ligurian nappe in the 

northern Apennines as “argille scagliose” (scaly clays). This term was then progressively extended to all the 
tectonic, tectono-stratigrahic and sedimentary chaotic rock bodies of the Apennines, also named mélanges (s.l.) after 
Greenly (1919), that are characterized by a block-in-matrix arrangement at the outcrop scale (Signorini, 1946; 
Azzaroli, 1948; Merla, 1952; Ogniben, 1953; Maxwell, 1959; Elter, 1960). Different chaotic units, including both 
Jurassic (Ligurian units) ophiolites and Mesozoic-Cenozoic sedimentary successions originally deposited on oceanic 
and/or continental crust of the Adria microplate (Subligurian, Sicilide, Tuscan, Marche-Umbria, Molise-Sannio, 
Lagonegro units), were recognized and described in different stratigraphic and structural context of the Apenninic 
thrust-and-fold belt. 

The argille scagliose were considered to be the products of sedimentary processes deformed in response to 
tectonic events (orogenic landslides; Merla, 1952; Signorini, 1956). Another descriptive term, “argille brecciate” 
(brecciated clays), was proposed by Ogniben (1953) and Rigo de Righi (1956) to describe the block-in-matrix fabric 
at the millimeter-to centimeter scale of chaotic sediments in southern Apennines and Sicily. In contrast to argille 
scagliose, argille brecciate has been interpreted as the product of mass-wasting processes (debris flows and debris 
avalanches, see Camerlenghi and Pini; 2009 for major details). 

Argille scagliose, argille brecciate and chaotic rock bodies with block-in-matrix fabric, recognized as 
sedimentary bodies within layered coherent sedimentary marine successions, were defined in Sicily as 
“olistostromes” by Flores (1955; 1956). This term, from the Greek “” (to slide) and ““ 
(bed), was used to indicate different products of mass-gravitational transport (i.e., Beneo, 1956; Rigo de Righi, 
1956; Abbate et al., 1970; 1981; Elter and Trevisan, 1973; Ricci Lucchi, 1975) including block slides (olistoliths), 
avalanches, debris flows and iper-concentrated flows (Camerlenghi and Pini, 2009). These differ from the argille 
scagliose on the basis of their brecciated matrix consisting of rounded to angular polymictic millimeter-to 
centimeter-scale clasts of claystone, random distributed throughout the clayey matrix. The scaly fabric is often 
present and may overprint but not completely obliterate the brecciated texture (Bettelli and Panini, 1985). 

The chaotic appearance of the argille scagliose, argille brecciate and olistostromes in outcrops led to the 
proliferation of different terms such as Ligurian mélange, chaotic complex, undifferentiated complex, complesso 
caotico eterogeneo (heterogeneous chaotic complex) or caotico eterogeneo (heterogeneous chaotic) to describe the 
same chaotic successions in different sectors of the Apennines chain (see, e.g., Abbate and Sagri, 1970). 
Some of these terms have been used synonymously with the term olistostrome in regional-scale maps (e.g. Boni et 
al., 1970, Bellinzona et al., 1971; Boccaletti and Coli, 1982). As a consequence, a conceptual linkage between 
olistostromes, argille scagliose and other terms that describe rocks with a block-in-matrix fabric has always been 
improperly maintained or never been excluded (see discussion in Camerlenghi and Pini, 2009 for major details). 
While the application of these terms in the Apennines was changing, many of these concepts were exported and 
favorably applied to disrupted rock bodies of different ages exposed in different geodynamic contexts and 
stratigraphic-structural positions elsewhere (see for example, Hsü, 1965; Raymond, 1984; Cowan, 1985; Orange and 
Underwood, 1995). 

Starting in the 1980s, chaotic rock bodies and disrupted rocks of the Apennines have been distinguished 
(Bettelli and Panini, 1985, 1987; Castellarin et al., 1986; Castellarin and Pini, 1987; Pini, 1987; Camerlenghi and 
Pini, 2009 and references therein) into: a) strongly deformed units (tectonosomes or broken formations) displaying a 
prevailing block-in-matrix fabric, in which part of the same coherent stratigraphic unit can be recognized and 
mapped; b) sedimentary block-in-matrix rocks (or olistostromes or sedimentary mélanges) related to different mass-
wasting sedimentary processes (debris flows and avalanches, sliding-gliding of blocks), with the possible 
contribution of mud volcanoes and diapirs. These sedimentary bodies have a classic block-in-brecciated-matrix 
fabric, with the matrix made up of clays supporting millimeter-scale clasts (brecciated matrix, see Swarbick and 
Naylor, 1980; Abbate et al., 1981 and references in Camerlenghi and Pini, 2009). 
 
Regional setting of the peri-Adriatic region 

 
During late Mesozoic-Cenozoic, the Mediterranean region (Fig. 1) experienced complex subduction and 

associated collisional events, resulting in the development of different fold-and-thrust belts (Dilek, 2006). The 
Apennine and Dinaride-Albanide-Hellenide mountain belts are the product of this subduction-collision history and 
presently are separated by the Apulia-Adriatic foreland. 

The Apennines consist of an east-to northeast vergent fold-and-thrust belt developed after the Late 
Cretaceous – Early Cenozoic closure of the Ligurian ocean (Alpine Tethys)  (Fig. 2a) and the convergence between 
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the continental margin of the European plate (Corsica-Sardinia), to the west, and of the Adria microplate (of African 
affinity), to the east (i.e., Boccaletti et al., 1980; Dewey et al., 1989; Castellarin, 1994;). 

During pre-collisional eo- and meso-alpine episodes of convergence (Vai and Castellarin, 1993; Pini, 1999; 
Vescovi et al., 1999) the Ligurian units, which represent the most internal palegeographic domain (Fig. 2) adjacent 
to the European passive margin, were deformed and incorporated in the Late Cretaceous - middle Eocene 
accretionary wedge related to oceanic (“B” type) subduction (i.e., Marroni et al., 2001; Bortolotti et al., 2005). These 
units are the remnants of the Ligurian ocean (Alpine Tethys) and consist of Mesozoic to lower Tertiary sedimentary 
successions and subordinate Jurassic ophiolitic rocks (portion of oceanic crust). They represent the more far-
travelled units of the Apennine belt and currently occupy the highest structural position in the chain.  

In the Northern Apennines, the Ligurian units are the innermost and uppermost units of the Ligurian nappe 
(Elter, 1975; Bortolotti et al., 2001; Cerrina Feroni et al., 2002) that is represented in a more external and lower 
position by the Subligurian units. These units originated from the thinned continental margin of the Adria microplate 
(Figs. 2b, 3 and 4). 

In the southern Apennines (Figs. 2 and 6), the Ligurian units (Ligurian complex sensu Ogniben, 1969) are 
classically subdivided into three main units of Upper Jurassic to lower Miocene age (see Bonardi et al., 1988; 
Patacca and Scandone, 2007 for major details). The two lower units respectively consist of slightly metamorphic 
rocks (Frido unit) followed by a metapelitic mélange (Episcopia-San Severino mélange sensu Patacca and Scandone, 
2007) with serpentinite, granulite, amphibolite, granitoid and marble blocks (e.g., Spadea, 1982; Patacca and 
Scandone, 2007). The uppermost unit is non-metamorphic and consists of pillow basalts overlain by upper Jurassic 
radiolarites, shales, and quartz arenites (Timpa delle Murge Formation), black shales (Crete nere Formation) and 
alternating calcareous-siliciclastic turbidites (Saraceno Formation). 

The Sicilide units, which also occupy the highest position in the southern Apennine thrust sheet, were 
originally deposited in a more external Tethyan basin (Figs. 2b) resting on basement of unknown character (thinned 
continental and/or oceanic crust; i.e. Patacca and Scandone, 2007). 

During neo-Alpine deformation (late Oligocene – early Pleistocene) thrust accretion across the Apulia-
Adriatic continental margin is shown by the east-northeastward migration of the Ligurian and Subligurian units. In 
the Northern Apennines, these units, which form a detached thrust sheet, tectonically overlie the Miocene 
sedimentary succession of Tuscan and Romagna-Marche-Umbria units (Figs. 3 and 4). In the southern Apennines 
(Figs. 6 and 7), Ligurian and Sicilide units tectonically overlie a complex imbricate orogenic stack consisting of 
carbonate platform (Lazio-Abruzzi and Campania-Lucania units) and pelagic basins of the Adriatic margin (Molise, 
Sannio and Lagonegro units). 

In both the northern and southern Apennines, the timing of eastward migration and shortening is strongly 
constrained by the discordant deposition of eastward-younging top-thrust basins (middle-late Eocene – Pliocene, 
Figs. 1, 5 and 6), known as Epiligurian basins in the northern Apennines (Fig. 5), onto the inner Ligurian, 
Subligurian and Sicilide units and the outer accretionary wedge of the thrust belt (Ghisetti et al., 2003). Deposition 
of top-thrust basins and Epiligurian units occurred simultaneously with the east and northeast migration of the 
thrust-and-fold belt that, as a consequence, strongly controlled the shape and sedimentation of these basins (Ori and 
Friend, 1984).  

Miocene – early Pliocene thrust accretion across the Apulia – Adriatic continental margin was accompanied 
by Tyrrhenian back-arc extension (i.e., Mazzoli and Helman, 1994). 

 
The northwest-trending Dinaride – Albanide - Hellenide orogenic belt lies to the east of the Apulia-

Adriatic foreland (Figs. 1 and 2). It is characterized by a double-vergent structural architecture bounded by west-
vergent thrust faults in the external zone (to the west) and east-verging faults in the internal zone (to the east, Fig. 
8a) (Dilek, 2006 and reference therein). 

The west-directed thrust faults are the result of the Tertiary tectonic collision (Fig. 2b) between the Adria 
microplate (Apulia-Adriatic foreland) and Eurasia (Pelagonian platform), whereas the east-directed thrust faults are 
associated with Latest Jurassic-Early Cretaceous ophiolite eplacement (Dilek et al., 2005; Dilek, 2006). 

Ophiolites are distributed along a northwest-trending belt (Figs. 1 and 8a) from the Kosovo region in the 
north, through Albania and Greece, to western Turkey, where they join the Tauride belt (Ghikas, 2007; Dilek et al., 
2008; Ghikas et al., this issue). The northwest trending belt formed through the closure of several Tethyan basins 
during northeastward migration of Gondwana and the opening of the Atlantic Ocean (Dilek et al., 2005; Smith and 
Rassios, 2003). During the Middle Triassic – Jurassic, the Pindos basin, located at the northern margin of the 
Neotethys Ocean and bounded by Pelagonia to the east and Apulia to the west, rifted (Dilek et al., 2007; Sharp and 
Robertson, 2006). Extensive carbonate shelves developed on both of these microcontinents during subsidence along 
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the margins of the basin (Dilek et al. 2005). In the Middle Jurassic (Fig. 2a), the Pindos basin began to close, with 
the formation of a west-dipping intra-oceanic (Casey and Dewey, 1984) subduction zone. Westward subduction 
continued until the arrival and partial subduction of Pelagonia (Smith and Rassios, 2003) during the Early 
Cretaceous (Sharp and Robertson, 2006). This continued until the Tertiary oblique collision of Apulia with 
Pelagonia, completing the emplacement of the western Dinaride-Albanide-Hellenide ophiolite (Dilek et al. 2007; 
Ghikas et al., this issue). The collision-induced deformation propagated westward as an oblique convergence 
between Adria and Eurasia that produced a thin-skinned fold-and-thrust belt, consisting of Eocene-Quaternary 
sedimentary successions (Fig. 2b). Thus, along the external thrust front of the Dinaride-Albanide-Hellenide 
mountain belt strain partitioning occurred in and across a broad dextral shear zone in the Balkan Peninsula. This 
promoted the local collapse of the orogenic belt in well-developed transtensional zones (Dilek and Koçiu, 2004; 
Dumurdzanov et al., 2005; Dilek, 2006).  

Postcollisional magmatism is widespread in the Dinarides and the Hellenides with the occurrence in the 
northern Greece (Voras mountains) and Macedonia of low-K calc-alcaline volcanic rocks (ca. 5.0-4.0 Ma) and 
shoshonitic volcanism (ca. 2.5-1.5 Ma) (Pe-Piper and Piper, 2002). 

 
Geodynamic environment and processes of formation of the peri-Adriatic mélanges  

 
The peri-Adriatic region, provides several excellent examples and a complete case history that allow us to 

consider how mélanges related to different geodynamical situations during the complex geologic history of the 
eastern Mediterranean, as well as how different processes (tectonic, sedimentary and diapiric) were involved in their 
formation. Thus, we propose a preliminary subdivision and classification of the peri-Adriatic mélanges. Although 
many examples are preserved elsewhere in this complex region, the proposed classification scheme only applies to 
select examples from different sectors of the Apennine and Dinaride-Albanide-Hellenide mountain belts.  
 
1) Extensional tectonics-related mélanges  
This group refers exclusively to mélanges that formed from sedimentary, en-mass processes (mass-wasting). Bodies 
from debris avalanches and flows, single-slide blocks and groups of slide blocks are commonly referred to as 
megabrecce, olistoliths, and olistolith fields or swarms, respectively (Castellarin, 1972, 1982; Bernoulli, 2001; 
Camerlenghi and Pini, 2009 and references therein). The most notably examples are the Norian-Jurassic and, in part, 
Cretaceous megabreccias of the Southern Alps (Castellarin, 1972; Bosellini et al., 1977) and Northern Apennines 
(see, among many others, Castellarin et al.; 1978, Cecca et al., 1981; Castellarin, 1982; Fazzuoli et al., 1985; 
Bernoulli, 2001; Galluzzo and Santantonio, 2002) and the Upper Cretaceous megabreccias of the Apulia foreland in 
Central-Southern Apennines (Maiella, Gargano and Adriatic off-shore; see Bernoulli, 2001 and reference therein; 
Fig. 6). Other examples include the megabreccias and olistoliths of the Cretaceous Calcirudite a Rudiste Fm. in the 
Gran Sasso area (i.e., Ghisetti and Vezzani, 1986; Ghisetti and Vezzani, 1998; Bernoulli, 2001; Fig. 6). In each case, 
the mélanges are deposited in pelagic limestones. They have an intrabasinal composition, and their main sources are 
the already cemented carbonate platform rocks (frequently slightly older than the age of deposition of bodies), with 
some contribution of contemporaneous, slumped pelagic limestones.  
In the Western Hellenides, the Upper Triassic-Lower Jurassic Agios Nicolas Formation. (see Naylor and Harle, 
1976) consists of pebbly mudstones and boulders deposited by debris flows and sliding into the shale basins, 
triggered by extensional faulting during rifting. The mudstone matrix contains pebbles, cobbles, and boulders of 
sandstone (arenite and wacke) derived from the Pelagonian hinterland (Ghikas et al, this issue). A comparable 
example is the proto-Advella mélange, emplaced by gravitational-movement on the eastern margin of the pre-
Apulian foreland (see Ghikas et al., this issue).  
Sedimentary bodies associated with extension are thought to be related to either 1) normal faults dissecting and 
controlling the margins of carbonate platforms (Castellarin, 1972, 1982; Eberli, 1987; Accordi and Carbone, 1988; 
Eberli et al., 1993; Vecsei, 1991, 1998; Bosellini et al., 1993; De Alteris and Aiello; 1993; Graziano, 2000; 
Rusciadelli, 2005) during and after rifting (Naylor and Harle, 1976; Fazzuoli et al., 1985; Marchegiani et al., 1999; 
Bernoulli, 2001), or 2) the geometry of the carbonate platform margin (scalloped margins, see Bosellini, 1998).  
 
2) Passive margin (?)-related mélanges  
Passive margins instability may trigger the progressive deformation of basin slopes, such as in the case of the 
carbonate and siliciclastic fine-grained turbidites and mudstones of the Early Cretaceous Palombini Shales (locally 
defined Ronchi argillites), which constitutes the lowest horizon of the stratigraphic succession of the Modino mass-
wasting complex (Modino “basal” complex, De Libero, 1998; Pini et al., 2004; Fig. 4). The Ronchi argillites were 
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deformed at various degrees, from in-situ folding and boudinage to slump-slide structures, evolving down flow to 
cohesive debris flows. The latter led to complete stratal disruption and development of a block-in matrix fabric. 
Sediments were deformed when poorly or non-consolidated and show plastic deformation of clasts with enhanced 
fluidal structures of the matrix (Pini et al., 2004; Camerlenghi and Pini, 2009).  
Similar examples are described in the Othris Mountains (in Greece) by Smith et al. (1979). Here, late Jurassic- early 
Cretaceous radiolarian siltstones were deformed by debris flows and slumping related to instabilities of the passive 
margin (Smith et al., 1979). The ophiolitic mélange of Albania (Shallo, 1990) also formed during the late Jurassic-
early Cretaceous continental margin evolution, due to development of slides triggered by tectonic and sedimentary 
events.  
All of these bodies are mainly monomictic, recycling the sediments of the same formation. The major problem whit 
this interpretation concerns the triggering mechanism. These deformed bodies are found in the Early Cretaceous, 
after rifting concluded, and in a passive margin setting at the edge of the thinned Adria continental margin or at the 
transition to the oceanic realm (see, e.g., De Libero, 1998; Pini et al., 2004). Many processes could have triggered 
the slides in these situations, as well as the Late Cretaceous to early Tertiary “extensional” olistostromes in the 
Adria-based units (Tuscan, Umbrian domains). Some possibilities include: 1) tectonic reactivation of extensional 
Jurassic structures, 2) the influence of pre-existing submarine topography, 3) deep ocean processes, and/or 4) 
extension throughout the Cretaceous and early Tertiary (Fazzuoli et al., 1985; Montanari et al., 1989; Marchegiani et 
al., 1999; Bernoulli, 2001). An alternative explanation considers the onset of Early Cretaceous compression related 
to subduction at the northern edge of the Ligurian ocean, as suggested by some paleogeographic reconstructions 
(Schettino and Scotese, 2002).  

 
3) Strike-slip tectonics-related mélanges 

The more classic example in the international literature of the Mediterranean area are the Moni and 
Arakapas mélange in Cyprus (Robertson, 1977; Krylov et al., 2005). They are mud-rich, block-in-matrix bodies, 
which are considered to be of both tectonic and sedimentary origin. The Arakapas mélange, (Krylov et al., 2005) is 
an olistostrome developed along fault scarps during Cenomanian-Campanian strike-slip activity in a fore-arc basin 
transform zone (Troodos zone). The younger, Tertiary, stage of the Moni mélange (Neo-Moni, Krylov et al., 2005) 
is a tectonic mélange related to the activity of a transpressional wrench fault, reactivating olistostromes associated 
with subduction (Robertson, 1977).  

In the Northern Apennines, the lower portion of the Eastern Ligurian sedimentary succession, the so-
called basal complexes of the Helminthoid flysch (see Abbate et al., 1970; Bortolotti et al., 2001; Marroni et al., 
2001; Cerrina Feroni et al., 2002) (Fig. 2b) are characterized by Late Cretaceous cohesive debris flows with a 
“brecciated” argillaceous matrix (classic olistostromes) mostly sourced in Early Cretaceous Ligurian sediments 
(Palombini shales). These, in turn, host large-scale (from hundred of meters to several kilometres in length) 
ophiolitic blocks and continental margin fragments (Marroni et al., 1998). Marroni et al. (2001) interpret these 
bodies as products of submarine landslides or a portion of the sea floor that was uplifted by synsedimentary 
transpressive faults, acting in the retroarc basin of the paleo-Apenninic accretionary wedge. Detritial evidence from 
the oceanic crust has been used as a paleogeographic key in discriminating between “western” and “eastern” 
External Ligurian units (Marroni et al., 2001). 

The lower part of the Messinian mélange, of the northern Tertiary Piedmont Basin (Torino Hill and 
Monferrato, Figs. 1 and 9), represents another example of strike-slip tectonic mélanges (Festa et al., 2005; Dela 
Pierre et al., 2007; Festa, 2009). Regional scale wrench-faulting (e.g. Rio Freddo deformation zone sensu Piana and 
Polino, 1995, Fig. 1) dismembered of the previously coherent evaporitic succession and produced a tectonic 
disrupted unit. 

Other comparable examples are exposed along the Villalvernia- Varzi line (Fig. 1), a regional and 
polyphase deformational zone that juxtaposed the Tertiary Piedmont Basin and the northern Apennines during late 
Oligocene to late Miocene. Here, strike-slip movements mixed three different chaotic rock bodies (Festa, 
unpublished data) originally deposited at the base of the Epi-Ligurian units (Calcari di Zebedassi Auct., Upper 
Cretaceous in age, see Boni et al., 1970) and as olistostromes within the Epi-Ligurian units (lower and upper 
Miocene olistostromes, Complesso caotico and Complesso caotico indifferenziato sensu Boni et al., 1970), thus 
producing a new strike-slip tectonic mélange. 

The Thitonian ophiolitic mélange of Albania (Shallo, 1990; Rassios and Dilek, 2009, Fig. 8) may also 
have been associated with strike-slip tectonics during the late Jurassic - early Cretaceous. Its general trend and 
structure crosscut different ophiolitic (i.e. Kashnjet-Gornisique-Kcire) and/or continental margin successions (i.e. 



 7 

Barmash-Leskovik area). It is characterized by zones of elongated blocks set within an argillitic-foliated matrix 
(Shallo, 1990). 

 
4) (Oceanic crust) Subduction-related mélanges  

These types of mélange could be subdivided on the basis of their formational processes as: 
 
4a - mass-wasting deposits at the wedge front  
Mass–wasting deposits are widely abundant in the Bocco Shales, above the Internal Ligurian units (Figs. 

4 and 5). These Paleocene (Danian) bodies overlay a complete stratigraphic succession. The lower term is a 
complete sequence of oceanic crust (Marroni and Pandolfi, 2001). Very thick (hundreds of meters), dismembered 
slide blocks (olistoliths) are present together with bodies from mud-rich cohesive debris flows (olistostromes), very 
coarse to coarse turbidites, thin-bedded turbidites, and mudstones. Slide blocks and olistostromes are composed of 
the same Jurassic ophiolite sequence and the related Late Jurassic to early Paleocene sedimentary sequence, which 
outcrops below the Bocco Shales. The largest blocks consist of contorted thin-bedded turbidites of the same Bocco 
Shales, interpreted as slide blocks from a steep slope. According to Marroni and Pandolfi (2001), slide blocks and 
olistostromes of the Bocco Shales were generated by episodic instability of the front of the Paleocene accretionary 
wedge due to the subduction of reactivated faults offsetting the oceanic crust and causing relief in the lower plate. In 
modern subduction systems, subducting sea-mounts and ridges cause slope oversteepening and front-of-wedge 
instability, resulting in gigantic submarine landslides (e.g., Hikurangi margin, continental margin of New Zealand, 
Collot et al., 2001; Costarica continental margin, von Heune et al., 2003; Hühnerbach et al., 2005). Mud diapirism, 
which has been suggested as a triggering mechanism for similar deposits in the Western Alps (Di Giulio, 1992), has 
been discounted by the lack of diapiric structures (Marroni and Pandolfi, 2001).  

The Late Cretaceous pre-flysch successions of the Internal Ligurian (Fig. 5) units are characterized by 
large scale (several tens of meters thick) mud-rich olistostromes, such as the classic Forcella Pass olistostrome in the 
Val Lavagna Shales (Bortolotti et al., 2004), that are mainly composed by older, Early Cretaceous rocks (Palombini 
Shales), and ophiolitic clasts (Abbate et al., 1970). The leading mechanisms of transport and deposition were 
cohesive debris flows acting on already consolidated, tectonized and disrupted units. These bodies episodically 
occur as meter to tens of meter thick sedimentary bodies in well-bedded, normal successions. Considering the Late 
Cretaceous geodynamic setting and the examples of the younger Bocco Shales, the hypothesis of instability of a 
passive margin (Naylor, 1981) can be rejected (Bortolotti et al., 2004) in favour of instability on a tectonically active 
slope at the front of the paleo Appenninic accretionary wedge, as suggested by Görler and Reutter (1968), but more 
definitive conclusions have not have not been reached. 

 
4b - Tectonic mélanges and broken formations  
A large number of stratally-disrupted units in the External Ligurian units (Fig. 5) belong to this group, 

after the so-called basal complexes, chaotic complexes, or argille scagliose of the Northern Apennines have been 
distinguished in either Epiligurian olistostromes (see Type 6), or stratally disrupted stratigraphic units (broken 
formation or tectonosomes, Pini, 1987; Bettelli and Panini, 1987; Castellarin and Pini, 1987 and following papers, 
see references in Pini, 1999 and Camerlenghi and Pini, 2009). The latter, defined as broken formations and 
tectonosomes formed from the interaction of different subduction-related processes: layer-parallel boudinage in an 
early stage of subduction by fluid overpressure and lithostatic loading (Bettelli and Vannucchi, 2003), progressive 
oblate-type boudinage and transposition of sedimentary layers by protracted sheath folding, associated with large 
scale thrusting (Vannucchi and Bettelli, 2002; Bettelli and Vannucchi, 2003), block stacking by both large scale and 
mesoscopic–scale duplexing and thrusting (Pini, 1999; Cowan and Pini, 2001).  

Due to their progressive deformational origin, the finite style and fabric of these mélanges depends on the 
rheology of the rocks involved, that is from the mechanical characters of the multilayer, which reflect the main 
depositional environment and the composition (see Bettelli and Vannucchi, 2003). Different deformational styles 
within diverse stratigraphic intervals in the same sequence may be, therefore, explained by the rheology of the 
multilayer, but can also be related to the superposition of different tectonic phases (see Pini, 1999), namely the 
Upper Cretaceous, eo-alpine phases and the Eocene, meso-alpine, or Ligurian phase (see, among many others, Vai 
and Castellarin, 1993; Pini, 1999; Vescovi et al., 1999; Daniele and Plesi, 2000; Bortolotti et al., 2001; Marroni et 
al., 2002; Catanzariti et al., 2007). 

Different intensity as of stratal disruption are recognizable in the Northern Apennines broken formations-
tectonosomes. The “broken formations” in Fig. 5 are Neocomian to Campanian basal complexes, detached from the 
Ligurian Helminthoid flysches, that contain structures ranging from contorted, highly-folded and boudinaged beds to 
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complete stratal disruption (Vannucchi and Bettelli, 2002; Bettelli and Vannucchi, 2003 and references therein). The 
tectonosomes of Pini (1999) correspond to an entire Ligurian-type succession (Fig. 5), ranging in age from 
Neocomian to lower Eocene (Sillaro-Samoggia structural unit, see Cerrina Feroni et al., 2002), which is more 
severely deformed, with a prevailing complete stratal disruption (Pini, 1987; 1999, Conti, 1987).  

The Frido Formation (late Jurassic – early Cretaceous) of the Ligurian units (Fig. 6-7) is a tectonic 
mélange that represents the remnants of the outcropping deeper portion of the accretionary wedge of the Southern 
Apennines. It underwent collision with the Apulia passive margin during the early Miocene (Knot, 1994), producing 
a series of thrust sheets with different lithological features and metamorphic overprinting that records subduction of 
oceanic crust and deformation during HPLT metamorphism (Laurita et al., 2009 and reference therein).  

In Greece (Vourinos Mountains., see Ghikas et al, this issue) and Albania (Dilek et al., 2005, 2008) 
meter-to kilometre-scale, exotic blocks of ultramafic rocks and ophiolites are seen in an early Cretaceous 
sedimentary mélange (i.e., Vourinos sub-ophiolitic mélange) resting on the Pelagonian platform succession (Fig. 8). 
The Vourinos sub-ophiolitic mélange rests tectonically on the Pelagonian microcontinental margin. Its internal 
structure and stratigraphy is reminiscent of a block-in-matrix sedimentary mélange representing initially a broken 
formation that formed in a continental slope-rise setting (Ghikas et al., this issue). However, this mélange was 
subsequently tectonically incorporated into the Pelagonian margin during the obduction of the Vourinos ophiolite in 
the Middle Jurassic during which it was pervasively metamorphosed and tectonized.  

 
5) Collision-related mélanges. 

In the Apennines, no mélanges have been conclusively attributed to this because the timing of the end of 
subduction and the inception of intracontinental deformation varies greatly throughout paleogeographic extent of the 
Ligurian ocean (see Marroni and Treves, 1998; Cibin et al., 2001; Cerrina Feroni et al., 2002). The are also multiple 
interpretations regarding the paleogeographic positions of the diverse Ligurian units (see, e,g., Daniele and Plesi, 
2000; Bortolotti et al., 2001; Argnani et al., 2004). The late Eocene olistostromes at the base of the Epiligurian 
succession (Figs. 4 and 5) above the Ligurian nappe (Type 6c) may represent this type of mélange. The Advella 
mélange in the Western Hellenides, for example, could represent deformation that has occurred since the Eocene as 
a result of continental collision (Fig. 8) between the pre-Apulian foreland and Pelagonia (Ghikas et al., this issue). 
These polygenic mélange, originally emplaced by sedimentary processes (see 1. Extensional tectonic-related 
mélanges), is characterized by a block-in-matrix fabric with blocks ranging in age from Mid-Triassic to Cretaceous, 
and was emplaced onto Cretaceous-Eocene shelf and turbidite deposits of pre-Apulia (Kostopoulos, 1988; Jones and 
Robertson, 1991; Rassios and Moores, 2006). It contains rocks associated not only with the initial rifting of 
Pelagonia and pre-Apulia, but also with the development of a mature carbonate platform, the deposition of thick 
shallow-marine turbidite and detrital sequences, and the emplacement of the Pindos ophiolite (Jones and Robertson, 
1991; Ghikas et al., this issue).The Avdella mélange, therefore, represents a much more complete history of the 
Pindos basin than the Vourinos mélange.  
 
6) Intracontinental deformation, "obduction" related mélanges 
This group is by far the most common type observed in the Peri-Adriatic mélanges. It is related to obduction of the 
accretionary wedge over the continental crust and of the “oceanic” nappe translation.   

 
6a - Sub-nappe mélanges  

 
6a1- precursory olistostromes  

Considered among the classic olistostromes of the Apennines (Abbate et al., 1970, 1981), these 
sedimentary bodies contain a typical block-in-brecciated-matrix fabric (type A olistostromes), or are aggregates of 
individual blocks, supported or not supported by a brecciated matrix (Type B and C, respectively, Lucente and Pini, 
2003). These bodies were deposited by cohesive debris flows and/or blocks avalanches (Figs. 3 and 10) in migrating 
foredeep basins (see, for the northern Apennines, Lucente and Pini, 2008). Defined as precursory olistostromes by 
Elter and Trevisan (1973), these bodies have been described elsewhere at the front of tectonic mélanges, facing 
lateral or frontal ramps or at the front of accretionary wedges and/or nappe systems (Tuscan, Umbrian, Lazio-
Abruzzi and Molise foredeep successions, see, e.g., Abbate et al., 1970, 1981; Sgrosso, 1988; Pescatore et al., 2000; 
Cowan and Pini, 2001; Pini et al., 2004; Vezzani et al., 2004; 2009; Festa et al., 2006; Lucente and Pini, 2008; 
Patacca and Scandone, 2007; Camerlenghi and Pini, 2009). In the northern Apennines, olistostromes are present in 
all stage of the migrating foredeep complex, from the early Oligocene Macigno foredeep to the middle-late Miocene 
Marnoso-arenacea foredeep, and in the Messinian to Pliocene front-Apenninic deposits (Figs. 3 and 10) (see, e.g., 
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Abbate et al., 1970, 1981; Ricci Lucchi, 1986; Conti, 1987; Ricci Lucchi and Vai, 1994; Cornamusini, 2001; Roveri 
et al., 2002; Landuzzi, 2004; Lucente and Pini, 2003, 2008). They are the result of the collapse of the wedge front, 
resedimenting Ligurian and Subligurian rocks and deposits from the wedge-top Epiligurian basins (Lucente and 
Pini, 2008 and references therein). They are often associated with intrabasinal mass-wasting deposits, consisting of 
sediments form the margins of the foredeep basins close to the front-of-the-wedge (inner slopes) and the same 
deposits of the basin plains (Lucente and Pini, 2003, 2008). 

In the Central and Southern Apennines, for example, chaotic rock bodies of argille scagliose have been 
emplaced in the foredeep sediments at the front of tectonic mélange of the Sicilide units (Figs. 6 and 11). These 
olistostromes, which are interbedded in the different foredeep successions from the inner peri-Tyrrhenian region 
(upper Tortonian Frosinone Fm., see Cosentino et al., 2002) to the outer peri-Adriatic region of the Matese platform 
area (Pietraroja Flysch, upper Tortonian – lower Messinian in age, see Sgrosso, 1988; Vezzani et al., 2004, 2009; 
Festa et al., 2006; Patacca and Scandone, 2007), testify to the eastward migration of the Sicilide units. 

Different factors are able to trigger these sediments failures. In fact, earthquakes at active margins, rather 
than oversteepening slope angles, are the most efficient factor in increasing stresses in weakened sediments and 
triggering failures (Maltman, 1994; Camerlenghi and Pini, 2009). 

 
6a2 - Olistostromal carpet at the base of a nappe  

This group is conceptually related to the previous one, since it comes from the protracted activity of 
debris flows and avalanches at the front of an advancing nappe or tectonic mélange (Figs. 4 and 11). This coalescent 
carpet of olistostromes has been recognized at the base of the Ligurian nappe in the Bologna area (Landuzzi, 2004; 
Pini et al., 2004; Camerlenghi and Pini, 2009) as the lowest part of a system of imbricated stacks of normal bedded 
units, tectonosomes, tectonic mélanges, and olistostromes at the base of the Ligurian nappe (Pini, 1987, 1993; 
Bettelli and Panini, 1992; Landuzzi, 2004). This widely extending composite lithosome, see Fig. 5, is directly 
connected to the precursory olistostromes, as suggested by Lucente and Pini (2008) (Fig. 10), and consists of 
extrabasinal (Ligurian-Subligurian) and intrabasinal (wedge-top basins, basin margin and foredeep) blocks and 
bodies. 

This olistostromal carpet, some of the related large-scale mass wasting complexes, such as the Modino 
mass-wasting complex (Figs. 4 and 10), and part of the stack of units at the base of the Ligurian nappe, have been 
grouped together in the Sestola-Vidiciatico unit and interpreted as an equivalent of a subduction channel by 
Vannucchi et al. (2008). These two interpretations are not in disagreement. The origin of the Sestola-Vidiciatico unit 
from submarine landslides at the front of the Ligurian nappe is not excluded, at least in part, by Remitti et al. (2007) 
and Vannucchi et al. (2008). They do provide examples of tectonized olistostromes. The Sestola-Vidiciatico unit 
(Fig. 3), or the part coinciding with the olistostromal carpet, is therefore to be considered a mixed tectono-
sedimentary mélange, because: 1) the exotic blocks are supplied by mass-wasting episode at the front of the wedge, 
sourcing rocks from the front of the wedge (Ligurian-Subligurian) and from the wedge-top basins (Epiligurian), and 
also involving the slope and part of the basin plain, as in the case of Monte Modino complex (Lucente et al., 2006; 
Lucente and Pini, 2008); and 2) part of the exotic blocks may derived from erosion at the base of the nappe 
(Vannucchi et al., 2008). These intimate interplay of tectonic and sedimentary processes closely recalls observations 
from the front of modern convergent wedges during erosion (see, e.g., Choconat et al., 2002; Ranero and von Heune, 
2002; von Heune et al., 2003), and confirms the validity of the Sestola-Vidiciatico as a fossil equivalent of a 
subduction channel, even if it is related to the emplacement of an “oceanic” nappe atop an intracontinental stacking 
of units, above the continental crust of Adria (Boccaletti et al. 1990; Castellarin et al., 1992; Barchi et al., 2001; 
Carmignani et al., 2001; Argnani et al. 2003). 

The Cretaceous sedimentary mélange exposed in the Othris Mountain (Greece) (see Smith et al., 1979), is a 
debris flow that was deposited just in front of the advancing ophiolitic thrust sheet. The east-ward displacement of 
the thrust sheet tectonically deformed the mélange that, located in the lowest part of a system of embricated stack, 
represented an olistostromal carpet enveloping exotic blocks of ultramafic rocks and ophiolites (up to 200 meters 
wide). 

 
6a3 - tectonic mélange and tectonic-sedimentary mélanges at a base of a nappe (6a1 plus 6a3) 

In other areas of the circum-Mediterranen region, the concentration of olistolithes and olistostromes 
below the base of allochtonous nappes is emblematic (e.g. Ankara mélange, see Bailey and Mc Callian, 1950, 1953). 

In the Central and Southern Apennines (Fig. 6), the Flysch Rosso (late Cretaceous-early Miocene) 
and the Sicilide argille scagliose (Late Oligocene – Early Miocene) represent notable examples of tectonic-
sedimentary mélanges at the base of the Molise units (Figs. 7 and 11) and of the Mt. Moschiaturo Klippe in the 
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Sannio-Molise region (Vezzani et al., 2004; 2009; Festa et al., 2006). In spite of an intense stratal disruption that led 
locally to a block-in-matrix fabric, the stratigraphy (alternating varicoloured clayey marls, grey-reddish marls and 
siliceous calcarenites), can still be recognized and mapped. It is characterized by a structurally-ordered block-in-
matrix fabric. In the matrix, pervasive scaly fabric is present and often associated to mesoscale S-C shear zones, 
defined by centimeter-to decimeter-sized lithons.  

The whole internal structure consists of fault-bounded bodies ranging from decimeter (Mt. 
Moschiaturo)-to kilometer (Molise units) scale. Tectonic shearing, acting at the base of the units, was probably the 
main factor in disrupting the originally coherent succession. Tectonic loading probably triggered overpressure 
conditions at the base of the unit, as fluids expelled upwards by the clayey matrix produced brittle deformation in 
the calcareous interlayers (Festa et al., 2006). Locally upward rising of overpressured and underconsolided 
sediments and mud diapirs, as is frequently imaged in seismic reflection profiles in Plio-quaternary sediments above 
the Apenninic frontal thrust, either north of Gargano, or in the Gulf of Taranto, is not excluded (Roure et al.,1991). 

 
6b - intra-nappe mélanges (related to deformation during nappe translation)  
These types of mélange are subdivided on the basis of the processes involved in their formation. These 

types are: 
 

6b1 - Sedimentary 
Submarine mass-wasting bodies, dominantly composed of only interbasinal sediments, have been 

described as olistostromes by Jacobacci (1963), Abbate et al. (1970; 1981) and Elter and Trevisan (1973). 
Some notable examples include the Breccia della Renga (Serravallian – Tortonian, see, for example, 

Cipollari and Cosentino, 1995) at Mt. Simbruini (Fig. 6) and the Brecce di San Massimo (Late Tortonian – Lower 
Messinian, see Ghisetti and Vezzani, 1998, Fig. 6) at the front of the Matese platform (Central Apennines). These 
lenticular chaotic rock bodies are composed only of intrabasinal sediments, emplaced by submarine mass-wasting 
phenomena (i.e., Ghisetti and Vezzani, 1986; Vezzani et al., 2004; 2009; Festa et al., 2006). In southern Apennines, 
the Gorgoglione Flysch (Langhian – Serravallian) is characterized by channelled polygenetic calcareous 
conglomerates and sandstones, olistostromes of Liguride and Sicilide units (Sauro and Basento rivers, see Carbone 
and Lentini, 1990) and calcareous olistoliths (Mt. Carruozzo), up to a kilometer wide (Vezzani et al., 2009) (Fig. 6). 

 
6b2 - Tectonic and/or tecto-sedimentary  

The Coscogno mélange in the Northern Apennines is a rather puzzling unit, that has been recognized and 
mapped by Bettelli et al. (2002). Exhumed intermixed chunks of Ligurian, Epiligurian and Subligurian units 
comprise this mélange. According to Bettelli et al. (2004), these lithosomes of different paleogeographic origin 
represent thrust splays with contractional contacts. This mélange should represent a tectonic mélange developed 
deep inside the Ligurian nappe (Bettelli and Panini, 1992; Capitani, 1993). The exhumation of the mélange, and the 
involvement of the Epiligurian deposits(?) occurred in the late Oligocene-early Miocene, and has been attributed to 
either out-of-sequence thrust dissecting the entire Ligurian nappe, transpressional activity along strike-slip faults, or 
to normal faulting (Capitani, 1993). The scarce continuity of the outcrops does not allow for a determination of the 
nature of the contacts inside and around the body, so an alternative interpretation of these mélanges, as separated, 
stacked Ligurian and Subligurian units and subunits that are exposed in a tectonic window, has been proposed 
(Cerrina Feroni et al., 2002).  

The outer accretionary wedge of the central-southern Apennines (Mt. Frentani mélange, Vezzani et al., 
2004, 2009; Festa et al., 2006; Torrente Calaggio Fm., Patacca and Scandone, 2007 and the Falda di Metaponto 
Auct. Figs. 6 and 7) is marked by a 10-15 km wide belt of intra-nappe tecto-sedimentary mélange. It consists of a 
block-in-matrix arrangement with intraformational block coming from Cenozoic Molise units, the Messinian 
evaporitic succession and late Miocene – lower Pliocene foredeep deposits (Ghisetti et al., 2003; Vezzani et al., 
2004, 2009; Festa et al., 2006; Patacca and Scandone, 2007). The blocks range in size from decimeters-to hundred of 
meters. The matrix mainly consists of brecciated matrix with the locally overprinting of a pervasive scaly cleavage. 
The emplacement and deformation of these chaotic bodies (Fig. 11) is consistent with slope and debris avalanches at 
the external frontal thrust that produced mass-gravity deposits during tectonic deformation (Ghisetti et al., 2003). 
The rapid burial provided by the deposition of the early-middle Pliocene top-thust and foredeep clastic Mutignano 
successions (late Pliocene – early Pleistocene) could have caused pore-fluid dissipation and promoted the upward 
rise of overpressured chaotic sediments, exceeding hydrostatic pressure (mud diapirs; diapiric mélange) as suggested 
by some outcrops north of Atessa (early – late Pliocene). Later deformational stages of the already emplaced 
mélange are associated with folding and thrusting of the Apulia platform. 
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6c - Epi-nappe mélanges  

These types of mélange are subdivided, based of their formational processes into three categories. 
These categories are: 
 

6c1 – Sedimentary 
One of the most notable examples of this type of mélanges is the Messinian mélange in the episutural 

Tertiary Piedmont Basin (Figs. 1 and 9). It represents a sedimentary body of mixed rocks, resulting from 
dismemberment of the originally coherent stratigraphic succession (Dela Pierre et al., 2002; 2007; Irace, 2004; Festa 
et al., 2005; Irace et al., 2005; Festa, 2009). This succession consisted of pre-evaporitic Tortonian - lower Messinian 
hemipelagic marls and shallow-water Messinian gypsum deposited in response to the Mediterranean salinity crisis. 
Despite interpretations (Dela Pierre et al., 2002; 2003; Irace, 2004; Irace et al., 2005) that have related the Messinian 
mélange (Valle Versa chaotic complex sensu Dela Pierre et al., 2002) to gravity-driven phenomena triggered by 
intra-Messinian tectonics, Festa et al. (2005; 2009), Dela Pierre et al. (2007) and Festa (2009) have shown that 
Messinian mélange has a more complex stratigraphic and structural arrangement. It is a composite chaotic unit 
formed from different bodies of mixed rocks from a variety of processes (tectonic, gravitational and diapiric), each 
of which can be inferred to represent a mélange-forming process. Tectonic disrupted units, gravity-driven 
sedimentary units and diapiric-disrupted units of mixing rocks (sensu Festa, 2009) correspond to type 3 (strike-slip 
tectonic-related mélange), type 6c1 (epi-nappe sedimentary mélange) and type 6c3 (epi-nappe diapiric mélange), 
respectively, of this paper. 

Several olistostromal bodies characterize the episutural, wedge-top Epiligurian deposits (Figs. 3, 4, 5 and 
10) and dominantly consist of mud-rich, block-in-brecciated-matrix deposits related to cohesive debris flows, which 
may also host large blocks (meters to tens of meter thick) of both well-stratified and stratally-disrupted Ligurian 
units. Generally speaking, the main components are from previously lithified and deformed External Ligurian units, 
although blocks and detritus from the contemporaneous and slightly older Epiligurian deposits are also present.  

The dimension of the bodies spans from some hundreds of square meters to some tens of square 
kilometers of areal extent and from few meters to as much as 300-400 meters in thickness (Pini, 1987, 1999). In the 
largest bodies, thick (some tens of centimeters to several meters) zones of banding and fluidal structures in the 
matrix at meter to centimeter-scale are present at the base and inside the bodies (Pini, 1999) and display simple 
shear-related flow structures that geometrically resemble mylonitic fabrics. These thick olistostrome bodies can be, 
therefore, considered as either stacks of anastomosing smaller bodies (in analogy with examples in Cyprus, see 
Swarbick and Naylor, 1980), or the result of progressive, multiphase emplacement of large bodies with independent 
relative motion of discrete masses along shear zones. 

Their stratigraphic distribution is almost continuous through the entire Epiligurian stratigraphic record 
(from late Eocene to Pliocene olistostromes, see, e.g., 1:50.000 Italian Geological Map, Bologna sheet). They seem 
to be more frequent and more widely distributed at late Eocene base of the Epiligurian succession (Figs. 3, 5 and 
10), marked by the Baiso breccias, and the lower Miocene Canossa-Val Tiepido olistostrome (Bettelli et al., 1987). 
Some, very laterally extended and hundred of meters thick chaotic sedimentary bodies, such as the early Oligocene 
Specchio megabody, have not been compared with the olistostromes yet, because of a more “coherent” aspect at the 
outcrop due to the higher abundance of rafting blocks and slabs.  

Frequently, the overlaying sediments sink inside the olistostromes, with viscous flow of the block-in-
matrix rocks around the “normal” bedded Epiligurian strata, as well as the basal contacts of the olistostrome are 
almost vertical and seem to “pierce” their substratum of tectonosome units. One possible explanation can be a post-
depositional reactivation (as mud- diapirs?) of the olistostromes, induced by their underconsolidated state and high 
pressure of pore fluids. The magnitude of these phenomena, already suggested for the Bologna foothills (see, e.g., 
Pini, 1999; Pini et al, 2004) deserves further study. 

 
6c2 - Tecto-sedimentary  

Some notable examples are most of the Sicilide units (late Cretaeous – early Miocene) exposed in the 
Central - Southern Apennines which are mainly emplaced by tectonic and subordinate sedimentary processes. They 
are well-exposed in the Campobasso sector (Molise, Figs. 6 and 7) where a large (more than thousand km2) and 
thick (up to 2000 meters) nappe (“Coltre sannitica” sensu Selli, 1962, Sannio unit sensu Patacca et al., 1992) 
tectonically overlies the Molise units (Fig. 7). It consists mainly of a block-in-matrix fabric that lacks total stratal 
disruption (Vezzani et al., 2004; 2009; Festa et al., 2006). Large blocks (up to few km2 wide), which preserve the 
original stratigraphic succession, show preferential distributions that are aligned with main shear zones. The 
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emplacement of this huge nappe is consistent with the tectonic movement above the Apennine thrust sheet from the 
inner to the outer portions. During this movement, local mass-wasting phenomena and gravitational sliding were 
triggered by tectonic instability. 
 
6c3 - Diapiric 

In some cases, the epi-nappe mélanges are (or are suitable to be) reactivated as diapirs. As previously 
described (see 6c1), this is documented for the Messinian mélange of the Tertiary Piedmont Basin (Festa et al., 
2005; Dela Pierre et al., 2007; Festa, 2009, Figs. 1 and 9). Here, diapiric bodies (up to tens of meter wide) pierce the 
gravity-driven and tectonically disrupted units of the Messinian mélange, causing their partial reorganization. 
Loading from deposition of gravity-driven chaotic sediments, the presence of low permeability layers (primary 
evaporites), and strike-slip faulting may have caused the Messinian mélange to locally reactivate as a diapir (Festa, 
2009). 

Other comparable examples in different sectors of the Tertiary Piedmont Basin and Northern and 
Southern Apennines are still being examined (Codegone, Festa and Pini, unpublished data). 
 
Discussion and conclusions 
 
The examples of mélanges described in this paper represent only a few of numerous excellent examples 
preserved in the peri-Adriatic region. We have proposed a preliminary, subdivision and classification of the peri-
Adriatic mélanges, with the perspective of investigating some classical mélange problems. The main problems 
we have examined are: (1) whether a relationship exists between different types of mélanges and their tectonic 
paleogeographic settings, and (2) in which geotectonic setting(s) mélanges are most abundant and influential.  
 
Obducted ophiolitic and ophiolite-bearing submarine nappes: The largest number of mélanges occurs at the 
base of submarine allochthonous nappes, in the examples discussed here and in the other circum-Mediterranean 
chains (see Camerlenghi and Pini, 2009). Particularly, the most abundant cases are related to ophiolitic or 
ophiolite-bearing nappes, already obducted, and overriding and moving onto a continental plate and a foreland 
basin system. The main question regarding this group of mélanges is their origin, specifically regarding the 
contributions of sedimentary vs. tectonic processes at their onset and evolution. The different methodological 
approaches and geodynamic visions of various authors have caused several interpretative problems, but most of 
these sub-nappe mélanges are derived from the interplay of both tectonic and sedimentary processes. 
Sedimentary mass-wasting processes at the front of the nappes supply a considerable amount of materials to the 
mélanges throughout their formation and evolution, through the time of nappe translation. This is recorded by the 
presence of precursory olistostromes in the sedimentary record of migrating foreland basins, at least in the 
Apennines and the Dinarides-Albanides-Hellenides as described in this paper, in the Alps (wildflysch units, 
Camerlenghi and Pini, 2009 and references therein) and in Turkey (Camerlenghi and Pini, 2009).  
Tectonic processes, however, play a significant role when elements from the base of the nappe are incorporated 
into the basal mélange through possible frictional-erosional processes (Jurewicz et al., 2007), in a similar way to 
subduction erosion (von Huene and Ranero, 2003), or to folding-thrusting of the basal contact of the nappe (see 
Catalano et al., 2007) related to  out-of-sequence thrusts (see Castellarin and Pini, 1989). 
 
Mélanges at the base of accretionary prisms and subduction channels: Mélanges associated with subduction 
of oceanic crust (accretionary wedges) appear to be an entirely quite different situation. The circum-Adriatic, 
fossil sedimentary mélanges are only concentrated in peculiar situation and along certain stratigraphic horizons 
(see the example of the Paleocene Bocco Shales of the Internal Ligurian units, Northern Apennines). They do not 
have an ubiquitous and continuous distribution in time and space through the sedimentary record. Accretionary-
wedge-related sedimentary mélanges are therefore not so common, they are outnumbered by the “continental” 
sub-nappe mélanges, and their volumetric relevance is scarce (see Fig. 5).  

This seems to be consistent with the actualistic scenario, suggested by the examples of the Pacific 
convergent margins. The concentration of mass-wasting bodies in this setting is scarce, and they are very small 
in comparison to other geodynamical settings, such as passive margins (see discussion in Camerlenghi and Pini, 
2009); with the notable exception of the situation of tectonic erosion (see, e.g., Choconat et al., 2002; Ranero and 
von Heune, 2002; von Heune et al., 2004) and the collapse of front of the wedge due to subduction of relevant 
lower plate irregularities (seamounts, volcanoes, normal faults, etc., see, e.g., Collot et al., 2001; von Huene et 
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al., 2004; Hühnerbach et al., 2005). The largest fossil mass-wasting deposits are in fact the expression of similar 
geotectonic situation as evidence by the Bocco Shales (Marroni and Pandolfi, 2001). 

In this geodynamical setting the tectonic mélanges should prevail. In the circum-Adriatic chains, several 
disrupted formation have been recently interpreted as related to subduction processes (Pini, 1999; Vannucchi and 
Bettelli, 2002; Bettelli and Vannucchi, 2003). However, these rock units are severely to completely disrupted 
stratigraphic units that always maintain their lithostratigraphic and chronologic identities (broken formations, 
tectonosomes), and not true mélanges. Broken formations-tectonosome do not contain exotic blocks, and are 
conceptually more similar to the “normal” bedded, but strongly deformed basal complexes of the Internal 
Ligurian units and some of the External Ligurian units (Levi et al., 2007). The “normal” bedded basal 
complexes, moreover, have not been considered as Argille scagliose or mélanges at all, but they display zone of 
higher stratal disruption (see Levi et al., 2006) comparable with the zone of moderate disruption of the units 
labelled as “broken formation” in Fig. 5. 

Generally speaking, considering the basal complexes of the Ligurian units as a whole and with the only 
exclusion of the sedimentary mélanges at the base of the External units (Fig. 5), there is a progressive grading in 
the intensity of stratal disruption between the normal bedded units and the broken formations and tectonosomes. 
The only mélanges, referred to as merely tectonic that have been reported in this paper, always show 
characteristic features that suggest a possible contribution of sedimentary processes in including the exotic 
blocks or defining certain fabric elements. One can wonder if solely tectonic mélanges can really be found in the 
circum-Adriatic realm. 
 
Mud-diapiric reactivation of sedimentary and/or tectonic mélanges: Another important point is the existence 
of mélanges related to mud diapirs and volcanoes. All the examples we describe are related to the reactivation of 
previously deposited sedimentary and/or tectono-sedimentary mélanges as mud diapirs.  Two main points about 
this group of mélanges can be discussed: do they occur in a particular geodynamic setting, and if so what is the 
role of this setting in producing mélanges? 

The occurrence or rare but well-exposed examples of mud diapirs or minor mud-diapiric phenomena in 
different geodynamic setting (see, for example, the sub-nappe Flysch Rosso, the intra-nappe Mt. Frentani 
mélange, the epi-nappe Messinian mélange of the Tertiary Piedmont Basin and the Epiligurian olistostromes) 
suggests that their formation is not strictly related to a particular setting.  On the contrary, fluid overpressure 
caused by the quick loading provided by deposition of gravity-driven sediments (or olistostromes) or by the 
emplacement of tectonic nappe, the presence of low-permeable clayey layers and faulting, represent necessary 
factors to form mud diapirs. These conditions are easily reached in the environment and mechanism in which 
mélanges form. Moreover, deep seated olistostromes, or water-rich, tectono-sedimentary mélanges are probably 
the major candidates in supplying mud diapirs, as observed in the Gulf of Cadiz and the Alboran Sea (see 
Camerlenghi and Pini, 2009 for major details). High pore-fluid content and a very high porosity remain inside 
mass-wasting deposits long after their emplacement.  

Tectonosomes and strongly deformed and dewatered tectonic mélanges should be less prone to 
generating mud diapirs. However, pseudo-diapiric anticlines and ridges have been tentatively recognized and 
mapped in the Po-Plain border of the Northern Apennines (Pini, 1987, 1993, 1999) and in the Southern 
Apennines.   

Mélanges, therefore, preserve a complex deformational history due to the superposition of different and 
often linked processes. During this long history, diapirism can play an important role in re-shaping the mélange 
bodies, changing and complicating the contacts with the normal, well bedded formations and, basically, in 
exhuming the mélanges (see the case of Coscogno mélange).  
 
We conclude that tectonic, sedimentary, and diapiric processes commonly work together with often an intimate, 
mutual interplay and linkage in the formation of mélanges. Yet, it is still possible to distinguish mélanges formed 
in different geodynamic environments and the main processes of their formation. The different case studies we 
have examined in the peri-Adriatic region suggest that a close relationship exists between different types of 
mélanges and their tectonic paleogeographic settings. Moreover, the complex evolutionary history of mélanges, 
generally involving the superposition of tectonic, sedimentary and diapiric processes and the reactivation of 
previously-formed mélanges, allow us to better understand the role of mélanges in the complex evolution of the 
peri-Adriatic orogens and accretionary wedges. 
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FIGURE CAPTIONS 
 
Figure 1 – Distribution of main mélanges and broken formations in the peri-Adriatic region. The map has been 
compiled after a large number of citations quoted in the text and on the basis of the following maps (Bigi et al., 
1990; Cerrina Feroni et al., 2002; Vezzani et al., 2009, and various sheets of the 1:50.000 scale Geological Map of 
Italy). 
 
Figure 2 – Paleogeographic sketch of the Apennines and Dinarides-Albanides-Hellenides at different stages: (A) the 
Alpine Neo-Tethys during middle-late Jurassic (modified after Dercourt et al.,1986); (B) the paleogeography at the 
end of the Mesoalpine tectonic phase during Late Eocene – early Oligocene (modified after Castellarin, 1994). 
 
Figure 3 - Structural-stratigraphic diagram of the Northern Apennines showing the main structural units, the 
lithostratigraphic groups and the paleogeographic domains (modified after Camerlenghi and Pini, 2009). A 
particularly emphasis is given to the distribution of sedimentary mélanges (olistostromes) and broken formation 
(tectonosomes). Block letters indicate stratigraphic and paleogeographic names; structural units are in italics.  
 
Figure 4 -  Simplified, speculative cross section of the Northern Apennines and the adjoining Po Plain. Liberally 
based on: Castellarin et al. (1994) and Argnani et al. (2003).  
 
Figure 5 -  Geological map of the Northern Apennines showing the main bodies of mélanges described in the text. 
The map is after Pini (1999) and Lucente and Pini (2008). Main sources for the mélange distribution are in: 
Boccaletti and Coli, (1982), Pini (1993), Marroni et al. (2001), Marroni and Pandolfi (2001), Bettelli et al. (2002), 
Cerrina Feroni et al. (2002); various sheets of the 1:50.000 scale Geological Map of Italy.  
 
Figure 6 – Geological-structural map of the Central-Southern Apennines (after Vezzani et al., 2009). Abbreviations 
indicate the type of mélange described in the text and its location.  
 
Figure 7 – Cross section of the Central-Southern Apennines (after Vezzani et al., 2009) showing the distribution of 
the main mélanges described in the text. Location in Fig. 6. 
 
Figure 8 – Simplified geological map of Albanide-Hellenide mountain belt showing the distribution of the 
Mesohellenic ophiolite belt and other major tectonic zones. Cross section showing the distribution of the main 
mélanges (modified after Rassios and Dilek, 2009). 
 
Figure 9 – Scheme (not in scale) showing the stratigraphic and structural relationships between strike-slip tectonics-
related mélanges (3), epi-nappe sedimentary mélanges (6c1) and epi-nappe diapiric mélanges (6c3) in the Torino 
Hill (Tertiary Piedmont Basin). Modified after Festa (2009).  
 
Figure 10 - Distribution of the large scale mass-wasting complexes, m.w.c., (I to X) in the SW to NE migrating 
foreland basin system of the Northern Apennines, from late Oligocene to late Miocene. Adapted from Lucente and 
Pini (2008).  
 
Figure 11 – Schematic cross sections showing the emplacement of the Sicilide units in the Molise-Sannio region, 
Central-Southern Apennines (modified after Ghisetti et al., 2003). During the first tectonic stage (A), Sicilide units 
represented a tecto-sedimentary epi-nappe mélange (6c2). Slope and debris avalanches at the external frontal thrust 
(B) of the Sicilide units produced an intra-nappe tecto-sedimentary mélange (6b2). Later tectonic stages (C) 
deformed the already emplaced mélange.  
  
 

 


























