
28 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Università degli Studi di Torino, Dipartimento di Informatica

This is the author's manuscript

This version is available http://hdl.handle.net/2318/103355 since

Università degli Studi di Torino

Dottorato di Ricerca in Informatica
(IX ciclo)

PhD Thesis

(Revised version dated July 9, 2003)

Normal Multimodal Logics:

Automatic Deduction and
Logic Programming Extension

Matteo Baldoni

Advisor: Prof. Alberto Martelli

Co-Advisor: Dr. Laura Giordano

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)

http://www.di.unito.it/

i

Abstract

In this thesis we work on normal multimodal logics, that are general modal systems with
an arbitrary set of normal modal operators, focusing on the class of inclusion modal logics.
This class of logics, first introduced by Fariñas del Cerro and Penttonen, includes some
well-known non-homogeneous multimodal systems characterized by interaction axioms of
the form [t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ, that we call inclusion axioms.

The thesis is organized in two part. In the first part the class of inclusion modal
logics is deeply studied by introducing the the syntax, the possible-worlds semantics, and
the axiomatization. Afterwards, we define a proof theory based on an analytic tableau
calculus. The main feature of the calculus is that it can deal in a uniform way with any
multimodal logics in the considered class. In order to achieve this goal, we use a prefixed
tableau calculus á la Fitting, where, however, we explicitly represent accessibility relations
between worlds by means of a graph and we use the characterizing axioms of the logic as
rewriting rules which create new path among worlds in the counter-model construction.
Some (un)decidability results for this class of logic are given. Moreover, the tableau method
is extended in order to deal with a wide class of normal multimodal logics that includes
the ones characterized by serial, symmetric, and Euclidean accessibility relations.

In the second part, we propose the logic programming language NemoLOG. This lan-
guage extends the Horn clauses logic allowing free occurrences of universal modal operators
in front of goals, in front of clauses, and in front of clause heads. The considered multi-
modal systems are the ones of the class of inclusion modal logics. The aim of our proposal
is not only to extend logic languages in order to perform epistemic reasoning and reasoning
about actions but especially to provide tools for software engineering (e.g. modularity and
inheritance among classes) retaining a declarative interpretation of the programs. A proof
theory is developed for NemoLOG and the soundness and completeness with respect to the
model theory are shown by a fixed point construction.

ii

a mio Papà

iv

Contents

Preface xi

Part One: Inclusion Modal Logics 3

I Introduction 3

II Syntax and Semantics 9

II.1 Syntax . 9

II.2 Possible-worlds semantics . 10

II.3 Axiomatization . 11

Inclusion axiom schemas . 11

Some examples . 12

Inclusion frames and Kripke A-interpretation 15

Soundness and completeness . 17

III Proof Theory 21

III.1 Preliminary notions . 21

III.2 A tableau calculus . 23

III.3 Soundness and completeness . 28

Soundness . 28

Completeness . 29

IV Decidability 33

IV.1 Grammars, languages and modal logics 33

IV.2 Undecidability results for inclusion modal logics 36

IV.3 A decidability result for inclusion modal logics 39

V First-Order 45

V.1 Syntax . 45

V.2 Possible-worlds semantics . 46

V.3 A predicate tableau calculus . 49

v

vi Contents

VI Towards a wider class of logics 53
VI.1 Syntax and possible-worlds semantics 53

Syntax . 53
Possible-worlds semantics . 54

VI.2 Incestual modal logics . 55
VI.3 A tableau calculus . 59

Soundness and completeness . 65

VII Related work 69
VII.1 Prefixed tableau systems . 69
VII.2 Translation methods . 73

Part Two: Inclusion Modal Logics for Programming 77

VIII Introduction 77

IX A Programming Language 81
IX.1 Syntax . 81

Some examples of modal logic programs 83
IX.2 Operational semantics . 84

Derivability relation . 84
A goal directed proof procedure . 86

IX.3 Uniform proofs for NemoLOG . 89
A sequent calculus . 89
Uniform proofs . 91

IX.4 Translating NemoLOG programs into Horn clause logic 96
The translation method . 97

X Applications 103
X.1 Beliefs, knowledge, and actions representation 103
X.2 Defining modules . 105

Flat collection of modules . 106
Composition of modules: exporting information 107
Nested modules . 108
Parametric modules . 110

X.3 Inheritance and hierarchies . 112
Evolving and conservative systems with dynamic or static configura-

tion of modules . 115

XI Fixed Point Semantics 119
XI.1 Immediate consequence transformation 119

Interpretations and weak satisfiability 119
TP operator . 120

Contents vii

Related work . 123
XI.2 Soundness and completeness . 123

With respect to operational semantics 123
With respect to possible-worlds semantics 125

XI.3 Herbrand domains . 128

XII Related work 131
XII.1 Languages based on inclusion modal logics 131
XII.2 Other languages . 134

Conclusions 137

A Some examples of translated NemoLOG programs 141

Index of Symbols 153

Bibliography 157

viii Contents

List of Figures

III.1 Uniform notation for propositional signed modal formulae. 22
III.2 Tableau rules for propositional inclusion modal logics. 23
III.3 ρ-rule as rewriting rule. 25
III.4 ρ-rule as rewriting rule. 27
III.5 A systematic tableau procedure for propositional inclusion modal logics. 31

IV.1 Production grammar form for different classes of languages. 34
IV.2 The Kripke structure generated by proving ϕT (q). 36
IV.3 A non-terminating construction of a Kripke A-interpretation. 43

V.1 Uniform notation for quantified formulae. 49
V.2 Tableau rules for quantified formulae. 50

VI.1 Some well-known axiom schemas included by the incestual axioms. . . . 56
VI.2 a, b, c, d-incestual property. 57
VI.3 Tableau rules for propositional incestual modal logics. 60
VI.4 Some Kripke G-interpretation constructions. 61
VI.5 Another Kripke G-interpretation construction. 63

VII.1 ρ-rule as rewriting rule. 71
VII.2 ρ-rule as rewriting rule. 72

IX.1 The sequent calculus for the class of predicative inclusion modal logics. . 90
IX.2 A partial schema of the results about NemoLOG. 94
IX.3 Procedure for translating NemoLOG programs into Horn clause logic. . . 99

XI.1 Summary of the results about NemoLOG. 129

ix

x List of Figures

Preface

Modal logics have been intensively studied in the recent years [Stirling, 1992; Fitting,
1993; Hughes and Cresswell, 1996]. The reason is that while classical first-order logic can
express relationships between terms representing members of a flat domain, modal logics
are able to structure knowledge, represent beliefs of agents and deal with problems involving
distributed reasoning [Konolige, 1986; Genesereth and Nilsson, 1987; Halpern and Moses,
1992] together with other attitudes in agent systems like, for instance, goals, intention
and obligation. Furthermore, they are well suited for representing dynamic aspects and,
in particular, to formalize reasoning about actions and time [Wooldridge and Jennings,
1995]. All these characteristics are achieved by the use of some additional connectives,
called modal operators, which formalize in a more natural way reasoning about knowledge,
beliefs, dynamic changes, time, and actions. For this reason the development of automated
deduction methods has received a lot of attention (see, for instance, [Hughes and Cresswell,
1968; Fitting, 1983; Fitting, 1988; Enjalbert and Fariñas del Cerro, 1989; Wallen, 1990;
Catach, 1991] and, more recently, [Ognjanović, 1994; Massacci, 1994; Fariñas del Cerro
and Herzig, 1995; Governatori, 1995; Cunningham and Pitt, 1996; Beckert and Goré,
1997; Baldoni et al., 1998a]).

On the other hand, logic programs, that use flat sets of Horn clauses for representing
knowledge, enjoy some good properties, such as the notion of the least Herbrand model
together with its fixpoint characterization and the possible use of goal directed proof proce-
dures. These features make logic a real programming language with a clear and complete
operational semantics with respect to its declarative semantics [Lloyd, 1984].

Modal extensions of logic programming join tools for formalizing and reasoning about
temporal and epistemic knowledge with declarative features of logic programming lan-
guages. In particular, they support “context abstraction”, which allows to describe dy-
namic and context-dependent properties of certain problems in a natural and problem-
oriented way [Orgun and Ma, 1994; Fisher and Owens, 1993a; Fariñas del Cerro and
Penttonen, 1992]. All these desirable features are shown by some well-known proposals,
such as TEMPLOG [Abadi and Manna, 1989; Baudinet, 1989], Temporal Prolog [Gabbay,
1987], MOLOG [Fariñas del Cerro, 1986; Balbiani et al., 1988], TIM [Balbiani et al., 1991],
Modal Prolog [Sakakibara, 1986] and also by the proposals in [Akama, 1986; Debart et al.,
1992; Nonnengart, 1994; Giordano and Martelli, 1994; De Giacomo and Lenzerini, 1995;
Baldoni et al., 1997a; Baldoni et al., 1997b].

xi

xii Preface

In this thesis we work on normal multimodal logics, that are general modal systems
with an arbitrary set of normal modal operators, focusing on the class of inclusion modal
logics. The multimodal systems which belong to this class, first introduced in [Fariñas del
Cerro and Penttonen, 1988], are characterized by a set of logical axioms of the form:

[t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ (n > 0, m ≥ 0)

that are called inclusion axioms. We deeply study this class of modal logics and, then,
we propose a multimodal extension of logic programming, that we have called NemoLOG

(which stands for New modal proLOG), based on this class of logics. Finally, some conclu-
sions and open problems are drawn at the end of the thesis.

The thesis is organized in two part. In Part One, we, first, introduce the syntax, the
possible-worlds semantics, and the axiomatization of the class of inclusion modal logics.
Afterwards, we define a proof theory based on an analytic tableau calculus. The main
feature of this calculus is that it is able to deal with the whole class of logics in a modular
way with respect to the set of inclusion axioms that determines the logic. It is an extension
of the calculus presented in [Nerode, 1989] which, in turn, comes from the prefixed tableaux
in [Fitting, 1983].

Prefixed tableaux make explicit the reference to accessibility relations. In particular,
in our tableau method, differently than [Fitting, 1983] (where the accessibility relations
are encoded in the structure of the name of the worlds), the accessibility relations are
represented by means of an explicit and separate graph of named nodes, each of which
is associated with a set of formulae (prefixed formulae) and choice allows any inclusion
axiom to be interpreted as a “rewriting rule” into the path structure of the graph. This
is at the basis of the proofs of some (un)decidability results. Despite the fact that this
kind of representation works only for those multimodal systems whose frame structure
is first-order axiomatizable, we think that it is more suitable to deal with multimodal
logics with arbitrary interaction axiom than the one in [Fitting, 1993], as discussed in the
Chapter VII. Moreover, our tableau method can easily be extended to deal with a wide
class of normal multimodal logics that includes the class of inclusion modal logics and other
ones characterized by serial, symmetric, and Euclidean accessibility relations, as shown in
Chapter VI.

In Part Two, we propose the logic programming language NemoLOG. This language
extends the Horn clauses logic allowing free occurrences of universal modal operators in
front of goals, in front of clauses, and in front of clause heads. The considered multimodal
systems are the ones of the class of inclusion modal logics and they are specified by means
of a set of particular clauses that we have called inclusion axiom clauses.

The aim of our proposal is not only to extend logic languages in order to perform epis-
temic reasoning and reasoning about actions but especially to provide tools for software
engineering retaining a declarative interpretation of the programs. In particular, we will
show that inclusion modal logics are well suited, on one hand, to overcome the lack of struc-
turing facilities aimed at enhancing the modularity of logic programs (a central problem in

Preface xiii

the last years [Bugliesi et al., 1994]), and, on the other, to interpret some features typical
of object-oriented paradigms in logic programming (such as hierarchical dependencies and
inheritance among classes).

A proof theory is developed for NemoLOG and the soundness and completeness with
respect to the model theory is shown by a fixed point construction. Though the construc-
tion is pretty standard, we believe that its advantage is the modularity of the approach,
in the sense that both the completeness and soundness proofs are modular with respect to
the underlying inclusion modal logics of the programs.

Last but not least, we show that, in the case of programs and goals of NemoLOG, we
can restrict our attention to tableau proofs of a form that recalls the one of the uniform
proof as presented in [Miller et al., 1991] and, moreover, we give a method for translating
programs into standard Horn clauses, so that the translated programs can be executed by
any Prolog interpreter or compiler.

Acknowledgment

I would like to thank my advisors, prof. Alberto Martelli and dr. Laura Giordano, for the
help and support shown in all these years, the whole Logic Programming and Automated
Reasoning group of the Department of Computer Science of University of Turin in which
I worked and, in particular, dr. Maria Luisa Sapino. I would like to thank the reviewers,
prof. Mariangiola Dezani (University of Turin), prof. Paola Mello (University of Ferrara),
and prof. Camilla Schwind (Laboratoire d’Informatique de Marseille), for their precious
advice.

I would like to thank also Cristina Baroglio, all my friends at the Department of Com-
puter Science, especially Ferruccio Damiani and Davide Cavagnino, and all those persons
that with their love and their support made this thesis possible, in particular, my family.

Turin, Italy M. B.
February 1998

Part One

Inclusion Modal Logics

1

Chapter I

Introduction

Among true propositions, sometimes it is useful to distinguish between those that are
occasionally true and those that are necessarily true; for instance, a proposition could be
true in a particular scenario while another must be true in any possible scenario. Modal
logic extends classical logic allowing the occurrence of a new operator, usually denoted
by 2, in front of formulae. Differently than the others such as negation or implication,
this operator is not intended to be truth-functional, i.e. its meaning does not depend only
on the truth-values of the subformulae. Indeed, the intended meaning of the formula 2ϕ
is to qualify the truth value of ϕ: if ϕ is true then, 2ϕ specifies that ϕ is not only true
but necessarily true, i.e. ϕ is true independently from the scenario (or state, world, etc.)
[Hughes and Cresswell, 1996].

Multimodal logics generalize modal logics allowing more than one modal operator to
appear in front of formulae. In particular, a modal operator is named by means of a
label, for instance [a], which identifies it. Multimodal logics are particularly suitable to
reason in a multiagent environment, to represent knowledge, beliefs and, then, also common
interpretation of a formula like [a]ϕ is “ϕ is known by the agent a”, “ϕ is part of the
knowledge of a”, and “ϕ is believed by the agent a” but also “ϕ is true after executing the
action a” [Halpern and Moses, 1992].

The meaning of necessity is different depending on the properties that one ascribes
it. For example, one can say that everything that is necessarily true is also true while
another can think that everything that is necessary is necessarily necessary. Moreover, in
the multimodal case, modal operators do not represent only necessity but also knowledge,
beliefs, actions, etc. It is easy to express the properties which characterize a modal operator
by means of a set of axioms. Let us consider, for instance, the modal operator [a]. Then,
the axiom

T (a) : [a]ϕ ⊃ ϕ

(the knowledge axiom or reflexivity) can express the fact that everything that is necessarily
true is also true but also that what is known by the agent a must be true, while the axiom

4(a) : [a]ϕ ⊃ [a][a]ϕ

3

4 I. Introduction

(the positive introspection axiom or transitivity) can express the fact that everything that
is necessary is necessarily necessary, but also that if something is know by a then a knows
that he knows it. Furthermore, by using more than one modal operator, we are also able
to express what an agent knows (believes) about the knowledge (beliefs) of other agents.
For example, the formula [a][b]α can be read as “the agent a knows (believes) that the agent
b knows (believes) α”. Moreover, we can define modal systems characterized by means of
interaction axioms, such as, for instance,

I(a, b) : [a]ϕ ⊃ [b]ϕ

that say that whatever the agent a knows (believes), the agent b knows (believes), the
persistence axiom

P (a, always) : [a][always]ϕ ⊃ [always][a]ϕ

that says that the agent a knows (believes) that ϕ holds always then a will always know
ϕ, and the mutual transitivity axiom

4M(always, a) : [always]ϕ ⊃ [a][always]ϕ

to express the fact, for instance, that if something always holds it always also holds after
executing the action a.

As pointed out in [Catach, 1988], the main feature of multimodal systems is their
ability to express complex modalities, obtained by composing modal operators of different
types. Thus, such systems allow one to design agent situations where the agents can have
different ways of reasoning and different ways of interacting between them and, also, to
simultaneously study several modal aspects (e.g., knowledge and time or knowledge and
belief [Catach, 1991]).

Let us consider the following example inspired by [Fariñas del Cerro and Herzig, 1995].
It shows a multimodal system with modalities representing actions and beliefs of agents
and it is based on the fable “the fox and the raven”, in which the fox tries to capture the
raven’s cheese. In order to do so the fox charms the raven.

Example I.0.1 (The fox and the raven) Let [fox] be a modal operator axiomatized by only
the axiom K and representing what the fox believes and let [praise] and [sing] be two action
operators of type K representing the action in which the fox praises the raven and the raven
sings, respectively. Moreover, we have a operator [always] of type KT4:

(A1) T (always) : [always]ϕ ⊃ ϕ
(A2) 4(always) : [always]ϕ ⊃ [always][always]ϕ

for which we assume the mutual transitivity axioms:

(A3) 4M(always, praise) : [always]ϕ ⊃ [praise][always]ϕ,
(A4) 4M(always, sing) : [always]ϕ ⊃ [sing][always]ϕ,

in order to express the fact that if ϕ is always true then it is also always true after the actions
prise and sing. We have the following:

5

(1) [fox][praise]charmed(raven)
(2) [fox][always](charmed(raven) ⊃ 〈sing〉dropped(cheese))

That is, (1) the fox believes that if the fox praises the raven, then the raven is charmed, and (2)
the fox believes that in any moment if the raven is charmed then it is possible that the raven
sings and so it drops the cheese. From (1) and (2), the formula:

(3) [fox][praise]〈sing〉dropped(cheese)

can be proved; that is, the fox believes that after praising the raven may sing and so it drops the
cheese.

In this thesis we work on normal multimodal logics, that are general modal systems
with an arbitrary set of normal modal operators all characterized by the axiom

K(a) : [a](ϕ ⊃ ψ) ⊃ ([a]ϕ ⊃ [a]ψ)

focusing on the class of inclusion modal logics. This class of logics includes some well-known
modal systems such as Kn, Tn, K4n, and S4n. However, differently than other proposals,
such as [Halpern and Moses, 1992], these systems can be non-homogeneous (i.e., every
modal operator is not restricted to the same system) and can contain some interaction
axioms (i.e., every modal operator is not necessarily independent from the others).

In particular, inclusion modal logics are characterized by sets of logical axioms of the
form:

[t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ (n > 0, m ≥ 0)

that we call inclusion axioms. The knowledge axiom, positive introspection axiom, the
axiom I(a, b), the mutual transitivity axiom and the persistence axiom are examples of
inclusion axiom schema. The syntax, the possible-world semantics, and the axiomatization
of inclusion modal logics will be introduced in Chapter II.

Inclusion modal logics have interesting computational properties because they can be
considered as rewriting rules. More precisely, inclusion modal logics have been introduced
in [Fariñas del Cerro and Penttonen, 1988] with the name of grammar logics to the aim
of simulating the behaviour of grammars by means of modal logics. Intuitively, given
a formal grammar, we associate an axiom of a modal logic to each rule. The idea is
quite simple. For each production of the form t1 . . . tn → s1 . . . sm a new inclusion axiom
[t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ is introduced. By this construction, verifying if a word is
generated by a formal grammar is equivalent to proving a theorem in the logic. As a
consequence, the authors of [Fariñas del Cerro and Penttonen, 1988] obtained a simple
proof of undecidability for propositional modal logics. However, they neither prove any
(un)decidability results for restricted classes nor they consider any proof method to deal with
the whole class of logics (or its subclasses). More recently, in [Gasquet, 1994; Gasquet,
1993], an optimized functional translation method for translating formulae of the inclusion
modal logics into formulae of the classical first order logic is proposed when, however, the
seriality is assumed for each operator.

6 I. Introduction

In this part of the thesis, we answer to the open problems left in [Fariñas del Cerro and
Penttonen, 1988]. We first develop an analytic tableau calculus for the class of inclusion
modal logics and, then, we use it as a tool to prove some undecidability results for some
subclasses of inclusion modal logics.

Although an axiom system is a calculus, it is not an appropriate choice for automation
because, in general, it is hard to find a proof for a given formula, especially in an automatic
way. The reason is that axiom systems make use of the modus ponens rule so that to prove
a formula ϕ we have to look for a prove of ψ and ψ ⊃ ϕ and, generally, ψ may be an
arbitrary formula without any relation with ϕ. Other calculi, such as resolution, sequent
calculus, and tableau calculus better work towards this purpose. The fact is that these
methods use the “subformula principle”: everything you need to prove or disprove a given
formula is contained in the formula itself.

Among the above mentioned calculi, we have chosen to develop a tableau method in
order to supply a proof theory for the class of inclusion modal logics. A tableau calculus
is a refutation method; given a formula, say ϕ, the computation process is aimed at finding
an interpretation which satisfies ϕ. Consequently, to fail in finding an interpretation which
satisfies the negation of ϕ (¬ϕ) corresponds to prove that ϕ is true in every interpretation,
i.e. ϕ is valid.

There are several reasons that have leaded to prefer developing a tableau calculus
instead of a resolution calculus (sequent calculus can be seen as a notational variant of
tableau calculus) to study inclusion modal logics. First of all, it does not require any
normal forms, so the starting formula can use all connectives. Moreover, due to the strong
relationship with the semantics issue, tableau calculi are easier and more natural to develop
especially for non-classical logics for which, generally, the semantics is known better than
the computational properties [Fitting, 1983]. Last but not least, tableau methods enjoy
another important feature with respect to resolution: they can supply a return answer.
Besides the success or the failure, the tableau method returns some more information. In
the case of success, it returns an effective interpretation that satisfies the given formula
while, in the case of failure, it shows why it is not possible to satisfy that formula by means
of an effective contradictory interpretation.

The tableau calculus, presented in Chapter III, is an extension of the one proposed
in [Nerode, 1989], which is closely related to the systems of prefixed tableaux presented in
[Fitting, 1983].

Prefixed tableaux, differently than other tableau methods, make explicit reference to
the possible-worlds of the underlying Kripke interpretation. However, as a difference with
[Fitting, 1983], worlds are not represented by prefixes (which describe paths in the model
from the initial world), instead, they are given an atomic name and the accessibility rela-
tionships among them are explicitly represented in a graph. The method is based on the
idea of using the characterizing axioms of the logics as “rewrite rules” which create new
paths among worlds in the counter-model construction.

We think that the tableau calculus is interesting, first, because it is modular with
respect to the inclusion modal systems considered, that is it works for the whole class of
inclusion modal logics. Then, it deals with non-homogeneous multimodal systems with

7

arbitrary interaction axioms in an uniform way.
The proposals in [Governatori, 1995; Cunningham and Pitt, 1996; Beckert and Goré,

1997] address the problem of an efficient implementation of the tableau calculi for a wide
class of modal logics. They generalize the prefixes by allowing occurrences of variables
and they use unification to show that two prefixes are names for the same world. While
a straightforward implementation of our calculus is unlikely to be efficient, the generality
of the approach makes it suitable to study the properties of different classes of logics. In
particular, our tableau calculus is at the basis of the undecidability results for inclusion
modal logics presented in Chapter IV. Due to the fact that the accessibility relationships
among the worlds are represented in a graph and that we use the axioms of the logics as
rewrite rules to create new paths among worlds in the counter-model construction, our
tableau method allows to draw some correspondences between logic and formal languages.
These allow to reduce in a easy way some undecidability results of the formal languages to
satisfiability problems in the logic.

A decidability result for a particular subclass of the inclusion modal logics is also given.
This result is obtained by means of the filtration method, defining an extension of the
Fischer-Ladner closure [Fischer and Ladner, 1979].

Finally, in Chapter V, the tableau method is extended in order to deal with the predica-
tive case, while in Chapter VI, it is shown how our tableau calculus can be easily extended
in order to deal with the class of normal multimodal logics generated by the interaction
axiom schemas

Ga,b,c,d : 〈a〉[b]ϕ ⊃ [c]〈d〉ϕ

proposed in [Catach, 1988], where 〈a〉 is the modal operator defined as ¬[a]¬. This class
includes the class on inclusion modal logics and most of the well-known modal logics studied
in [Chellas, 1980; Hughes and Cresswell, 1996] and their multimodal version in [Halpern
and Moses, 1992].

8 I. Introduction

Chapter II

Syntax and Semantics

In this chapter we introduce the class of inclusion modal logics. We use the world “in-
clusion” because the logics of this class are characterized by axiom systems whose axioms
determine a set of inclusion relations between the accessibility relations of their possible-
worlds semantics.

Many results reported in this chapter can be easily deduced from well-known works
in literature. Nevertheless, for completeness, we will present them, avoiding to report the
most trivial steps.

II.1 Syntax

Let us define a language for a propositional multimodal logic. Although we consider a
number of different logics in the following, the syntax for all of them is essentially the
same. The alphabet contains:

• a non-empty countable set VAR of propositional variables;

• a non-empty countable set MOD, named the modal alphabet. VAR and MOD are
disjoint;

• the classical connectives “ ∧ ” (and), “∨” (or), “¬” (not), “ ⊃ ” (implies);

• a modal operator constructor “[.]”;

• left and right parentheses “(”, “)”.

The set FOR of formulae of a modal propositional language L is defined to be the least
set that satisfies the following conditions:

• VAR ⊆ FOR;

• if ϕ, ψ ∈ FOR then (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⊃ ψ) ∈ FOR;

• if ϕ ∈ FOR and t ∈ MOD then ([t]ϕ) ∈ FOR.

9

10 II. Syntax and Semantics

For readability, we omit parentheses if they are unnecessary: we give “ ∧ ” and “∨” the
same precedence; lower that “¬” but higher than “ ⊃ ”. Moreover, we use the standard
abbreviation 〈t〉ϕ for ¬[t]¬ϕ. [t] is called universal modal operator or universal modality,
while 〈t〉 is called existential modal operator or existential modality. By atomic formula we
mean any propositional variables of VAR.

We call IL the propositional multimodal logic based on the a language L.

II.2 Possible-worlds semantics

Given a language L, an ordered pair (W, {Rt | t ∈ MOD}), consisting of a non-empty
set W of “possible worlds” and a set of binary relations Rt (one for each t ∈ MOD) on
W , is called frame. Note that frames with an infinite number of possible worlds in W are
allowed. We say that w′ is accessible from w by means of Rt if (w,w′) ∈ Rt, Rt is the
accessibility relation of the modality [t]. We denote with FL the class of all frames based
on the language L.

In order to define the meaning of a formula, we have to introduce the notion of Kripke
interpretation.

Definition II.2.1 (Kripke interpretation) Given a language L, a Kripke interpreta-
tion M is an ordered triple 〈W, {Rt | t ∈ MOD}, V 〉, where:

• (W, {Rt | t ∈ MOD}) is a frame of FL;

• V is a valuation function, a mapping from W × VAR to the set {T,F}.

We say that M is based on the frame (W, {Rt | t ∈ MOD}).

We use ML to denote the class of Kripke interpretations with L as underlying language.
The meaning of a formula belonging to L is given by means of the satisfiability relation

|=. In particular, let M = 〈W, {Rt | t ∈ MOD}, V 〉 be a Kripke interpretation, w a world
in W and ϕ a formula, then, we say that ϕ is satisfiable in the Kripke interpretation M at
w, denoted by M,w |= ϕ, if the following conditions hold:

• M,w |= ϕ and ϕ ∈ VAR iff V (w,ϕ) = T;

• M,w |= ¬ϕ iff M,w 6|= ϕ;

• M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ;

• M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ;

• M,w |= ϕ ⊃ ψ iff M,w 6|= ϕ or M,w |= ψ;

• M,w |= [t]ϕ iff for all w′ ∈W such that (w,w′) ∈ Rt, M,w′ |= ϕ;

• M,w |= 〈t〉ϕ iff there exists a w′ ∈ W such that (w,w′) ∈ Rt and M,w′ |= ϕ.

II.3. Axiomatization 11

Given a Kripke interpretation M = 〈W, {Rt | t ∈ MOD}, V 〉, we say that a formula ϕ
is satisfiable in M if M,w |= ϕ for some world w ∈ W . We say that ϕ is valid in M if ¬ϕ
is not satisfiable in M (or, equivalently, if M,w |= ϕ, for all worlds in W). Moreover, a
formula ϕ is satisfiable with respect to a class M of Kripke interpretations if ϕ is satisfiable
in some Kripke interpretation in M, and it is valid with respect to M if it is valid in all
Kripke interpretations in M.

II.3 Axiomatization

It is possible to define an axiom system whose axioms and rules of inference characterizes
a propositional multimodal logic IL. In particular, this axiom system, that we call SL,
consists of:

• all axiom schemas for the propositional calculus;

• for each t ∈ MOD, the axiom schema:

K(t) : [t](ϕ ⊃ ψ) ⊃ ([t]ϕ ⊃ [t]ψ)

• the modus ponens rule of inference: from ` ϕ1 and ` ϕ ⊃ ψ infer ` ψ;

• for each t ∈ MOD, the necessitation rule of inference: from ` ϕ infer ` [t]ϕ.

Each modal system that contains the schema K(t) for each its modal operator is called
normal. In this thesis we deal with only normal modal logics and its extensions.

The axiomatization SL of the propositional modal logic IL is sound and complete with
respect to its possible-worlds semantics ML [Hughes and Cresswell, 1996; Halpern and
Moses, 1992]. Every formula provable from SL (SL-provable) is valid with respect to ML

(soundness) and every formula that is valid with respect to ML is provable from SL (com-
pleteness). We say that a Kripke interpretation M is a model of IL if every SL-provable
formula is valid in M , and F is a frame for IL if every Kripke interpretation based on it
is a model of IL.

Inclusion axiom schemas

An axiom system SL can be extended by adding one or more extra axiom schemas. In the
following, we are interested in a particular class of such extensions, that is those ones that
are obtained by adding only axiom schemas of the following form:

[t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ (n > 0,m ≥ 0)

where ti, sj ∈ MOD. We call such an axiom schema inclusion axiom schema or inclusion
axiom for simplicity.

1We write ` ϕ to mean that ϕ is a theorem of SL.

12 II. Syntax and Semantics

Example II.3.1 Some examples of inclusion axiom schemas are:

• the knowledge axiom T (t) : [t]ϕ ⊃ ϕ,

• the positive introspection axiom 4(t) : [t]ϕ ⊃ [t][t]ϕ,

• the inclusion axiom I(t, t′) : [t]ϕ ⊃ [t′]ϕ,

• the mutual transitivity axiom 4M(t, t′) : [t]ϕ ⊃ [t′][t]ϕ,

• the persistence axiom P (t, t′) : [t][t′]ϕ ⊃ [t′][t]ϕ [Fariñas del Cerro and Herzig, 1995].

Given a set A of inclusion axiom schemas, we show that if the accessibility relations in
the Kripke interpretations are restricted in a suitable way, the axiom system SL extended
with A, denoted by SA

L , is sound and complete with respect to possible-worlds semantics.
We use IA

L to denote the inclusion propositional modal logic determined by means of SA
L .

Example II.3.2 Some examples of inclusion modal logics are the well-known modal systems
K, T , K4, S4 [Hughes and Cresswell, 1996], their multimodal versions Kn, Tn, K4n, S4n

[Halpern and Moses, 1992], extensions of S4n with interaction axioms or with agent “any fool”
[Genesereth and Nilsson, 1987; Enjalbert and Fariñas del Cerro, 1989].

Remark II.3.1 The class of propositional inclusion modal logics is included in the class
of multimodal logics studied in [Catach, 1988]. There, the author generalizes to the multi-
modal case the k, l,m, n-incestuality axiom schema Gk,l,m,n : 3

k
2

lϕ ⊃ 2
m

3
n (see [Chellas,

1980, Section 3.3 and 5.5] and [Hughes and Cresswell, 1984, Chapter 3]). He characterizes
the class of modal logics by considering systems axiomatized by any finite number of axiom
schemas of the form Ga,b,c,d : 〈a〉[b]ϕ ⊃ [c]〈d〉, where 〈a〉, [b], [c], 〈d〉 can represent sequences
of modalities of that type. Thus, when we take into account only axiom schemas of the
form Gε,b,c,ε we have the class of inclusion modal logics (see Chapter VI for more details).

Some examples

In this section we give an idea of how to use inclusion modal logics to perform epistemic
reasoning (Example II.3.3, II.3.4, and I.0.1) and to represent simple reasoning about actions
(Example II.3.5).

In the Examples II.3.3, II.3.4, and I.0.1 we use modal operator to denote knowledge
and belief of agents: a preposition [t]ϕ is read as “agent t knows ϕ” or “agent t believes
ϕ”. Inclusion axiom schemas are used to model the meaning of the operator, for example,
a modal operator of belief is characterized by only the axiom K, while a modal operator
of knowledge by KT4 (see [Genesereth and Nilsson, 1987, Chapter 9]). Inclusion axioms
are also used to model interaction between knowledge or beliefs of different agents. For
instance, the axiom I(t, t′) : [t]ϕ ⊃ [t′]ϕ can be interpreted as “everything which is known
(believed) by agent t is also known (believed) by agent t′.”

II.3. Axiomatization 13

Example II.3.3 (Epistemic reasoning: The friends puzzle) Peter is a friend of John, so if Peter
knows that John knows something then John knows that Peter knows the same thing. That is,
we assume the persistence axiom:

(A1) P (peter, john) : [peter][john]ϕ ⊃ [john][peter]ϕ,

where [peter] and [john] are modal operators of type S4 (KT4):

(A2) T (peter) : [peter]ϕ ⊃ ϕ;
(A3) 4(peter) : [peter]ϕ ⊃ [peter][peter]ϕ;
(A4) T (john) : [john]ϕ ⊃ ϕ;
(A5) 4(john) : [john]ϕ ⊃ [john][john]ϕ;

and they are used to denote what is known by Peter and John, respectively. Peter is married, so
if Peter’s wife knows something, then Peter knows the same thing, that is the inclusion axiom:

(A6) I(wife(peter), peter) : [wife(peter)]ϕ ⊃ [peter]ϕ

holds, where [wife(peter)] is a modality of type S4 representing the knowledge of Peter’s wife:

(A7) T (wife(peter)) : [wife(peter)]ϕ ⊃ ϕ;
(A8) 4(wife(peter)) : [wife(peter)]ϕ ⊃ [wife(peter)][wife(peter)]ϕ.

Thus, we consider a modal language containing three modalities, [peter], [john], and [wife(peter)],
and characterized by the set A = {Ai | i = 1, . . . 8} of inclusion axiom schemas.

John and Peter have an appointment, let us consider the following situation:

(1) [peter]time
(2) [peter][john]place
(3) [wife(peter)]([peter]time ⊃ [john]time)
(4) [peter][john](place ∧ time ⊃ appointment)

That is, (1) Peter knows the time of their appointment; (2) Peter also knows that John knows
the place of their appointment. Moreover, (3) Peter’s wife knows that if Peter knows the time of
their appointment, then John knows that too (since John and Peter are friends); and finally (4)
Peter knows that if John knows the place and the time of their appointment, then John knows
that he has an appointment. From this situation we will be able to prove:

(5) [john][peter]appointment ∧ [peter][john]appointment,

that is, each of the two friends knows that the other one knows that he has an appointment.

In the following example a particular modality is introduced as a certain kind of common
knowledge operator. Indeed, this modality can be taken as a slightly weaker version of the
common knowledge operator in [Halpern and Moses, 1992]. It is slightly weaker because the
induction axiom for the common knowledge does not hold [Genesereth and Nilsson, 1987]
(see also Remark VI.2.1). The common knowledge operator is achieved using a fictitious
knower, sometimes called any fool. What any fool knows is what all other agents know,
and all agents know that others know (and so on). In other words, instead of regarding
common knowledge as an operator over beliefs of agents, it is regarded as a new agent
which interacts with the others.

14 II. Syntax and Semantics

Example II.3.4 (Epistemic reasoning and common knowledge: The wise men puzzle) The prob-
lem is as follows: “Once upon a time, a king wanted to find the wisest out of his three wisest
men. He arranged them in a circle and told them that he would put a white or a black spot on
their foreheads and that one of the three spots would certainly be white. The three wise men
could see and hear each other but, of course, they could not see their faces reflected anywhere.
The king, then, asked to each of them to find out the colour of his own spot. After a while, the
wisest correctly answered that his spot was white.”

Let us assume a, b, and c to denote the three wise men and by modalities [a], [b], and [c]
their beliefs. Moreover, we use [fool] to denote which are known by all the others (the “any fool”
agent). Thus, the set of inclusion axioms consists of:

(A1) T (fool) : [fool]ϕ ⊃ ϕ;
(A2) 4(fool) : [fool]ϕ ⊃ [fool][fool]ϕ;
(A3) I(fool, a) : [fool]ϕ ⊃ [a]ϕ;
(A4) I(fool, b) : [fool]ϕ ⊃ [b]ϕ;
(A5) I(fool, b) : [fool]ϕ ⊃ [c]ϕ.

The modal operators [a], [b], [c], and [fool] give a way to distinguish among information of the
single agents and information common to all of them. The formulation is the following, however,
in order to avoid introducing many variant of the same formulae for the different wise men, as a
shorthand, we use the metavariables X, Y and Z, where X, Y, Z ∈ {a, b, c} and X 6= Y , Y 6= Z,
and X 6= Z:

(1) [fool](¬ws(X) ∧ ¬ws(Y) ⊃ ws(Z))
(2) [fool](¬ws(X) ⊃ [Y]¬ws(X))

ws(X) means X has a white spot on his forehead. All the formulae preceded by the modal
operator [fool], correspond to information which is common to all wise men. The formula (1)
says that at least one of the wise men has a white spot, whereas formula (2) means that whenever
one of them has not a white spot, the others know this since the three wise men can see each
other. From (1) and (2) we cannot prove [X]ws(X) for any wise man.

Now, the king asks if someone knows if the color of his spot is white, but nobody says anything,
therefore X knows that Y does not know the color of his own spot:2:

(3) [X]¬[Y]ws(Y)

From (1)-(3) we cannot yet prove [X]ws(X) for any wise man. The king asks again if someone
knows if the color of his spot is white, but nobody still say anything, therefore X knows that Y
knows that Z does not know the color of his own spot:

(4) [X][Y]¬[Z]ws(Z)

2This fact allows to refuse to believe there is only one white spot, otherwise the wise man who has that
white spot could have answered (the king said there is at least one white spot).

II.3. Axiomatization 15

Now, from (1)-(4) we can prove [X]ws(X) for any wise man: each of them has enough information
for answering that he knows that the color of his spot is white3, but only the wisest will announce
that his spot is white.

In the following example, inspired from [Fariñas del Cerro and Herzig, 1995], it is shown
how modalities can be used to represent actions. Here the previous common knowledge
operator [fool] is used to represent something that holds in any moment, after any sequence
of actions. For this reason, now, we call it [always].

Example II.3.5 (Reasoning about actions: A simple version of the shooting problem) Assume
that our language contains the modalities [load] and [shoot] which denote the actions of “loading
a gun” and “shooting against a turkey”, respectively, and [always] denoting an arbitrary sequence
of actions, where [always]ϕ means that ϕ always holds (i.e., after any sequence of actions). The
set A will contain the following axioms:

(A1) T (always) : [always]ϕ ⊃ ϕ;
(A2) 4(always) : [always]ϕ ⊃ [always][always]ϕ;
(A3) I(always, load) : [always]ϕ ⊃ [load]ϕ;
(A4) I(always, shoot) : [always]ϕ ⊃ [shoot]ϕ;

Notice that [always] is reflexive (axiom A1), transitive (axiom A2), and if ϕ is always true it
is true after the action load or shoot (axioms A3 and A4, respectively), whereas the modalities
representing actions do not have any property beside K. Let us assume the situation:

(1) [always][load]loaded
(2) [always](loaded ⊃ [shoot]¬alive)

That is, (1) after any sequence of actions ended by load the gun is loaded, and (2) after any
sequence of actions (possible empty) if the gun is loaded then after a shoot the turkey is not
alive. Form (1) and (2) we can prove:

(3) [load][shoot]¬alive

that is, after the actions of load and shoot the turkey is not alive.

Inclusion frames and Kripke A-interpretation

Definition II.3.1 (Inclusion frame) Let F = (W, {Rt | t ∈ MOD}) be a frame of FL

and let A be a set of inclusion axiom schemas, F is an A-inclusion frame if and only if
for each axiom schema

[t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ

3Actually, if they did not answer twice, this is the only possible configuration. If there were a wise man
who has a “not-white” spot, say a, he could not have answered but b (or c) could have. They know that it
is not possible to have two “not-white” spots and they can see one, then, they can deduce they have both
a white spot. On the other hand, this is also the only fair configuration if the king would like to know the
wisest.

16 II. Syntax and Semantics

in A, the following inclusion property on the accessibility relation holds:

Rt1 ◦ Rt2 ◦ . . . ◦ Rtn ⊇ Rs1
◦ Rs2

◦ . . . ◦ Rsm
(II.1)

where “◦” means the relation composition Rt ◦ Rt′ = {(w,w′′) ∈ W × W | ∃w′ ∈
W such that (w,w′) ∈ Rt and (w′, w′′) ∈ Rt′}

4. We call IPA
L the set of inclusion prop-

erties of the form (II.1) determined by A.

We denote with FA
L the subset of FL that consists of all A-inclusion frames. A Kripke

A-interpretation is a Kripke interpretation based on an A-inclusion frame. The set of all
Kripke A-interpretations is denoted by MA

L and it is a subset of ML. Moreover, we also
say that a formula ϕ of L is A-satisfiable in M (A-valid in M) if M ∈ MA

L and it is
satisfiable in M (valid in M). A formula is A-satisfiable (A-valid) if it is satisfiable (valid)
with respect to the class MA

L of Kripke A-interpretations and we use the notation |=A

for it.
For the class MA

L of modal Kripke A-interpretations and the satisfiability relation |=A

the following important proposition holds.

Proposition II.3.1 Given a language L, for all formulae ϕ, ψ ∈ FOR, all Kripke A-
interpretations M = 〈W, {Rt | t ∈ MOD}, V 〉 of MA

L , and all worlds w ∈ W the following
properties hold:

1. if ϕ is an instance of a propositional tautology, then M,w |=A ϕ;

2. if M,w |=A ϕ and M,w |=A ϕ ⊃ ψ, then M,w |=A ψ;

3. M,w |=A [t](ϕ ∧ ψ) ⊃ ([t]ϕ ∧ [t]ψ);

4. for all inclusion axiom schemas [t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ in A, M,w |=A

[t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ.

Proof. We report only the proof for the property (4), for the others you can see [Halpern
and Moses, 1992, page 325]. Let us assume that M,w |=A [t1][t2] . . . [tn]ϕ but M,w 6
|=A [s1][s2] . . . [sm]ϕ. Then, M,w |=A ¬[s1][s2] . . . [sm]ϕ and, therefore, there exist w1, w2,
. . . , wm−1, w

′ in W such that (w,w1) ∈ Rs1
, (w1, w2) ∈ Rs2

, . . . , (wm−1, w
′) ∈ Rsm

(i.e.,
(w,w′) ∈ Rs1

◦Rs2
◦ . . .◦Rsm

) and M,w′ |=A ¬ϕ. Now, since M ∈ MA
L by hypothesis and,

therefore, the (II.1) holds, (w,w′) ∈ Rt1 ◦Rt2 ◦ . . . ◦Rtm , thus, there exist w′
1, w

′
2, . . . , w

′
n−1

in W such that (w,w′
1) ∈ Rt1 , (w′

1, w
′
2) ∈ Rt2 , . . . , (w′

n−1, w
′) ∈ Rtn and M,w′ |=A ¬ϕ,

but this is contradictory with the initial hypothesis M,w |=A [t1][t2] . . . [tn]ϕ. 2

Remark II.3.2 It is worth noting that inclusion frames do not allow backward moves:
neither symmetry nor euclideanness determine inclusion frames.

4If m = 0 then we assume Rs1
◦ Rs2

◦ . . . ◦ Rsm
= I, where I is the identity relation on W .

II.3. Axiomatization 17

Soundness and completeness

The following theorem states that the axiom system SA
L characterizes the class MA

L of
Kripke A-interpretations. The proof uses a well-known technique that shows the close
correspondence between an axiom system and a particular interpretation, named canonical
model [Hughes and Cresswell, 1996; Halpern and Moses, 1992]. It is very close to the one
given in [Fariñas del Cerro and Penttonen, 1988] for a subclass of the inclusion modal
logics, called Thue logics.

Theorem II.3.1 Let L be a modal language and let A be a set of inclusion axiom schemas,
SA
L is a sound and complete axiomatization with respect to MA

L .

Before proving the above theorem, we need to give some definitions and lemmas. A
formula ϕ is SA

L -consistent if ¬ϕ is not SA
L -provable. A finite set of formulae is SA

L -
consistent if the conjunction of all them is SA

L -consistent, and an infinite set of formulae is
SA
L -consistent if all of its finite subsets are SA

L -consistent. A set S of formulae is maximal
SA
L -consistent, if it is SA

L -consistent and for any formula ϕ, either ϕ ∈ S or ¬ϕ ∈ S.

Lemma II.3.1 Any SA
L -consistent set of formulae can be extended to a maximal SA

L -
consistent set. Moreover, let S be a maximal SA

L -consistent set of formulae, then it satisfies
the following properties:5

1. for no formula ϕ we have ϕ ∈ S and ¬ϕ ∈ S;

2. ϕ ⊃ ψ ∈ S if and only if ¬ϕ ∈ S or ψ ∈ S;

3. if ϕ ∈ S and ϕ ⊃ ψ ∈ S, then ψ ∈ S;

4. if ϕ is SA
L -provable, then ϕ ∈ S.

Proof. See, for a similar proof, [Hughes and Cresswell, 1996, Chapter 6] and [Halpern and
Moses, 1992, page 327]. 2

Definition II.3.2 (Canonical model) The canonical model is the ordered triple

MA
c = 〈W, {Rt | t ∈ MOD}, V 〉

where:

• W = {w | w is a maximal consistent set};

• for each t ∈ MOD, Rt = {(w,w′) ∈W ×W | wt ⊆ w′}, where

wt = {ϕ | [t]ϕ ∈ w}

5We report the properties only for logical connective “¬” and “ ⊃ ”, the properties for the others can
be easily derived.

18 II. Syntax and Semantics

• for each p ∈ VAR and each w ∈ W , we set

V (w, p) =
{

T if p ∈ w
F otherwise

It is quite easy to see, by the definition of accessibility relations given above, that for
any t, s ∈ MOD (w,w′) ∈ Rt◦Rs if and only if (wt)s ⊆ w′, where (wt)s = {ϕ | [t][s]ϕ ∈ w}.

Proposition II.3.2 The canonical model MA
c given by Definition II.3.2 is a Kripke A-

interpretation.

Proof. We have to prove that each inclusion property in IPA
L is satisfied by MA

c . Let
us suppose that Rt1 ◦ . . . ◦ Rtn ⊇ Rs1

◦ . . . ◦ Rsm
∈ IPA

L , and (w,w′) ∈ Rs1
◦ . . . ◦ Rsm

,
we have to show (w,w′) ∈ Rt1 ◦ . . . ◦ Rtn , that is (· · · (wt1) · · ·)tn ⊆ w′. Now, let us
assume [t1] . . . [tn]ϕ ∈ w and let us show that ϕ ∈ w′. Since [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ ∈
A, by Lemma II.3.1(4), M,w |=A [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ. Then, by Lemma II.3.1(2),
[s1] . . . [sm]ϕ ∈ w. Therefore, since by hypothesis (· · · (ws1) · · ·)sm ⊆ w′, we have ϕ ∈ w′.
2

Proposition II.3.3 Let MA
c be the canonical model given by Definition II.3.2 then, for

any formula ϕ and any world w, MA
c , w |=A ϕ if and only if ϕ ∈ w.

Proof. The proof is by induction of the structure of the formula ϕ and it is similar to
the ones given for the modal systems presented in [Fariñas del Cerro and Penttonen,
1988, page 132], [Halpern and Moses, 1992, page 327], and [Hughes and Cresswell, 1996,
Chapter 6]). 2

Now, we are in the position to give the proof of the Theorem II.3.1.

Proof. (of Theorem II.3.1) Soundness. By Preposition II.3.1. Completeness. Assume
that ϕ is A-valid and ϕ is not SA

L -provable. Then, ¬¬ϕ is not SA
L -provable too and,

hence, ¬ϕ is SA
L -consistent (see page 17). Now, by Lemma II.3.1, ¬ϕ is contained in some

maximal consistent set, say w. Thus, by Proposition II.3.3, MA
c , w |=A ¬ϕ. But this is a

contradiction because we assumed by hypothesis that ϕ is A-valid. 2

Remark II.3.3 It is worth noting that it is not the case that every model for SA
L satisfies

IPA
L , even though every Kripke A-interpretation is a model of SA

L (Theorem II.3.1).

Example II.3.6 Let us suppose a modal language with MOD = {t, s}, VAR = {p} and let A be
the set of inclusion axioms {[t]ϕ ⊃ [s]ϕ}. Now, let M be the Kripke interpretation 〈W, {Rt,Rs}, V 〉,
where W = {w1, w2, w3}, Rt = {(w1, w2)}, Rs = {(w1, w3)}, and V (w2, p) = V (w3, p) = T.
Clearly, since M does not satisfies IPA

L = {Rt ⊇ Rs}, M is not a Kripke A-interpretation,
though it is possible to show that M is a model of IA

L .6

6Before we show that each formula ϕ ∈ FOR, we have M,w2 |=A ϕ iff M,w3 |=A ϕ by induc-
tion on the structure of ϕ. Then, it easy to see that for all formula ϕ and all world w ∈ W ,
M,w |=A [t]ϕ ⊃ [s]ϕ ([Hughes and Cresswell, 1996, Chapter 10]).

II.3. Axiomatization 19

Nevertheless, if we look at the level of frame rather than at the level of Kripke in-
terpretation, we can state that IA

L is characterized by the class of all frame that satisfy
IPA

L .

Theorem II.3.2 F is a frame for IA
L if and only if F ∈ FA

L .

Proof. (Only if) By Theorem II.3.1. (If) Let F = (〈W, {Rt | t ∈ MOD}) be a frame of IA
L

and F 6∈ FA
L . Then, for some pair of worlds in W , say w and w′, (w,w′) ∈ Rs1

◦ . . . ◦ Rsm

but (w,w′) 6∈ Rt1 ◦ . . .◦Rtn , such that [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ ∈ A. Let M be a Kripke
A-interpretation based on F in which the valuation function V is defined on p ∈ VAR
so that V (w′, p) = T and, for all w′′ ∈ W such that w′′ 6= w′, V (w′′, p) = F. Now,
since (w,w′) 6∈ Rt1 ◦ . . . ◦ Rtn , it is easy to see that M,w |= [t1] . . . [tn]p. Moreover,
M,w |= ¬[s1] . . . [sm]p, hence, M,w 6|= [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ. This is a contradiction
by Proposition II.3.1. 2

20 II. Syntax and Semantics

Chapter III

Proof Theory

In this chapter we develop an analytic tableau calculus for the class of propositional inclusion
modal logics. This calculus will be modular with respect to the set of inclusion axioms A.
The method is based on the idea of using the characterizing axioms of the logic as “rewrite
rules” which create new paths among worlds in the counter-model construction.

The calculus is an extension of the one proposed in [Nerode, 1989], which is closely
related to the systems of prefixed tableaux presented in [Fitting, 1983]. As a difference
with [Fitting, 1983], worlds are not represented by prefixes (which describe paths in the
model from the initial world), but they are given an atomic name and the accessibility
relationships among them are explicitly represented in a graph.

III.1 Preliminary notions

Before introducing our tableau calculus, we need to define some notions. First of all, we
define a signed formula Z of a language L as a formula prefixed by one of the two symbols
T and F (signs). For instance, if ϕ is a formula of L then, Tϕ and Fϕ are signed formulae
of L.

Definition III.1.1 Let L be a propositional modal language and let WC be a countable
non-empty set of constant world symbols (or prefixes), a prefixed signed formula, w : Z,
is a prefix w ∈ WC followed by a signed formula Z.

We assume WC contains always at least the prefix i, that is interpreted as the initial
world.

Definition III.1.2 Let L be a propositional modal language, an accessibility relation for-
mula w ρt w

′, where t ∈ MOD, is a binary relation between constant world symbols of WC.

We say that an accessibility relation formula w ρt w
′ is true in a tableau branch if it

belongs to that branch. A tableau is a labeled tree where each node consists of a prefixed

21

22 III. Proof Theory

signed formula or of an accessibility relation formula. Intuitively, each tableau branch
corresponds to the construction of a Kripke interpretation that satisfies the formulae that
belong to it. Intuitively, prefixes are used to name worlds; a formula w : Tϕ (w : Fϕ)
on a branch of a tableau means that the formula ϕ is true (false) at the world w, in the
Kripke interpretation represented by that branch. Moreover, an accessible relation formula
w ρt w

′ true in a tableau branch means that in the Kripke interpretation represented by
that branch w′ is accessible form w by means of the accessibility relation of [t].

Remark III.1.1 Using prefixed formulae is very common in modal theorem proving (see
[Goré, 1995] for an historical introduction on the topic). We would like to mention the
well-known prefixed tableau systems in [Fitting, 1983] and the TABLEAUX system in [Cat-
ach, 1991]. In [Fitting, 1983], differently than our approach and the ones in [Nerode, 1989;
Catach, 1991], a prefix is a sequence of integers which represents a world as a path from
the initial world to it. As a result, instead of representing explicitly worlds and accessibil-
ity relations of a Kripke interpretation as a graph, by means of the accessibility relation
formulae, [Fitting, 1983] represents them as a set of paths, which can be considered as
a spanning tree of the graph. Similar ideas are also used by other authors, such as the
proposals in [Massacci, 1994; Governatori, 1995; Cunningham and Pitt, 1996; De Giacomo
and Massacci, 1996].

Conjunctive formulae
α α1 α2

T(ϕ ∧ ψ) Tϕ Tψ
F(ϕ ∨ ψ) Fϕ Fψ
F(ϕ ⊃ ψ) Tϕ Fψ
F(¬ϕ) Tϕ Tϕ

Disjunctive formulae
β β1 β2

F(ϕ ∧ ψ) Fϕ Fψ
T(ϕ ∨ ψ) Tϕ Tψ
T(ϕ ⊃ ψ) Fϕ Tψ
T(¬ϕ) Fϕ Fϕ

Necessary formulae
νt νt

0

T([t]ϕ) Tϕ
F(〈t〉ϕ) Fϕ

Possible formulae
πt πt

0

F([t]ϕ) Fϕ
T(〈t〉ϕ) Tϕ

Figure III.1: Uniform notation for propositional signed modal formulae.

In order to simplify the presentation of the calculus and the proofs we use the well-
known uniform notation for signed formulae. The uniform notation has been introduced
by Smullyan in [Smullyan, 1968] and developed and extensively used for the modal logic by
Fitting in [Fitting, 1973; Fitting, 1983]. It classifies non-atomic signed formulae according
to their sign and main connective. Figure III.1 reports the complete classification for
propositional modal formulae of the Chapter II. In the following, we will often use α, β,
νt, and πt as formulae of the corresponding type.

III.2. A tableau calculus 23

III.2 A tableau calculus

A tableau is an attempt to build an interpretation in which a given formula is satisfiable.
Starting from a formula ϕ, the interpretation is progressively constructed applying a set of
extension rules, which reflect the semantics of the considered logic. At any stage, a branch
of a tableau is a partial description of an interpretation. Usually, the tableau methods are
used as a refutation method. Proving that a formula ϕ is a theorem of a certain logic means
to show that the attempt to satisfy ¬ϕ leads to contradictory interpretations.

In our case, the tableau method tries to build Kripke interpretations, one for each
branch: the worlds are formed by the prefixes that appear on the branch, the accessibility
relations for the modalities are given by means of the accessibility relation formulae, and
the valuation function is given by means of the prefixed signed atomic formulae.

Now, we can present the set of extension rules. But, before doing this, we need to
introduce some terminology. In particular, we say that a prefix w is used on a tableau
branch if it occurs on the branch in some accessibility relation formula, otherwise we say
that prefix w is new.

Definition III.2.1 (Extension rules) Let L be a modal language and let A be a set of
inclusion axioms, the extension rules (tableau rules) for IA

L are given in Figure III.2.

w : α
w : α1
w : α2

α-rule w : β

w : β1 | w : β2
β-rule

w : νt w ρt w
′

w′ : νt
0

ν-rule

w : πt

w′ : πt
0

w ρt w
′

π-rule

where w′ is new on the branch

w ρs1
w1 · · · wm−1 ρsm

w′

w ρt1 w
′
1

...
w′

n−1 ρtn w
′

ρ-rule

where w′
1, . . . , w

′
n−1 are new on the branch

and [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ ∈ A

Figure III.2: Tableau rules for propositional inclusion modal logics.

The interpretation of the different kinds of extension rules is rather easy taking into
account the possible-worlds semantics (see Section II.2). The rules for the formula of type
α and β are the usual ones of classical calculus (a part from the prefixes).

A formula of type νt is true at world w if νt
0 is true in all world w′ accessible from w by

means of t. Therefore, if w : νt occurs on an open branch, we can add w′ : νt
0 at the end

24 III. Proof Theory

of that branch for any w′ which is accessible from w by means of the accessible relation
associated with the modal operator [t] (i.e., w ρt w

′ is true in that branch).
A formula of type πt is true at the world w by means of t if there exists a world w′

accessible from w in which πt
0 is true. Therefore, if w : πt occurs on an open branch, we

can add w′ : πt
0 to the end of that branch, provided w′ is new and w ρt w

′ is true in it.
The intuition behind the ρ-rule is quite simple. Let us suppose, for instance, that

[t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ ∈ A is an axiom of our modal logic IA
L . If w = w0 ρs1

w1, . . . ,
wm−1 ρsm

wm = w′ are true in a tableau branch then, wi is accessible from wi−1 by means of
si in the Kripke interpretation represented by that branch. Since [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ ∈
A then, the corresponding inclusion property (II.1) must hold. Thus, there must exist a
set of worlds w = w′

0, w
′
1, . . . , w′

n−1, w
′
n = w′ such that w′

i is accessible from w′
i−1 by means

of ti. Thus, we can add the formulae w ρt1 w
′
1, . . . , w′

n−1 ρtn w
′ to that branch provided

that w′
1, . . . , w′

n−1 are new. Note that, in the case of m = 0 we can add the formulae
w ρt1 w

′
1, . . . , w′

n−1 ρtn w.

Remark III.2.1 It is worth noting that the ρ-rule works for the whole class of inclusion
modal logics as well as the proofs in the next section. This is the advantages of our
approach. On the other hand, the proposed tableau calculus can also be thought as being
modular with respect to different modal logics than inclusion modal logics. Indeed, it can
be extended in order to deal a wider class of modal logics as we show in Chapter VI.

We say that a tableau branch is closed if it contains w : Tϕ and w : Fϕ for some
formula ϕ. A tableau is closed if every branch in it is closed. Now, we are in the position
to define the meaning of proof.

Definition III.2.2 Let L be a modal language and let A a set of inclusion axioms. Then,
given a formula ϕ, we say that a closed tableau for i : Fϕ, using the tableau rules of
Figure III.2, is a proof of ϕ (we also say that ϕ is T A

L -provable).

Example III.2.1 (The fox and the raven) We give here the proof of formula (3) from (1) and (2)
in Example I.0.1. We use the symbol “×” to say that a tableau branch is closed.

1. i : T[fox][praise]charmed(raven)
2. i : T[fox][always](charmed(raven) ⊃ 〈sing〉dropped(cheese))
3. i : F[fox][praise]〈sing〉dropped(cheese)
4. w1 : F[praise]〈sing〉dropped(cheese)
5. i ρfox w1

6. w2 : F〈sing〉dropped(cheese)
7. w1 ρpraise w2

8. w1 : T[praise]charmed(raven)
9. w2 : Tcharmed(raven)
10. w1 : T[always](charmed(raven) ⊃ 〈sing〉dropped(cheese))
11. w1 ρalways w1

12. w1 ρalways w2

13. w2 : T(charmed(raven) ⊃ 〈sing〉dropped(cheese))

III.2. A tableau calculus 25

14a. w2 : Fcharmed(raven)
×

14b. w2 : T〈sing〉dropped(cheese)
15b. w3 : Tdropped(cheese)
16b. w2 ρsing w3

17b. w3 : Fdropped(cheese)
×

We denote with “a” and “b” the two branches which are created by the application of β-rule to
step 13. Explanation: 1. and 2.: formula (1) and (2) from Example I.0.1; 3.: goal, formula (3)
from Example I.0.1; 4. and 5.: from 3., by application of π-rule; 6. and 7.: from 4., by π-rule;
8.: from 1. and 5., by ν-rule; 9.: from 8. and 7., by ν-rule; 10.: from 2. and 5., by ν-rule; 11.:
by (A1) and ρ-rule; 12.: from 7. and 11., by axiom (A3) and ρ-rule; 13.: from 10. and 12., by
ν-rule; 14a. and 14b.: from 13., by β-rule, branch “a” closes; 15b. and 16b.: from 14., by π-rule;
17b.: from 6 and 16b., by ν-rule, branch “b” closes.

i

w1

w2

w3

w4
wife(peter)

peter

john

john

peter

π-rule
peter

π-rule

π-rule

peter

ρ-rule

ρ-rule
ρ-rule

Figure III.3: ρ-rule as rewriting rule: counter-model construction of Example III.2.2.

Example III.2.2 (The friends puzzle) We prove the first conjunct of the formula (5) in Exam-
ple II.3.3 (the proof for the second conjunct is similar) from the set of formulae (1)-(4).

1. i : T[peter]time
2. i : T[wife(peter)]([peter]time ⊃ [john]time)
3. i : T[peter][john]place
4. i : T[peter][john](place ∧ time ⊃ apointment)
5. i : F[john][peter]appointment
6. w1 : F[peter]appointment
7. i ρjohn w1

8. w2 : Fappointment
9. w1 ρpeter w2

10. i ρpeter w3

11. w3 ρjohn w2

26 III. Proof Theory

12. w3 : T[john](place ∧ time ⊃ appointment)
13. w2 : T(place ∧ time ⊃ appointment)
14a. w2 : Tappointment

×
14b. w2 : F(place ∧ time)
15ba. w2 : Fplace
16ba. w3 : T[john]place
17ba. w2 : Tplace

×
15bb. w2 : Ftime
16bb. i ρwife(peter) w3

17bb. w3 : T([peter]time ⊃ [john]time)
18bba. w3 : T[john]time
19bba. w2 : Ttime

×
18bbb. w3 : F[peter]time
19bbb. w4 : Ftime
20bbb. w3 ρpeter w4

21bbb. i ρpeter w4

22bbb. w4 : Ttime
×

We denote with “a” and “b” the two branches which are created by the application of β-rule to
step 13., “ba” and “bb” the two ones that are created by the β-rule to step 14b., “bba” and “bbb”
the two one created by the β-rule to step 17d. Explanation: 1., 2., 3., and 4.: formula (1), (2),
(3), and (4) from Example II.3.3; 5.: goal, formula (5) from Example II.3.3; 6. and 7.: from 5.,
by application of π-rule; 8. and 9.: from 6., by π-rule; 10. and 11.: from 7. and 9., by axiom
(A1) and ρ-rule; 12.: from 4. and 10., by ν-rule; 13.: from 12. and 11., by ν-rule; 14a. and
14b: from 13, by β-rule, branch “a” closes; 15ba. and 15bb.: from 14b., by β-rule; 16ba.: from 3.
and 10, by ν-rule; 17ba.: from 16ba. and 11, by ν-rule, branch “ba” closes; 16bb.: from 10.,
by axiom (A6) and π-rule; 17bb.: from 2 and 16bb., by ν-rule; 18bba. and 18bba: from 17bb.,
by β-rule; 19bba.: from 18bba. and 11., by ν-rule, branch “bba” closes; 19bbb. and 20bbb.:
from 18bbb., by π-rule; 21bbb.: from 10. and 10bbb., by axiom (A3) and ρ-rule; 22bbb.: from 1.
and 21bbb., by ν-rule, branch “bbb” closes.

Remark III.2.2 Note that, the ρ-rule can be regarded as a rewriting rule which creates
new paths among worlds according to the inclusion properties of the modal logic. For
instance, in Example III.2.2, in steps 10. and 11. a new path, represented by i ρpeter w3

and w3 ρjohn w2, is created rewriting the path i ρjohn w1, w1 ρpeter w2 (steps 7. and 9.),
according to the inclusion property Rpeter ◦ Rjohn ⊇ Rjohn ◦ Rpeter. Moreover, the path
i ρwife(peter) w3 comes from i ρpeter w3 as well as the path i ρpeter w4 comes from i ρpeter w3,
w3 ρpeter w4 (see Figure III.3).

Example III.2.3 (The bungling chemist) Assume that a chemical compound “c” is made pour-
ing the elements “a” and, then, “b” into the same beaker. The two elements “a” and “b” are

III.2. A tableau calculus 27

make(c)

w1i

w2

pour(a) pour(b)

Figure III.4: ρ-rule as rewriting rule: counter-model construction of Example III.2.3.

not acid. We use the modal operator [pour(a)] and [pour(b)] to represent the action of pouring
the element “a” and “b”, respectively, and the modal operator [make(c)] to denote the action of
making the element “c”. Thus, we have the following axiom schemas:

(A1) [pour(a)][pour(b)]ϕ ⊃ [make(c)]ϕ;
(A2) [pour(b)][pour(a)]ϕ ⊃ [make(c)]ϕ.

The compound “c” is not acid, unless the two different elements are not measured out carefully.
Since the two elements alone are not acid, after pouring one into an empty beaker:

(1) [pour(a)]¬acid

it remains not acid. Note that, however, from (1) we cannot prove the formula 〈pour(a)〉¬acid
because the modal operator [pour(a)] were not serial. Now, we add the observation that it is
possible that after making the compound “c” it results acid:

(2) 〈make(c)〉acid

and so the formula 〈pour(a)〉¬acid is provable. Since also the formula 〈pour(a)〉〈pour(b)〉acid
from (1) and (2), we can deduce that, when the compound “c” is acid, a wrong measure of
element “b” with respect to the amount of element “a” already in the beaker happened. The
proof is the following (see also Figure III.4):

1. i : T[pour(a)]¬acid
2. i : T〈make(c)〉acid
3. i : F(〈pour(a)〉¬acid ∧ 〈pour(a)〉〈pour(b)〉acid)
4. w1 : Tacid
5. i ρmake(c) w1

6. i ρpour(a) w2

7. w2 ρpour(b) w1

8a. i : F〈pour(a)〉¬acid
9a. w2 : F¬acid
10a. w2 : T¬acid

×
8b. i : F〈pour(a)〉〈pour(b)〉acid
9b. w2 : F〈pour(b)〉acid
10b. w1 : Facid

×

28 III. Proof Theory

We denote with “a” and “b” the two branches which are created by the application of β-rule to
step 3. Explanation: 1. and 2.: formula (1) and (2); 3.: goal; 4. and 5.: from 2., by application
of π-rule; 6. and 7.: from 5., by axiom (A1) and ρ-rule; 8a. and 8b.: from 3.., by β-rule; 9a.:
from 8a. and 6., by ν-rule; 10a.: from 1. and 6., by ν-rule, branch “a” closes; 9b.: from 8b.
and 6., by ν-rule; 10b.: from 9b. and 7., by ν-rule, branch “b” closes. 15b. and 16b.: from 14.,
by π-rule;

III.3 Soundness and completeness

In this section we discuss the soundness and completeness of the tableau calculus presented
in the previous section. The proof follows the guideline of [Fitting, 1983, Chapter 8],
and [Goré, 1995, Section 6].

Soundness

In order to prove the soundness we first prove that the tableau rules preserve the satisfia-
bility but, to do this, we have to give more formally its meaning.

Let L be a modal language and let A be a set of inclusion axioms. Given a set of prefixed
signed formulae and accessibility relation formulae S of L and a Kripke A-interpretation
M = 〈W, {Rt | t ∈ MOD}, V 〉, we say v ∈ W is Rt-idealizable if there is some v′ ∈ W
such that (v, v′) ∈ Rt. Now, we name A-mapping a mapping I from the subset of
constant world symbols WC that occur in some accessibility relation formula of S to W
such that if w ρt w

′ ∈ S and I(w) is Rt-idealizable then (I(w), I(w′)) ∈ Rt. We say
S is A-satisfiable under the A-mapping I in the Kripke A-interpretation M if, for each
w : Tϕ, M, I(w) |=A ϕ and, for each w : Fϕ, M, I(w) 6|=A ϕ. More generally, we call a
set S of prefixed signed formulae and accessibility relation formulae A-satisfiable if S is
A-satisfiable under some A-mapping.

Therefore, a branch of a tableau is A-satisfiable if the set of prefixed signed formulae
on it is A-satisfiable, and a tableau is A-satisfiable if some its branch is A-satisfiable.

Proposition III.3.1 Let T be an A-satisfiable prefixed tableau and let T ′ be the tableau
which is obtained from T by means of one of the extension rules given in Figure III.2.
Then, T ′ is also A-satisfiable.

Proof. The proof is made by giving an A-mapping between prefixes which appear in a
tableau and possible worlds of an appropriate Kripke A-interpretation, whose accessibility
relation respects the structure imposed by the accessibility relation formulae of the tableau.
In particular, since a tableau is A-satisfiable if one of its branches is, we can focus on
application of the extension rules to that branch. The cases when the applied extension
rule is either the α-rule or the β-rule are simple.

Let us assume that the branch S is A-satisfiable under the A-mapping I in the Kripke
A-interpretation M = 〈W, {Rt | t ∈ MOD}, V 〉 and the applied extension rule is the ν-rule
to obtain S ′. Let us suppose w : νt ∈ S and S ′ = S ∪ {w′ : νt

0}, where w′ is used on S.

III.3. Soundness and completeness 29

Thus, M, I(w) |=A νt and I is already defined for w′ and (I(w), I(w′)) ∈ Rt. It follows
that M, I(w′) |=A νt

0 by definition of satisfiability relation.

The applied extension rule is the π-rule to obtain S ′. Let us suppose w : πt ∈ S and
S ′ = S ∪ {w : πt

0, w ρt w
′}, where w′ ∈ WC is new on S and, therefore, I is not defined

on w′. Now, M, I(w) |=A πt, hence, by definition of satisfiability relation, there exists a
v ∈ W such that (I(w), v) ∈ Rt and M, v |=A πt

0. This means that I(w) is Rt-idealizable
and, hence, it is enough to extend the definition of I by setting I(w′) = v.

The applied extension rule is the ρ-rule to obtain S ′. Let us assume w ρs1
w1, . . . ,

wm−1 ρsm
w′ ∈ S and S ′ = S∪{w ρt1 w

′
1, . . . , w

′
n−1 ρtn w

′}, where [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ
is in A and w′

1, . . . , w′
n are new on S. Then, I is already defined for w, w1, . . . , wm−1, w

′ and
(I(w), I(w1)) ∈ Rs1

, . . . , (I(wm−1), I(w
′)) ∈ Rsm

. Since M is a Kripke A-interpretation,
there exist v1, . . . , vn−1 in W such that (I(w), v1) ∈ Rt1 , . . . , (vn−1, I(w

′)) ∈ Rtn . This
means that I(w) is Rt1-idealizable, therefore, we can extend the definition of I by setting
I(w′

1) = v1. Now, I(w′
1) is Rt2-idealizable then, we can extend the definition of I by setting

I(w′
2) = v2 and so on until I(w′

n−1) = vn−1. This concludes the proof. 2

The soundness is stated by the following.

Theorem III.3.1 (Soundness) Let L be a modal language and let A be a set of inclusion
axiom schemas, if a formula ϕ of L is T A

L -provable then, it is A-valid.

Proof. By contradiction, let us assume that ϕ is T A
L -provable and M,w 6 |=A ϕ, for some

Kripke A-interpretation M = 〈W, {Rt | t ∈ MOD}, V 〉. The tableau which starts with
the formula i : Fϕ is A-satisfiable by means of M by introducing an A-mapping I and
setting I(i) = w. By Proposition III.3.1, each possible tableau obtained from i : Fϕ is
A-satisfiable, but this is a contradiction because ϕ is T A

L -provable. 2

Completeness

Before showing the completeness result we describe a systematic tableau procedure that
produces a tableau proof if one exists and, otherwise, it produces all information necessary
to construct a counter-model. Note that, strong completeness is not considered in the
following.

Following [Fitting, 1983, Chapter 8], in order to deal with the prefixed signed formulae
of the form w : νt and, in particular, to make sure w′ : νt

0 has been introduced for each
constant world symbol w′ such that w ρt w

′ belongs to the considered branch, whenever
we apply ν-rule to a prefixed signed formula of type ν t, we add a fresh occurrence of it
at the end of that branch. Therefore, the systematic proof procedure may consider each
formula only once. To remember this it labels that formula as finished. Moreover, in the
systematic procedure, “updating a branch with a formula” means adding the formula to
end of the branch if it does not already appear on it, but doing nothing if the formula
already appears on that one.

30 III. Proof Theory

Definition III.3.1 (Systematic tableau procedure) Let L be a model language and
let A be a set of inclusion axioms. Then, a systematic attempt to produce a proof of a
formula ϕ of L in the modal logic IA

L is constructed by the systematic procedure shown in
Figure III.5.

It is easy to see that the systematic procedure presented is fair: it considers each formula
which may appear on the tableau (see [Goré, 1995, Section 6] for a similar argumentation).
Hence, when we start with a formula i : Fϕ either it terminates and every branch on it is
closed proving ϕ or it must provide an open branch which contains “enough information” to
construct a counter-model to ϕ, that is, a Kripke interpretation in which ¬ϕ is satisfiable.
Note that it is possible to show the König Lemma is applicable to tableau trees generated
by means of our systematic procedure, hence if the attempt to find a proof for ϕ fails then,
an open branch must be exhibit (either finite or infinite).

The meaning of “enough information” is specified by the following definition.

Definition III.3.2 Let L, A, and S be a modal language, a set of inclusion axiom schemas,
and a set of prefixed signed and accessibility relation formulae in L, respectively. Then, we
say that S is A-downward satured if:

1. for no atomic formula ϕ and no prefix w, we have w : Tϕ ∈ S and w : Fϕ ∈ S;

2. if w : α ∈ S, then w : α1 ∈ S and w : α2 ∈ S;

3. if w : β ∈ S, then w : β1 ∈ S or w : β2 ∈ S;

4. if w : νt ∈ S, then w′ : νt
0 ∈ S for all w′ such that w ρt w

′ ∈ S;

5. if w : πt ∈ S, then w′ : πt
0 ∈ S for some w′ such that w ρt w

′ ∈ S;

6. if w ρs1
w1, . . . , wm−1 ρsm

w′ ∈ S and [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ ∈ A, then
w ρt1 w

′
1, . . ., w

′
n−1 ρtn w

′ ∈ S, for some w′
1, . . . , w

′
n−1.

Proposition III.3.2 Let ϕ be a formula of L be a formula in the modal logic language
IA
L for which the systematic procedure of Figure III.5 produces an open branch S then, S

is a A-downward satured set.

Proof. It is easy to verify that the systematic tableau procedure of Figure III.5 is closed
with respect to every extension rule of the calculus. As a result we have the thesis. 2

Intuitively, this proposition together with the systematic procedure play the same role
of the maximal-consistent-set construction used in [Fitting, 1973]. Now, we are ready to
construct our counter-model.

Definition III.3.3 (Canonical model) Given a modal language L, let S be a set of pre-
fixed signed formulae and accessibility relation formulae in L that is A-downward satured.
The canonical model MA

c is the ordered triple 〈W, {Rt | t ∈ MOD}, V 〉, where:

III.3. Soundness and completeness 31

begin
put i : Fϕ at the origin;
while the tableau is open and

some formula is not finished do begin
z := the closest to the root and leftmost not finished formula;
for each open branch S which passes through z do

case z of
w : α:

update S with w : α1 and w : α2;
update S with w : α2

w : β:
split the end of S;
update the left fork with w : β1;
update the right fork with w : β2

w : νt:
for each w ρt w

′ ∈ S do
update S with w′ : νt

0;
add w : νt to the end of S

w : πt:
choose w′ new on the branch S;
update S with w′ : πt

0;
update S with w ρsi

w′

w ρsi
w′:

for each [t1] . . . [tn]ϕ ⊃ [s1] . . . [si] . . . [sm]ϕ ∈ A do
for each set

{w0 ρs1
w1, . . . , w ρsi

w′, . . . , wm−1 ρsm
wm} ⊆ S

such that wj−1 ρsj
wj precedes wρsi

w′ along S,
where 1 ≤ j ≤ m, (i 6= j), do begin

choose {w′
1, . . . , w

′
n−1} new on the branch S;

update S with w0 ρt1 w
′
1, . . . , w

′
n−1 Rtn wm

end
end;

label z finished
end

end.

Figure III.5: A systematic tableau procedure for propositional inclusion modal logics.

32 III. Proof Theory

• W = {w | w is used on S};

• for each t ∈ MOD, Rt = {(w,w′) ∈W ×W | w ρt w
′ ∈ S};

• for each p ∈ VAR and each w ∈ W , we set

V (w, p) =
{

T if w : Tp ∈ S
F otherwise

Proposition III.3.3 The canonical model MA
c given by Definition III.3.3 is a Kripke

A-interpretation.

Proof. We have to prove that each inclusion properties in IPA
L is satisfied by MA

c . Let us
suppose that Rt1 ◦ . . .◦Rtn ⊇ Rs1

◦ . . .◦Rsm
∈ IPA

L , and (w,w′) ∈ Rs1
◦ . . .◦Rsm

, we have
to show (w,w′) ∈ Rt1 ◦ . . . ◦ Rtn . If (w,w′) ∈ Rs1

◦ . . . ◦ Rsm
then, by Definition III.3.3,

there exist w1, . . . , wm−1 in WC such that w ρs1
w1, . . . , wm−1 ρsm

w′ belong to S. Now,
since by hypothesis S is A-downward satured, by point (6) of Definition III.3.2, w ρt1 w

′
1,

. . . , w′
n−1 ρtn w

′ ∈ S, for some w′
1, . . . , w′

n−1 used in S, from which our thesis. 2

The following lemma states that the canonical model which is build from an open
branch obtained from the systematic attempt to prove a formula ϕ is a counter-model of
ϕ, that is it satisfies ¬ϕ (model existence theorem).

Lemma III.3.1 Given a modal language L, if S is a set of prefixed signed formulae and
accessibility relation formulae of L that is A-downward satured then S is A-satisfiable.

Proof. Suppose S is A-downward satured. For every formula ϕ and every prefix w, we
have that if w : Tϕ ∈ S then MA

c , w |=A ϕ and if w : Fϕ ∈ S then MA
c , w 6 |=A ϕ. That

is, the identity mapping I(w) = w is an A-mapping for S in the Kripke A-interpretation
MA

c . The proof is by induction on the structure of ϕ but, for simplicity, we use the uniform
notation of Smullyan already introduced. The case of formulae of type α and β are trivial.
Let us suppose w : νt ∈ S. Then, since S is A-downward satured, w′ : νt

0 ∈ S for all w′ such
that w ρt w

′ ∈ S. By inductive hypothesis, we have that MA
c , w

′ |=A νt
0, for each world w′

such that (w,w′) ∈ Rt and, hence, MA
c , w |=A νt by definition of satisfiable relation. Now,

let us assume, now, w : πt ∈ S. Then, since S is A-downward satured, w′ : πt
0 ∈ S for

some w′ such that w ρt w
′ ∈ S. By inductive hypothesis, we have that MA

c , w
′ |=A πt

0, for
some world w′ such that (w,w′) ∈ Rt and, hence, MA

c , w |=A πt by definition of satisfiable
relation. 2

Now, we are in the position to prove the completeness of the presented tableau calculus.

Theorem III.3.2 (Completeness) Let L be a modal language and let A be a set of
inclusion axiom schemas, if a formula ϕ of L is A-valid then, ϕ is T A

L -provable.

Proof. We prove the contrapositive, by making use of the previous results. Let us assume
that ϕ is not T A

L -provable. Then, the tableau for ϕ must contain some open branch S.
By Proposition III.3.2, S is A-downward satured and, therefore, we can build a Kripke
A-interpretation in which ¬ϕ is satisfied by Lemma III.3.1. Thus, ϕ is not A-valid. 2

Chapter IV

Decidability

In the previous chapter we have defined a tableau method for the class of inclusion modal
logics. The completeness result was obtained by means of a systematic tableau procedure
that always finds a counter-model for a given formula if there exists one. As a result, the
completeness establishes the semi-decidability of the inclusion modal logics. On the other
hand, we wonder if this class of logics is also decidable, that is if it is possible to define a
decision procedure which works for the whole class of propositional inclusion modal logics.
This procedure should halt both if a counter-model exists and if a counter-model does not
exist. Unfortunately, a such algorithm does not exist [Fariñas del Cerro and Penttonen,
1988]. Nevertheless, if more restricted classes of inclusion modal logics are considered, a
decidability result can be established.

In this chapter, we show some undecidability and decidability results about inclusion
modal logics. In particular, in order to show our undecidability results, we use the Fariñas
del Cerro and Penttonen’s technique for associating an inclusion modal logic to a formal
grammar, while we use the Fischer and Ladner’s filtration method in order to show our
decidability result. It is interesting to note that our results about (un)decidability are in
the line of the ones established in [Fischer and Ladner, 1979; Harel et al., 1983; Harel
and Paterson, 1984] for the Propositional Dynamic Logic [Harel, 1984; Kozen and Tiuryn,
1990].

IV.1 Grammars, languages and modal logics

In the line of [Fariñas del Cerro and Penttonen, 1988], in this section we give a method for
associating with an inclusion modal logic to a formal grammar. This allows to prove some
results about undecidability and decidability of inclusion modal logics.

A grammar is a quadruple G = (V, T, P, S), where V and T are disjoint finite sets of
variables and terminals, respectively. P is a finite set of productions, each production is of
the form α → β, where the form of α and β depends on the type of grammar as reported
in Figure IV.1. Finally, S ∈ V is a special variable called the start symbol [Hopcroft and
Ullman, 1979].

33

34 IV. Decidability

Class of language Form of production
type-0 α ∈ (V ∪ T)∗V (V ∪ T)∗

β ∈ (V ∪ T)∗

type-1 α ∈ (V ∪ T)∗V (V ∪ T)∗

β ∈ (V ∪ T)+

|β| ≤ |α|
type-2 α ∈ V

β ∈ (V ∪ T)∗

type-3 α ∈ V
β = σA or β = σ
σ ∈ T ∗, A ∈ V

Figure IV.1: Production grammar form for different classes of languages. We denote by
“L∗” the Kleene closure of the language L (i.e. it denotes zero or more concatenation of
L) and by “+” the positive closure of L (i.e. it denotes one or more concatenation of L)
[Hopcroft and Ullman, 1979].

We say that the production α → β is applied to the string γαδ to directly derive αβδ
in grammar G, written γαδ ⇒G γβδ. The relation derives, ⇒∗

G, is the reflexive, transitive
closure of ⇒G. The language generated by a grammar G, denoted by L(G) is the set of
words {w ∈ T ∗ | S ⇒∗

G}.
Given a tableau branch S, let w0 and wn two prefixes used on S, a path ξ(w0, wn) is

a collection {w0 ρt1 w1, w1 ρt2 w2, . . . , wn−1 ρtn wn} of accessibility relation formulae
in S. We say that the path ξ(w0, wn) directly ρ-derives the path ξ ′(w0, wn) if the path
ξ′(w0, wm) is obtained from ξ(w0, wn) by means of the application of the ρ-rule to a sub-
path of ξ(w0, wn). The relation ρ-derive is the reflexive, transitive closure of the relation
directly ρ-derive.

Example IV.1.1 Let us consider the structure of Figure III.3. Then, for instance, the path
ξ1(i, w2) = {i ρjohn w1, w1 ρpeter w2} directly ρ-derives the path ξ2(i, w2) = {i ρpeter w3,
w3 ρjohn w2}, the path ξ3(i, w4) = {i ρpeter w3, w3 ρpeter w4} directly ρ-derives the path
ξ4(i, w4) = {i ρwife(peter) w3, w3 ρpeter w4}, and the path ξ1(i, w2) ρ-derives the path ξ5(i, w2) =
i ρwife(peter) w3, w3 ρjohn w2.

Due to the similarity between inclusion modal axioms and the production rules in a
grammar, we can associate to a given grammar a corresponding inclusion modal logic.
More precisely, following [Fariñas del Cerro and Penttonen, 1988], given a formal grammar
G = (V, T, P, S), we define an inclusion modal logic IA

L based on G as follows:

• the set MOD is (V ∪ T);

• the set A of inclusion axioms contains a schema [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ for each
production t1 · · · tn → s1 · · · sm ∈ P .

IV.1. Grammars, languages and modal logics 35

We call unrestricted, context sensitive, context-free, and right-regular modal logic an inclu-
sion modal logic based on a type-0, type-1, type-2, and type-3 grammar, respectively.

Example IV.1.2 Consider, for instance, the grammar G, where:

• V = {A};

• T = {b};

• P = {A → ε, A → A A, A → b A};

• S = A.

Then, the inclusion modal logic IA
L based on G contains the inclusion axioms:

• [A]ϕ ⊃ ϕ,

• [A]ϕ ⊃ [A][A]ϕ, and

• [A]ϕ ⊃ [b][A]ϕ

(i.e., IA
L is axiomatized by KT4(A) + 4M(A, b)).

Remark IV.1.1 Note that, the class of unrestricted inclusion modal logics is equivalent
to the class of inclusion modal logics.

If ξ(w0, wn) is the path {w0 ρt1 w1, . . . , wn−1 ρtn wn}, we denote by ξ(w0, wn) the
sequence of labels t1 · · · tn (called word). It is easy to verify the following proposition.

Proposition IV.1.1 If ξ(w0, wn) is a path in a tableau branch starting from a formula
of an inclusion modal logic IA

L based on a grammar G then, ξ(w0, wn) ρ-derives a path
ξ′(w0, wn) if and only if ξ′(w0, wn) ⇒∗

G ξ(w0, wn).

An interesting case (that will be used later on) is the following. Consider the type-3
grammar G = ({S}, T, P, S), where the set P contains the productions S → t and S → S t
for each t ∈ T , then L(G) = T ∗. Let IA

L be the inclusion modal logic based on G and let
us consider the formula

ϕT (q) =
∧

t∈T

(〈t〉q ∧ [S]〈t〉q)

where q ∈ VAR. Then, a tableau starting from i : TϕT (q) is formed by only one branch
that goes on forever. The interesting is that for each word x ∈ T ∗ the tableau branch
contains a path ξ(i, w) such that ξ(i, w) = x (see Figure IV.2).

36 IV. Decidability

i

t1
ti

tn

.

t1 ti

tn
t1 t1ti ti

tn tn

.

...
...

...

Figure IV.2: The Kripke structure generated by proving ϕT (q).

IV.2 Undecidability results for inclusion modal logics

The tableau method developed in the previous chapter allows to generalize the Fariñas del
Cerro and Penttonen’s observations about the correspondence between the membership
problem and the validity problem of inclusion logics as stated by the following theorem.

Theorem IV.2.1 Given a grammar G = (V, T, P, S), let IA
L be the inclusion modal logic

based on G. Then, for any propositional variable p of L, |=A [S]p ⊃ [s1] . . . [sm]p if and
only if S ⇒∗

G s1 · · · sm, where the si’s are in V ∪ T .

Proof. (If part) Let us suppose that |=A [S]p ⊃ [s1] . . . [sm]p, then, the tableau starting
from:

1. i : F([S]p ⊃ [s1] . . . [sm]p)

closes by Theorem III.3.2. Now, by applying the β-rule we obtain:

2. i : T[S]p
3. i : F[s1] . . . [sm]p

and applying m times the π-rule:

4. w1 : F[s2] . . . [sm]p
5. i ρs1

w1

.
2m+ 3. wm : Fp
2m+ 4. wm−1 ρsm

wm

Since, by hypothesis, the above tableau closes, the only way for this to happen is that after
a finite number of applications of the ρ-rule we have the prefixed signed formula wm : Tp
in the branch. This happens if the path ξ(i, wm) = {i ρs1

w1, . . . , wm−1 ρsm
wm} ρ-

derives the path ξ′(i, wm) = {i ρS wm}, that is, if there exits a derivation ξ ′(i, wm) =
S ⇒∗

G ξ(i, wm) = s1 · · · sm by Proposition IV.1.1. (Only if part) Assume that there

IV.2. Undecidability results for inclusion modal logics 37

exists a derivation S ⇒∗
G s1 · · · sm. Since a systematic attempt to prove the formula

i : F([S]p ⊃ [s1] . . . [sm]p) generates a path ξ(i, wm) = {i ρs1
w1, . . . , wm−1 ρsm

wm} and
ξ(i, wm) ρ-derives the path ξ′(i, wm) = {i ρS wm}, after a finite number of steps, the only
branch of the tableau closes by wm : Tp and wm : Fp. 2

Thus, taking into account that it is undecidable to establish if a word belongs to the
language generated by an arbitrary type-0 grammar [Hopcroft and Ullman, 1979], we have
the following corollary.

Corollary IV.2.1 The validity problem for the class of inclusion modal logics is undecid-
able.

Indeed, this result has already been shown in [Fariñas del Cerro and Penttonen, 1988].
However, Fariñas del Cerro and Penttonen were not able to prove Theorem IV.2.1 for
the modal logics based on type-0 grammars. This is why they focused on a subclass
of the inclusion modal logics, that they call Thue logics, proving the undecidability of
inclusion modal logics by showing that the Thue logics are undecidable. A Thue logic is an
inclusion modal logic based on a Thue system [Book, 1987], that is a type-0 grammar whose
productions are symmetric. Thus, the Thue logics are inclusion modal logics characterized
by axiom schemas where the implication is replaced by the biimplication. Since the word
problem for the Thue systems is proved undecidable (see [Book, 1987]), proving that a
formula is a theorem of a Thue logic will be undecidable.1

In [Fariñas del Cerro and Penttonen, 1988] some problems are left open. We wonder if
more restricted classes of logics (e.g. modal logics based on context sensitive, context-free,
regular grammars) are decidable. In the following, we show that also the class of context
sensitive and context-free inclusion modal logics are undecidable by reducing the solvability
of the problem L1 ∩ L2 6= ∅ (where L1 and L2 are languages generated by either type-1
or type-2 grammars) to the satisfiability of formulas of context sensitive and context-free
inclusion modal logics.

Theorem IV.2.2 Let G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) be two grammars
such that V1 ∩V2 = ∅ and T1 = T2 6= ∅. Then, there exists an inclusion modal logic IA

L and
a formula ϕ of L such that |=A ϕ if and only if L(G1) ∩ L(G2) 6= ∅.

Proof. Let us define the grammar G = (V, T, P, S), where:

• V = V1 ∪ V2 ∪ {S};

• T = T1 = T2;

• P = P1 ∪ P2 ∪ {S → t, S → S t | t ∈ T};

1The Thue systems have also been used in [Krancht, 1995] to define logics similar to those studied in
[Fariñas del Cerro and Penttonen, 1988], which, however, are not in the class of inclusion modal logics
because modal operators enjoy some further properties like seriality and determinism. In [Krancht, 1995]
undecidability results are proved for this class of logics.

38 IV. Decidability

• S 6∈ V1 and S 6∈ V2.

Then, we assume as IA
L the inclusion modal logic based on G and

ϕ = ϕT (q) ⊃ ([S1]p ⊃ 〈S2〉p)

where p, q ∈ VAR and p 6= q. (If part) Suppose that |=A ϕ then, the tableau starting
from:

1. i : F(ϕT (q) ⊃ ([S1]p ⊃ 〈S2〉p))

must close. Now, by applying twice the β-rule we obtain:

2. i : TϕT (q)
3. i : T[S1]p
4. i : F〈S2〉p

Since, by hypothesis, the above tableau closes, the only way for this to happen is that after a
finite number of steps we must have a prefixed signed formula w : Tp and a prefixed signed
formula w : Fp for some prefix w and, therefore, a path ξ(i, w) that ρ-derives both the path
ξ1(i, w) = {i ρS1

w} and the path ξ2(i, w) = {i ρS2
w}. Thus, there is both a derivation

ξ1(i, w) = S1 ⇒∗
G ξ(i, w) and a derivation ξ1(i, w) = S2 ⇒∗

G ξ(i, w) by Proposition IV.1.1,
i.e, ξ(i, w) ∈ L(G1) and ξ(i, w) ∈ L(G2) (S1 ⇒

∗
G ξ(i, w) and (S2 ⇒

∗
G ξ(i, w)), i.e. ξ(i, w) ∈

L(G1) ∩ L(G2). (Only if part) Assume that L(G1) ∩ L(G2) 6= ∅ then, there exists a word
x ∈ T ∗ such that x ∈ L(G1), that is S1 ⇒∗

G1
x, and x ∈ L(G2), that is S2 ⇒∗

G2
x. Since a

systematic attempt to prove the formula i : TϕT (q) can generate a path ξ(i, w), for some
prefix w, such that ξ(i, w) = y, for any y ∈ T ∗, after a finite number of steps we have a
path ξ′(i, w′) such that ξ′(i, w′) = x. Thus, we have also a path ξ ′1(i, w

′) = {i ρS1
w′} and

a path ξ′2(i, w
′) = {i ρS2

w′} by application of a finite number of the ρ-rule. This is enough
to close the only branch of the tableau by w′ : Tp and w′ : Fp. 2

Thus, taking into account that if G1 and G2 are two arbitrary type-1 (type-2) grammars
then it is undecidable if L(G1) ∩ L(G2) 6= ∅ [Hopcroft and Ullman, 1979], we have the
following corollary.

Corollary IV.2.2 The validity problem for the class of context-free inclusion modal logic
is undecidable.

Remark IV.2.1 Since the problem if L1 ∩ L2 6= ∅ is undecidable also for the class of
deterministic type-2 grammars, the validity problem for the inclusion modal logics based
on this kind of grammars is undecidable.

IV.3. A decidability result for inclusion modal logics 39

IV.3 A decidability result for inclusion modal logics

In the previous section we have shown that it is not possible to supply a general decision
procedure for the class of inclusion modal logics based on unrestricted, context sensitive
and context-free grammars. In this section, instead, we give a decidability result for the
inclusion modal logics based on right type-3 formal grammars, that is, those ones based
on grammars whose productions are of the form A→ σ or A→ σ A′, where A and A′ are
variables and σ a string of terminals. In order to do this, we modify the filtration method
for dynamic logic extending the definition of Fisher-Ladner closure [Fischer and Ladner,
1979].

Remark IV.3.1 Let G = (V, T, P, S) be a right type-3 grammar and let A be a variable.
Then, every sentential form derived from A has the form σX, where σ ∈ T ∗ and either
X ∈ T or X ∈ V .

Definition IV.3.1 Let G = (V, T, P, S) be a right type-3 grammar and let A be a variable.
Then, a derivation of a sentential form σX from A is said to be non-recursive if and only
if each variable of V appears in the derivation, apart from σX, at most once.

Some useful properties about non-recursive derivations of right type-3 grammars are
the following.

Proposition IV.3.1 Let G = (V, T, P, S) be a right type-3 grammar, let A0 be a variable
and let A0 ⇒∗

G σ1 · · · σnAn ⇒G σ1 · · · σnσn+1An+1 be a derivation, where either An+1 ∈ V
or An+1 ∈ T and Ai → σi+1Ai+1 ∈ P , for i = 0, . . . , n. Then, there exists a non-recursive
derivation A0 ⇒

∗
G σ1 . . . σiσn+1An+1, 0 ≤ i ≤ n.

Proof. If the derivation A0 ⇒∗
G σ1 · · · σnAn ⇒G σ1 · · · σnσn+1An+1 is not non-recursive

then, there are Ai and Aj, with 0 ≤ i < j ≤ n, such that Ai = Aj. That is, A0 ⇒∗
G

σ1 · · · σiAi ⇒∗
G σ1 · · · σi · · · σjAj ⇒∗

G σ1 · · · σnσn+1An+1. Thus, there exists a derivation
Aj ⇒∗

G σj+1 · · · σn+1An+1 and, therefore, a derivation A0 ⇒∗
G σ1 · · · σiAj ⇒∗

G σ1 · · · σiσj+1

· · · σn+1An+1. Now, if this derivation is non-recursive we have our thesis otherwise we
repeat the above transformation on the new derivation just obtained. Now, the number
of variables that appear on the original derivation is finite and it decreases at any stage
of the transformation, moreover, the cardinality of the set of variables is also finite. Thus,
the process always terminates leading to a non-recursive derivation. 2

Proposition IV.3.2 Let G = (V, T, P, S) be a right type-3 grammar. Then, the number
of non-recursive derivations that start with a variable of G is bounded.

Proof. The maximum length (number of directly derivation steps) of a non-recursive deriva-
tion is equal to the cardinality |V | of the set of variables V . Then, let n be the maximum
number of productions associated to a variable of V , a bound of the number of different
non-recursive derivations starting from a fixed variables is

∑|V |
i=1 n

i. Therefore, the num-
ber of different non-recursive derivations that start with a variable of G is bounded by
derG = |V | ·

∑|V |
i=1 n

i. 2

40 IV. Decidability

Let G = (V, T, P, S) be a right type-3 grammar and IA
L the regular inclusion modal

logic based on G. Then, we define the Fischer-Ladner closure FL(ϕ) of a formula ϕ of L
(that uses only existential modal operators, or, and negation2) as follows:

• if ψ ∨ ψ′ ∈ FL(ϕ) then ψ ∈ FL(ϕ) and ψ′ ∈ FL(ϕ);

• if ¬ψ ∈ FL(ϕ) then ψ ∈ FL(ϕ);

• if 〈t〉ψ ∈ FL(ϕ) and t ∈ T then ψ ∈ FL(ϕ);

• if 〈A〉ψ ∈ FL(ϕ), A ∈ V , and there is a non-recursive derivation A ⇒∗
G t1 · · · tnX,

where t1, . . . , tn ∈ T and either X ∈ T or X ∈ V , then 〈t1〉 . . . 〈tn〉〈X〉ψ ∈ FL(ϕ).

It is worth noting that the Fischer-Ladner closure is finite for any formula of a right
regular inclusion modal logic because the number of non-recursive derivations is finite if the
length of the formula ϕ is finite. In particular, let |ϕ| be the length (number of symbols)
of ϕ then, |FL(ϕ)| ≤ |ϕ| ·m · |V | · derG, where m is the maximum length of a production
of the grammar.3

Let IA
L be the inclusion modal logic based on a type-3 grammar G = (V, T, P, S) and

consider a Kripke A-interpretation M = 〈W, {Rt | t ∈ MOD}, V 〉 and a formula ϕ of L.
Then, we define an equivalence relation ≡ on state of W by

w ≡ w′ iff ∀ψ ∈ FL(ϕ),M,w |=A ψ ⇔M,w′ |=A ψ

we use the notation w for this equivalence class. The quotient Kripke A-interpretation

MFL(ϕ) = 〈W FL(ϕ), {R
FL(ϕ)
t | t ∈ MOD}, V FL(ϕ)〉

(the filtration of M through FL(ϕ)) is defined as follows:

• W FL(ϕ) = {w | w ∈ W};

• V FL(ϕ)(w, p) = V (w, p), for any p ∈ VAR and w ∈ W FL(ϕ);

• R
FL(ϕ)
t ⊇ {(w,w′) ∈ W FL(ϕ) ×W FL(ϕ) | (w,w′) ∈ Rt}.

Moreover, R
FL(ϕ)
t is closed with respect to the inclusion axioms, that is, for each

inclusion axiom schema [t]α ⊃ [s1] . . . [sm]α if (w0, w1) ∈ RFL(ϕ)
s1

, . . . , (wm−1, wm) ∈

RFL(ϕ)
sm

then the pair (w0, wm) belongs to the accessibility relation R
FL(ϕ)
t .

The following lemma states that when we insert any extra binary relation between w
and w′ in a accessibility relation RFL(ϕ)

t of MFL(ϕ), in order to satisfy the relative set of
inclusion properties IPA

L , it is not the case that there was any 〈t〉ψ ∈ FL(ϕ) which was
true at w while ψ itself was false at w′ (see [Hughes and Cresswell, 1984, page 137]).

2Since all other connectives can be defined in terms of these, this is not a restrictive condition.
3In fact, each subformulae of ϕ could be introduced in FL(ϕ). Every subformulae with associated

every possible sequence of modalities that comes from a non-recursive derivation whose length is at the
maximum m times |V |.

IV.3. A decidability result for inclusion modal logics 41

Lemma IV.3.1 For all ψ = 〈t〉ψ′ ∈ FL(ϕ), if (w,w′) ∈ R
FL(ϕ)
t and M,w′ |=A ψ′ then

M,w |=A 〈t〉ψ′.

Proof. Assume that ψ = 〈t〉ψ′ ∈ FL(ϕ) then, ψ′ ∈ FL(ϕ) by definition of Fischer-Ladner

closure. Now, there are two cases, which depend on whether (w,w′) ∈ R
FL(ϕ)
t has been

added to initial definition of filtration because an inclusion axiom schema of the form
[t]α ⊃ [s1] . . . [sm]α ∈ A or not.

Assume that (w,w′) ∈ R
FL(ϕ)
t has not been added. Then, by definition of R

FL(ϕ)
t , there

exist w1, w
′
1 ∈ W such that (w1, w

′
1) ∈ Rt, w1 ≡ w, and w′

1 ≡ w′. Since M,w′ |=A ψ′,
M,w′

1 |=A ψ′ because ψ′ ∈ FL(ϕ) and w′ ≡ w′
1. Hence, M,w1 |=A 〈t〉ψ′ because (w1, w

′
1) ∈

Rt. Finally, M,w |=A 〈t〉ψ′, because 〈t〉ψ′ ∈ FL(ϕ) and w ≡ w′.

Assume that (w,w′) ∈ R
FL(ϕ)
t but (w,w′) 6∈ Rt. The pair (w,w′) has been added in

R
FL(ϕ)
t by the closure operation in order to satisfy an inclusion property of an inclusion

axiom of the form [t]α ⊃ [s1] . . . [sm]α ∈ A. Then, there exist w1, . . . , wm−1 such that
(w0, w1) ∈ RFL(ϕ)

s1
, . . . , (wm−1, wm) ∈ RFL(ϕ)

sm
, where w0 is w and wm is w′. Now, in

turn, for each pair (wi−1, wi) ∈ RFL(ϕ)
si

, for i = 1, . . . , n, either (wi−1, wi) has been added

by the closure operation or not. Going on this way, we have (v0, v1) ∈ R
FL(ϕ)
t1 , . . . ,

(vh−1, vh) ∈ R
FL(ϕ)
th

such that the corresponding pairs belong Rt and t ⇒∗
G t1 · · · th, v0 is

w0 (that, in turn, is w), and vh is wm (that, in turn, is w′). By construction, there exist

v′i−1, v
′′
i ∈W such that (v′i−1, v

′′
i) ∈ R

FL(ϕ)
ti and vi−1 ≡ v′i−1 and vi ≡ v′′i , for i = 1, . . . , h.

Assume that t ⇒∗
G t1 · · · th is the derivation A0 ⇒G σ1A1 ⇒G . . . ⇒G σ1 · · · σnAn ⇒G

σ1 · · · σnσn+1, where A0 is t and An → σn+1 and Ai−1 → σiAi, for i = 1, . . . , n, are in
P , and that σn+1 is d1 · · · dr (= th−r+1 · · · th). We know that M, vh |=A ψ′ and we have
to prove that M, vh−r+1 |=A 〈d1〉 . . . 〈dr〉ψ

′. Assuming that 〈d1〉 . . . 〈dr〉ψ
′ ∈ FL(ϕ) then,

we have that M, v′′h |=A ψ′ since vh ≡ v′′h and ψ′ ∈ FL(ϕ). Since (v′h−1, v
′′
h) ∈ Rth and

M, v′′h |=A ψ′ then, M, v′h−1 |=A 〈dr〉ψ
′ and, since 〈dr〉ψ

′ ∈ FL(ϕ) and v′h−1 ≡ v′′h−1, we
have that M, v′′h−1 |=A 〈dr〉ψ

′. We can proceed so on until M, v′′h−r+1 |=A 〈d1〉 . . . 〈dr〉ψ
′

and M, vh−r+1 |=A 〈d1〉 . . . 〈dr〉ψ
′ since vh−r+1 ≡ v′′h−r+1. Now, since the inclusion axiom

[An]α ⊃ [d1] . . . [dr]α belongs to A, M, vh−r+1 |=A 〈An〉ψ
′. We can repeat the above argu-

mentation for all derivation steps from A0 obtaining at the end our thesis M,w |=A 〈A0〉ψ
′,

that is, M,w |=A 〈t〉ψ′.
We have now to prove that 〈d1〉 . . . 〈dr〉ψ

′ ∈ FL(ϕ). By hypothesis 〈A0〉ψ
′ ∈ FL(ϕ) (A0

is t) and A0 ⇒∗
G σ1 · · · σnσn+1. Then, by Proposition IV.3.1, there exists a non-recursive

derivation A0 ⇒∗
G σσn+1, for some σ ∈ T ∗. By definition of Fischer-Ladner closure, since

〈A0〉ψ
′ ∈ FL(ϕ), we have 〈t′1〉 . . . 〈t

′
n′〉〈d1〉 . . . 〈dr〉ψ

′ ∈ FL(ϕ), where σ is t′1 · · · t
′
n′ and σn+1

is d1 · · · dr, and, hence, 〈d1〉 . . . 〈dr〉ψ
′. 2

Lemma IV.3.2 (Filtration Lemma) For all ψ ∈ FL(ϕ),

M,w |=A ψ if and only if MFL(ϕ), w |=A ψ.

Proof. The proof is by induction on the structure of ψ. (Base step) For ψ ∈ VAR the
thesis holds trivially. (Induction step) The cases ψ = ψ ′ ∨ ψ′′ and ψ = ¬ψ′ are immediate

42 IV. Decidability

from the definitions. Assume that ψ = 〈t〉ψ′. (If part) If M,w |=A 〈t〉ψ′ then there exists

w′ such that M,w′ |=A ψ′ and (w,w′) ∈ Rt. By definition, we have (w,w′) ∈ R
FL(ϕ)
t

and, by induction hypothesis, MFL(ϕ), w′ |=A ψ′. Hence MFL(ϕ), w |=A 〈t〉ψ′. (Only if
part) If MFL(ϕ), w |=A 〈t〉ψ′ then, there exists w′ ∈ W FL(ϕ) such that MFL(ϕ), w′ |=A ψ′

and (w,w′) ∈ R
FL(ϕ)
t . By inductive hypothesis, we have that M,w′ |=A ψ′ and, by

Lemma IV.3.1 since (w,w′) ∈ R
FL(ϕ)
t , M,w |=A 〈t〉ψ′. 2

Theorem IV.3.1 (Small Model Theorem) Let ϕ be a satisfiable formula of an inclu-
sion modal logic IA

L based on a type-3 grammar G. Then, ϕ is satisfied in a Kripke
A-interpretation with no more that 2|FL(ϕ)| states.

Proof. If ϕ is satisfiable, then there is a Kripke A-interpretation M and a state w in M
such that M,w |=A ϕ. Let FL(ϕ) be the Fischer-Ladner closure of ϕ. By Lemma IV.3.2,
MFL(ϕ), w |=A ϕ. Moreover, since |FL(ϕ)| is bounded by Proposition IV.3.2, then the
filtration through FL(ϕ) is a Kripke interpretation having at most 2|FL(ϕ)| worlds (equiva-
lence classes of worlds in the initial model), that being the maximum number of ways that
worlds can disagree on sentences in FL(ϕ). 2

Remark IV.3.2 A modal logic is decidable if it has the finite model property (i.e., if and
only if each non-theorem of the modal logic is false in some finite Kripke interpretation
of the logic) and it is axiomatizable by a finite number of axiom schemas. In fact, in
this case there is both a positive and negative test for theorem-hood in the logic. The
positive test is given by generating all the proofs of theorems in some definite order (this
is possible because the axiomatization is finite, in our case also by the completeness of the
tableau calculus), while for the negative test we can give a complete enumeration of the
finite Kripke interpretations (models) since each Kripke interpretation is finite. Then, if a
formula is a non-theorem of the logic it is false in some finite Kripke interpretation and to
find this one we can examine each Kripke interpretation of the logic (a finite task since the
Kripke interpretation is finite and the logic is finitely axiomatized) checking if the selected
Kripke interpretation falsify the formula (a finite task since the model is finite) [Hughes
and Cresswell, 1984; Chellas, 1980].

As a corollary, since each inclusion modal logic based on a right regular grammar is
axiomatizable by a finite number of axiom schemas and, by Theorem IV.3.1, it is deter-
mined by a class of finite standard Kripke interpretations and, hence, it has the finite model
property (see [Hughes and Cresswell, 1984, Chapter 8] and [Chellas, 1980, Chapter 5]), we
have the following corollary.

Corollary IV.3.1 The validity problem for the class of right-regular inclusion modal logics
is decidable.

As a final remark, it is worth noting that the systematic procedure given in the previous
chapter is not a decision procedure: it goes on forever also when it deals with a decidable
logic.

IV.3. A decidability result for inclusion modal logics 43

b b b
w1i w2 w3

a a a

a a

a

. . .

Figure IV.3: Non-terminating Kripke A-interpretation construction of Example IV.3.1.

Example IV.3.1 Let us consider the modal logic whose set A of inclusion axioms consists of:

(A1) [a]ϕ ⊃ [b][a]ϕ
(A2) [a]ϕ ⊃ [b]ϕ

Despite the fact IA
L is decidable (it belongs to the class of right regular inclusion modal logics),

the systematic attempt to prove the formula 〈b〉p ⊃ 〈a〉[b]p runs forever (see also Figure IV.3):

1. i : F(〈b〉p ⊃ 〈a〉[b]p)
2. i : T〈b〉p
3. i : F〈a〉[b]p
4. w1 : Tp
5. i ρb w1

6. i ρa w1

7. w1 : F[b]p
8. w2 : Fp
9. w1 ρb w2

10. w1 ρa w2

10. i ρa w2

11. w2 : F[b]p
12. w3 : Fp
13. w2 ρb w3

14. w2 ρa w3

15. w1 ρa w3

16. i ρa w3

17. w3 : F[b]p
.

There is no hope to close the branch continuing the computation: an infinite sequence of worlds
is introduced.

44 IV. Decidability

Chapter V

First-Order

In this chapter we extend the propositional modal languages in order to deal with the pred-
icative case. First of all, we introduce the syntax and, then, the possible-worlds semantics.
With regard to model theory, we associate with each possible world a domain of individuals
and we have chosen to impose a monotonicity condition on them with respect to the ac-
cessibility relations. Afterwards, we update the tableau calculus presented in Chapter III
in order to deal with quantifiers.

V.1 Syntax

The alphabet of a first-order multimodal language LFO contains:

• a countable set VAR of individual variables (variable for short);

• for each n ≥ 0, a countable set FUNCn of n-place function symbols;

• for each n ≥ 0, a nonempty countable set PREDn of n-place predicate symbols;

• the classical connectives “ ∧ ” (and), “∨” (or), “¬” (not), “ ⊃ ” (implies);

• the universal quantifier “∀” and existential quantifier “∃”;

• a modal operator constructor “[.]”;

• left and right parentheses “(”, “)”, and a comma “,”.

The set TERM of terms is defined to be the least set that satisfies the following condi-
tions:

• VAR ⊆ TERM;

• if t1, . . . , tn ∈ TERM and f ∈ FUNCn then f(t1, . . . , tn) ∈ TERM.

45

46 V. First-Order

A 0-place function symbol is a constant symbol; the term c() is written as c. We will assume
that LFO contains at least one constant symbol. A term is a ground if it does not contain
any variable.

The set FOR of formulae of a modal language LFO is defined to be the least set that
satisfies the following conditions:

• if t1, . . . , tn ∈ TERM and p ∈ PREDn then p(t1, . . . , tn) ∈ FOR;

• if ϕ, ψ ∈ FOR then (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⊃ ψ) ∈ FOR;

• if x ∈ VAR and ϕ ∈ FOR then ((∀x)ϕ), ((∃x)ϕ) ∈ FOR;

• if ϕ ∈ FOR and t ∈ TERM then ([t]ϕ) ∈ FOR.

A formula of the form p(t1, . . . , tn) is called atomic formula.
We omit the parentheses if they are unnecessary: we use the already defined precedence

but where the quantifiers have the highest.
The meaning of free and bound occurrence of variables are the usual ones. A statement

is a formula in which all occurrences of all variables are bound. The substitution of a term
t for a free variable x in the formula ϕ, denoted by ϕ[t/x], is defined as usual: all free
occurrences of x in ϕ are substituted by t with the proviso that free variables in t are not
bound after the substitution. Observe that the term t replaces also the free variables x
belonging to the terms of the modalities.1

V.2 Possible-worlds semantics

In a first-order Kripke interpretation each world is associated with a domain of quantifica-
tion. We will not assume that domains are constant. The only restriction we put on them
is that the domain of a world w is contained in the domain of all worlds reachable from
w, i.e. domains are increasing (or monotone).2 In each Kripke interpretation we will fix a
non-empty set D of possible objects. The domain of each world will be a subset of D.

Definition V.2.1 (First-order Kripke interpretation) Given a modal language LFO,
a first-order Kripke interpretation M is an ordered tuple 〈W,R, D,J , V 〉, where:

• W is a non-empty set of worlds;

• D is a non-empty set of objects;

• J is a function from W to non-empty subsets of D (it associates a domain with each
world), satisfying the following condition: for all w,w′ ∈ W , if (w,w′) ∈ R3 then
J (w) ⊆ J (w′);

1For instance, ((∀x)[t(y)]p(x, y))[a/y] is the formula ((∀x)[t(a)]p(x, a)).
2In particular, the Barcan formula BF (t) : ((∀x)[t]ϕ) ⊃ [t](∀x)ϕ does not hold.
3That is, if there exists a parameter d ∈ D such that (w,w′) ∈ Rd.

V.2. Possible-worlds semantics 47

• V is an assignment function, such that:

– for each variable x ∈ VAR of LFO, V (x) ∈ D;

– for each function symbol f ∈ FUNCn of LFO, V (f) ∈ Dn → D and, for each
world w ∈ W , the domain J (w) is closed with respect to the interpretation of
f ;4

– for each predicate symbol p ∈ PREDn of LFO and each world w ∈ W , V (p, w) ⊆
Dn, i.e., V (p, w) is a set of n-tuples 〈d1, . . . , dn〉, where each di is an element
in D;

• R is the accessibility relation. It is parameterized with respect to domain elements,
i.e. for each domain element d ∈ D the accessibility relation Rd is a binary relation
on W .

Interpretation for terms in the domain is defined as usual from the interpretation of vari-
ables and function symbols. We say that M is based on the frame (W,R).

We use FLFO
and MLFO

to denote the class of frame and the class of Kripke interpre-
tations with LFO as underlying language.

Let M be a Kripke interpretation, let w ∈ W be a world, and let V be an assignment
function. Then, we say that a formula ϕ of LFO is satisfied by V in the Kripke interpretation
M at w, denoted by M,w |=V ϕ, if the following conditions hold:

• M,w |=V p(t1, . . . , tn) iff 〈V (t1), . . . , V (tn)〉 ∈ V (p, w);

• M,w |=V ¬ϕ iff M,w 6|=V ϕ;

• M,w |=V ϕ ∧ ψ iff M,w |=V ϕ and M,w |=V ψ;

• M,w |=V ϕ ∨ ψ iff M,w |=V ϕ or M,w |=V ψ;

• M,w |=V ϕ ⊃ ψ iff M,w 6|=V ϕ or M,w |=V ψ;

• M,w |=V (∀x)ϕ iff for every variable assignment V ′ that agrees with V everywhere
except on x, and such that V ′(x) ∈ J (w), M,w |=V ′

ϕ;

• M,w |=V (∃x)ϕ iff for some variable assignment V ′ that agrees with V everywhere
except on x, and such that V ′(x) ∈ J (w), M,w |=V ′

ϕ;

• M,w |=V [t]ϕ iff for all w′ ∈ W such that (w,w′) ∈ RV (t), M,w′ |=V ϕ;

• M,w |=V 〈t〉ϕ iff there is a w′ ∈ W such that (w,w′) ∈ RV (t), M,w′ |=V ϕ.

4That is, for each n-ary function f and for d1, . . . , dn ∈ J (w), V (f)(d1, . . . , dn) ∈ J (w).

48 V. First-Order

A formula ϕ of a language LFO is satisfiable in a Kripke interpretationM = 〈W,R, D,J ,
V 〉 if M,w |=V ϕ for some w ∈ W with every term of ϕ interpreted in J (w). We say that
ϕ is valid in M if ¬ϕ is not satisfiable. Moreover, a formula ϕ is satisfiable with respect to
a class M of Kripke interpretations if ϕ is satisfiable in some Kripke interpretation in M,
and it is valid with respect to M if it is valid in all Kripke interpretations in M.

Remark V.2.1 Notice that, since the domain may change from a world to another, there
is the problem of defining the satisfiability at a world w of a formula ϕ(t) containing a
term t whose interpretation is not in J (w). As mentioned by Fitting in [Fitting, 1983,
pages 341-342], there are three intuitive choices to deal with this problem:

1. always take ϕ(t) to be false in w;

2. leave the truth undetermined in w;

3. make no special restriction whatsoever.

Concerning choice 1), as Fitting mentions, Kripke has observed that imposing this require-
ment on atomic formulae leads to a modal logic in which the rule of substitution does not
apply (see also [Hughes and Cresswell, 1996, pages 275-276]). Choice 2) has been made in
[Hughes and Cresswell, 1968, Chapter 10]. In this case interpretations are three valued:
the truth value of any formula in a world can be either true or false or undefined. Finally,
choice 3) is the simplest one: first it does not put any special requirement on the valua-
tion of formulae, provided that in defining validity and satisfiability of a formula, for each
interpretation, only those worlds are considered such that the constants of the formulae
have their interpretation in the domain of the world. Indeed, choice 2) and choice 3) are
equivalent [Fitting, 1983; Hughes and Cresswell, 1996].

With regard to this we adopt choice 3 and we do not make any special restriction.
However, when we define satisfiability and validity of a formula we look at the truth value
of the formula in an interpretation at a certain world only if the interpretation of each
term in the formula is in the domain of that world. Moreover, we require that functions
map elements of a domain to elements of the same domain of that world.

Remark V.2.2 In general, when function symbols are present, each function symbol could
be given a different interpretation at each different world. In the Kripke semantics above,
however, function symbols are given the same interpretation in all possible worlds. As
a consequence, closed terms have the same interpretation in all possible worlds (rigid
designators). On the contrary, predicate symbols may have a different interpretation in
each possible world. For a survey of the different systems for quantified modal logic see
[Garson, 1984], while for more details on the characterization of first-order inclusion modal
logics see [Gasquet, 1994].

As for the propositional case, we are interested in a particular subclass of Kripke inter-
pretations. Given a predicative modal language LFO and a set of inclusion axiom schemas
A, we are interested in first-order Kripke A-interpretations, that is, first-order Kripke

V.3. A predicate tableau calculus 49

interpretations based on A-inclusion frames as defined in Section II.3. We denote with
FA

LFO
the subset of FLFO

that consists of all A-inclusion frames, with MA
LFO

the subset
of MLFO

of all Kripke A-interpretations, and with IPA
LFO

the set of inclusion properties
that a Kripke A-interpretation must verify. We will use the already introduced notation
of satisfiability and validity. Finally, we denote with IA

LFO
the first-order inclusion modal

logic determined by means of the set of axiom A.

V.3 A predicate tableau calculus

In this section we extend the tableau calculus presented in Chapter III in order to deal
with predicate case. However, for simplicity, in the following we will be concerned with a
language containing:

• only constant symbols and no function symbols (we will call C its collection);

• the modalities are labeled as in the propositional case (with constant symbols) and
not with terms.

Given a first-order modal language LFO, since the proofs in the tableau calculus have
to deal with free variables, we extend the LFO with countably many new constant, called
parameters [Fitting, 1983, Chapter 7, Section 2]. These parameters are used, as in tableaux
for classical predicate logic, as witnesses for existential quantifiers. We call the extended
language LFO. In particular, in order to deal with increasing domains, for each world
constant symbol w ∈ WC , we extend LFO with a countable list Pw of new individual
constant symbols, disjoint from those of LFO, and such that for each pair of distinct
prefixes w and w′ we have that Pw and Pw′ do not overlap [Fitting, 1993, Section 2.4].5

We say aw ∈ Pw a w-parameter. Note that a proof of a formula of LFO can make use of
formulae of LFO.

Universal formulae
γ γ0(c)

T(∀x)ϕ Tϕ[c/x]
F(∃x)ϕ Fϕ[c/x]

Existential formulae
δ δ0(c)

F(∀x)ϕ Fϕ[c/x]
T(∃x)ϕ Tϕ[c/x]

Figure V.1: Uniform notation for quantified formulae.

Now, we can add the extension rules for predicate logic quantifiers to those of proposi-
tional modal logic. The meaning of proof (T A

LFO
-provability) is trivially updated. We make

use of the uniform notation for the quantified signed formulae given in Figure V.1.

5This is necessary because we deal with modal tableau system with explicit accessibility. Other methods,
such as the cut-free sequent calculus in [Wallen, 1990, Section 2.1] and in [Baldoni et al., 1997a, Section 6.1]
or the tableau method in [Fitting, 1983, Chapter 7], do not need this trick because at any stage of a proof
only the formulae of the current world are present.

50 V. First-Order

Definition V.3.1 (Extension rules) Let LFO be a modal language and let A be a set
of inclusion axiom schemas, the extension rules (tableau rules) for IA

LFO
are given in Fig-

ure III.2 and Figure V.2.

w : γ

w : γ0(c)
γ-rule w : δ

w : δ0(aw)
δ-rule

c is a w-available world Engenvariable condition: aw is
constant symbol a w-parameter that does not

occur on the branch.

Figure V.2: Tableau rules for quantified formulae.

A formula of type γ is true at world w if γ0(c) is true for all constant symbols of the
domain of w. Therefore, if w : γ occurs on an open branch S, we can add w : γ0(c) to the
end of that branch for any constant c which belongs to the domain of w. Now, since the
domains are increasing, if w is reachable from a world w′, that is there is a path ξ(w′, w)
in S, then, the constant c used in w : γ0(c) can be either a constant symbol of C or it is a
w-parameter or w′-parameter in S. We say a such constant w-available.

The interpretation of the extension rule for formulae of type δ is the usual one. In order
to express the meaning of a formula of type δ, there should be something making δ true,
we use a parameter never used before on the branch to substitute the existential quantified
variable.

Example V.3.1 (Barcan formula) In IA
LFO

, with A any set of inclusion axioms, the following
instance of the Barcan formula BF (t) : ((∀x)[t]ϕ) ⊃ [t](∀x)ϕ is not provable:

1. i : F(((∀x)[t]p(x)) ⊃ [t](∀x)p(x))
2. i : T(∀x)[t]p(x)
3. i : F[t](∀x)p(x)
4. w1 : F(∀x)p(x)
5. i ρt w1

6. w1 : Fp(aw1
)

Explanation: 1.: an instance of the Barcan formula; 2. and 3.: from 1., by α-rule; 4. and 5.:
from 3., by application of π-rule; 6.: form 4., by application of δ-rule. Since the constant symbol
aw1

is not i-available the branch remains open.

Example V.3.2 (Converse of Barcan formula) In IA
LFO

, with A any set of inclusion axioms, the
following instance of the converse of Barcan formula BFc(t) : [t](∀x)ϕ ⊃ ((∀x)[t]ϕ) is provable:

1. i : F([t](∀x)p(x) ⊃ ((∀x)[t]p(x)))
2. i : T[t](∀x)p(x)
3. i : F(∀x)[t]p(x)

V.3. A predicate tableau calculus 51

4. i : F[t]p(ai)
5. w1 : Fp(ai)
6. i ρt w1

7. w1 : T(∀x)p(x)
8. w1 : Tp(ai)

×

Explanation: 1.: an instance of the converse Barcan formula; 2. and 3.: from 1., by α-rule; 4.:
from 3., by application of δ-rule; 5. and 6.: form 4., by application of π-rule; 7.: from 2. and 6.,
by application of ν-rule; 8.: from 7., by application of γ-rule, branch closes.

Theorem V.3.1 (Soundness and Completeness) Let LFO be a predicative modal lan-
guage and let A be a set of inclusion axiom schemas, a formula ϕ of LFO is A-valid if and
only if ϕ is T A

LFO
-provable.

Proof. Both the proofs of the soundness and completeness are based on the same technique
used for the ones for propositional case given in Chapter III. In particular, we can note
that:

• An A-mapping I (see page 28) must map both prefixes and constant symbols of the
language to the worlds and constants of some first-order Kripke A-interpretation.

• In the systematic tableau procedure, in order to deal with the prefixed signed formulae
of form w : γ and to make sure w : γ0(c) has been introduced for each constant symbol
c that occurs on the considered branch, we use the same trick adopted for formulae
of type νt. Then, whenever we apply γ-rule to a formula of type γ, we add a fresh
occurrence of it at the end of that branch.

• In the line of [Fitting, 1983], we can update the Definition III.3.2 of set of prefixed
signed and accessibility relation formulae A-downward satured as follows:

7. if w : γ ∈ S, then w : γ0(c) ∈ S for all c ∈ C and all c ∈ ∪w′∈SPw′ such that
there exists a path ξ(w,w′) in S;

8. if w : δ ∈ S, then w : δ0(c) ∈ S for some w-parameter c ∈ Pw.

• From an open A-downward-satured branch S we define a first-order canonical model
MA

c as follows. The set of worlds and the set of accessibility relations are defined
as we did in the propositional case. D is C added to ∪w∈SPw, the domain on S is
C ∪Pw together ∪w′∈SPw′ such that w is reachable by w′. Each constant symbol and
parameter is interpreted as naming itself. Finally, for each predicative symbol p ∈
PREDn and world w used in S, we define V (p, w) = {p(c1, . . . , cn) | w : p(c1, . . . , cn) ∈
S}.

2

52 V. First-Order

Chapter VI

Towards a wider class of logics

In this chapter, we extend the tableau calculus of Chapter III in order to deal with the
class of normal multimodal logics proposed in [Catach, 1988]. This class is determined
by the interaction axiom Ga,b,c,d, called a, b, c, d-incestuality axiom. It includes most of
the modal and multimodal systems studied in the literature. Moreover, modal operator
can be labeled by complex parameters, i.e. built from atomic ones, using an operator of
composition and an operator of union.

VI.1 Syntax and possible-worlds semantics

Syntax

Let us extend the alphabet of the language for propositional multimodal logics of Sec-
tion II.1 adding the following symbols:

• a binary operator “∪” (union);

• a binary operator “;” (composition);

• the symbol “ε” (the neutral element w.r.t. the composition).

The operators “∪” and “;” allow to built up new labels for modal operators starting from
the atomic ones in MOD. More formally, we define the set LABELS as the least set that
satisfies the following conditions:

• ε ∈ LABELS;

• MOD ⊆ LABELS;

• if t, t′ ∈ LABELS then (t; t′) and (t ∪ t′) are in LABELS.1

1For readability, we omit parentheses if they are unnecessary: we give “∪” lower precedence than “;”.

53

54 VI. Towards a wider class of logics

The set FOR of formulae of a modal propositional language L is defined to be the least
set that satisfies the following conditions:

• VAR ⊆ FOR;

• if ϕ, ψ ∈ FOR then (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⊃ ψ) ∈ FOR;

• if ϕ ∈ FOR and t ∈ LABELS then ([t]ϕ) ∈ FOR.

Therefore, we allow modal operators labeled with expressions built by the operators union
and composition on the atomic labels MOD together the empty label ε. As usual, 〈t〉ϕ
stands for ¬[t]¬ϕ. Examples of modalized formulae are [t; t′ ∪ t′′ ∪ ε]ϕ and 〈t; t′〉ϕ. Indeed,
the empty label, union, and composition can be though as a shorthand, as stated by the
following definitions:

• [ε]ϕ =Def. ϕ;

• [t ∪ t′]ϕ =Def. [t]ϕ ∧ [t′]ϕ;

• [t; t′]ϕ =Def. [t][t′]ϕ.

For instance, the above modalized formulae are equivalent to [t][t′]ϕ ∧ [t′′]ϕ ∧ ϕ and 〈t〉〈t′〉ϕ,
respectively.

Possible-worlds semantics

In order to define the meaning of a formula, we have introduce in the previous chapter the
notion of Kripke interpretation. Formally, a Kripke interpretation M is a triple 〈W,R, V 〉,
consisting of a non-empty set W of “possible worlds”, a mapping R from MOD to the
powerset of W ×W (it assigns to each atomic label of MOD some binary relation on W),
and a valuation function V , that is a mapping from W ×VAR to the set {T,F}. Here, in
order to deal with any label t ∈ LABELS, we extend the mapping R inductively as follows:

• Rε = I, where I = {(w,w) | w ∈W} (the identity relation);

• Rt;t′ = Rt ◦ Rt′ , where “◦” denotes the composition of binary relations;

• Rt∪t′ = Rt ∪Rt′ , where “∪” denotes the union of binary relations.

We say that Rt is the accessibility relation of the modality [t] and w′ is accessible from w
by means of Rt if (w,w′) ∈ Rt.

The meaning of a formula is given by means of a satisfiability relation, denoted by |=,
as already seen.

VI.2. Incestual modal logics 55

VI.2 Incestual modal logics

In [Catach, 1988] incestual modal logics the class of normal modal logics obtained by taking
axiom systems containing:

[ε]ϕ ⇔ ϕ (VI.1)

[t; t′]ϕ ⇔ [t][t′]ϕ (VI.2)

[t ∪ t′]ϕ ⇔ [t]ϕ ∧ [t′]ϕ (VI.3)

where t, t′ ∈ LABELS, and a finite set of a, b, c, d-incestual axiom schemas, that is axiom
schemas of the form:

Ga,b,c,d : 〈a〉[b]ϕ ⊃ [c]〈d〉ϕ

where a, b, c, and d belong to LABELS. Given a modal language L and a set G of incestual
axiom schemas, we denote with SG

L the axiom system SL
2 extended with G together the

axioms (VI.1), (VI.2), and (VI.3). We use IG
L to denote the incestual modal logics deter-

mined by SG
L . As we will see, the incestual axioms also determine inclusion properties on

the accessibility relations.
As it is remarked in [Catach, 1988], the fact that a, b, c, and d of an incestual axiom

schema may be arbitrary expressions built from atomic labels using the composition and
union operators, makes axiom Ga,b,c,d very general. In particular, it covers the axiom
[Chellas, 1980; Hughes and Cresswell, 1984]:

Gk,l,m,n : 3
k
2

lϕ ⊃ 2
m

3
nϕ

where k, l,m, n ≥ 0, and, therefore, it covers the traditional axiom schemas. Furthermore,
it captures many axiom schemas which can express interaction between different modal op-
erators (see Figure VI.1). Note that, the inclusion axiom schema [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ
is an instance of the a, b, c, d-incestual axiom schema too. In fact, it is enough to take a = ε,
b = t1; . . . ; tn, c = s1; . . . ; sm, and d = ε.

All the fifteen modal systems obtained combining the axioms T , D, B, 4, and 5 [Chellas,
1980; Hughes and Cresswell, 1996] and their multimodal versions [Halpern and Moses, 1992]
are incestual modal logics, as well as the extensions of Kn and S4n with interaction axioms
of with agent “any fool” [Enjalbert and Fariñas del Cerro, 1989].

Example VI.2.1 (The wise men puzzle) The problem is again the well-known three wise men
puzzle already presented in Example II.3.4. We call back briefly the formulation. Note that,
in order to avoid introducing many variants of the same formulae and axioms for the different
wise men, as a shorthand, we use the metavariables X, Y , and Z, where X, Y, Z ∈ {a, b, c} and
X 6= Y , Y 6= Z, and X 6= Z:

(1) [fool](ws(a) ∨ ws(b) ∨ ws(c))
(2) [fool](ws(X) ⊃ [Y]ws(X))
(3) [fool](¬ws(X) ⊃ [Y]¬ws(X))

2See Chapter II.

56 VI. Towards a wider class of logics

axiom name axiom schema incestual schema

reflexivity T (t) [t]ϕ ⊃ ϕ Gε,t,ε,ε

seriality D(t) [t]ϕ ⊃ 〈t〉ϕ Gε,t,ε,t

symmetry B(t) 〈t〉[t]ϕ ⊃ ϕ Gt,t,ε,ε

transitivity 4(t) [t]ϕ ⊃ [t][t]ϕ Gε,t,(t;t),ε

euclideanity 5(t) 〈t〉ϕ ⊃ [t]〈t〉ϕ Gt,ε,t,t

determinism δ(t) 〈t〉ϕ ⊃ [t]ϕ Gt,ε,t,ε

inclusion I(t, t′) [t]ϕ ⊃ [t′]ϕ Gε,t,t′,ε

mutual transitivity 4M(t, t′) [t]ϕ ⊃ [t′][t]ϕ Gε,t,(t′;t),ε

persistence P (t, t′) [t][t′]ϕ ⊃ [t′][t]ϕ Gε,(t;t′),(t′;t),ε

relative inclusion Ir(t, t
′, t′′) [t]ϕ ⊃ ([t′]ϕ ⊃ [t′′]ϕ) Gε,(t∪t′),t′′,ε

semi-adjunction B(t, t′) ϕ ⊃ [t]〈t′〉ϕ Gε,ε,t,t′

mutual seriality D(t, t′) [t]ϕ ⊃ 〈t′〉ϕ Gε,t,ε,t′

union [t]ϕ ⊃ [t′]ϕ ∧ [t′′]ϕ Gε,t,(t′∪t′′),ε

[t′]ϕ ∧ [t′′]ϕ ⊃ [t]ϕ Gε,(t′∪t′′),t,ε

composition [t]ϕ ⊃ [t′][t′′]ϕ Gε,t,(t′;t′′),ε

[t′][t′′]ϕ ⊃ [t]ϕ Gε,(t′;t′′),t,ε

Figure VI.1: Some well-known axiom schemas included by the incestual axioms.

where ws(X) means that the wise man X has a white spot on his forehead and [X] is a modal
operator of type K. The formulae above are all preceded by the modal operator [fool] of type
S4 which captures to the information common to all wise men. That is, it is axiomatized by the
axioms:

(A1) T (fool) : [fool]ϕ ⊃ ϕ
(A2) 4(fool) : [fool]ϕ ⊃ [fool][fool]ϕ
(A3) I(fool, a) : [fool]ϕ ⊃ [a]ϕ
(A4) I(fool, b) : [fool]ϕ ⊃ [b]ϕ
(A5) I(fool, c) : [fool]ϕ ⊃ [c]ϕ

The formulae (1) says that at least one of the wise men has a white spot, whereas formulae (2)
and (3) means that whenever one of them has (not) a white spot, the others know this fact.
Moreover, whenever a wise man does (not) know something the others know that he does not
know this. That is, the following axiom is assumed:

(A6) ¬[X]ϕ ⊃ [Y]¬[X]ϕ (i.e. 〈X〉ϕ[ε] ⊃ [Y]〈X〉ϕ)
(A7) [X]ϕ ⊃ [Y][X]ϕ (i.e. 〈ε〉[X]ϕ ⊃ [Y ; X]〈ε〉ϕ)

From this formalization and the fact that neither a nor b know if they have a white spot on their
forehead:

(4) ¬[a]ws(a)
(5) ¬[b]ws(b)

VI.2. Incestual modal logics 57

follows that c knows that he has a white spot:

(6) [c]ws(b)

Note that, differently than the formulation of Example II.3.4, here we do not need to express
directly the information that if someone does not know if his spot is white then the others knows
that he does not know it (formulae (3) and (4) of Example II.3.4) but they are inferred by the
axiom (A6).

Definition VI.2.1 (Incestual frame) Let L be a propositional modal language and let
G be a set of incestual axiom schemas. Then, a frame F ∈ FL is a G-incestual frame if
and only if for each axiom Ga,b,c,d ∈ G the following inclusion property (called in [Catach,
1988] a, b, c, d-incestual property) on the accessibility relations holds:

Rb ◦ R
−1
d ⊇ R−1

a ◦ Rc (VI.4)

where R is the mapping defined at page 54 and R−1
t is the inverse relation of Rt. We call

IP G
L the set of incestual properties determined by G.

In other worlds: “if (w,w′) ∈ Ra and (w,w′′) ∈ Rc then there exists w∗ such that (w′, w∗) ∈
Rb and (w′′, w∗) ∈ Rd”:

∀w,w′, w′′ ∈ W (w,w′) ∈ Ra ∧ (w,w′′) ∈ Rc

∃w∗ ∈ W (w′, w∗) ∈ Rb ∧ (w′′, w∗) ∈ Rd (VI.5)

w′

∈ Rb

∈ Ra ∈ Rc

∈ Rd

∈ R−1
a ◦ Rc

w

w∗

w′′

∈ Rb ◦ R
−1
d

ρ-rule

Figure VI.2: a, b, c, d-incestual property. This property is named incestual because the
offspring of a common parent have themselves an offspring in common [Chellas, 1980].

Figure VI.2 shows pictorially the a, b, c, d-incestual property.
We denote with FG

L the set of G-frame and with MG
L the set of Kripke interpretations

based on a G-frame (Kripke G-interpretations). The definitions of satisfiability relation
“ |=G ”, G-satisfiability, G-validity are the usual ones.

Catach proved that a multimodal logic IG
L is determined by the class of Kripke G-

interpretations (the completeness proof uses the standard canonical model construction).

58 VI. Towards a wider class of logics

Theorem VI.2.1 ([Catach, 1988]) Let L be a propositional modal language and let G be
a finite set of incestual axiom schemas. Then, SG

L is a sound and complete axiomatization
with respect to MG

L.

Remark VI.2.1 Despite the fact that the class of incestual modal logics includes a wide
class of multimodal systems, it is worth noting that no set of inclusion properties of the
form (VI.4) can characterize the the induction axiom that define both the iteration operator
“∗” of dynamic logic [Harel, 1984] and the common knowledge operator “C” [Genesereth
and Nilsson, 1987; Halpern and Moses, 1992]. In fact, let us consider the axioms:

[b]ϕ ⊃ ϕ ∧ [a][b]ϕ (VI.6)

ϕ ∧ [b](ϕ ⊃ [a]ϕ) ⊃ [b]ϕ (VI.7)

then, it is easy to see that the modal operator [b] represents both [a∗] of dynamic logic and
the common knowledge operator (when a is the only agent). Axiom (VI.6) is an incestual
axiom (it is equal to 〈ε〉[b]ϕ ⊃ [ε∪ a; b]〈ε〉ϕ) but axiom (VI.7), the induction axiom, is not
(see also [Catach, 1988]). From a semantics point of view, the axioms (VI.6) and (VI.7)
are characterized by the class of Kripke interpretations in which the relation Rb is equal
to R∗

a [Kozen and Tiuryn, 1990; Halpern and Moses, 1992] (i.e. the reflexive and transitive
closure of Ra). On the contrary, incestual axioms are not strong enough to capture R∗

a.

Indeed, axiom (VI.6) can be characterized by the inclusion properties Rb ⊇ I∪Ra◦Rb,
from which, by some easy transformations, we have Rb ⊇ R∗

a. Unfortunately, the converse
of axiom (VI.6), that is

ϕ ∧ [a][b]ϕ ⊃ [b]ϕ (VI.8)

does not capture the converse inclusion relation R∗
a ⊇ Rb [Catach, 1988]. The modal

systems which contain the axioms (VI.6) and (VI.8) are sound and complete with respect
to the class of Kripke interpretations for which the relation

Rb = I ∪Ra ◦ Rb

holds but this does not mean that Rb is equal to R∗
a. In fact, let us define the function

F (X) = I ∪Ra ◦X

then, Rb is equal to a fixpoint of F . Now, F is monotone and continuous and, then, the
least fixed point of F exists and it is equal to ∪k∈ωF

k(∅), that corresponds to R∗
a. However,

in general, this is not the only fixpoint of F .3

3Let us consider, for instance, W = {w1, w2} and, then, I = {(w1, w1), (w2, w2)}. Assume that Ra = I,
the least fixpoint of F is R∗

a
, that is I itself. Now, consider the set B = {(w1, w1), (w2, w2), (w1, w2)} then,

F (B) = I ∪Ra ◦B and, since we have assumed Ra = I, F (B) = I ∪ I ◦B. Since I ◦B = B and I ∪B = B,
we have that F (B) = B, that is B is a fixpoint of F but B 6= I (indeed, R∗

a
= Ra 6⊇ B).

VI.3. A tableau calculus 59

VI.3 A tableau calculus

The tableau calculus for incestual modal logics extends the one presented in Chapter III.
A tableau is a labeled tree where each node consists of a prefixed signed formula or of an
accessibility relation formula. Intuitively, each tableau branch corresponds to the construc-
tion of a Kripke interpretation that satisfies the formulae that belong to it. However, in
order to deal with arbitrary expressions as labels of modal operators, we need to extend
the notion of accessibility relation formula.

Definition VI.3.1 Let L be a propositional modal language, an accessibility relation for-
mula w ρt w

′, where t ∈ LABELS,4 is a binary relation between prefixes of WC.

We say that an accessibility relation formula w ρt w
′ is true in a tableau branch if

it belongs to that branch. Moreover, the relation ρε on a branch defines an equivalence
relation among prefixes: when w ρε w

′ holds, w and w′ can be regarded as representing
the same worlds. By taking the reflexive, transitive and symmetric closure of the relation
ρε we define an equivalence relation among worlds. We denote by w the equivalence class
of w with respect to this equivalence relation. A formula w : Tϕ (w : Fϕ) on a branch of a
tableau means that the formula ϕ is true (false) at the world w in the Kripke interpretation
associated with that branch.

We say that a prefix w is used on a tableau branch if it occurs on the branch in some
accessibility relation formula, otherwise we say that the prefix w is new. Moreover, given
a label t, we say that an accessibility relation formula w ρt w

′ is available on a branch S
of a tableau if one of the following conditions hold:

1. t = ε and w = w′;

2. w1 ∈ w, w2 ∈ w′ and w1 ρt w2 is true in S;

3. t = t′; t′′ and both w ρt′ w
′′ and w′′ ρt′′ w

′ are available on S, for some w′′ used on
the branch S;

4. t = t′ ∪ t′′ and either w ρt′ w
′ is available on S or w ρt′′ w

′ is available on S.

Note that, if an accessibility relation formula is true in a tableau branch, it is also available
on it (as a special case of the condition 2 above). Moreover, for any world w on a given
branch, w ρε w is always available (condition 1). Intuitively, w ρt w

′ available on a
branch of a tableau means that, in the Kripke interpretation associated with that branch,
(w,w′) ∈ Rt.

Definition VI.3.2 (Extension rules) Let L be a propositional modal language and let
G be a set of incestual axioms, the extension rules (tableau rules) for IG

L are given in
Figure VI.3.

60 VI. Towards a wider class of logics

w : α
w : α1
w : α2

α-rule w : β

w : β1 | w : β2
β-rule

w : νt w ρt w
′

w′ : νt
0

ν-rule

w : πt

w′ : πt
0

w ρt w
′

π-rule

where w ρt w
′ is available on the branch where w′ is new on the branch

w ρt;t′ w
′

w ρt w
′′

w′′ ρt′ w
′

ρα-rule w ρt∪t′ w
′

w ρt w
′ | w ρt′ w

′
ρβ-rule

where w′′ is new on the branch

w ρa w
′ w ρc w

′′

w′ ρb w
∗

w′′ ρd w
∗

ρ-rule

where w ρa w
′ and w ρc w

′′ are available on the branch,
w∗ is new on the branch, and 〈a〉[b]ϕ ⊃ [c]〈d〉ϕ ∈ G

Figure VI.3: Tableau rules for propositional incestual modal logics.

The interpretation of the α, β, ν, and π rule is the same already seen in the previous
chapters, the only remark is that, now, the label t of a formula ν t or πt can be an arbitrarily
complex expression.

Case ρα-rule. If an accessibility relation formula w ρt;t′ w
′ is true in a tableau branch

then, (w,w′) ∈ Rt;t′ holds in the Kripke interpretation represented by that branch. There-
fore, (w,w′) ∈ Rt ◦ Rt′ and, hence, there exists a world w′′ such that (w,w′′) ∈ Rt and
(w′′, w′) ∈ Rt′ . That is, w ρt w

′′ and w′′ ρt′ w
′ are true in that branch.

Case ρβ-rule. If an accessibility relation formula w ρt∪t′ w
′ is true in a tableau branch

then, (w,w′) ∈ Rt∪t′ holds in the Kripke interpretation represented by that branch. There-
fore, (w,w′) ∈ Rt ∪ Rt′ and, hence, (w,w′) ∈ Rt or (w,w′) ∈ Rt′ . That is, w ρt w

′ or
w ρt′ w

′ is true in that branch.
Finally, the intuitive meaning of the ρ-rule is similar to the one of the calculus for

inclusion modal logics and it allows us to deal with any incestual axiom in an uniform
way. Let us suppose, for instance, that 〈a〉[b]ϕ ⊃ [c]〈d〉ϕ ∈ G in our modal logic IG

L . If
w ρa w

′ and w ρc w
′′ are available on a tableau branch then, (w,w′) ∈ Ra and (w,w′′) ∈

Rc in the Kripke interpretation associated to that branch. Since the incestual axiom
〈a〉[b]ϕ ⊃ [c]〈d〉ϕ ∈ G then, the corresponding a, b, c, d-incestual property (VI.5) must hold,
that is, there exists a world w∗ such that (w′, w∗) ∈ Rb and (w′′, w∗) ∈ Rd. Hence,
w′ ρb w

∗ and w′′ ρd w
∗ are true in that Kripke interpretation for some new prefix w∗ (see

4Instead of MOD!

VI.3. A tableau calculus 61

Figure VI.2). Again the ρ-rule can be regarded as a rewriting rule which creates new paths
among worlds according to the inclusion properties of the incestual modal logic.

We say that a tableau branch is closed if it contains w : Tϕ and w′ : Fϕ for some
formula ϕ such that w = w′. A tableau is closed if every branch in it is closed.

Definition VI.3.3 Let L be a modal language and let G a set of incestual axioms. Then,
given a formula ϕ of L, we say that a closed tableau for i : Fϕ, using the tableau rules of
Figure VI.3, is a proof of ϕ (ϕ is T G

L -provable).

Let us see some examples of derivations.

i

w1

b d

i
ε

i

(a) (b) (c)

w2

w1

b′

ε

b′′

b′; b′′

d

c

w2w1

a

ε

w3

b′ ∪ b′′

b′′ (branch “b”)

b′ (branch “a”)

Figure VI.4: Kripke G-interpretation constructions of Example VI.3.1, VI.3.2, and VI.3.3.

Example VI.3.1 Let us consider the incestual modal logic IG
L where G that consists of the axiom

schema 〈ε〉[b] ⊃ 〈ε〉[d]. Then, the formula [b]p ⊃ 〈d〉p has a tableau proof (see also Figure VI.4(a)):

1. i : F([b]p ⊃ 〈d〉p)
2. i : T[b]p
3. i : F〈d〉p
4. i ρb w1

5. i ρd w1

6. w1 : Tp
7. w1 : Fp

×

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: since i ρε i is available from
axiom Gε,b,ε,d, by ρ-rule; 6.: from 2. and 4., by ν-rule; 7.: from 3. and 5., by ν-rule, the branch
closes due to steps 6. and 7.

62 VI. Towards a wider class of logics

Example VI.3.2 Let us consider the incestual modal logic IG
L where G that consists of the

axiom schema 〈ε〉[b′; b′′]ϕ ⊃ [ε]〈d〉ϕ. Then, the formula [b′][b′′]p ⊃ 〈d〉p has a tableau proof (see
also Figure VI.4(b)):

1. i : F([b′][b′′]p ⊃ 〈d〉p)
2. i : T[b′][b′′]p
3. i : F〈d〉p
4. i ρd w1

5. i ρb′;b′′ w1

6. i ρb′ w2

7. w2 ρb′′ w1

8. w2 : T[b′′]p
9. w1 : Tp
10. w1 : Fp

×

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: by ρ-rule from axiom
〈ε〉[b′; b′′]ϕ ⊃ [ε]〈d〉ϕ since i ρε i is available; 6. and 7.: from 5., by ρα-rule; 8.: from 2. and 6.,
by ν-rule; 9.: from 8. and 7., by ν-rule; 10.: from 3. and 4., by ν-rule. The branch close due to
steps 9. and 10.

Example VI.3.3 Let us consider the incestual modal logic IG
L where G that consists of the

axiom schema 〈a〉[b′ ∪ b′′]ϕ ⊃ [c]〈ε〉ϕ. Then, the formula 〈a〉([b′]p ∧ [b′′]p) ⊃ [c]p has a tableau
proof (see also Figure VI.4(c)) We denote with “a” and “b” the two branches which are created
by the application of ρβ-rule to step 10.

1. i : F〈a〉([b′]p ∧ [b′′]p) ⊃ [c]p
2. i : T〈a〉([b′]p ∧ [b′′]p)
3. i : F[c]p
4. w1 : T([b′]p ∧ [b′′]p)
5. i ρa w1

6. w1 : T[b′]p
7. w1 : T[b′′]p
8. w2 : Fp
9. i ρc w2

10. w1 ρb′∪b′′ w3

11. w2 ρε w3

12a. w1 ρb′ w3

13a. w3 : Tp
×

12b. w1 ρb′′ w3

13b. w3 : Tp
×

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: from 2., by π-rule; 6.
and 7.: from 4., by α-rule; 8. and 9.: from 3., by π-rule; 10. and 11.: by ρ-rule from axiom
〈a〉[b′ ∪ b′′]ϕ ⊃ [c]〈ε〉ϕ since i ρa w1 and i ρc w2 are available; 12a. and 12b.: from 10., by ρβ-rule;

VI.3. A tableau calculus 63

13a.: from 6. and 12a., by ν-rule, 13b.: from 7. and 12b., by ν-rule. Since w2 = w3 (w2 ρεw3

belongs to the branch at step 11.) the branchs “a” and “b” close due to step 8. and steps 13a.
and 13b., respectively.

w1 w3

w2

i

ε
ε

a
c

fool foolb

w4 w5

b

fool
fool

fool

fool

a

Figure VI.5: Kripke G-interpretation construction of Example VI.3.4.

Example VI.3.4 (The wise men puzzle) We prove the formula (6) in Example VI.2.1 from the
set of formulae (1)-(5). Figure VI.5 shows pictorially the counter-model construction.

1. i : T[fool](ws(a) ∨ ws(b) ∨ ws(c))
2. i : T[fool](¬ws(b) ⊃ [a]¬ws(b))
3. i : T[fool](¬ws(c) ⊃ [a]¬ws(c))
4. i : T[fool](¬ws(c) ⊃ [b]¬ws(c))
5. i : T¬[a]ws(a)
6. i : T¬[b]ws(b)
7. i : F[c]ws(c)
8. i : F[a]ws(a)
9. i : F[b]ws(b)
10. w1 : Fws(a)
11. i ρa w1

12. w2 : Fws(b)
13. i ρb w2

14. w3 : Fws(c)
15. i ρc w3

16. w1 ρε w4

17. w2 ρa w4

18. w2 ρε w5

19. w3 ρb w5

20. i ρfool w2

21. w2 ρfool w4

64 VI. Towards a wider class of logics

22. i ρfool w4

23. w4 : T(ws(a) ∨ ws(b) ∨ ws(c))
24a. w4 : Tws(a)

×
24b. w4 : Tws(b)
25b. w2 : T(¬ws(b) ⊃ [a]¬ws(b))
26ba. w2 : F¬ws(b)
27ba. w2 : Tws(b)

×
26bb. w2 : T[a]¬ws(b)
27bb. w4 : T¬ws(b)
28bb. w4 : Fws(b)

×
24c. w4 : Tws(c)
25c. i ρfool w3

26c. w3 ρfool w5

27c. i ρfool w5

28c. w5 : T(¬ws(c) ⊃ [a]¬ws(c))
29ca. w5 : F¬ws(c)
30ca. w5 : Tws(c)
31ca. w3 : T(¬ws(c) ⊃ [b]¬ws(c))
32caa. w3 : F¬ws(c)
33caa. w3 : Tws(c)

×
32cab. w3 : T[b]¬ws(c)
33cab. w5 : T¬ws(c)
34cab. w5 : Fws(c)

×
29cb. w5 : T[a]¬ws(c)
30cb. w4 : T¬ws(c)
31cb. w4 : Fws(c)

×

We denote with “a”, “b”, and “c” the three branches which are created by the application of
β-rule twice to step 23., “ba” and “bb” the two ones that are created by the β-rule to step 25b.,
“ca” and “cb” the ones that are created by the β-rule to step 28c. and, finally, “caa” and “cab”
the two ones which are created from step 31f. Explanation: 1.: formula (1) from Example VI.2.1;
2., 3., and 4.: instances of formula (3) from Example VI.2.1; 5. and 6.: formulae (4) and (5)
from Example VI.2.1; 7.: the goal; 8.: from 5., by α-rule; 9.: from 6., by α-rule; 10. and 11.:
from 8., by π-rule; 12. and 13.: from 9., by π-rule; 14. and 15.: from 7., by π-rule; 16. and 17.:
from 11. and 13., by axiom (A6), when X = a and Y = b, and ρ-rule; 18. and 19.: from 13.
and 15., by axiom (A6), when X = b and Y = c, and ρ-rule; 20.: from 13., by axiom (A4) and
ρ-rule; 21.: from 17., by axiom (A3) and ρ-rule; 22.: from 20. and 21., by axiom (A2) and ρ-rule;
23.: from 1. and 22., by ν-rule; 24a., 24b., and 24c.: from 23., by β-rule, the branch “a” closes
due to steps 24a. and 10. since w4 = w1; 25b.: from 2. and 20., by ν-rule; 26ba. and 26bb.:
from 25b., by β-rule; 27ba.: from 26ba., by α-rule, the branch “ba” closes due to 27ba. and 12.;

VI.3. A tableau calculus 65

27bb.: from 26bb. and 17., by ν-rule; 28bb.: from 27bb., by α-rule, the branch “bb” closes due
to 28bb. and 24b.; 25c.: from 15., by axiom (A5) and ρ-rule; 26c.: from 19., by axiom (A4) and
ρ-rule; 27c.: from 25c. and 26c., by axiom (A2) and ρ-rule; 28c.: from 3. and 27c., by ν-rule;
29ca. and 29cb.: from 28c., by β-rule; 27ca.: from 29ca., by α-rule, 31ca.: from 4. and 25c.,
by ν-rule; 32caa. and 32cab.: from 31ca., by β-rule; 33caa.: from 32caa., by α-rule, the branch
“caa” closes due to 33caa. and 14.; 33cab.: from 32cab. and 19., by ν-rule; 34cab.: from 33cab.,
by α-rule, the branch “cab” closes due to 34cab. and 30ca; 30cb.: from 29cb., 17., and 18. (i.e.
w5 ρa w4 is available), by ν-rule; 31cb.: from 30cb., by α-rule, the branch “cb” closes due to 31cb.
and 24c.

Remark VI.3.1 Though we have focused on a propositional language, the tableau calcu-
lus we have proposed in this chapter can be extended to the first-order case by introducing
the rules for quantifiers already seen in Chapter V in the case of the calculus for the class
of inclusion modal logics.

Soundness and completeness

In order to prove the soundness and completeness we follow the same guideline of Sec-
tion III.3. We first prove that the tableau rules preserve the satisfiability.

Let L be a modal language and let G be a set of incestual axioms. Given a set of prefixed
signed formulae and accessibility relation formulae S of L and a Kripke G-interpretation
M = 〈W,Rt, V 〉, we say v ∈ W is Rt-idealizable if there is some v′ ∈ W such that
(v, v′) ∈ Rt. A G-mapping is a mapping I from the subset of equivalences classes of the
prefixes that occur in some accessibility relation formula of S to W such that if w ρt w

′ ∈ S
and I(w) is Rt-idealizable then (I(w), I(w′)) ∈ Rt. We say S is G-satisfiable under the
G-mapping I in the Kripke G-interpretation M if, for each w : Tϕ, M, I(w) |=G ϕ, for each
w : Fϕ, M, I(w) 6|=A ϕ, and for each w ρt w

′, (I(w), I(w′)) ∈ Rt. Finally, we say a set S of
prefixed signed formulae and accessibility relation formulae G-satisfiable if S is G-satisfiable
under some G-mapping.

A branch of a tableau is G-satisfiable if the set of formulae on it is G-satisfiable and a
tableau is G-satisfiable if some its branch is G-satisfiable.

Proposition VI.3.1 Let T be a G-satisfiable prefixed tableau and let T ′ be the tableau
which is obtained from T by means of one of the extension rules given in Figure VI.3.
Then, T ′ is also G-satisfiable.

Proof. As in the proof of the Proposition III.3.1, we can focus on application of the
extension rules to a branch. The cases when the applied extension rule is the α-rule,
β-rule, ν-rule, and π-rule are similar to Proposition III.3.1.

Assume that the applied extension rule is the ρ-rule to obtain S ′. Let us suppose
w ρa w

′, and w ρc w
′′ are available in S and that S ′ = S ∪ {w′ ρb w

∗, w′′ ρd w
∗}, where

〈a〉[b]ϕ ⊃ [c]〈d〉ϕ ∈ G and w∗ is new on S. Then, I is already defined for w, w′, and w′′

and (I(w), I(w′)) ∈ Ra, (I(w), I(w′′)) ∈ Rc. Since M is a Kripke G-interpretation, by
(VI.5), there exist v∗ in W such that (I(w′), v∗) ∈ Rb and (v∗, I(w′)) ∈ Rd. This means

66 VI. Towards a wider class of logics

that I(w′) is Rb-idealizable and I(w′′) is Rd-idealizable then, we can extend the definition
of I by setting I(w∗) = v∗.

Assume that the applied extension rule to obtain S ′ is the ρα-rule. Then, an accessibility
relation formula of the form w ρt;t′ w

′ is in S and S ′ = S ∪ {w′ ρt w
′′, w′′ ρt′ w

′}, where
w′′ ∈ WC is new on S and, therefore, I is not defined on w′′. Since w ρt;t′ w

′ ∈ S
we have that (I(w), I(w′)) ∈ Rt;t′ and, therefore, there exists a world v ∈ W such that
(I(w), v) ∈ Rt and (v, I(w′)) ∈ Rt′ . Then, it is enough to extend the definition of I by
setting I(w′′) = v.

Assume that the applied extension rule to obtain S ′ is the ρβ-rule. Then, an accessibility
relation formula of the form w ρt∪t′ w

′ is in S and either S ′ = S ∪ {w ρt w
′} or S ′ =

S ∪{w ρt′ w
′}. But, since w ρt;t′ w

′ ∈ S, we have that (I(w), I(w′)) ∈ Rt∪t′ and, therefore,
either (I(w), w′) ∈ Rt or (I(w), I(w′)) ∈ Rt′ . 2

Theorem VI.3.1 (Soundness) Let L be a modal language and let G be a set of incestual
axiom schemas, if a formula ϕ of L is T G

L -provable then, it is G-valid.

Proof. The proof is similar to the one of Theorem III.3.1. 2

The completeness is proved by means of the usual counter-model construction. In
order to do this we first extend in a suitably way the definition of downward satured set
of formulae.

Definition VI.3.4 Let L, G, and S be a modal language, a set of incestual axiom schemas,
and a set of prefixed signed and accessibility relation formulae in L, respectively. Then, we
say that S is G-downward satured if:

1. for no atomic formula ϕ, we have w : Tϕ ∈ S, w′ : Fϕ ∈ S and w = w′;

2. if w : α ∈ S, then w : α1 ∈ S and w : α2 ∈ S;

3. if w : β ∈ S, then w : β1 ∈ S or w : β2 ∈ S;

4. if w : νt ∈ S, then w′ : νt
0 is available on S for all w′ such that w ρt w

′ is available
on S;

5. if w : πt ∈ S, then w′ : πt
0 is available on S for some w′ such that w ρt w

′ is available
on S;

6. if w ρt;t′ w
′ is available on S then w ρt w

′′ and w′′ ρt′ w
′ are available on S, for some

w′′;

7. if w ρt∪t′ w
′ is in S then w ρtw

′ or w ρt′ w
′ is available on S;

8. if w ρa w
′ and w ρc w

′′ are available in S and 〈a〉[b]ϕ ⊃ [c]〈d〉ϕ ∈ G, then w′ ρb w
∗

and w′′ ρd w
∗ are available in S, for some w∗.

VI.3. A tableau calculus 67

Now, we can note that it is quite easy to extend the fair systematic tableau procedure
of Figure III.5 for the case of new extension rules presented here, in a such a way to built
a G-downward satured set when it produces an open branch.

Definition VI.3.5 (Canonical model) Given a modal language L, let S be a set of pre-
fixed signed formulae and accessibility relation formulae in L that is G-downward satured.
The canonical model MG

c is the ordered triple 〈W,R, V 〉, where:

• W = {w | w is used on S};

• for each t ∈ MOD, Rt = {(w,w′) ∈W ×W | w ρt w
′ is available on S};

• for each p ∈ VAR and each w ∈ W , we set

V (w, p) =
{

T if w : Tp ∈ S
F otherwise

Proposition VI.3.2 Let MG
c be the canonical model built by a G-downward satured set of

formulae S. Then, w ρt w
′ is available on S if and only if (w,w′) ∈ Rt.

Proof. The proof is by an easy induction on the structure of the label. (If part) If t = ε
and w ρt w

′ then w = w′ and, therefore, (w,w′) ∈ I. If t ∈ MOD and w ρt w
′ then

(w,w′) ∈ Rt by definition of MG
c . If t = t′; t′′ and w ρt′;t′′ w

′ is available on S then, since
S is G-downward satured, there are w ρt′ w

′′ and w′′ ρt′′ w
′ available on S, for some w′′.

By inductive hypothesis, (w,w′′) ∈ Rt′ and (w′′, w′) ∈ Rt′′ and, therefore, (w,w′) ∈ Rt′;t′′ .
If t = t′ ∪ t′′ and w ρt′∪t′′ w

′ is available on S then, since S is G-downward satured,
there is w ρt′ w

′ or w ρt′′ w
′ available on S. By inductive hypothesis, (w,w′) ∈ Rt′ or

(w,w′) ∈ Rt′′ and, therefore, (w,w′) ∈ Rt′∪t′′ . (Only if part) If t = ε and (w,w′) ∈ I then
w = w′ and, therefore, w ρε w

′ is available on S by definition of reflexive, transitive, and
symmetric closure of ρε relation. If t ∈ MOD and (w,w′) ∈ Rt then w ρt w

′ is available
on S by construction of MG

c . If t = t′; t′′ and (w,w′) ∈ Rt′;t′′ then (w,w′′) ∈ Rt′ and
(w′′, w′) ∈ Rt′′ , for some w′′. By inductive hypothesis, w ρt′ w

′′ and w′′ ρt′′ w
′ are available

on S and, therefore, by definition, w ρt′ w
′ is available on S too. Finally, If t = t′ ∪ t′′

and (w,w′) ∈ Rt′;t′′ then (w,w′) ∈ Rt′ or (w,w′) ∈ Rt′′ . By inductive hypothesis, either
w ρt′ w

′′ or w′′ ρt′′ w
′ is available on S and, therefore, by definition, w ρt′ w

′ is available on
S too. 2

Proposition VI.3.3 The canonical model MG
c given by Definition VI.3.5 is a Kripke G-

interpretation.

Proof. We prove that each inclusion properties in IP G
L is satisfied by MG

c . Let us suppose
that Rb ◦ R−1

d ⊇ R−1
a ◦ Rc ∈ IP G

L , and (w,w′) ∈ Ra and (w,w′) ∈ Rc then, we have
to show (w′, w∗) ∈ Rb and (w′′, w∗) ∈ Rd. If (w,w′) ∈ Ra and (w,w′) ∈ Rc then, by
Proposition VI.3.2, w ρa w

′ and w ρc w
′′ are available on S. Now, since by hypothesis S is

G-downward satured, by point (8) of Definition VI.3.4, w′ ρb w
∗ and w′′ ρd w

∗ are available
on S, for some w∗. Thus, by Proposition VI.3.2, (w′, w∗) ∈ Rb and (w′′, w∗) ∈ Rd. 2

68 VI. Towards a wider class of logics

Now, we can prove the key lemma (the model existence) to proving the completeness.

Lemma VI.3.1 Given a modal language L, if S is a set of prefixed signed formulae and
accessibility relation formulae of L that is G-downward satured then, S is G-satisfiable.

Proof. Suppose S is G-downward satured. For every formula ϕ and every prefix w, we have
that if w : Tϕ ∈ S then MG

c , w |=G ϕ and if w : Fϕ ∈ S then MG
c , w 6 |=G ϕ. That is, the

mapping I(w) = w is an G-mapping for S in the Kripke A-interpretation MG
c . The proof

is by induction on the structure of ϕ. The case of formulae of type α and β are trivial. Let
us suppose w : νt ∈ S then, since S is G-downward satured, w′ : νt

0 ∈ S for all w′ such that
w ρt w

′ is available on S. By inductive hypothesis, we have that MG
c , w

′ |=G ν
t
0, for each

world w′ such that (w,w′) ∈ Rt, hence, by definition of satisfiable relation, MG
c , w |=G ν

t.
Let us assume, now, w : πt ∈ S then, since S is G-downward satured, w′ : πt

0 ∈ S for
some w′ such that w ρt w

′ is available on S. By inductive hypothesis, we have that
MG

c , w
′ |=G π

t
0, for some world w′ such that (w,w′) ∈ Rt, hence, by definition of satisfiable

relation, MG
c , w |=G π

t. 2

Theorem VI.3.2 (Completeness) Let L be a modal language and let G be a set of in-
cestual axiom schemas, if a formula ϕ of L is G-valid then, ϕ is T G

L -provable.

Proof. The proof is similar to the one of Theorem III.3.2. 2

Chapter VII

Related work

In this part of the thesis, we have presented the class of inclusion modal logics. This class
includes some well-known modal systems such as Kn, Tn, K4n, S4n. However, differently
than other proposals, these systems can be non-homogeneous and can contain arbitrarily
complex interaction axioms: features particularly suitable for modal systems modeling, for
instance, knowledge and beliefs in multiagent situation.

An analytic tableau calculus for this class of logics has been developed. In order to
have a general framework able to cope with any kind of inclusion axioms, we have chosen
the simplest way of representing models: prefixes are worlds, and relations between them
are built step by step by the rules of the calculus. In particular, axioms are used as rewrite
rules which create new paths among worlds.

The calculus is then extended in order to deal with the class of incestual modal logics
as defined in [Catach, 1988]. This allows to deal also with multimodal logics characterized,
among other things, by serial, symmetric, and Euclidean accessibility relations. Further-
more, some (un)decidability results for the class of inclusion modal logics are given.

VII.1 Prefixed tableau systems

Our approach to prefixed tableaux and, in particular, to represent accessibility relations
by means of a graph is closely related to the approaches based on prefixes used in [Fitting,
1983] and by other authors for classical modal (though no multimodal) systems [Massacci,
1994; Goré, 1995] and for dynamic logic [De Giacomo and Massacci, 1996]. In these works,
prefixes are sequences of integers which represent a world as a path in the model, that
connects the initial world to the one at hand. Thus, instead of representing a model
as a graph, as in the our approach, a model is represented as a set of paths which can
be considered a spanning tree of the same graph. Although this representation may be
more efficient, the disadvantage is that it requires a specific ν-rule for each logic. These
rules code the properties of accessibility relations. Depending on the logic, the ν-rules
may express complex relations between prefixes, which instead in our case are explicitly
available from the representation. In particular, Massacci has proposed a “single step

69

70 VII. Related work

calculus” where ν-rules make use only of immediately accessible prefixes [Massacci, 1994].
His approach works for all the distinct basic normal logics obtainable from K by addition
on any combination of the axiom T , D, 4, 5, and B in a modular way but it still requires
the definition of specific ν-rules. On the contrary, our calculus deals with all modal logic
considered by [Fitting, 1983; Massacci, 1994; Goré, 1995] and many others by means of
the only ρ-rule. Moreover, it is modular with respect to the characterizing axioms of the
multimodal logic, i.e., it is enough to know the axioms to get the calculus.

Besides the disadvantage of requiring specific ν-rules and the fact that they do not
work with multimodal systems, we think that it is difficult to extend the approach based on
prefixes as sequences to the whole class even though it might be adapted for some subclasses
of inclusion and incestual axioms. In particular, it can be shown that a “generation lemma”
([Massacci, 1994, page 732] [Goré, 1995, Section 6.2]) does not hold, i.e. it is not true that,
for any prefix occurring on a branch, all intermediate prefixes occur too. This property is
at the basis of the completeness proof for the calculus in [Massacci, 1994; Goré, 1995]. Let
us consider the following example.

Example VII.1.1 Assume that the multimodal logic IA
L is characterized by the inclusion axiom

[a][b]ϕ ⊃ [c]ϕ. Then, the formula [a]p ∧ 〈c〉q ⊃ 〈a〉p is provable:

1. i : F([a]p ∧ 〈c〉q ⊃ 〈a〉p)
2. i : T[a]p ∧ 〈c〉q
3. i : F〈a〉p
4. i : T[a]p
5. i : T〈c〉q
6. w1 : Tq
7. i ρc w1

8. i ρa w2

9. w2 ρb w1

10. w2 : Fp
11. w2 : Tp

×

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: from 2., by α-rule; 6. and 7.:
from 5., by π-rule; 8. and 9.: form 7., by ρ-rule from axiom [a][b]ϕ ⊃ [c]ϕ; 10.: from 3. and 8.,
by ν-rule; 11.: from 4. and 8., by ν-rule; The branch close due to steps 10. and 11.

By applying π-rule to the prefixed formula at step 5., we get a new world w1 (step
6. and step 7.). We can imaging to use the prefix “1.1c” to represent the world w1 (see
Figure VII.1):

1. 1. : F([a]p ∧ 〈c〉q ⊃ 〈a〉p)
2. 1. : T[a]p ∧ 〈c〉q
3. 1. : F〈a〉p
4. 1. : T[a]p
5. 1. : T〈c〉q
6. 1.1c. : Tq

VII.1. Prefixed tableau systems 71

w1

w2

i

b

c

a

(≡ 1.1c)

(≡ 1.1a)

(≡ 1.)
(≡ 1.1a.1b)

Figure VII.1: ρ-rule as rewriting rule: counter-model construction of Example VII.1.1.

Now, by applying axiom [a][b]ϕ ⊃ [c]ϕ, the same world can also be represented by the
sequence “1.1a.1b” (accessibility relation formulae at steps 8. and 9. in Example VII.1.1):

6. 1.1a.1b. : Tq

whose subprefix “1.1a” (world w2 in Figure VII.1) does not occur on the branch. On the
other hand, this subprefix (world) is needed to apply the ν-rule to the formula at step 3.
and 4. in order to close branch.

Moreover, adding explicitly subprefixes, as the one above, is not enough to solve the
problem, since all prefixes representing the same world have to be identified.

Example VII.1.2 Assume that the multimodal logic IA
L is characterized by the inclusion axioms

[a]ϕ ⊃ [c]ϕ and [b]ϕ ⊃ [c]ϕ. Then, the formula [a]p ∧ 〈c〉q ⊃ 〈b〉p is provable:

1. i : F([a]p ∧ 〈c〉q ⊃ 〈b〉p)
2. i : T[a]p ∧ 〈c〉q
3. i : F〈b〉p
4. i : T[a]p
5. i : T〈c〉q
6. w1 : Tq
7. i ρc w1

8. i ρa w1

9. i ρb w1

10. w1 : Fp
11. w1 : Tp

×

Explanation: 1.: the goal; 2. and 3.: from 1., by α-rule; 4. and 5.: from 2., by α-rule; 6. and
7.: from 5., by π-rule; 8.: form 7., by ρ-rule from axiom [a]ϕ ⊃ [c]ϕ; 9.: form 7., by ρ-rule from
axiom [b]ϕ ⊃ [c]ϕ; 10.: from 3. and 9., by ν-rule; 11.: from 4. and 8., by ν-rule; The branch close
due to steps 10. and 11.

Using prefixes á la Fitting we can represent the world w1 by means of the prefix 1.1c,
that is:

72 VII. Related work

w1i

(≡ 1.)

a

b

c
(≡ 1.1c)
(≡ 1.1a)
(≡ 1.1b)

Figure VII.2: ρ-rule as rewriting rule: counter-model construction of Example VII.1.2.

1. 1. : F([a]p ∧ 〈c〉q ⊃ 〈b〉p)
2. 1. : T[a]p ∧ 〈c〉q
3. 1. : F〈b〉p
4. 1. : T[a]p
5. 1. : T〈c〉q
6. 1.1c. : Tq

Now, by applying axiom [a]ϕ ⊃ [c]ϕ and axiom [b]ϕ ⊃ [c]ϕ the same world w2 will be
denoted by the prefixes 1.1a and 1.1b:

7. 1.1a : Tq
8. 1.1b : Tq

and, then, applying twice the ν-rule to the formulae at steps 3. and 4. we have:

9. 1.1b : Fp
10. 1.1a : Tp

but the branch does not close because we cannot identify 1.1b and 1.1a which are the same
world (see Figure VII.2), whereas our calculus does (see Example VII.1.2).

Other tableau methods for propositional modal logics which make use of prefixed for-
mulae are presented in [Governatori, 1995; Cunningham and Pitt, 1996]. The system in
[Cunningham and Pitt, 1996] deals with all the fifteen propositional normal modal logics
obtained by combining the axioms T , D, 4, 5, and B, while the system in [Governatori,
1995] considers the propositional modal logics K45, D45, and S5 and the propositional
modal logics S5A and S5P(n). It has subsequently been extended to deal with the above
mentioned fifteen modal systems and the predicative case in [Artosi et al., 1996; Governa-
tori, 1997]. These proof systems extend the calculus KE, a combination of tableau and
natural deduction inference rules which allows for a suitably restricted use of the cut rule
[D’Agostino and Modadori, 1994]. In order to have a more efficient proof search, they
generalize the prefix both allowing the occurrence of variables and using unification to

VII.2. Translation methods 73

show that two prefixes can name the same world. The main difference between the system
in [Governatori, 1995; Artosi et al., 1996; Governatori, 1997] and the one in [Cunning-
ham and Pitt, 1996] is that the former uses only one type of path variable (single worlds)
while the latter allows variables over single as well as sequences of worlds. Furthermore,
in [Governatori, 1995], only one ν-rule is used and unification is logic-dependent while, in
[Cunningham and Pitt, 1996], unification is independent of the logic but there is a different
ν-rule for each logic.

One of the main features of these systems is the full permutability of the application
of their rules. Unfortunately, our tableau method does not enjoy this property. In fact,
similarly to the problem of applying the existential rules before the universal ones in the
proof systems for classical logic, we need to apply the π-rules (or the ρ-rules) before the
ν-rules. On the other hand, we deal with a wider class of logics. In particular, we think
that it is hard to extend the unification method of prefixes so to deal with all the classes of
logics that we considered for the same reasons given above in the case of classical prefixed
systems.

In [Catach, 1991] a general theorem prover for propositional modal logics is presented.
This system, named TABLEAUX, uses a representation for the accessibility relations that
is close to ours. In fact, in that work a tableau is a pair (Γ, R), where Γ is a set of prefixed
formulae and R is a set of relations between worlds. Prefixes are constant symbols.

TABLEAUX can deal with all the already mentioned fifteen modal systems, and also
with their multimodal versions. However, it does not deal with any interaction axiom while
our does. This system uses three classes of tableau rules: the first is made of simplification
rules, that are world independent and whose aim is to simplify the proof search; the second
consists of the transformation rules and allows to introduce new operators in terms of the
existing ones; finally, the third class of rules deals with formulae belonging to different
worlds and can introduce modifications in the set R of relations.

VII.2 Translation methods

Instead of developing specific theorem proving techniques and tools for modal logics, many
authors have proposed the alternative approach of translating modal logics into classical
first order logic, so that standard theorem provers can be used without the need to built
new ones [Ohlbach, 1993b]. The translation methods are based on the idea of making
explicit reference to the worlds by adding to all predicates an argument representing the
world where the predicate holds, so that the modal operators can be transformed into
quantifiers of classical logic.

The relational translation is based on the direct simulation of the Kripke semantics by
introducing a distinguished predicate symbol to represent the accessibility relation [Moore,
1980]. This method has strong relationships with our approach. Indeed, we deal with
inclusion properties of the accessibility relations, which are first-order axiomatizable, hence,
the relational translation method can cope with them. On the other hand, as a drawback,
the relational translation method destroys the structure of the formulae and it may cause

74 VII. Related work

an exponential growth of translated formulae.
An alternative method is the functional translation [Ohlbach, 1991; Auffray and Enjal-

bert, 1992]. It is based on the idea of representing paths in the possible worlds structure
by means of compositions of functions, which map worlds to accessible worlds. The most
common properties, such as transitivity or reflexivity, are taken into account by an equa-
tional unification algorithm. An advantage of this approach is that it keeps the structure
of the original formula.

In [Ohlbach, 1993a; Gasquet, 1993] various optimizations of the functional translation
method are investigated. In particular, a substantial simplification can be obtained for
the case that all accessibility relations are serial. However, even in this case equational
unification cannot be avoided. In particular, an optimization method for the class of
inclusion logics has been presented in [Gasquet, 1993]. Gasquet shows that it is possible
to get rid of the sort denoting possible worlds, used in [Ohlbach, 1991], when we deal with
inclusion modal logics. Nevertheless, the seriality is assumed for each accessibility relation
and, hence, this approach cannot be adopted, for instance, to deal with the logic we have
introduced in Example III.2.3 at page 26.

A way to avoid the use of equational unification algorithms, retaining the advantages
of the functional translation, has been developed in [Nonnengart, 1993], where a mixed
approach based on a relational and functional translation is defined. One of the aims of
the author was to obtain Prolog programs starting from Horn clauses extended with modal
operators [Nonnengart, 1994]. This method requires that accessibility relation properties
are first-order predicate logic definable. In particular, he can provide a translation for
the modal systems (all requiring seriality) KD, KT , KD4, S4, but he can deal also
with axioms like (B) : ϕ ⊃ 23ϕ, and, then, with logics like KDB, KD45, S5 and the
multimodal system KD45n.

Part Two

Inclusion Modal Logics
for Programming

75

Chapter VIII

Introduction

The problem of extending logic programming languages with modal operators has raised a
lot of attention in the last years. Several researchers have proposed extensions of logic pro-
gramming with temporal logics and with modal logics (see [Orgun and Ma, 1994; Fisher
and Owens, 1993b] for detailed overviews) providing tools for formalizing temporal and
epistemic knowledge and reasoning, that retain the characterizing properties of logic pro-
gramming languages, such as, for instance, goal directed proof procedures, fixed point se-
mantics and the notion of minimal Herbrand model.

In this part of the thesis, we define a logic programming language, called NemoLOG

(which stands for New modal proLOG), that is based on the class of first-order inclusion
modal logics introduced in the previous part. It extends the language of Horn clauses with
modal operators which, in particular, can occur in front of clauses, in front of clause heads
and in front of goals.

NemoLOG is parametric with respect to the properties of modal operators determined
by means of the set of inclusion axiom schemas which, in turn, determine the underlying
inclusion modal logic. We show that this extension is well suited for structuring knowledge
and, in particular, for defining module constructs within programs, for representing agents
beliefs and performing epistemic reasoning, simple forms of reasoning about actions, and
for interpreting some features of object-oriented paradigms in logic programming, such as
hierarchical dependencies and inheritance among classes.

One of the aims in defining NemoLOG comes from the need of defining structuring facil-
ities to enhance modularity, readability, and reusability of logic programs. Logic languages
use flat collections of Horn clauses and they lack mechanisms for structuring programs,
which are instead available in other programming paradigms. This problem has attracted
a lot of interest and many different approaches have been proposed (see [Bugliesi et al.,
1994] for a detailed survey). In this thesis, in the line of some previous languages, such as
those defined in [Baldoni et al., 1993; Giordano and Martelli, 1994; Baldoni et al., 1997a],
we address this topic by means of the modal logic, using universal modal operators to
define modules. The key idea is to associate a modal operator with each module in order
to label its clauses. Module composition is obtained by allowing modules to export clauses
or derived facts. To achieve this purpose, we use again a modal operator which makes it

77

78 VIII. Introduction

possible to distinguish among clauses local to module, clauses that are fully exported from
a module, and those whose consequences only are exported. As we will see, NemoLOG

allows to model different kinds of modules presented in the literature (such as [Monteiro
and Porto, 1989; Brogi et al., 1990a; Brogi et al., 1990b]).

Another important problem related to providing support for software engineering is the
integration of logic programming and object-oriented paradigms [Turini, 1995]. A significant
proposal to tackle this problem is the one by McCabe in [McCabe, 1992], where the idea of
representing an object as a first-order logic theory is exploited. From a different perspective,
in this thesis, we show how modal logics and, in particular, inclusion modal logics can
be used to interpret the object-oriented paradigms in logic programming. Hierarchical
dependencies among modules (classes) can be represented by means of nested modules or
by inclusion axiom schemas. For example, if [m1]M1 and [m2]M2 represent two modules,
where M1 and M2 are sets of clauses, the inclusion axiom

[m1]ϕ ⊃ [m2]ϕ

says that all the clauses of module m1 are exportable into module m2; in different words
m1 is a more specific class of m2. Besides, a behaviour similar to the use of self can be
obtained by means of a modal operator which is a sort of common knowledge operator.

In Chapter IX, a goal directed proof procedure, which is modular with respect to the
chosen set of inclusion axiom clauses, is presented by making use of a notion of derivation
relation between sequences of modal operators. The derivation relation only depends on
the properties of modalities themselves (i.e., it is based on the set of inclusion axiom clauses
contained in the program). More specifically, the proof procedure is based on a notion of
modal context, where modal context is a sequence of modal operators, which keeps trace
of the ordering between modalities found in front of goals during a computation so that a
modal context is associated with each goal to be solved. According to the modal context in
which a subgoal has to be proved, a given clause of the program may or may not be used to
solve it, depending both on the modal structure of the clause itself and on its “relation” to
the modal context of the goal. This relation is defined by the above mentioned derivation
relation; thus, the derivation relation is used to select a clause for proving a goal in a certain
modal context, according to the properties of modalities of the clause. These properties are
completely specified by the derivation relation, that can be regarded as a rewriting system
[Book, 1987]. The sequences of modalities are the domain of the strings and the rewriting
rules are the axioms characterizing the modal operators of the underlying logic (specified
by means of the inclusion axiom clauses).

In this part of the thesis, we also investigate the relationship between NemoLOG and the
general proof theory presented in Chapter III. In particular, we, first, introduce a sequent
calculus that is a simple syntactical transformation of our tableau method and, then, we
prove that, in the case of NemoLOG, we can restrict our attention to sequent proofs of a
form, that corresponds to the uniform proofs in the meaning of [Miller et al., 1991]. This
kind of proofs have a lot of importance because they can be constructed in a goal-directed
manner and, thus, automated deduction based on this kind of proofs can be optimized.

79

This result is achieved due to the more “flexibility” of all prefixed tableau methods in the
application of the rules during the construction of a proof.

We show that our goal directed proof procedure is sound and complete with respect
to the possible-worlds semantics presented in Chapter V. To do this we define a fixed
point semantics by generalizing the standard construction of Horn clauses and we prove
its completeness with respect to the possible-worlds semantics through a canonical model
construction. Though the construction is pretty standard, we believe that its advantage
is in the modularity of the approach, i.e., both the completeness and soundness proof are
modular with respect to the underlying inclusion modal logics of the programs and so they
work for the whole class of inclusion modal systems.

This part of the thesis is organized as follows. NemoLOG is introduced in Chapter IX.
The operational semantics is presented and some examples of programs and operational
derivations are discussed. Moreover, the relations with the general proof theory of the
inclusion modal logics is shown. In Chapter X, we show some interesting applications of
the defined modal extension of Horn clauses, while in Chapter XI, we define the fixed point
semantics and we give the proof of soundness and completeness of operational semantics
with respect to possible-worlds semantics. Finally, in Chapter XII, we overview some
related works. They are divided in two classes: the ones that are based on inclusion modal
logics and the ones that are not.

80 VIII. Introduction

Chapter IX

A Programming Language

In this chapter we introduce NemoLOG, our modal logic programming language. It extends
Horn clause logic allowing modalities to occur in clauses and in goals. In particular, it
allows free occurrences of some universal modalities of the form [t], where t is an arbitrary
term of the language, in front of clauses, clause heads and goals. A goal directed proof
procedure will be defined and, at the end, we will investigate the relationship between
programs and goals of NemoLOG and the tableau methods studied in the first part of the
thesis. Finally, we give a method for translating NemoLOG programs into standard Horn
clause logic, so that the translated programs can be executed by any Prolog interpreter or
compiler.

IX.1 Syntax

Given a first-order modal language LFO (see page 46) we define NemoLOG as a first-order
modal logic programming language whose alphabet contains:

• all the symbols of LFO apart from the classical connectives “∨”, and “¬”;

• the distinguished symbol T (true);

• the binary operator “→”;

• the symbol “ε” denoting the empty sequence of modalities.

Definition IX.1.1 (Modalized goals) The set GOAL of modalized goals in NemoLOG

is defined as the least set of formulae that satisfies the following conditions:

• T ∈ GOAL;

• if A is an atomic formulae of FOR then, A ∈ GOAL;

• if G1, G2 ∈ GOAL then, G1 ∧ G2 ∈ GOAL;

81

82 IX. A Programming Language

• if G ∈ GOAL and x ∈ VAR then, ∃xG ∈ GOAL;

• if t ∈ TERM and G ∈ GOAL then, [t]G ∈ GOAL.

Definition IX.1.2 (Modalized defined clauses) The set DEFC of modalized defined
clauses in NemoLOG is defined as the least set of formulae that satisfies the following
conditions:

• if G ∈ GOAL, A is an atomic formulae of FOR, and Γ is a sequence of modalities1

(possible empty) then, G ⊃ ΓA ∈ DEFC, ΓA is named modalized clause head;

• if D1, D2 ∈ DEFC then D1 ∧ D2 ∈ DEFC;

• if t ∈ TERM and D ∈ DEFC then, [t]D ∈ DEFC;

• if D ∈ DEFC and x ∈ VAR then, ∀xD ∈ DEFC.

NemoLOG allows free occurrence of modal operators in front of clauses

[t1][[t2](a ∧ b ⊃ c),

in front of clause heads
[t1][[t2](a ∧ b ⊃ [t3][t4]c),

and in front of each goal

[t1][[t2]([t5]a ∧ [t6][t7]b ⊃ [t3][t4]c).

Definition IX.1.3 (Inclusion axiom clauses) The set INC of inclusion axiom clauses
in NemoLOG is defined as the least set of formulae that satisfies the following condition:

• if Γ1 is a non-empty sequence of modalities and Γ2 is a possible empty sequence of
modalities2 then, Γ1 → Γ2 ∈ INC.

We will refer to modalized clauses, modalized goals, modalized clause heads, and inclu-
sion axiom clauses with clauses, goals, clause heads and axiom clauses when no confusion
arises.

Definition IX.1.4 (Program) A program P in NemoLOG is a pair 〈Ds,Ax〉, where:

• Ds is a set of modalized defined clauses of DEFC; and

• Ax is a finite (possible empty) set of inclusion axiom clauses of INC.

Intuitively, assume that NemoLOG is based on the first-order modal language LFO and
let 〈Ds,Ax〉 be a program of NemoLOG. Then, the set Ds of clauses can be considered
the actual program specification, while the set Ax of axiom clauses represents the set
of inclusion axiom schemas the characterizes the underlying inclusion modal logic of the
program. More precisely, the underlying logic of the set of clauses Ds is IA

LFO
, where

A = {[t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ | [t1] . . . [tn] → [s1] . . . [sm] ∈ Ax}.

1For instance, Γ could be [t1][t2] . . . [tn].
2Denoted by “ε”.

IX.1. Syntax 83

Some examples of modal logic programs

To give an idea of how a program in NemoLOG is defined, let us consider two simple
examples. The former is a formulation of the Fibonacci example from [Abadi and Manna,
1989], while the latter presents the friends puzzle of Example II.3.3.

Example IX.1.1 (The Fibonacci numbers) In this example the modal operator [next] represents
the next instant of time and it is axiomatized only by the axiom K, while [always] denote a
temporal operator used to represent something that holds in any instant of time. [always] is
axiomatized by the following:

(A1) T (always) : [always]ϕ ⊃ ϕ;
(A2) 4(always) : [always]ϕ ⊃ [always][always]ϕ;
(A3) I(always, next) : [always]ϕ ⊃ [next]ϕ.

We want fib(X) to hold after n instants of time, if X is equal to Fibonacci of n. The formulation
is given by Program IX.1.

Program IX.1 : Fibonacci numbers.

Ax: (1) [always] → ε
(2) [always] → [always][always]
(3) [always] → [next]

Ds: (4) T ⊃ fib(0)
(5) T ⊃ [next]fib(1)
(6) ∀X∀Y ∀Z([always](fib(Y) ∧ [next]fib(Z) ∧ X is Y + Z ⊃

[next][next]fib(X)))

Axiom clauses (1), (2), and (3) represent the inclusion modal axioms (A1), (A2), and (A3),
respectively. Clause (4) says that at time 0, fib(0) holds; clause (5) says that at time 1, fib(1)
holds; clause (6) says that, for any time n, if fib(Y) holds at time n, and if fib(Z) holds at time
n + 1, then fib(X), with X = Y + Z, holds at time n + 2. The sequence [next] . . . [next] of n ≥ 0
modalities is used to represent what holds after n instants of time. From this program, the query
[next][next][next]fib(X) succeeds with X = 2, and indeed 2 is Fibonacci of 3.

Example IX.1.2 (The friends puzzle) The Program IX.2 shows the NemoLOG version of Ex-
ample II.3.3.

Program IX.2 : Friends puzzle.

Ax: (1) [peter][john] → [john][peter]
(2) [peter] → ε
(3) [peter] → [peter][peter]
(4) [john] → ε
(5) [john] → [john][john]
(6) [wife(peter)] → [peter]
(7) [wife(peter)] → ε

84 IX. A Programming Language

(8) [wife(peter)] → [wife(peter)][wife(peter)]

Ds: (9) [peter]time
(10) [wife(peter)]([peter]time ⊃ [john]time)
(11) [peter][john]place
(12) [peter][john](place ∧ time ⊃ appointment)

Again, the set Ax represents the inclusion axioms of the underlying modal logic of the set of
clauses Ds (see axioms (A1)-(A8) of Example II.3.3). The goal

[john][peter]appointment ∧ [peter][john]appointment

succeeds from the program 〈Ds, Ax〉.

IX.2 Operational semantics

In this section we introduce a goal directed proof procedure for our modal logic programming
language but, before to do this, we need to give some more notions.

Derivability relation

Since modalities are allowed to occur freely in front of goals, when proving a goal G from a
program P we need to record the sequence of modalities which occur in the goal, that is the
modal context in which each subgoal has to be proved. According to the modal context in
which a subgoal has to be proved, a given clause of the program may be used or not to solve
it: it depends on the modal structure of the clause itself, and on its relation to the modal
context of the goal (see also [Baldoni et al., 1993; Giordano and Martelli, 1994; Baldoni et
al., 1997a]). For instance, given a goal [t1][t2]p, the sequence [t1][t2] represents the modal
context for the goal p. Assume that the program contains a clause [t3]p. This clause can be
used to solve the goal p only if the modality [t3] relates somehow to the context [t1][t2]. For
instance, if our set Ax of inclusion axiom clauses contains the axiom clause [t3] → [t1][t2]
(that is, the underlying logic is characterized by axiom schema [t3]ϕ ⊃ [t1][t2]ϕ), then the
clause [t3]p can certainly be used to prove the goal.

We formalize this relationship between sequences of modalities (the modalities in the
clause and the modalities in the modal context of a goal) by introducing a derivation
relation between them. This relation will depend on the inclusion axiom clauses in Ax of
the program (and, therefore, by the logical axioms A of the underlying logic).

More formally, let C be a set of all ground modal operators of the form [t], where t is a
ground term of a language NemoLOG. We define the set of modal contexts C∗ as the set
of all finite sequences on C, including the empty sequence “ε”. Moreover, we denote with
[Ax] the set of all ground instance of the axiom clauses in Ax.

Definition IX.2.1 (Derivation relation) Given a set Ax of inclusion axiom clauses,
the derivation relation

∗
⇒Ax generated by Ax is the the transitive and reflexive closure of

IX.2. Operational semantics 85

the relation ⇒Ax defined as follows: for each Γ1 → Γ2 ∈ [Ax] and Γ,Γ′ ∈ C∗, ΓΓ1Γ
′ ⇒Ax

ΓΓ2Γ
′.3

Given a set Ax of axiom clauses two sequences of modalities Γ1 and Γ2, we say that Γ1

derives Γ2 if Γ1
∗
⇒Ax Γ2; in this case Γ1 is an ancestor of Γ2 and Γ2 is a descendant of Γ1.

We can prove the following property.

Proposition IX.2.1 Given a set of inclusion axiom clauses Ax, for all formula ψ of LFO

and for all Γ,Γ′ ∈ C∗, if Γ
∗
⇒Ax Γ′ then |=A Γψ ⊃ Γ′ψ, where A = {Γ1ϕ ⊃ Γ2ϕ | Γ1 →

Γ2 ∈ Ax}.

Proof. The proof is by induction on the definition of
∗
⇒Ax . (Base) If ΓΓ1Γ

′ ∗
⇒Ax ΓΓ2Γ

′

and Γ1 → Γ2 ∈ [Ax], then we have to prove |=A ΓΓ1Γψ ⊃ ΓΓ2Γ
′ψ, that is for all Kripke

A-interpretation M and all world w in W , we have M,w |=A ΓΓ1Γψ ⊃ ΓΓ2Γ
′ψ. Let us

assume M,w |=A ΓΓ1Γψ and prove M,w |=A ΓΓ2Γ
′ψ. If M,w |=A ΓΓ1Γψ then, for any

sequence of worlds w1, . . . , wn, such that (w,w1) ∈ RV (t1), . . . , (wn−1, wn) ∈ RV (tn), where
[t1] . . . [tn] is Γ, we have that M,wn |=A Γ1Γψ. Now, |=A Γ1ϕ ⊃ Γ2ϕ, for any formula ϕ
of LFO and, in particular, |=A Γ1(Γ

′ψ) ⊃ Γ2(Γ
′ψ). Thus, since M,wn |=A Γ1(Γ

′ψ), we
have M,wn |=A Γ2(Γ

′ψ), for any sequence of worlds w1, . . . , wn, that is, M,w |=A ΓΓ2Γ
′ψ.

(Reflexivity) The case of reflexivity closure is trivial. (Transitivity) Let us assume that
Γ

∗
⇒Ax Γ′ and Γ

∗
⇒Ax Γ′′ and Γ′′ ∗

⇒Ax Γ′, we have to prove |=A Γψ ⊃ Γ′ψ. By inductive
hypothesis |=A Γψ′ ⊃ Γ′′ψ′ and |=A Γ′′ψ′′ ⊃ Γ′ψ′′, for any formula ψ′ and ψ′′ of LFO and,
in particular, for ψ′ = ψ and ψ′′ = ψ. Let us assume that |=A Γψ and prove |=A Γ′ψ. If
|=A Γψ, since |=A Γψ ⊃ Γ′′ψ, we have that |=A Γ′′ψ and, since |=A Γ′′ψ ⊃ Γ′ψ, we have
|=A Γ′ψ. 2

Remark IX.2.1 It is worth noting that the set [Ax] of ground inclusion axiom clauses of
a program can be regarded as a rewriting system on C, having as rewriting rules the pair
(Γ1,Γ2) such that Γ1 → Γ2 belongs to [Ax]. In others words, to establish if Γ1

∗
⇒Ax Γ2

means to establish if Γ2 can be derived from Γ1 by means of a finite number of applications
of the rewriting rules of Ax. That is, to establish if Γ2 belongs to the language [Γ1]Ax =
{Γ ∈ C∗ : Γ1

∗
⇒Ax Γ}.

Remark IX.2.2 Given two string Γ1 and Γ2, the problem of answering if Γ2 is a descen-
dant of Γ1 is known in literature as the word problem for the rewriting system. In general
the word problem is undecidable since it can be reduced to the Post’s Correspondence
Problem. Nevertheless, under certain restriction on such systems, it is decidable. For ex-
ample when the system is complete, i.e., it is noetherian and confluent [Book, 1987], or
when the language defined by Γ1 is a context sensitive language4 [Hopcroft and Ullman,
1979].

3We denote by Γ1Γ2 the concatenation of the modal contexts Γ1 and Γ2.
4In this case it is shown to be even a PSPACE-complete problem.

86 IX. A Programming Language

These remarks are quite relevant when we have to deal with the implementation of
the matching relation in the case when only ground terms may occur within modalities in
the program, in the goal and in the axiom clause Ax, and, in particular, no variables may
occur within them. In the general case, the problem of implementing the matching relation
is more serious, and verifying if a sequence of modalities Γ1 matches another sequence Γ2

cannot be simply seen as the problem of determining if Γ2 can be derived from Γ1 by
applying some rewriting rules. In fact, when the sequences Γ1 and Γ2 contain variables,
and modalities in the axiom clauses contain variables too, verifying if Γ1 derives Γ2 involves
some form of theory unification.

A goal directed proof procedure

The goal directed proof procedure that we define is modular with respect to the underlying
inclusion modal logic of a program: the differences among the logics are factored out in the
derivation relation.

It is worth noting that the proof procedure is an abstract one. In particular, we follow
[Miller, 1989a], in order to avoid problems with variable renaming and substitutions. Given
a program P = 〈Ds,Ax〉, we denote by [Ds] the set of all ground instances of the set Ds.

Definition IX.2.2 Let be 〈Ds,Ax〉 a program in NemoLOG and let Γ be an arbitrary
modal context. Define [Ds] to be the smallest set satisfying the following conditions:

• Ds ⊆ [Ds];

• if Γ(∀xD′) ∈ [Ds] then Γ(D′[t/x]) ∈ [Ds] for all ground terms t.

Hence, given a program 〈Ds,Ax〉, [Ds] contains ground clauses of the form Γb(G ⊃ ΓhA),
where Γb and Γh are arbitrary sequence of modalities (including the empty one), G is a
ground goal and A an atomic ground formula.

The operational derivability of a closed goal G from a program P in a modal context Γ,
is defined by induction on the structure of G. We introduce a proof rule for each kind of
goal.

Definition IX.2.3 (Operational Semantics) Given a program P = 〈Ds,Ax〉 in NemoLOG

and a modal context Γ, the operational derivability of a goal G from P in the modal context
Γ, written P,Γ `o G, is defined by induction on the structure of G as follows:

1. P,Γ `o T ;

2. P,Γ `o A if there is a clause Γb(G ⊃ ΓhA) ∈ [Ds] and
Γ∗

bΓh
∗
⇒Ax Γ, for some Γ∗

b such that Γb
∗
⇒Ax Γ∗

b , and P,Γ∗
b `o G;

3. P,Γ `o G1 ∧ G2 if P,Γ `o G1 and P,Γ `o G2;

4. P,Γ `o [t]G if P,Γ[t] `o G;

IX.2. Operational semantics 87

5. P,Γ `o ∃xG if P,Γ `o G[t/x], for some ground term t.

Proving a goal G from a program P amounts to show that G is operationally derivable from
P in the empty modal context ε, that is, to show that P, ε `o G can be derived by making
use of the above proof rules.

While inference rules 1), 3) and 5) are the usual ones for dealing with distinguished
symbol T , conjunctive goals and existential goals, rules 2) and 4) are those which deal with
modalities. By rule 4), to prove a goal [t]G, the modality [t] is added to the current context
Γ, and the goal G is proved for the new context Γ[t]. By rule 2), a clause Γb(G ⊃ ΓhA) can
be selected from [Ds] to prove an atomic formula A in a given context Γ, if the modalities
occurring in front of the clause and in front of the clause head are in a certain relation with
Γ, if Γb concatenated with Γh derives Γ according to the properties of modalities specified
by the set of axiom clauses Ax.

Example IX.2.1 (The friends puzzle) The following is the successful derivation of the first con-
junct of the goal [john][peter]appointment ∧ [peter][john]appointment of Example IX.1.2 (the
proof of the second conjunct is similar).

1. P, ε `o [john][peter]appointment
2. P, [john] `o [peter]appointment
3. P, [john][peter] `o appointment
4. P, [john][peter] `o place ∧ time
5a. P, [john][peter] `o place
6a. P, ε `o T
7a. success
5b. P, [john][peter] `o time
6b. P, [peter] `o [peter]time
7b. P, [peter][peter] `o time
8b. P, ε `o T
9b. success

We denote with “a” and “b” the two branches which are created by the application of the rule
3) to step 4. Explanation: 1.: goal; 2.: by rule 4); 3.: by rule 4); 4.: by rule 2), from clause (12)
since [peter][john]

∗
⇒Ax [john][peter]; 5a.: from 4., by rule 3); 6a.: by rule 2), from clause (11)

since [peter][john]
∗
⇒Ax [john][peter]; 7a. by rule 1); 5b.: from 4., by rule 3); 6b: by rule 2), from

clause (10) since [wife(peter)]
∗
⇒Ax [peter] and [peter][john]

∗
⇒Ax [john][peter]; 7b.: by rule 4);

8b.: by rule 2), from clause (9) since [peter]
∗
⇒Ax [peter][peter]; 9b.: by rule 1).

Remark IX.2.3 Note that, when the axiom clauses are only of the form [t1] → [s1] . . . [sm],
that is, there is a single modality on the antecedent, the proof procedure can be simplified.
In particular, due to the specificity of the derivation relation, proof rule 2) for atomic
formulas can be simplified as follows:

2′. P,Γ `o A if there is a clause Γb(G ⊃ ΓhA) ∈ [Ds] such that,
for some Γ∗

b and Γ∗
h, Γ∗

bΓ
∗
h = Γ, Γb

∗
⇒Ax Γ∗

b , Γh
∗
⇒Ax Γ∗

h, and
P,Γ∗

b `o G;

88 IX. A Programming Language

that is, the current context can be split in two parts so that Γb derives the first one, and
Γh derives the second one. This is the kind of semantics it is used in [Baldoni et al., 1993],
where a modal logic programming language is proposed to define modularity constructs,
and where modalities were ruled by the axioms of S4 and K. In the general case, this is
not sufficient, and we must require that Γb and Γh jointly derive the current context Γ. An
example is given by the derivation above, where 6b. is obtained from 5b. and clause (10),
by applying rule 2), while it could not be obtained by applying rule 2′).

Example IX.2.2 (The Fibonacci numbers) The following is the successful derivation of the goal
[next][next][next]fib(X) of Example IX.1.1.

1. P, ε `o [next][next][next]fib(X)
2. P, [next] `o [next][next]fib(X)
3. P, [next][next] `o [next]fib(X)
4. P, [next][next][next] `o fib(X)
5. P, [next] `o fib(Y) ∧ [next]fib(Z) ∧ X is Y + Z
6a. P, [next] `o fib(Y)
7a. success, with Y = 1
6b. P, [next] `o [next]fib(Z)
7b. P, [next][next] `o fib(Z)
8b. P, ε `o fib(Y1) ∧ [next]fib(Z1) ∧ Z is Y1 + Z1

9ba. P, ε `o fib(Y1)
10ba. success, with Y1 = 0
9bb. P, ε `o [next]fib(Z1)
9bb. P, ε `o [next]fib(Z1)
10bb. P, [next] `o fib(Z1)
11bb. success, with Z1 = 1
9bc. P, ε `o Z is 0 + 1
10bc. success, with Z = 1
6c. P, [next] `o X is 1 + 1
7c. success, with X = 2

We denote with “a”, “b”, and “c” the three branches which are created by the application
of the rule 3) to step 5. and with “ba”, “bb”, and “bc” the three branches which are cre-
ated by the application of the rule 3) to step 8b. Explanation: 1.: goal; 2.: by rule 4);
3.: by rule 4); 4.: by rule 4); 5.: by rule 2), from clause (6) since [always]

∗
⇒Ax [next] and

[next][next][next]
∗
⇒Ax [next][next][next]; 6a.: from 5., by rule 3); 7a. by rule 1) and 2), from

clause (5) since [next]
∗
⇒Ax [next]; 6b.: from 5., by rule 3); 7b.: by rule 4); 8b.: by rule 2), from

clause (6) since [always]
∗
⇒Ax ε and [next][next]

∗
⇒Ax [next][next]; 9ba.: from 8b., by rule 3);

10ba. by rule 1) and 2), from clause (4); 9bb.: from 8b., by rule 3); 10bb.: by rule 4); 11bb. by
rule 1) and 2), from clause (5) since [next]

∗
⇒Ax [next]; 9bc.: from 8b., by rule 3) since Y1 = 0

and Z1 = 1; 6c.: from 5., by rule 3) since Y = 1 and Z = 1;

IX.3. Uniform proofs for NemoLOG 89

IX.3 Uniform proofs for NemoLOG

In this section we study the relationship between our modal logic programming language
and the proof theory of the inclusion modal logics given in Chapter III. In particular, we
show that in the case of programs and goals of NemoLOG we can restrict our attention to
proofs which are uniform as presented in [Miller et al., 1991], where the logical connectives
are interpreted as search instructions, so that a uniform proof can be found by a goal-
directed manner. In order to do this in a easy way, we use the tableau calculus for first-
order inclusion modal logic in the form of a cut-free sequent calculus but this is only a
straightforward syntactic change. As we will observe at the end of the section, the use of
prefixed formulae plays an important role which allows us to restrict to uniform proofs (see
Remark IX.3.1).

A sequent calculus

We present the cut-free sequent calculus for the class of predicative inclusion modal logics.
As in the case of tableau method studied in the first part of the thesis, for simplicity, we
restrict our attention to a language containing only constant symbols and modal operators
labeled with constant symbols. Recall that we denote with LFO the first-order modal
language LFO extended with countably many new constants (parameters) in order to deal
with free variables in the proofs.

Definition IX.3.1 (Sequent calculus) Let LFO be a predicative modal language and let
A be a set of inclusion axioms, the sequent calculus for IA

LFO
is shown in Figure IX.1.

In Figure IX.1, the set G contains the collection of accessibility relation formulae and,
intuitively, it is used to keep the accessibility relationships among the worlds represented
by means of the prefixes. R∀ and L∃ have the proviso that aw is a w-parameter that does
not occur in any formula of the lower sequent. In rule L∀ and R∃ c is any constant of the
language LFO. The meaning of the rules are simple to understand taking into account the
already presented tableau calculus. Note that, in the sequent calculus we do not use signed
formulae. Formulae at the left side (the antecedent), with respect to the arrow symbol, are
the ones interpreted as true, while the formulae at the right side (the consequent) are the
ones interpreted as false.

In this sequent calculus there is no need for structural rules, since in a sequent Θ →A
G ∆

the antecedent and the consequent are sets of statements rather than sequences of state-
ments.

Since T is a distinguished symbol which can be regarded as any propositional tautology,
we can assume to have the additional initial sequent (axiom) Θ →A

G w : T,∆ to deal with
this symbol.

A proof for the sequent Θ →A
G ∆, where Θ and ∆ are two set of prefixed signed

formulae of IA
LFO

, is a finite tree constructed using the above rules, having the root labeled

with Θ →A
G ∆ and the leaves labeled with initial sequents, i.e. sequents of the form

90 IX. A Programming Language

Θ, w : ϕ→A
G w : ϕ,∆

Θ →A
G w : ϕ,∆

Θ, w : ¬ϕ→A
G ∆

L¬
Θ, w : ϕ→A

G ∆

Θ →A
G w : ¬ϕ,∆

R¬

Θ, w : ϕ,w : ψ →A
G ∆

Θ, w : ϕ ∧ ψ →A
G ∆

L ∧
Θ →A

G w : ϕ,∆ Θ →A
G w : ψ,∆

Θ →A
G w : ϕ ∧ ψ,∆

R ∧

Θ →A
G w : ϕ,∆ Θ, w : ψ →A

G ∆

Θ, w : ϕ ⊃ ψ →A
G ∆

L⊃
Θ, w : ϕ→A

G w : ψ,∆

Θ →A
G w : ϕ ⊃ ψ,∆

R⊃

Θ, w : [x/c]ϕ→A
G ∆

Θ, w : (∀x)ϕ→A
G ∆

L∀
Θ →A

G w : [x/aw]ϕ,∆

Θ →A
G w : (∀x)ϕ,∆

R∀

Θ, w : [x/aw]ϕ→A
G ∆

Θ, w : (∃x)ϕ→A
G ∆

L∃
Θ →A

G w : [x/c]ϕ,∆

Θ →A
G w : (∃x)ϕ,∆

R∃

Θ, w′ : ϕ→A
G ∆

Θ, w : [t]ϕ→A
G ∆

L[t]
Θ →A

G′

w′ : ϕ,∆

Θ →A
G w : [t]ϕ,∆

R[t]

provided that w ρt w
′ ∈ G where w′ is new on G

and G ′ = G ∪ {w ρt w
′}

Θ →A
G′

∆

Θ →A
G ∆

ρ-rule

where w ρs1
w1, . . . , wm−1 ρsm

w′ ∈ G,
G ′ = G ∪ {w ρt1 w

′
1, . . . , w′

n−1 ρtn w
′},

w′
1, . . . , w

′
n−1 are new on G,

and [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ ∈ A

Figure IX.1: The sequent calculus for the class of predicative inclusion modal logics.

IX.3. Uniform proofs for NemoLOG 91

Θ, w : ϕ →A
G w : ϕ,∆ or of the form Θ →A

G w : T,∆. We write Θ `A ∆ if the sequent
Θ →A

∅ ∆ has a proof, where Θ and ∆ are sets of prefixed signed sentences of IA
LFO

with

prefix the initial world i. Furthermore, we say that Θ →A
∅ ∆ is A-valid in a Kripke A-

interpretation M = 〈W,R, D,J , V 〉, if, for all w ∈ W , with every constant of the sequent
interpreted in J (w), we have that if M,w |=V

A ϕ, for each i : ϕ ∈ Θ, then M,w |=V
A ψ, for

some i : ψ ∈ ∆. A sequent Θ →A
∅ ∆ is A-valid if it is A-valid in each interpretation M of

MA
L .

The sequent calculus above is sound and complete with respect to the Kripke semantics
defined in Section V.2.

Theorem IX.3.1 (Soundness and Completeness) A sequent Θ →A
∅ ∆ (with Θ and

∆ sets of prefixed signed sentences of IA
LFO

with prefix i) is valid iff Θ →A
∅ ∆ has a proof

in the sequent calculus.

Proof. By Theorem III.3.1 and Theorem III.3.2. 2

Uniform proofs

In this section we show that we can restrict our attention to uniform proofs when we
consider sequent of the form i : Ds →A

∅ i : G, where 〈Ds,Ax〉 is a program and G is a
goal of our modal logic programming language NemoLOG.

First of all, we can observe that the language NemoLOG does not allow existentially
quantified clauses nor universally quantified goals. Moreover, negation never occurs in
programs nor in goals and implication never occurs in goals. For this reason, we can prove
the following lemma.

Lemma IX.3.1 Let Ξ be a proof of a sequent i : Ds →A
∅ i : G where 〈Ds,Ax〉 is a

program and G a goal of NemoLOG. Then Ξ contains no application of the rules L¬, R¬,
R⊃ , L∃ and R∀, where A = {Γϕ ⊃ Γ′ϕ | Γ → Γ′ ∈ Ax}.

Proof. Our sequent calculus is cut-free. Hence, by the subformula property, derivations
are formed entirely from the subformulae of their end sequent. In particular, no negation
occurs in Ds and G, and therefore, no application of R¬ or L¬ is allowed in the proof
of i : Ds →A

∅ i : G. The same for the implication. Moreover, rules L∃ and R∀ are not
applicable too, since in a proof of i : Ds →A

∅ i : G existentially quantified goals can never
occur in the left hand side of a sequent and universally quantified clauses can never occur
in the right hand side of a sequent. 2

A second observation is about L⊃ rule. We show that if we have to prove the sequent
i : Ds→A

∅ i : G then, we can use a weaker version of L⊃ , namely L⊃′, instead of L⊃ .

92 IX. A Programming Language

Proposition IX.3.1 Let Ξ be a proof of a sequent i : Ds →A
∅ i : G where 〈Ds,Ax〉 is a

program and G a goal of NemoLOG, then there is a proof Ξ′ which uses the rule

Θ →A
G w : ϕ Θ, w : ψ →A

G ∆

Θ, w : ϕ ⊃ ψ →A
G ∆

L⊃′

instead of L⊃ .

Proof. We prove the lemma that for all sequent Θ →A
G ∆ in Ξ the following properties

hold:

1. there exists a proof of Θ →A
G ∆ which uses the rule L⊃′ instead of L⊃ ;

2. if ∆ has the form w : ϕ,∆′ (i.e. the sequent has the form Θ →A
G w : ϕ,∆′) then there

is a proof for Θ →A
G w : ϕ or for Θ →A

G ∆′ which makes use of L⊃′ instead of L⊃.

In particular, since i : Ds →A
∅ G is a sequent which belongs to Ξ the thesis holds. We

prove the properties above by induction on height of the proof Υ of Θ →A
G ∆. If the height

h of Υ is 1 then Υ is an axiom.

1. Trivial.

2. If Θ →A
G ∆ is Θ →A

G w : ϕ,∆′ and it is an axiom then there is a formula
w′ : ψ ∈ Θ ∩ ({w : ϕ} ∪ ∆′) and, in particular, w′ : ψ ∈ ({w : ϕ} ∪ ∆′). Thus, there
are two cases. If ψ = ϕ and w = w′ then, Θ →A

G w : ϕ is provable, while if ψ ∈ ∆′

then, Θ →A
G ∆′ is provable.

The height of Υ is h + 1. By inductive hypothesis the thesis holds for the sequents
whose proof has height less or equal to h. We consider the following cases, one for each
inference figure in which Υ can terminate.

R ∧ , L ∧ : Assume that the root inference figure in Υ is R ∧ . Hence, Υ is of the form

Υ1

Θ →A
G w : ϕ,∆′

Υ2

Θ →A
G w : ψ,∆′

Θ →A
G w : ϕ ∧ ψ,∆′

R ∧

1. Trivial, by application of the inductive hypothesis.

2. By inductive hypothesis we have a proof for Θ →A
G w : ϕ or Θ →A

G ∆′ and
a proof for Θ →A

G w : ψ or Θ →A
G ∆′, that is a proof for Θ →A

G w : ϕ and
Θ →A

G w : ψ (and hence for Θ →A
G w : ϕ ∧ ψ by applying R ∧), or Θ →A

G ∆′.

The case when the last inference figure is L ∧ is similar.

IX.3. Uniform proofs for NemoLOG 93

R[t] : Assume that the root inference figure in Υ is R[t]. Hence, Υ is of the form

Υ1

Θ →A
G′

w′ : ϕ,∆′

Θ →A
G w : [t]ϕ,∆′

R[t]

1. Trivial, by application of the inductive hypothesis.

2. If we have a proof for Θ →A
G′

w′ : ϕ,∆′ then, we have a proof for Θ →A
G′

w′ : ϕ
and, by applying the ruleR[t], we have a proof for Θ →A

G w : [t]A.

L⊃ : Assume that the root inference figure in Υ is L⊃. Hence, Υ is of the form

Υ1

Θ →A
G w : ϕ,∆

Υ2

Θ, w : ψ →A
G ∆

Θ, w : ϕ ⊃ ψ →A
G ∆

L⊃

1. Since Υ1 is shorter than Υ, by inductive hypothesis there is a proof which uses
L⊃′ instead of L⊃ for Θ →A

G w : ϕ or Θ →A
G ∆. Moreover, there is a proof Υ′

2

for Θ, : ψ →A
G ∆.

(a) If there is a proof Υ′′
1 for Θ →A

G w : ϕ, which uses L⊃′ instead of L⊃, we
get the following proof for the root sequent

Υ′′
1

Θ →A
G w : ϕ

Υ′
2

Θ, w : ψ →A
G ∆

Θ, w : ϕ ⊃ ψ →A
G ∆

L⊃′

(b) If there is a proof for Θ →A
G ∆ which uses L⊃′ instead of L⊃, then, by

weakening5 there is a proof for Θ, w : ϕ ⊃ ψ →A
G ∆.

2. Assume that Θ, w : ϕ ⊃ ψ →A
G ∆ is Θ, w : ϕ ⊃ ψ →A

G w′ : η,∆′. Now, we have
just proved that

Υ′′
1

Θ →A
G w : ϕ

Υ′
2

Θ, w : ψ →A
G w′ : η,∆′

Θ, w : ϕ ⊃ B →A
G w′ : η,∆′

L⊃′

Since, by inductive hypothesis, we have a proof which use L⊃′ instead of L⊃
for Θ →A

G w : ϕ and for Θ, w : ψ →A
G w′ : η or Θ, B →A

G ∆′, we have a proof
which use L⊃′ instead of L⊃ for Θ →A

G w : ϕ and Θ, w : ψ →A
G w′ : η or

for Θ →A
G w : ϕ and Θ, w : ψ →A

G ∆′. By applying L⊃′, we have a proof for
Θ, w : ϕ ⊃ ψ →A

G w′ : η or Θ, w : ϕ ⊃ ψ →A
G ∆′, respectively.

5It is easy to show that if Θ →A
G ∆ is a provable sequent then, Θ, Z →A

G ∆, where Z is an arbitrary
prefixed formula, is a provable sequent too.

94 IX. A Programming Language

see Chapter XI

@
@

@
@

@
@

@
@

@@I@
@

@
@

@
@

@
@

@@R
〈Ds,Ax〉, ε `o G

Theorem IX.3.2

Theorem III.3.2
Theorem III.3.1

�
�

�
��

�
�

�
��

Ds `u
A G

Ds `A G
�

�
�

�	

�
�

�
�	

Ds |=A G

Figure IX.2: A partial schema of the results about NemoLOG.

L[t], R⊃ , L∀, R∃, ρ : Trivial, by application of the inductive hypothesis.

2

From now on we will refer to the sequent calculus with rules L ∧ , R ∧ , L[t], R[t], L⊃′,
R ⊃ , L∀, and R∃ and ρ. As a corollary of Proposition IX.3.1 we have the following.

Corollary IX.3.1 Let Ξ be a proof of a sequent i : Ds →A
∅ i : G, where 〈Ds,Ax〉 is a

program and G a goal of NemoLOG. Then, each sequent occurrence in Ξ has a singleton
set as its consequent.

Finally, we show that when we deal with programs and goals of NemoLOG we can restrict
our attention on only uniform sequent proofs, if we refer to the notion of uniform proof as
presented in [Miller et al., 1991]. This notion provides a natural interpretation of logical
connectives as search operators in the space of the proofs.

Definition IX.3.2 ([Miller et al., 1991]) A uniform proof is a proof in which each se-
quent occurrence has a singleton set for its consequent and each occurrence of a sequent
whose consequent contains a non-atomic formula is the lower sequent of the inference figure
that introduces its top-level connective.

In our case, we write Θ `u
A ∆ if Θ `A ∆ and the proof is uniform.

Theorem IX.3.2 Let 〈Ds,Ax〉 be a program and G a goal of NemoLOG then, Ds `A G
if and only if Ds `u

A G, where A = {Γϕ ⊃ Γ′ϕ | Γ → Γ′ ∈ Ax}.

Proof. (If part) Trivial. (Only if part) We prove that for all sequent proof Υ of Θ →A
G w : η

in the proof Ξ of i : Ds →A
∅ i : G there exists a uniform proof Υ′ of Θ →A

G w : η. By
induction of the height h of the proof of Θ →A

G w : η. If h is 1 then Υ must be an axiom
and the thesis holds trivially. The height of Υ is h+ 1. By inductive hypothesis the thesis
holds for proofs with height less of equal to h. We consider the following cases, one for
each inference figure in which Υ can terminate.

IX.3. Uniform proofs for NemoLOG 95

L[t], L ∧ , L∀ : Assume that the root inference figure of Υ if L[t]. Hence, Υ is of the form

Υ1

Θ, w′′ : ϕ→A
G w : η

Θ, w′ : [t]ϕ→A
G w : η

L[t]

By inductive hypothesis there is a uniform proof Υ′
1 with root inference figure Θ, w′′ :

ϕ →A
G w : η. Now, we can recognize in Υ′

1 all the points where a rule is applied
to w′′ : ϕ. Then, let us change Υ′

1 in the following way. Let us assume that Φ is
the sub-proof of Υ′

1 associated with one of this point with the root inference figure

Θ′, w′′ : ϕ→A
G′

v : A. Note that the right end of this sequent must contains an atomic
formula. Thus, we add the following step

Φ
Θ′, w′′ : ϕ→A

G′

v : A

Θ, w′ : [t]ϕ→A
G′

v : A
L[t]

obtaining another uniform proof. Now, we can change Υ′
1 substituting Φ with the

above proof and replacing all formulae w′′ : ϕ with w′ : [t]ϕ along the path between

the sequent Θ′, w′′ : ϕ →A
G′

v : A and Θ, w′′ : ϕ →A
G w : η in the proof Υ′

1. Now, we
repeat this for all above recognized points.

The case when the last inference figure in Υ are L ∧ and L∀ are similar.

L⊃′ : Assume that the root inference figure of Υ if L⊃′. Hence, Υ is of the form

Υ1

Θ →A
G w′ : ϕ

Υ2

Θ, w′ : ψ →A
G w : η

Θ, w′ : ϕ ⊃ ψ →A
G w : η

L⊃′

By inductive hypothesis there are a uniform proof Υ′
1 with root inference figure

Θ →A
G w′ : ϕ and a uniform proof Υ′

2 with root inference figure Θ, w′ : ψ →A
G w : η.

Now, we can recognize in Υ′
2 all the points where a rule is applied to w′ : ψ. Then,

let us change Υ′
2 in the following way. Let us assume that Φ is the sub-proof of Υ′

2

associated with one of this point with the root inference figure Θ′, w′ : ψ →A
G′

v : A.
Note that the right end of this sequent must contains an atomic formula. Thus, we
add the following step

Φ
Θ′, w′ : ψ →A

G′

v : A
Υ2

Θ, w′ : ψ →A
G w : η

Θ, w′ : ϕ ⊃ ψ →A
G′

v : A
L⊃′

obtaining another uniform proof. Now, we can change Υ′
2 substituting Φ with the

above proof and replacing all formulae w′ : ψ with w′ : ϕ ⊃ ψ along the path between
the sequent Θ′, w′ : ψ →A

G′

v : A and Θ, w′ : ψ →A
G w : η in the proof Υ′

1. Now, we
repeat this for all above recognized points.

96 IX. A Programming Language

R ∧ , R∃, R[t], ρ : Obvious by inductive hypothesis.

Finally, since i : Ds→A
∅ i : G belongs to Ξ the thesis also holds for it. 2

Remark IX.3.1 Note that the above theorem could be proven only because we make use
of a prefixed sequent calculus.

In more standard sequent and tableau calculus for modal logics, such as the ones pre-
sented in [Fitting, 1983, Chapter 2] and in [Wallen, 1990, Chapter 3], the modal rule
R[t] has the effect of deleting some formulae of the “denominator” of the rule to obtain
the “numerator” (destructive sequent (tableau) systems [Fitting, 1996]). The choice of
the formulae is based on both the syntactic structure of the formulae themselves and the
properties of the considered logic. Therefore, we can influence the content of a sequent
by changing the order of rule application, restricting (or enlarging) the set of formulae
available to complete, eventually, the proof (see, for more details, [Wallen, 1990, Chapter
4]). On the contrary, in a prefixed sequent (tableau) calculus this not happened.

In the case of uniform proofs, as shown in [Baldoni et al., 1997a], the problem is that
the modal operators in a proof have the effect of changing the “context” and, then, they
cannot be given an interpretation as search operators in the space of proofs (i.e. they do
not have a goal directed interpretation) because before using R[t] some applications of left
rules may be needed, which is not possible in a uniform proof. In fact, each occurrence of
a sequent Θ → G in an uniform proof, where G is not an atomic formula, is obtained by
applying the right rule for the main logical connective of G. Instead, in this section, we
have shown that a calculus based on prefixed formulae can avoid the necessity of applying
left rules before the right rule R[t].

Figure IX.2 summarizes the results of this section. This schema will be completed in
Chapter XI, where the soundness and completeness of operational semantics with respect
to possible-worlds semantics will be proved by means of a fixed point semantics.

IX.4 Translating NemoLOG programs into Horn clause

logic

NemoLOG has a goal directed operational semantics which has been proved to be sound
and complete with respect to the Kripke semantics. The operational derivability of a goal
is defined with respect to a notion of modal context, which consists of a sequence of modal
operators. The modal context keeps track of the new clauses which are added to the
program when evaluating implication goals.

The goal directed procedure gives a precise definition of the operation behaviour of a
program, and provides a means for executing a program. However the actual implemen-
tation of the procedure can raise several problems. The simplest solution of building an
interpreter (say in Prolog), may turn out to be inefficient, since the interpreter will have
to deal with the modal context.

IX.4. Translating NemoLOG programs into Horn clause logic 97

In this section we present a different approach, based on translating our language
into Horn clause logic, so that the translated programs can be executed by any Prolog
interpreter or compiler, with the advantage that many features, such as unification or
variable renaming, are directly provided. Furthermore, a real program usually needs to
use built-in predicates and extra logical features, which, again, are provided by the Prolog
environment (as, for instance, cut).

The translation methods is based on the idea of implementing directly the operational
semantics making explicit reference to the modal context. This is achieved by adding to
all predicates an extra argument representing the modal context where the predicate must
hold. In particular, a modal context allows us to record the ordering between modalities
found in front of goals, during a computation. Note that the notion of modal context plays
a role similar to that of prefixes of formulas in the tableau method presented in Chapter III.
Intuitively, a prefix is a name for a possible world, and the same is for a modal context.
A modal context allows us to recognize syntactically whether the worlds being named are
accessible or not.

As we will see this approach is closely related to functional translation methods for
modal logics [Ohlbach, 1993b] and it is adapted from the translation method for Horn
clause languages extended with embedded implication presented in [Baldoni et al., 1996b].
For sake of simplicity, we will be concerned with the case in which the modal operators are
only labeled with constant symbols and not with terms6. In Appendix A you can find a
collection of translated NemoLOG programs taken among the ones presented in this chapter
and the following ones.

The translation method

Since universal modal operators are distributive with respect to the conjunction of clauses
and goals and due to the converse of Barcan formula that holds, we can assume without loss
of generality that a NemoLOG program can always contain universally quantified modalized
defined clauses of the following form:7

Γb(ΓhA0 :− Γg1
A1, . . . ,Γgm

Am) (IX.1)

and modalized goals of the form:

Γg1
A1, . . . ,Γgm

Am (IX.2)

where A1, . . . , Am are atomic predicates and Γb,Γh,Γg1
, . . . ,Γgm

arbitrary sequences of
modalities.

Thus, by combining rules 2), 3) and 4) of Definition IX.2.3, we can define the operational
derivability of the atomic formulae by means of the new following rule:

6Nevertheless, in Appendix A, we have reported some examples which make use of terms with variables.
7For readability, we use the standard Prolog syntax extended with modal operators.

98 IX. A Programming Language

2′′. P,Γ `o A
if there is a clause Γb(ΓhA :− Γg1

A1, . . . ,Γgm
Am) ∈ [Ds] and Γ∗

bΓh
∗
⇒Ax Γ, for some

Γ∗
b , and P,Γ∗

bΓg1
`o A1, . . . , P,Γ∗

bΓgm
`o Am.

The idea for eliminating modalities is based on the structure of rule 2′′) and it is
obtained adding to all atomic predicates an argument which represents the modal context
where the predicates have to be proved. In others worlds, to move the modal context of
operational semantics directly into the predicates.

Let P be a program in NemoLOG and let derive(Γb,Γh, X, Y) be a predicate such that
it has success if the joint sequence of modalities Γb and Γh derives the current context X,
according to the set of inclusion axiom clauses in P and Definition IX.2.1, and it returns
the derived sequence of Γ∗

b by Γb in Y . So a clause of the form (IX.1) can be translated as

A0(X) :− derive(Γb,Γh, X, Y), A1(Y • Γg1
), . . . , Am(Y • Γgm

)8

obtaining a Horn clause, and operational derivability will be defined as SLD resolution. In
particular, let ΓgA be a subgoal in the body of a clause, we can translate it in

A(Y • Γg)

where Y is a variable which is unified with the current context (the name of the world
where ΓgA has to be proved) and linked (denoted by “•”) with Γg for proving A. While
a query of the form (IX.2) can be translated as

A1(Γg1
), . . . , Am(Γgm

).

Note that the added argument “X” in the translated clauses will always be ground during
the computation. In fact, since we ask to prove a query in the empty initial modal context,
we start each resolution with a goal as A(Γ), where Γ does not contain variables. Thus,
it is not possible to introduce variables into resolvent, so the the derivation relation works
correctly.

We can now give the procedure for translating modalized clauses of NemoLOG into
first-order logic, by eliminating modal operators.

Definition IX.4.1 (Procedure for translating into Horn clauses logic) Let P be a
program and a goal in NemoLOG. Then, the procedure in Figure IX.3 takes as input the
pair P and returns as output P tr, the program obtained by translation of P into Horn
clauses logic.

Note that the sequence Γ′ • Γ′′ is the concatenation of sequences Γ′ and Γ′′. Moreover,
if A is p(t1, . . . , ts), then A(X) and A(Y •Γgj

) are p(X, t1, . . . , ts) and p(Y •Γgj
, t1, . . . , ts),

respectively. Finally, the predicate derive/4 carries out the derivation relation of Defini-
tion IX.2.1, and X and Y are variables.

Let us see how the translation works on the programs IX.1 and IX.2.

8Together the proviso that X and Y do not belong to the set of variables of clause (IX.1).

IX.4. Translating NemoLOG programs into Horn clause logic 99

begin
S := P ;
for each clause C ≡ Γb(ΓhA :− Γg1

A1, . . . ,Γgm
Am) ∈ S do

begin
C ′ := A(X) :− derive(Γb,Γh, X, Y),

A1(Y • Γg1
), . . . , Am(Y • Γgm

);
S := (S − {C}) ∪ {C ′}

end;
P tr := S;

end

Figure IX.3: Procedure for translating NemoLOG programs into Horn clause logic.

Example IX.4.1 (The Fibonacci numbers) Given the Program IX.1 of the Example IX.1.1, after
applying the procedure of Definition IX.4.1, we will obtain the following program P tr (we will
denote with ε the empty sequence of modalities).

Program IX.3 : Fibonacci numbers translated.

(1) fib(X, 0) :−
derive(ε, ε, X, Y).

(2) fib(X, 1) :−
derive(ε, [next], X, Y).

(3) fib(X, A) :−
derive([always], [next][next], X, Y),
fib(Y • ε, B),
fib(Y • [next], C),
A is B + C.

The goal [next][next][next]fib(A), that is translated into fib([next][next][next], A) succeeds from
P tr with the following SLD derivation (denoted by the symbols `SLD):

1. P tr `SLD fib([next][next][next], A)
2. P tr `SLD derive([always], [next][next], [next][next][next], Y0),

fib(Y0 • ε, B0), fib(Y0 • [next], C0), A is B + C
3a. P tr `SLD derive([always], [next][next], [next][next][next], Y0)
4a. success, with Y0 = [next]
3b. P tr `SLD fib([next] • ε, B)
4b. P tr `SLD derive(ε, [next], [next], Y1)
5b. success, with Y1 = ε and B = 1
3c. P tr `SLD fib([next] • [next], C)
4c. P tr `SLD derive([always], [next][next], [next][next], Y2)

fib(Y1 • ε, B1), fib(Y1 • [next], C1), C is B1 + C1

5ca. P tr `SLD derive([always], [next][next], [next][next], Y2)

100 IX. A Programming Language

6ca. success, with Y1 = ε
5cb. P tr `SLD fib(ε • ε, B1)
6cb. P tr `SLD derive(ε, ε, ε, Y3)
7cb. success, with Y3 = ε and B1 = 0
5cc. P tr `SLD fib(ε • [next], C1)
6cc. P tr `SLD derive(ε, [next], [next], Y4)
7cc. success, with Y4 = ε and C1 = 1
5cd. P tr `SLD C is 0 + 1
6cd. success, with C = 1
3d. P tr `SLD A is 1 + 1
4d. success, with A = 2

Example IX.4.2 (The Friends puzzle) Given the Program IX.2 of the Example IX.1.2, after
applying the procedure of Definition IX.4.1, we will obtain the following program P tr.

Program IX.4 : Friends puzzle translated.

(1) time(X) :−
derive(ε, [peter], X, Y).

(2) time(X) :−
derive([wife(peter)], [john], X, Y), time(Y • [peter]).

(3) place(X) :−
derive(ε, [peter][john], X, Y).

(4) appointment(X) :−
derive([peter][john], ε, X, Y),
place(Y • ε),
time(Y • ε).

The goal [john][peter]appointment, that is translated into appointment([john][peter]) succeeds
from P tr with the following SLD derivation:

1. P tr `SLD appointment([john][peter])
2. P tr `SLD derive([peter][john], ε, [john][peter], Y0),

place(Y0 • ε), time(Y0 • ε)
3a. P tr `SLD derive([peter][john], ε, [john][peter], Y0),
4a. success, with Y0 = [john][peter]
3b. P tr `SLD place([john][peter] • ε)
4b. P tr `SLD derive([peter][john], ε, [john][peter], Y1),
5b. success, with Y1 = [john][peter]
3c. P tr `SLD time([john][peter] • ε)
4c. P tr `SLD derive([wife(peter)], [john], [john][peter], Y2), time(Y2 • [peter])
5ca. P tr `SLD derive([wife(peter)], [john], [john][peter], Y2),
6ca. success, with Y2 = [peter]
5cb. P tr `SLD time([peter] • [peter])
6cb. P tr `SLD derive(ε, [peter], [peter][peter], Y3),
7cd. success, with Y3 = ε

IX.4. Translating NemoLOG programs into Horn clause logic 101

Notice that the steps of the derivations closely correspond to the step of the derivations
in Example IX.2.2 and IX.2.1.

The correctness of the whole process of translation is given by the following theorem.

Theorem IX.4.1 (Correctness of the Translation) Let P be a program and G a goal
in NemoLOG, then

P, ε `o G iff P tr ∪ derive/4 `SLD Gtr

where P tr and Gtr are the new program after applying procedures of Definition IX.4.1 and
the translated goal, respectively, `SLD is standard operational derivability relation for Horn
clause logic, and derive/4 is defined on the basis of the set of inclusion axiom clauses in
P .

Proof. It follows easily by the above argumentation. 2

Remark IX.4.1 This technique has been implemented and tested on several examples.
Since the performance of the translated program heavily depends on the predicate derive/4,
special care was devoted to its implementation. Unfortunately, it is not possible to define a
predicate derive/4 that works for any set of inclusion axiom clauses of a program because in
general, as we have already remarked, the derivation relation for the class of unrestricted
grammars is undecidable [Hopcroft and Ullman, 1979]. However, this is not for most
of interesting cases such as the ones shown in this chapter and in the Chapter X (see
Appendix A).

Translation methods for modal logics have been developed by many authors [Ohlbach,
1993b] as an alternative approach to the development of specific theorem proving techniques
and tools. In fact, by translating a modal theorem into predicate logic, it is possible to use
a standard theorem prover without the need to build a new one.

The translation methods for modal logics are based on the idea of making explicit
reference to the worlds by adding to all predicates an argument representing the world
where the predicate holds, so that modal operators can be transformed in quantifiers of
classical logic. In particular, in the functional approach [Ohlbach, 1991; Auffray and
Enjalbert, 1992], accessibility is represented by means of functions: a modal operator [m]
is translated into ∀Fm, where Fm is a function of sort m, and the worlds will always be
represented by a composition of functions, such as Fm1

• . . . • Fmn
. For instance, the

following NemoLOG modalized clause

[wife(peter)]([john]time :− [peter]time)

will be translated into

∀Fwife(peter)((∀Gjohntime(Fwife(peter) •Gjohn)) :−
(∀Hpetertime(Fwife(peter) •Hpeter)))

102 IX. A Programming Language

This translation is correct if the accessibility relation is assumed to be serial and if the
domain of interpretations is constant. We can assume that these conditions hold in our
case. The above formula can be transformed to clausal form as follows

time(Fwife(peter) •Gjohn) :− time(Fwife(peter) • cpeter)

where cpeter is a Skolem constant of sort peter. Note that, since the body is negated, all
universally quantified variables in the body have to be skolemized.

The properties of the accessibility relation, such as reflexivity or transitivity, can usually
be described with equations which can be translated into a theory unification algorithm.
In our case, for instance, a variable Fwife(peter) can derive any sequence of functions of sort
wife(peter) and peter, whereas a variable Fpeter can derive only a function of sort peter.

It is easy to see that this approach closely corresponds to our translation. Sequences
of functions in the functional approach correspond to sequences of modal operators in our
case and the equational unification is performed by predicate derive/4 (in our case we do
not need full unification, but only matching).

Chapter X

Applications

One of the aims at defining our modal extension of Horn clause logic is to provide struc-
turing facilities as a basic feature. Modal operators can be used to this purpose. They can
be used to define modules, by associating a modality [ti] with each module, and, in a more
general setting, to provide reasoning capabilities in a multiple agent situation, by associat-
ing a modality [ti] with each agent. Furthermore, this language provides some well-known
features of object-oriented programming, like the possibility of representing dependencies
among modules in a hierarchy, and the notion of self to reason on this hierarchy.

In the following we show these features through some examples. For readability, we use
the standard Prolog syntax extended with modal operators.

X.1 Beliefs, knowledge, and actions representation

We have already remarked that multimodal systems are particularly suited to formalize
knowledge and belief operators or to reasoning about actions. NemoLOG inherits this
ability, Program IX.2 is an example.

Example X.1.1 is a variant of the above mentioned example that introduce a slightly
weaker version of the common knowledge operator in [Halpern and Moses, 1992] already
used in Example II.3.4. Example X.1.2, instead, uses modal operators to represent actions.

Example X.1.1 (Epistemic reasoning and common knowledge: The friends puzzle II) Let us
consider the Example II.3.3, it is reasonable to think that the information that “Peter knows
that if John knows the place and the time of their appointment, then John knows that he has an
appointment”, it is, indeed, a common knowledge. We use the modal operator [fool] to represent
this kind of information in Program X.1.

Program X.1 : The friends puzzle II.

[fool] → [fool][fool]
[fool] → ε
[fool] → [peter]
[fool] → [john]

103

104 X. Applications

[fool] → [wife(peter)]
[peter][john] → [john][peter]
[peter] → [peter][peter]
[peter] → ε
[john] → [john][john]
[john] → ε
[wife(peter)] → [peter]
[wife(peter)] → [wife(peter)][wife(peter)]
[wife(peter)] → ε

[peter]time.
[peter][john]place.
[wife(peter)]([john]time :− [peter]time).
[fool](appointment :− place, time).

Remark X.1.1 As already remarked above, our modal operator [fool] can be taken as
a weaker version of the common knowledge operator. In fact, in the possible-worlds se-
mantics associated, differently that the one in [Halpern and Moses, 1992], the accessibility
relation associated to [fool] includes the transitive and reflexive closure of the union of the
accessibility relations associated with the other epistemic operators and not to be equal
to it (see also Remark VI.2.1). That means that [fool] cannot be regarded as a common
knowledge operator, though it shares some of its properties. In particular, in our example,
the formula:

ϕ ∧ [fool](ϕ ⊃ [peter]ϕ ∧ [john]ϕ ∧ [wife(peter)]ϕ) ⊃ [fool]ϕ

(the induction axiom for common knowledge) is not valid in the possible-worlds semantics of
our language, while it is expected to be a valid formula when [fool] is a common knowledge
operator. In [Genesereth and Nilsson, 1987] a similar weaker version of common knowledge
operator is suggested. To explain this notion of common knowledge, in [Genesereth and
Nilsson, 1987] a fictitious knower has been assumed, sometimes called any fool. What any
fool knows is what all other agents know, and all agents know that others know (and so
on). In other words, instead of regarding common knowledge as an operator over beliefs
of agents, it is regarded as a new agent which interacts with the others.

The following example presents a modal version of the well-known “shooting problem”.
The solution proposed, differently than [Baldoni et al., 1997b], is monotonic and the frame
axiom is explicitly represented in the clauses.

Example X.1.2 (Reasoning about actions: The shooting problem) Assume that our language
contains a K modality [a] for each possible atomic action a, and modalities [s1; s2] to represent
sequences of actions and a modality [ε] to represent the initial state. The set A will contain
the logical axioms [s1][s2]α ⊃ [s1; s2]α, for all action sequences s1 and s2. We formalize the well
known “shooting problem” with the Program X.2.

Program X.2 : Shooting problem.

X.2. Defining modules 105

(1) [S1][S2] → [S1; S2]

(2) [ε]alive.
(3) [ε]unloaded.
(4) [S]([shoot]dead :− loaded).
(5) [S; load]loaded.
(6) [S]([A]alive :− alive, A 6= shoot).
(7) [S]([shoot]alive :− alive, unloaded).
(8) [S]([A]loaded :− loaded, A 6= shoot).
(9) [S]([A]unloaded :− unloaded, A 6= load).

Clauses (2) and (3) represent the initial facts, the clauses (4) and (5) the causal rules, and
the clauses (6)-(9) the frame axioms. In this example it is worth using modalities labeled
with terms which contains variables to represent arbitrary sequences of actions. The goal G =
[ε; load; wait; shoot]dead succeeds with the following derivation.

1. ε `o [ε; load; wait; shoot]dead
2. [ε; load; wait; shoot] `o dead

3. [ε; load; wait] `o loaded by clause (3) and S = ε; load; wait and

[ε; load; wait][shoot]
∗
⇒Ax [ε; load; wait; shoot],

4. [ε; load] `o loaded by clause (7) and S = ε; load, A = wait and

[ε; load][wait]
∗
⇒Ax [ε; load; wait],

5. success, by clause (4) and S = ε and [ε; load]
∗
⇒Ax [ε; load].

It is interesting to note the also the goal G′ = [Z]dead succeeds with Z = ε; load; shoot.

X.2 Defining modules

One of the main motivations in defining this language comes from the need of structuring
facilities to enhance modularity, readability and reusability of logic programs. This problem
has been addressed in the literature using many different approaches (like the meta-level
approach [Bowen and Kowalski, 1982; Brogi et al., 1992], the algebraic approach [O’Keefe,
1985; Mancarella and Pedreschi, 1988; Brogi et al., 1994], and the approach based on use
of higher-order logic [Nait Abdallah, 1986; Chen, 1987]) and, in particular, it has been
tackled by extending the language of Horn clauses with implications embedded in goals,
as proposed in [Miller, 1989a; Monteiro and Porto, 1989; Giordano et al., 1992; Lamma
et al., 1993; Giordano and Martelli, 1994] (see [Bugliesi et al., 1994] for a survey of the
different approaches).

In this section we show, through some examples, that the language we have introduced
is well suited to define module constructs. And, in particular, it allows to introduce
structuring constructs in logic programs while preserving their logical semantics.

The key idea is to use a modal operator [mi] of type K for representing what is true in
a module, i.e. each label mi can be regarded as a module name (see also [Baldoni et al.,
1993; Baldoni et al., 1997a]).

106 X. Applications

Flat collection of modules

As we have mentioned above, a modal operator [mi] of type K can be associated with a
module and can be used to represent what is true in it. In this case, the term mi can be
regarded as a module name. This provides a simple way to define a flat collection of modules
and to specify the proof of a goal in a module. In particular, if Ds is a set (conjunction)
of clauses we may define the clauses in Ds as belonging to module mi through the module
definition

[export][mi]Ds.

The modality [export] of type KT4 in front of the module definition is needed to make
the definition visible in any context (and, in particular, from inside other modules). To
this purpose the inclusion axiom

I(export,mi) : [export]ϕ ⊃ [mi]ϕ

is required. To prove a goal G in module mi, we have simply to write the goal

[mi]G.

Initially, we assume that clauses in a module must have the form G ⊃ A, where G may
contain occurrences of goals [ai]G.

Example X.2.1 (Bubblesort I) Consider the simple Program X.3 containing two module defi-
nitions. For readability, we put module name in front of the sequence of clauses of the module,
rather than in front of each one.

Program X.3 : Bubblesort I.

[export] → ε
[export] → [export][export]
[export] → [list]
[export] → [sort]

[export][list] {
append([], X, X).
append([X|Y], Z, [X|Y1]) :−

append(Y, Z, Y1). . . .} % End of module list.

[export][sort] {
busort(L, S) :−

[list]append(X, [A, B|Y], L),
B < A,
[list]append(X, [B, A|Y], M),
busort(M, S).

busort(S, S). . . .} % End of module sort.

X.2. Defining modules 107

The module list contains the definition of append and other predicates on list, while the
module sort contains the definition of the predicate busort for ordering a list according to the
bubblesort algorithm.

The goal [sort]busort([2, 1, 3], S) succeeds with answer S = [1, 2, 3]. Note that, in its compu-
tation, the subgoal append(X, [A, B|Y], [2, 1, 3]) has to be proved in the context [sort][list] and,
hence, it can only be proved by making use of the clauses in the module list. In fact, the clauses
in module sort cannot be used in the context [sort][list], since all of them are prefixed by the
sequence of modalities [export][sort] which does not derive [sort][list] by means of Ax.

Composition of modules: exporting information

In the previous section modules are closed environments, and they cannot be composed.
Thus, in this case, the query [m1][m2]G which succeeds if G can be proved from the clauses
in module m2, is completely equivalent to the query [m2]G.

However, our language also enables modules to be defined as open environments, so that
proving the query [m1][m2]G amounts to prove the goal G in the composition of modules
m1 and m2. Languages providing modularity features of this kind have been presented in
[Miller, 1989a; Monteiro and Porto, 1989; Lamma et al., 1993]. Also, a similar point of
view has been taken in [Bugliesi, 1992], where a declarative characterization of inheritance
is defined, and in [McCabe, 1992], where an extension of logic programming is proposed
to capture the main features of object-oriented programming.

When a module is regarded as being open, it is allowed to export some information to
the external environment. Consider for instance the query [m1][m2][m3]G, the goal G must
be proved in the composition of modules m1, m2 and m3. The ordering of modules in the
query determines the direction in which information is exported: each module can export
information to the modules following it in the sequence.

In our language, different forms of module composition can be obtained by making
use of the already introduced modal operator [export] to control the information (either
clauses or derived facts) that can be exported by a module. In particular, we can make a
distinction among: clauses that are local to the module in which they are defined,

G ⊃ A

(as in the Example X.2.1), clauses that are wholly exported by the module,

[export](G ⊃ A)

(we call these clauses dynamic), and clauses that only export their head (consequences),

G ⊃ [export]A

(we call these clauses static). This feature allows to model different kinds of modules
presented in the literature (so that in each situation the kinds of module that suit better
can be adopted).

108 X. Applications

Example X.2.2 (Bubblesort II) Let us consider Program X.4 another formulation of the previ-
ous example, which makes use of static clauses.

Program X.4 : Bubblesort II.

[export] → ε
[export] → [export][export]
[export] → [list]
[export] → [sort]

[export][list] {
[export]append([], X, X).
[export]append([X|Y], Z, [X|Y1]) :−

append(Y, Z, Y1). . . .} % End of module list.

[export][sort] {
[export]busort(L, S) :−

append(X, [A, B|Y], L),
B < A,
append(X, [B, A|Y], M),
busort(M, S).

[export]busort(S, S). . . .} % End of module sort.

In this formulation, differently from the previous one, the subgoals append in the body of the
first clause for busort are not preceded by the modal operator [list], and hence, they must be
proved in the current context, in which a definition of the append predicate must be provided.
This can be done by asking the query [lists][sort]busort([2, 1, 3], S), that is, by asking for a
proof of the goal busort([2, 1, 3], S) in the composition of the two modules list and sort. The
query succeeds from the program.

The predicate append is exported from module list (which contains static clauses) and thus
it is visible from sort. Note that the body of the second append clause must be proved only in
the module list and its proof cannot use any predicate defined within module sort.

Remark X.2.1 When, as in Example X.2.2, static visibility rules are used, our language
has a behavior similar to that of the language proposed in [Monteiro and Porto, 1989;
Monteiro and Porto, 1990]. A difference between the two languages is that their language
adopts predicate overriding between modules, that is, given a query [m1][m2][m3]G, the
clause definitions for the predicate p in m3 override (cancel) the definitions of p in m2 and
in m1. In our language, on the other hand, the definitions of a predicate may be spread in
different modules, and all of them can be used.

Nested modules

In the previous sections we have seen some programs consisting of a flat collection of
modules. However, NemoLOG also allows nested modules to be defined. By exploiting the

X.2. Defining modules 109

feature that clauses can be preceded by an arbitrary sequence of modal operators, we can
generalize module definitions [export][mi]Ds, given above, as follows:

[export][mi][mj]Ds

where the module mj is defined locally to mi, and it becomes visible whenever mi is entered.
The following example (from [Goldberg and Robson, 1983]) shows how we can use

nested modules.

Example X.2.3 (Dictionary) We define a dictionary of pairs (name, value) with two possible
implementations. The first one, named fast, makes use of a search tree and can be used for
big dictionaries, where fast access is important. The second one, named small, makes use of
a list and can be used for small dictionaries, if we want to minimize the space needed to store
information. The formulation is given by Program X.5.

Program X.5 : Dictionary.

[export] → ε
[export] → [export][export]
[export] → [dictionary]
[export] → [small]
[export] → [fast]

[export][dictionary] {

[export](getvalue(Name, Value, Dictionary) :−
not empty(Dictionary),
search(Name, Dictionary, Value)).

[export](putvalue([Name, Value], Dictionary, NewDictionary) :−
not member(Name, Dictionary),
insert([Name, Value], Dictionary, NewDictionary)).

[fast] {
not empty([[Name, Value], L, R]).
search(Name, [[Name, Value], ,], Value).
search(Name, [[Name1,], L, R], Value) :−

Name < Name1,
search(Name, L, Value). . . . } % End of module fast.

[small] {
not empty([[Name, Value]|L]).
search(Name, [[Name, Value]|], Value).
search(Name, [[Name1,]|L], Value) :−

Name 6= Name1,
search(Name, L, Value). . . . } % End of module small.

. . . } % End of module dictionary.

110 X. Applications

The module dictionary contains the definition of getvalue, which returns the value associated
with a name, and putvalue, which insert a new pair (name, value) in a dictionary if it is not
already a member of it. The module dictionary also contains two nested modules, fast and
small, which describe the predicates used in the definition of getvalue and putvalue, in the
case we wish to use a fast dictionary or a small dictionary, respectively. Then, we can retrieve a
value associated to a name in a fast dictionary by asking the goal

[dictionary][fast]getvalue(Name, V alue)

Note that we can use module fast only when module dictionary is entered. In fact, using mod-
ule fast (respectively small) is meaningful only when it is composed with module dictionary.
Observe, moreover, that the usage of a dynamic clause for predicates getvalue and putvalue in
module dictionary is due to the fact that they use predicates defined in module fast (respec-
tively, small).

Parametric modules

Parametric modules are an important features of a module system. They allow to enhance
the modularity [Giordano et al., 1994; Hill, 1993] as well as to support some aspects
of object-oriented [McCabe, 1992; Monteiro and Porto, 1990; Lamma et al., 1993]. In
NemoLOG a modalized defined clause can be of the form

∀x[t(x)](Ds(x))

where the variable x is free in the set of clauses Ds(x). Indeed, the above formula is
also the definition of a module and, in particular, of a parametric module. In NemoLOG,
parametric modules can be obtained by sharing some variables between the label of the
modalities (the name of a module) and their associated clauses (the body of a module).

Example X.2.4 (Bubblesort III) Let us consider the module definition in Program X.6

Program X.6 : Bubblesort III.

[export] → ε
[export] → [export][export]
[export] → [list]
[export] → [ascending]
[export] → [descending]
[export] → [sort(ascending)]
[export] → [sort(descending)]

[export][list]{
append([], X, X).
append([X|Y], Z, [X|Y1]) :−

append(Y, Z, Y1). . . .} % End of module list.

X.2. Defining modules 111

[export][ascending]{
ordered(X, Y) :− X < Y. . . .} % End of module ascending.

[export][descending]{
ordered(X, Y) :− X > Y. . . .} % End of module descending.

[export][sort(Order)]{
busort(L, S) :−

[list]append(X, [A, B|Y], L),
[Order]ordered(B, A),
[list]append(X, [B, A|Y], M)
busort(M, S).

busort(S, S). . . .} % End of module sort.

As already seen, the module lists contains the definition of append and the other predicates
on lists, while the module sort(Order) contains the definition of the predicate busort as in
Program X.3. In order to parameterize the algorithm with respect to the type of the order, we
introduce two modules, named ascending and descending, which contain two different definition
of the predicate ordered. Now, we can specify a particular order through the variable Order.
Thus, the goal

[sort(ascending)]busort([2, 1, 3], S)

succeeds with answer S = [1, 2, 3], while the goal

[sort(descending)]busort([2, 1, 3], S)

succeeds with answer S = [3, 2, 1].

Nested and parametric modules can be used in supporting the notion of an abstract
data-type. Program X.5 and X.6 are examples of this. The following example shows how
to extend the Program X.6 in order to deal with pairs of natural number instead of only
simple natural number.

Example X.2.5 (Bubblesort IV) We can extend Program X.6 to deal also with pairs of number
simply adding the module in Program X.7

Program X.7 : Bubblesort IV.

[export] → [cartesian(Ord1, Ord2)]

[export][cartesian(Ord1, Ord2)]{
ordered([X, Y], [U, V]) :−

[Ord1]ordered(X, U).
ordered([X, Y], [X, V]) :−

[Ord2]ordered(Y, V). . . .} % End of module cartesian.

112 X. Applications

The module cartesian(Ord1, Ord2) specifies the predicate ordered for pairs of number. Note
that this module is parametric so that we can choose by means of the variables Ord1 and Ord2

the kind of ordering for each element of the pairs. The goal

[sort(cartesian(ascending, descending))]busort([[3, 4], [1, 6], [3, 2], [10, 5]], S)

succeeds with answer S = [[1, 6], [3, 4], [3, 2], [10, 5]].

X.3 Inheritance and hierarchies

Another important problem related with providing support for software engineering is the
integration of logic programming and object-oriented paradigms [McCabe, 1992; Bugliesi,
1992] (see also [Bugliesi et al., 1994, Section 3.6] and [Turini, 1995]). A significant proposal
to tackle this problem is the class template language presented in [McCabe, 1992], where the
idea of representing an object as a first-order logic theory is exploited. McCabe interprets
attributes and methods of an object as a set of formulae. Classes are introduced by means
of parametric modules whose parameters play the role of instance variables of the object-
oriented languages. Class rules allow to specify the structure of the classes and, thus, the
inheritance hierarchy.

From a different perspective, in the following examples, we show how modal logics can
be used to obtain some features of object-oriented paradigms, although we do not deal
with the state of objects. In particular, hierarchical dependencies among modules can
be represented both by means of nested modules and by inclusion axiom schemas. For
example, if [mi]Dsi and [mj]Dsj represent two modules, the inclusion axiom

[mi]ϕ ⊃ [mj]ϕ

says that all the clauses of module mi are exportable into module mj; in different words
mj is a more specific subclass of mi. Besides, a behavior similar to the use of self can be
obtained by means of the previously introduced modal operator [export] and using dynamic
clauses.

Example X.3.1 (Animal taxonomy I) This is an example of the usefulness of dynamic clauses
in nested modules. It is taken from [Brogi et al., 1990b] and describes inheritance in a hierarchy
of modules. Program X.8 describes a simple taxonomy that has three levels: the root (animal),
which contains the subclasses horse, bird, and tweety, which is a subclass of bird.

Program X.8 : Animal taxonomy I.

[export] → ε
[export] → [export][export]
[export] → [animal]
[export] → [bird]
[export] → [tweety]

X.3. Inheritance and hierarchies 113

[export][animal] {
[export]mode(walk).
[export](mode(run) :− no of legs(X), X ≥ 2).
[export](mode(gallop) :− no of legs(X), X = 4).

[horse] {
[export]no of legs(4).
[export]covering(hair). . . .} % End of module horse.

[bird] {
[export]no of legs(2).
[export]covering(feather).
[export]mode(fly).

[tweety] {
[export]owner(fred). . . .} % End of module tweety.

. . .} % End of module bird.

. . .} % End of module animal.

The goal

[animal][bird][tweety]mode(run)

succeeds, since the clause defining mode(run) is exported by the module animal and its body
can be evaluated in the current context, including module bird which contains the information
no of legs(2). The goal would fail, if the modality [export] in front of the clause

[export](mode(run) :−no of legs(X), X ≥ 2)

in module animal were omitted. By using clauses preceded by the operator [export] (dynamic
clauses) we can achieve a result somewhat similar to the use of self in object-oriented languages,
by allowing methods of a class to use information coming from a more specific class.

In the following example we show how to obtain the same description of Example X.3.1
but using inclusion axioms to describe the hierarchical dependency among modules instead
of nested modules.

Example X.3.2 (Animal Taxonomy II) Let us consider again the four classes animal, horse,
bird and tweety. Since what is true for animals is also true for birds and horses, the bird and
horse class inherit from the animal class. Moreover, the class tweety inherits from bird and thus
from animal. To model this situation, we use the following set of inclusion axioms for defining
the inheritance rules:

I(animal, horse): [animal]α ⊃ [horse]α
I(animal, bird): [animal]α ⊃ [bird]α
I(bird, tweety): [bird]α ⊃ [tweety]α

Thus, the Program X.8 becomes the following.

114 X. Applications

Program X.9 : Animal taxonomy II.

[animal] → [horse]
[animal] → [bird]
[bird] → [tweety]

[animal]{
mode(walk).
mode(run) :− no of legs(X), X ≥ 2.
mode(gallop) :− no of legs(X), X = 4. . . .} % End of module animal.

[horse]{
no of legs(4).
covering(hair). . . .} % End of module horse.

[bird]{
no of legs(2).
covering(feather).
mode(fly). . . .} % End of module bird.

[tweety]{
owner(fred). . . .} % End of module tweety.

The goal [tweety]mode(run) succeeds, since the clause defining mode(run) is inherited by the class
tweety from animal.

Note that, Program X.9 enjoys some distinctive characteristics with respect to the Pro-
gram X.8:

• we do not need to use dynamic clause inside a module for export its clauses; and

• we do not need to specify the whole hierarchy to query something about a class (tweety in
the example) even with statically configured module systems [Brogi et al., 1990b]. Inclusion
axiom clauses works like class rules in class template language of McCabe.

Finally, it is also interesting to note that we can ask goals like [X]mode(fly). In fact, it succeeds
with answers X = bird and X = tweety.

The following example, inspired from [McCabe, 1992], shows another interesting feature
of NemoLOG related to the use of parametric modules and axiom clauses.

Example X.3.3 The class human(S, A) is a subclass of animal. It is defined by a parametric
module whose parameters allow to specify the attribute age and sex of a particular instance of a
human. Furthermore, we define the class mathematician that is not subclass of any other class.

Program X.10 : Humans.

X.3. Inheritance and hierarchies 115

[animal] → [human(S, A)]

[human(S, A)]{
sex(S).
age(A).
no of legs(2).
likes(logic) :−

sex(male),
age(Ag),
Ag < 40.

likes(logic) :−
sex(female).

. . .} % End of module human.

[mathematician]{
likes(logic).
likes(math).
. . .} % End of module mathematician.

[human(male, 30)] → [peter]

[human(female, 42)] → [jane]

[human(male, 45)] → [john]
[mathematician] → [john]

Now, the axiom clauses are used both to specify a hierarchical structure among modules and to
create particular instance of the class human. Then, peter, jane, and john are the instance of
the class human and inherits all its content. Thus, the goal

[peter](mode(walk) ∧ likes(logic))

succeeds because peter is a human aged 30 and because he is an animal and, then, he can walk.
It is interesting to note that, despite the fact that john is a human aged 42, the goal

[john](mode(walk) ∧ likes(logic))

succeeds. In fact, john is also a mathematician and, then, inherits both from the class human
and from the class mathematicial (multiple inheritance).

Evolving and conservative systems with dynamic or static config-
uration of modules

In [Brogi et al., 1990a; Brogi et al., 1990b; Lamma et al., 1993] a general unifying framework
for structuring logic programs, called Ctx Prolog, is presented. It is inspired by the works
in [Monteiro and Porto, 1989; Miller, 1989a] and it is aimed at giving a framework in which
different proposals for structuring logic programs can be described and compared.

116 X. Applications

A program in Ctx Prolog is a collection of named modules (unit) while goals are proved
in variable sets of clauses (context) obtained by suitably combining units by means of the
extension operators “>>” (cactus extension) and “>>>” (linear extension). In particular,
in Ctx Prolog a distinction is made between statically and dynamically configured systems
and between conservative (or nested) and evolving (or global) policies to establish bindings
of predicate calls (this distinction roughly corresponds to the distinction between static
and dynamic visibility rules for non-local predicate definitions in [Giordano and Martelli,
1992; Giordano and Martelli, 1994]).

A statically configured system is defined as a system where hierarchies among units are
specified when units are defined. In these systems the context in which a unit is used does
not depend on the dynamic sequence of goals but is always fixed when the unit is defined.
For instance, in [Lamma et al., 1993], to specify that whenever a unit m1 is used, it is used
only in the context of the modules m2, m3, and m4 a definition of the form

unit(m1, closed([m2, m3, m4]))

takes place in the program. On the contrary, the context of unit m1 can be different in
different queries.

In our language, nested modules allows to describe a sort of statically configured mod-
ules. Let us consider the Example X.3.1, the module tweety is visible only if bird and
animal are entered. However, nested modules does not model the meaning of static con-
figuration of modules as given in [Lamma et al., 1993], In fact, since animal is exportable,
the sequence of modules [animal][bird][tweety] can be the suffix of different contexts and,
thus, tweety can inherit information not only from animal and bird. On the other hand,
module animal needs to be defined exportable in order to make it visible inside other
modules.

Nevertheless, statically configured modules can be allowed by introducing a new modal
operator [public] of type S4 to control the information that can be exported by a module
(instead of [export]) and the modal operator [closed] of type K to make a context closed.

Example X.3.4 (Statically and dynamically configured systems) Let us consider three modules,
named respectively m1, m2 and m4. Modules m1 and m2 are static, while module m3 is dynamic
[Brogi et al., 1990a, Example 6].

Program X.11 : Statically and dynamically configured systems.

(1) [export] → ε (2) [public] → ε
(3) [export] → [export][export] (4) [public] → [public][public]
(5) [export] → [closed]
(6) [export] → [m1] (7) [public] → [m1]
(8) [export] → [m2] (9) [public] → [m2]
(10) [export] → [m3] (11) [public] → [m3]

(12) [m1][public] → [m2]

X.3. Inheritance and hierarchies 117

[export][m1] {
(13) [public]b. }

[export][m2] {
(14) [public]a :− b.}
(15) [public]a′ :− b′.}

[export][m3] {
(16) [public]c :− [closed][m2]a.
(17) [public]c′ :− [closed][m2]a

′.
(18) [public]b′. }

In this way, m2 always inherits the “public” information of module m1 (by means of the inclu-
sion axiom clause [m1][public] → [m2]) but not the other ones. The goal [m3]c has the following
successful derivation:

1. ε `o [m3]c
2. [m3] `o c

3. [m3] `o [closed][m2]a by clause (16) and [export][m3]
∗
⇒Ax [m3], [m3][public]

∗
⇒Ax [m3]

4. [m3][closed] `o [m2]a
5. [m3][closed][m2] `o a

6. [m3][closed][m2] `o b by clause (14) and [export][m2]
∗
⇒Ax [m3][closed][m2],

[m3][closed][m2][public]
∗
⇒Ax [m3][closed][m2]

7. success, by clause (13) and [export][m1]
∗
⇒Ax [m3][closed][m1],

[m3][closed][m1][public]
∗
⇒Ax [m3][closed][m2]

On the other hand, the goal [m3]c
′ does not succeed since clause (18) is not visible inside the

context [m3][closed][m2] because [export][m3][public] does not derive [m3][closed][m2]. In other
worlds, the modal operator [closed] in front of a goal has the effect of closing a context.

We said that the proposal in [Brogi et al., 1990a; Brogi et al., 1990b; Lamma et al.,
1993] makes a a distinction between conservative and evolving policies. More precisely, it
is possible in Ctx Prolog to put the symbol “#” in front of the atomic goals. #p means
that p is a lazy atom and, operationally, it has to be solved dynamically from the current
context of modules. This gives the evolving policy. On the other hand, if the operator
“#” is not used in front of an atomic goal (eager atom), it means that the atom coming
from a module has to be solved statically only using clauses defined in that module or in
externally nested modules. This gives the conservative policy.

In order to support both binding policies, a rather complex operational semantics, which
makes use of two context have to be maintained during a computation: the global context
and the partial context. Accordingly, two context extension operators >> and >>> are
provided in Ctx Prolog. The former, the cactus extension, has a static behavior and
extends the partial context while the latter, the linear extension, has a dynamic behavior
and extends the global context.

In NemoLOG, we can use dynamic clauses and static clauses to model Ctx Prolog
extended clauses whose body consist of all lazy and eager atoms, respectively.1 For ex-

1Where, however, we use the modal operator [public] instead of [export].

118 X. Applications

ample, the Ctx Prolog clause p :− #q,#r corresponds to the dynamic NemoLOG clause
[public](p :− q, r), while the clause p :− q, r corresponds to static clause [public]p :− q, r.
In the case of extension operators, both cactus extension u >> G and linear extension
u >>> G are modeled by the NemoLOG goal [u]G. The cactus extension can be regarded
as the modalized goal [u]G occurring in a static clause, while the linear extension as the
modalized goal [u]G occurring in a dynamic clause. Note that in Ctx Prolog both lazy and
eager atoms (linear and cactus extension) are allowed to occur in the same clause body. For
instance, p :− #q, r is a clause. Such a clause cannot be directly represented in NemoLOG

because our distinction is made at the level of clauses and not at the level of goals. How-
ever, it is sufficient to use two clauses instead of a single one as [public](p :− q, s) and
[public]s :− r, where s is a dummy proposition. In this way the subgoal q is proved
dynamically, while r is proved statically (see also [Giordano and Martelli, 1992]).

Though there is a correspondence between the conservative and evolving policies in
Ctx Prolog and the use of dynamic and static clauses as we have introduced, this corre-
spondence is not perfect, as it is shown by the following example.

Example X.3.5 Let us consider the following Ctx Prolog and corresponding NemoLOG pro-
gram:

unit(m1) : [export][m1]{
a :− d. [public]a :− d.
d :− #b. [public](d :− b).}

unit(m2) : [export][m2]{
b. [public]b.}

Then, both the goal m1 >> m2 >> d and the goal m1 >> m2 >> a succeed, while it does not in
our language, i.e. the goal [m1][m2]d succeeds and [m1][m2]a fails. In fact, in this case, though
the atom d in the body of the clause a :− d is eager and therefore has to be solved with a clause
in m1, the subgoals generated by it can be solved dynamically. Indeed, the proof of the eager goal
d cam make use of the atom b defined in the nested module m2. This behaviour is allowed by
means of using two context (the global one and the partial one) instead of a single one as the
operational semantics we have defined for NemoLOG (see also [Giordano and Martelli, 1992]).

Chapter XI

Fixed Point Semantics

In this chapter, we present a fixpoint semantics for our language, which is used to prove
soundness and completeness of the proof procedure in Section IX.2 with respect to the
model theory defined in Section V.2. We also show that there is no loss of generality
in restricting first-order Kripke A-interpretations to those in which the domain at each
world is the Herbrand universe. It is worth noting that the TP operator, canonical model
construction, and all definitions and proofs are modular with respect to the underlying
logic of the program specified by means of its set of inclusion axiom clauses.

XI.1 Immediate consequence transformation

We define an immediate consequence operator TP based on a relation of weak satisfiability
for closed goals in the line of [Miller, 1989a]. This allows to capture the dynamic evolution
of the modal context in the operational semantics during a computation.

Completeness with respect to the model theory is proved by a Henkin-style canonical
model construction, which is similar to the one given in [Bonner et al., 1989].

Interpretations and weak satisfiability

The weak satisfiability is defined on a Kripke-like semantics, where each world represents a
modal context and it interprets the program at that modal context. As a result, we define
an interpretation for a program P as any function I : C∗ → 2B(P); that is a mapping
from modal contexts to Herbrand interpretations of the program P . We denote by = the
set of all interpretations. It is easy to note that (=,v=) is a complete lattice, where v=

is defined as the ordering I1 v= I2 if and only if (∀Γ ∈ C∗) I1(Γ) ⊆ I2(Γ). The bottom
element, denoted by ⊥, is the interpretation ⊥ such that ⊥(Γ) = ∅, for all context Γ ∈ C∗.
Moreover, we define the join, denoted by “t”, of two interpretations I1 and I2 as the
interpretation (I1 t I2)(Γ) = I1(Γ) ∪ I2(Γ), and the meet, denoted by “u”, of I1 and I2 as
the interpretation (I1 u I2)(Γ) = I1(Γ) ∩ I2(Γ).

119

120 XI. Fixed Point Semantics

Definition XI.1.1 (Weak satisfiability) Let I be an interpretation and let Γ be a modal
context, and Ax a set of inclusion axiom clauses then, we say that a closed goal G of
NemoLOG is weakly satisfiable in I(Γ), denoted by I(Γ) ||=Ax G, by induction on the
structure of G as follows:

1. I(Γ) ||=Ax T ;

2. I(Γ) ||=Ax A iff A ∈ I(Γ);

3. I(Γ) ||=Ax G1 ∧G2 iff I(Γ) ||=Ax G1 and I(Γ) ||=Ax G2;

4. I(Γ) ||=Ax ∃xG′ iff I(Γ) ||=Ax G
′[t/x], for some t ∈ UP ;

5. I(Γ) ||=Ax [t]G′ iff I(Γ′) ||=Ax G
′, for all Γ′ ∈ C∗ such that Γ[t]

∗
⇒Ax Γ′.

Given an interpretation I and a context Γ, I(Γ) ||=Ax G means that the goal G is true
in the interpretation associated with Γ.

Remark XI.1.1 In the rule 5) the derivation relation
∗
⇒Ax between modal context

depends on the choice of the set of axioms A. A goal [t]G holds in a world Γ if the goal G
is true in all worlds reachable from Γ, that is in all world Γ′ such that Γ[t]

∗
⇒Ax Γ′. This

allows to satisfy the inclusion relation properties of the Kripke A-interpretation which is
built by the fixed point semantics (as we will see from the canonical model construction at
the page 126).

TP operator

We are interested in finding an interpretation I such that G is operationally derivable
from 〈Ds,Ax〉 if and only if I(ε) ||=Ax G. This particular interpretation is the least fixed
point of the following immediate consequence transformation TP defined in the domain of
interpretations (=,v=). We denote with UP the Herbrand universe of P .

Definition XI.1.2 (Immediate consequence operator) Let 〈Ds,Ax〉 be a program of
NemoLOG, Γ a modal context, and let I be a interpretation, then we define a function TP

from interpretations to interpretations as follows:

TP (I)(Γ) = {A ∈ B(P) : Γb(G ⊃ ΓhA) ∈ [Ds] and Γ∗
bΓh

∗
⇒Ax Γ,

for some Γ∗
b such that Γb

∗
⇒Ax Γ∗

b , and I(Γ∗
b) ||=Ax G}.

To prove that TP is monotone and continuous we first state two lemmas concerning the
weak satisfiability. We present the proof for only the first lemma. The proof of the second
is similar.

Lemma XI.1.1 Given a set Ax of inclusion axiom clauses in NemoLOG, if I1 v= I2 then
I1(Γ) ||=Ax G implies I2(Γ) ||=Ax G, for all Γ ∈ C∗.

XI.1. Immediate consequence transformation 121

Proof. By induction on the structure of G.

G = T : Trivial.

G = A : If I1(Γ) ||=Ax A then, A ∈ I1(Γ) and, since I1 v I2, A ∈ I2(Γ). Hence I2(Γ) ||=Ax

A.

G = [t]G′ : If I1(Γ) ||=Ax [t]G′ then, I1(Γ
′) ||=Ax G

′ for all modal contexts Γ′ such that
Γ[t]

∗
⇒Ax Γ′. By inductive hypothesis, I2(Γ

′) ||=Ax G
′ and, thus, by definition of weak

satisfiability, I2(Γ) ||=Ax [t]G.

G = G1 ∧G2, G = ∃xG′ : Trivial, from definition of ||=Ax applying the inductive hypoth-
esis.

2

Lemma XI.1.2 Given a set Ax of inclusion axiom clauses in NemoLOG, let I1 v= I2 v=

I3 v= · · · be a sequence of interpretations. If G is a goal, Γ ∈ C∗ a modal context and
⊔

k∈ω Ii(Γ) ||=Ax G, then there exist a k ≥ 1 such that Ik(Γ) ||=Ax G.

Now we are ready to show that TP is monotone and continuous.

Theorem XI.1.1 Given a program P = 〈Ds,Ax〉 in NemoLOG, TP is monotone, that is,
if I1 v I2 then TP (I1) v= TP (I2).

Proof. Let I1 v= I2 and assume that Γ ∈ C∗ and A ∈ TP (I1)(Γ). Thus, there is a ground
clause Γb(G ⊃ ΓhA) ∈ [Ds] such that Γ∗

bΓh
∗
⇒Ax Γ, for some Γ∗

b such that Γb
∗
⇒Ax Γ∗

b , and
I(Γ∗

b) ||=Ax G. For Lemma XI.1.1 we have that I2(Γ
∗
b) ||=Ax G and A ∈ TP (I2)(Γ). Since

Γ and A are arbitrary, we have proved that TP (I1) v= TP (I2). 2

Theorem XI.1.2 Given a program P = 〈Ds,Ax〉 in NemoLOG, TP is continuous, that
is, if I1 v= I2 v= I3 v= . . . is a sequence of interpretations, then

⊔

k∈ω

TP (Ik) = TP





⊔

k∈ω

Ik



 .

Proof. We prove the inclusion in two directions.

1. If Ij v= tk∈ωIk for any j, j ≥ 1, we have, since TP is monotone, that TP (Ij) v=

TP (tk∈ω(Ik). j is arbitrary, so we can conclude

tk∈ωTP (Ik) v= TP (tk∈ωIk).

2. If Γ ∈ C∗ and A ∈ TP (tk∈ωIk)(Γ) then there is a ground clause Γb(G ⊃ ΓhA) ∈ [Ds]
such that Γ∗

bΓh
∗
⇒Ax Γ, for some Γ∗

b such that Γb
∗
⇒Ax Γ∗

b , and (tk∈ωIk)(Γ
∗
b) ||=Ax G.

By Lemma XI.1.2, there exists a k, k ≥ 1, such that TP (Ik)(Γ
∗
b) ||=Ax G and, thus,

A ∈ TP (Ik)(Γ) v= (tk∈ωTP (Ik)(Γ)). Γ and A are arbitrary, thus

TP (tk∈ω(Ik)) v= tk∈ωTP (Ik).

122 XI. Fixed Point Semantics

2

The transformation TP is monotone and continuous in (=,v=). Thus, the least fixed
point T ω

P of TP exists by monotonicity and, by continuity, we have T ω
P (⊥) =

⊔

k∈ω T
k
P (∅),

where T 0
P (∅) = ∅ and, for each k > 0, T k

P (∅) = TP (T k−1
P (∅)).

It is worth noting that for T ω
P (⊥) the following property holds. It is the fixpoint

semantics counterpart of the inclusion property of the Kripke A-interpretations.

Proposition XI.1.1 Let P = 〈Ds,Ax〉 be a program, G a closed goal and let Γ be a modal
context, then

T ω
P (⊥)(Γ) ||=Ax G implies T ω

P (⊥)(Γ′) ||=Ax G

for all context Γ′ such that Γ
∗
⇒Ax Γ′.

Proof. We prove, by double induction on k and the structure of G, that

T k
P (⊥)(Γ) ||=Ax G implies T k

P (⊥)(Γ′) ||=Ax G

for all Γ′ ∈ C∗ such that Γ
∗
⇒Ax Γ′ and k ≥ 0.

If k = 0 then the theorem holds trivially.
Let assume that the theorem holds for k − 1 and we prove it for k. We consider the

following cases, one for each possible structure of G.

G = T : Trivial.

G = A : If T k
P (⊥)(Γ) ||=Ax A then, A ∈ TP (T k−1

P (⊥))(Γ). Now, there are two cases:

1. A ∈ T k−1
P (⊥)(Γ). By inductive hypothesis on k, we have that A ∈ T k−1

P (⊥)(Γ′),
for all Γ′ ∈ C∗ such that Γ

∗
⇒Ax Γ′. Hence, A ∈ T k

P (⊥)(Γ′), for all Γ′ ∈ C∗ such
that Γ

∗
⇒Ax Γ′, by Theorem XI.1.1.

2. A 6∈ T k−1
P (⊥)(Γ). There is a clause Γb(G

′ ⊃ ΓhA) ∈ [Ds] such that Γ∗
bΓh

∗
⇒Ax Γ,

for some Γ∗
b such that Γb

∗
⇒Ax Γ∗

b , and T k−1
P (⊥)(Γ∗

b) ||=Ax G
′. Now, for all Γ′,

such that Γ
∗
⇒Ax Γ′, we have that Γ∗

bΓh
∗
⇒Ax Γ

∗
⇒Ax Γ′. Let us fix a Γ′, by

inductive hypothesis on k, we have that T k−1
P (⊥)(Γ∗′

b) ||=Ax G
′, for all Γ∗′

b ∈ C∗

such that Γ∗
b

∗
⇒Ax Γ∗′

b , in particular, since Γ∗
b

∗
⇒Ax Γ∗

b , T
k−1
P (⊥)(Γ∗

b) ||=Ax G
′.

Since Γ∗
bΓh

∗
⇒Ax Γ′, we have that A ∈ T k

P (⊥)(Γ∗
b) and, by Definition XI.1.2,

T k
P (⊥)(Γ′) ||=Ax A.

G = [t]G′ : If T k
P (⊥)(Γ) ||=Ax [t]G′ then, T k

P (⊥)(Γ∗) ||=Ax G
′, for all Γ∗ such that Γ[t]

∗
⇒Ax Γ∗.

Now, we have to prove that, ∀Γ′, Γ
∗
⇒Ax Γ′, T k

P (⊥)(Γ′) ||=Ax [t]G′, that is, ∀Γ′,
Γ

∗
⇒Ax Γ′, ∀Γ′∗, Γ′[t]

∗
⇒Ax Γ′∗, T k

P (⊥)(Γ′∗) ||=Ax G
′. Let us fix Γ′ and Γ′∗, we have

to prove that T k
P (⊥)(Γ′∗) ||=Ax G

′. Since Γ
∗
⇒Ax Γ′ and [t]

∗
⇒Ax [t], Γ[t]

∗
⇒Ax Γ′[t],

therefore Γ[t]
∗
⇒Ax Γ′∗ and, by inductive hypothesis, T k

P (⊥)(Γ′∗) ||=Ax G
′.

G = G1 ∧G2, G = ∃xG′: Trivial, from definition of weak satisfiability applying the induc-
tive hypothesis on the structure.

2

XI.2. Soundness and completeness 123

Related work

In [Balbiani et al., 1988] a fixpoint semantics is provided for an instance of MOLOG. In
particular, the declarative semantics associated to a program is developed in terms of a
tree, defined as the fixed point of a certain transformation TP . Such a tree represents the
minimal Kripke model of the program. In [Baudinet, 1989] a fixpoint characterization of
the declarative semantics of TEMPLOG programs is also given. Both of these languages
can be seen to belong to the class of intensional logic programs introduced in [Orgun and
Wadge, 1992]. There, a language-independent theory is developed, which can be applied
to a variety of intensional logic programming languages by investigating general properties
of intensional operators (of which modal operators are a special case). In particular, the
authors of [Orgun and Wadge, 1992] use a neighborhood semantics of Scott and Montague
as an abstract formulation of the denotations of intensional operators and they show that
intensional Horn programs (i.e. programs in which atomic formulas can be prefixed by any
sequence of intensional operators) have a fixed point characterization of the declarative
semantics under some conditions. In particular, intensional operators that appear in clause
heads have to be universal, monotonic and conjunctive, and those in clause bodies have
to be monotonic and finitary. Our language does not belong to the class of languages that
satisfy the above conditions. In fact, the universal modal operators used in clause bodies
are not finitary. Nevertheless, as we have seen, a fixed point semantics can be given to the
language.

XI.2 Soundness and completeness

In this section, we prove the soundness and completeness of fixed point semantics with
respect to both operational semantics and possible-worlds semantics. In particular, the
correspondence between the fixed point and declarative semantics is proved through a
canonical model construction.

With respect to operational semantics

The soundness of the fixed point semantics with respect to the operational semantics is
given by the following theorem.

Theorem XI.2.1 (Soundness) Let P = 〈Ds,Ax〉 be a program of NemoLOG and let G
be a closed goal, then

T ω
P (⊥)(ε) ||=Ax G implies P, ε `o G.

Proof. It is proved by showing, with a double induction on k and the structure of G, that
T k

P (⊥)(Γ) ||=Ax G implies P,Γ `o G, for any modal context Γ and k ≥ 0. In particular, for
the empty context ε, we have the main theorem.

If k = 0 then the theorem holds trivially.
Let us assume that the theorem holds for k− 1 and we prove it for k. We consider the

following cases, one for each possible structure of G.

124 XI. Fixed Point Semantics

G = T : Trivial.

G = A : If T k
P (⊥)(Γ) ||=Ax A then, A ∈ TP (T k−1

P (⊥))(Γ). Now, there are two cases:

1. A ∈ T k−1
P (⊥)(Γ). By inductive hypothesis on k, we have that P,Γ `o A.

2. A 6∈ T k−1
P (⊥)(Γ). Hence, there is a clause Γb(G

′ ⊃ ΓhA) ∈ [Ds] such that
Γ∗

bΓh
∗
⇒Ax Γ, for some Γ∗

b such that Γb
∗
⇒Ax Γ∗

b , and T k−1
P (⊥)(Γ∗

b) ||=Ax G′.
By inductive hypothesis on k, we have that P,Γ∗

b `o G
′ and, by definition of

operational derivability, P,Γ `o A.

G = [t]G′ : If T k
P (⊥)(Γ) ||=Ax [t]G′ then, T k

P (⊥)(Γ′) ||=Ax G
′, for all Γ′ such that Γ[t]

∗
⇒Ax Γ′.

By inductive hypothesis on the structure, P,Γ′ `o G
′, for all Γ′ such that Γ[t]

∗
⇒Ax Γ′.

In particular, since Γ[t]
∗
⇒Ax Γ[t], P,Γ[t] `o G

′, and, by definition of operational
derivability, P,Γ `o [t]G′.

G = G1 ∧G2, G = ∃xG′ : Trivial, from definition of operational derivability, applying the
inductive hypothesis on the structure.

2

The completeness of fixed point semantics with respect to operational semantics is
stated by the following theorem.

Theorem XI.2.2 (Completeness) Let P = 〈Ds,Ax〉 be a program of NemoLOG and let
G be a closed goal, then

P, ε `o G implies T ω
P (⊥)(ε) ||=Ax G.

Proof. It is proved by showing, by induction on the length h of the derivation of G, the
stronger property that, for any modal context Γ, if P,Γ `o G then T ω

P (⊥)(Γ) ||=Ax G.
If h is 1 then G must be T then, it is obvious that P,Γ `o T implies T ω

P (⊥)(Γ) ||=Ax T
by definition of weak satisfiability.

The length of the derivation is h + 1. Assume that the theorem holds for derivation
with length less or equal than h. We consider the following cases, one for each possible
structure of G.

G = T : Trivial.

G = A : If P,Γ `o A then there exists a clause Γb(G
′ ⊃ ΓhA) ∈ [Ds] such that Γ∗

bΓh
∗
⇒Ax Γ,

for some Γ∗
b such that Γb

∗
⇒Ax Γ∗

b , and P,Γ∗
b `o G′. By inductive hypothesis,

T ω
P (⊥)(Γ∗

b) ||=Ax G
′ and, by Definition XI.1.2, we have that A ∈ T ω

P (⊥)(Γ). Hence,
by definition of weak satisfiability, T ω

P (⊥)(Γ) ||=Ax A.

G = [t]G′ : If P,Γ `o [t]G′ then P,Γ[t] `o G
′. Hence, by inductive hypothesis, T ω

P (⊥)(Γ[t]) ||=Ax

G′ and, by Proposition XI.1.1, T ω
P (⊥)(Γ′) ||=Ax G

′, for all Γ′ such that Γ[t]
∗
⇒Ax Γ′.

Thus, by definition of weak satisfiability, we have that T ω
P (⊥)(Γ) ||=Ax [t]G′.

XI.2. Soundness and completeness 125

G = G1 ∧G2, G = ∃xG′ : Trivial, from the definition of weak satisfiability applying the
inductive hypothesis.

2

With respect to possible-worlds semantics

The soundness of fixed point semantics with respect to possible-worlds semantics is stated
by the following theorem.

Theorem XI.2.3 (Soundness) Let P = 〈Ds,Ax〉 be a program of NemoLOG, let G be a
closed goal and let Γ be a modal context, then

T ω
P (⊥)(ε) ||=Ax G implies |=A Ds ⊃ G

where A = {[t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ | [t1] . . . [tn] → [s1] . . . [sm] ∈ Ax}.

Proof. We prove, by double induction on k and the structure of G, that T k
P (⊥)(Γ) ||=Ax G

implies Ds |=A ΓG, for any modal context Γ and k ≥ 0.
If k = 0 then the theorem holds trivially.

Let us assume that the theorem holds for k− 1 and we prove it for k. We consider the
following cases, one for each possible structure of G.

G = T : Trivial.

G = A : If T k
P (⊥)(Γ) ||=Ax A then, A ∈ TP (T k−1

P (⊥))(Γ). Now, there are two cases:

1. A ∈ T k−1
P (⊥)(Γ). By inductive hypothesis on k, we have that Ds |=A ΓA.

2. A 6∈ T k−1
P (⊥)(Γ). Hence there is a clause Γb(G

′ ⊃ ΓhA) ∈ [Ds] such that
Γ∗

bΓh
∗
⇒Ax Γ, for some Γ∗

b such that Γb
∗
⇒Ax Γ∗

b , and T k−1
P (⊥)(Γ∗

b) ||=Ax G
′. Let

us assume that |=A Ds, in particular |=A Γb(G
′ ⊃ ΓhA). Since Γb

∗
⇒Ax Γ∗

b ,
|=A Γ∗

b(G
′ ⊃ ΓhA), hence |= Γ∗

bG
′ ⊃ Γ∗

bΓhA. Now, by inductive hypothesis on
k, |=A Ds ⊃ Γ∗

bG
′ and since, by hypothesis, |=A Ds, we have that |=A Γ∗

bΓhA.
Finally, since Γ∗

bΓh
∗
⇒Ax Γ, we have that |=A ΓA holds.

G = [t]G′ : If T k
P (⊥)(Γ) ||=Ax [t]G′ then, T k

P (⊥)(Γ′) ||=Ax G
′, for all Γ′ such that Γ[t]

∗
⇒Ax Γ′.

In particular, since Γ[t]
∗
⇒Ax Γ[t], T k

P (⊥)(Γ[t]) ||=Ax G
′. By inductive hypothesis on

the structure, Ds |=A Γ[t]G′, that is Ds |=A ΓG.

G = G1 ∧G2, G = ∃xG′ : Trivial, from definition of satisfiability relation and applying the
inductive hypothesis on the structure.

2

126 XI. Fixed Point Semantics

Let us now consider the completeness of the fixed point semantics with respect to the
possible-worlds semantics. The completeness proof is given by constructing a canonical
model for a given program P , whose domain is constant and is the Herbrand universe UP

of the program.

Definition XI.2.1 (Canonical Model) The canonical model MAx
c for a program P =

〈Ds,Ax〉 of NemoLOG is a tuple 〈W,R, D,J , V 〉, where:

• W = C∗;

• D = UP (the Herbrand universe of P);

• J is the constant function J (w) = UP , for all w ∈ W ;

• V is an assignment function, such that:

(a) it interprets terms as usual in Herbrand interpretations;

(b) for each predicate symbol p ∈ PREDn and each world Γ ∈ C∗, V (p,Γ) =
{〈t1, . . . , tn〉 : T ω

P (⊥)(Γ) ||=Ax p(t1, . . . , tn) and t1, . . . , tn ∈ UP}.

• R is defined as follows: for all t ∈ UP ,
Rt = {(Γ,Γ′) ∈ W ×W : Γ,Γ′ ∈ C∗ and Γ[t]

∗
⇒Ax Γ′};

The canonical model MAx
c for a program P of NemoLOG is a Kripke A-interpretation.

In fact, it is easy to see that for each axiom [t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ in A, RV (t1) ◦
. . . ◦ RV (tn) ⊇ RV (s1) ◦ . . . ◦ RV (sm) holds. It is enough noting that RV (t1) ◦ . . . ◦ RV (tn) =

{(Γ,Γ′) : Γ,Γ′ ∈ C∗ and Γ[t1] . . . [tn]
∗
⇒Ax Γ′}, RV (ts1) ◦ . . . ◦ RV (sm) = {(Γ,Γ′) : Γ,Γ′ ∈

C∗ and Γ[s1] . . . [sm]
∗
⇒Ax Γ′} and [t1] . . . [tn]

∗
⇒Ax [s1] . . . [sm].

Completeness proof is based on the following two properties of MAx
c . They can be

proved by induction on the structure of the goals G and the clauses D.

Theorem XI.2.4 Let P = 〈Ds,Ax〉 be a program in NemoLOG, MAx
c its canonical model

and let G be a closed goal, then the following properties hold:

1. for any Γ ∈ C∗, MAx
c ,Γ |=A G iff T ω

P (⊥)(Γ) ||=Ax G;

2. MAx
c satisfies Ds; i.e., for all clauses D in Ds, MAx

c , ε |=A D.

Where A = {[t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ | [t1] . . . [tn] → [s1] . . . [sm] ∈ Ax}.

Proof. We prove property 1) by induction on the structure of G.

G = T : Trivial.

G = A : MAx
c ,Γ |=A A, whereA = p(t1, . . . , tn), iff 〈t1, . . . , tn〉 ∈ V (p,Γ), that is T ω

P (⊥)(Γ) ||=Ax

A.

XI.2. Soundness and completeness 127

G = G1 ∧G2 : MAx
c ,Γ |=A G1 ∧ G2 iff MAx

c ,Γ |=A G1 and MAx
c ,Γ |=A G2; by inductive

hypothesis, T ω
P (⊥)(Γ) ||=Ax G1 and T ω

P (⊥)(Γ) ||=Ax G2, hence T ω
P (⊥)(Γ) ||=Ax G1 ∧

G2.

G = ∃xG′ : MAx
c ,Γ |=A ∃xG′ iff MAx

c ,Γ |=A G′[t/x], for some t ∈ UP , and, by inductive
hypothesis, T ω

P (⊥)(Γ) ||=Ax G
′[t/x], for some t ∈ UP , that is T ω

P (⊥)(Γ) ||=Ax ∃xG′.

G = [t]G′ : MAx
c ,Γ |=A [t]G′ iff MAx

c ,Γ′ |=A G′, for each world Γ′ such that (Γ,Γ′) ∈ RV (t).
By inductive hypothesis and definition of RV (t), T

ω
P (⊥)(Γ′) ||=Ax G

′, for each Γ′ such

that Γ[t]
∗
⇒Ax Γ′ and hence T ω

P (⊥)(Γ) ||=Ax [t]G′.

We prove the property 2) if we prove that for all clauseD inDs holds that MAx
c , ε |=A D.

First we prove the property that MAx
c ,Γ |=A D, for all clause Γ′D in Ds, such that

Γ′ ∗
⇒Ax Γ, with Γ,Γ′ ∈ C∗. In particular, since ε is a modal context, the main prop-

erty holds. We prove this property by induction on the structure of D.

D = G ⊃ ΓhA : If Γ′(G ⊃ ΓhA) is in Ds, and Γ′ ∗
⇒Ax Γ, then MAx

c ,Γ |=A G ⊃ ΓhA iff
MAx

c ,Γ |=A G implies MAx
c ,Γ |=A ΓhA. Let us assume MAx

c ,Γ |=A G, by property 1)
we have that T ω

P (⊥)(Γ) ||=Ax G. Hence, by Definition XI.1.2 and since Γ′ ∗
⇒Ax Γ,

A ∈ T ω
P (⊥)(Γ∗′′), that is T ω

P (⊥)(Γ∗′′) ||=Ax A, for all Γ∗′′ such that Γ′Γh
∗
⇒Ax Γ∗′′.

Hence, since Γ′Γh
∗
⇒Ax Γ′Γh by reflexivity of

∗
⇒Ax , T ω

P (⊥)(Γ′Γh) ||=Ax A. Now,
let us assume Γh = Γ′

h[t], if T ω
P (⊥)(Γ′Γ′

h[t]) ||=Ax A, then, by Proposition XI.1.1,
∀Γ∗, Γ′Γ′

h[t]
∗
⇒Ax Γ∗, T ω

P (⊥)(Γ∗) ||=Ax A, hence, by definition of weak satisfiability,
T ω

P (⊥)(Γ′Γ′
h) ||=Ax [t]A. We can continue so on until we have that T ω

P (⊥)(Γ′) ||=Ax

ΓhA. Again, by Proposition XI.1.1, ∀Γ∗, Γ′ ∗
⇒Ax Γ∗, T ω

P (⊥)(Γ∗) ||=Ax ΓhA, and, in
particular, since Γ′ ∗

⇒Ax Γ, we have that T ω
P (⊥)(Γ) ||=Ax ΓhA. Finally, by prop-

erty 1), MAx
c ,Γ |=A ΓhA.

D = [t]D′ : Let us assume Γ′([t]D′) is in Ds and Γ′ ∗
⇒Ax Γ. We have that MAx

c ,Γ |=A [t]D′

if MAx
c ,Γ∗ |= D′, for all Γ∗ such that Γ[t]

∗
⇒Ax Γ∗. By inductive hypothesis, since

(Γ′[t])D′ is in Ds, MAx
c ,Γ′′ |=A D′, for any Γ′′ such that Γ′[t]

∗
⇒Ax Γ′′. In particular,

since Γ′ ∗
⇒Ax Γ and [t]

∗
⇒Ax [t], we have that Γ′[t]

∗
⇒Ax Γ[t], Γ[t]

∗
⇒Ax Γ∗, that is, by

transitivity of the derivation relation, Γ′[t]
∗
⇒Ax Γ∗ and, thus, MAx

c ,Γ∗ |=A D′.

D = D1 ∧D2, G = ∀xD′ : Trivial, from the definition of satisfiability relation and applying
the inductive hypothesis.

2

By Theorem XI.2.4, the canonical model definition makes it explicit the fact that the
fixed point construction builds a Kripke A-interpretation for a program P . We can now
prove the following result.

Theorem XI.2.5 (Completeness) Let P = 〈Ds,Ax〉 be a program of NemoLOG, and
let G be a closed goal then,

|=A Ds ⊃ G implies T ω
P (⊥)(ε) ||=Ax G

128 XI. Fixed Point Semantics

where A = {[t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ | [t1] . . . [tn] → [s1] . . . [sm] ∈ Ax}.

Proof. (If part) Let us assume that |=A Ds ⊃ G. Then, for every Kripke A-interpretation
M = 〈W,R, D,J , V 〉, for every w ∈ W , M,w |=A P implies M,w |=A G. Hence, in
particular, for the canonical model MAx

c and the world ε ∈ C∗, MAx
c , ε |=A P implies

MAx
c , ε |=A G. By Theorem XI.2.4, property 2), we have that MAx

c , ε |=A P , thus MAx
c , ε |=A G

holds and then, by Theorem XI.2.4, property 1), T ω
P (⊥)(ε) ||=Ax G. 2

XI.3 Herbrand domains

In this section we show that for the programs in our language we can, without loss of
generality, restrict our concern to Kripke interpretations in which the Herbrand universe is
the constant domain of quantification for each world. A similar property has been proved
to hold for other modal and temporal languages and, in particular, for TEMPLOG in
[Baudinet, 1989], for an instance of MOLOG in [Balbiani et al., 1988], and for a general
class of intensional logic programs in [Orgun and Wadge, 1992]. Moreover, in [Cialdea and
Fariñas del Cerro, 1986] a general Herbrand’s property has been proved to hold for the
modal system Q and, based on it, a first-order extension of propositional modal resolution
is defined. In our case this result is a consequence of the completeness and soundness of
fixed point semantics with respect to possible-worlds semantics.

In the following we will denote by UP the Herbrand universe for a program P , i.e., the
set of ground terms built up from the constants and function symbols that appear in P .
Let us start by defining a Kripke interpretation with Herbrand domain.

Definition XI.3.1 Let P be a program of NemoLOG. A Kripke interpretation on the
Herbrand universe of P is a Kripke interpretation M = 〈W,R, DH ,JH , VH〉 such that:

• DH is the Herbrand Universe of P , UP ;

• JH is a constant function which maps all worlds in W to the Herbrand universe UP ;

• VH interprets terms as usual in Herbrand interpretations; i.e., VH(t) = t.

The relation |= between members of W and statements of IL, the satisfiability, and
validity of a closed formula ϕ of the modal logic is the same of Section V.2. As well as
the restriction to the Kripke A-interpretations for characterizing the inclusion modal logics
IA
L .

Theorem XI.3.1 Let P = 〈Ax,Ds〉 be a program of NemoLOG and G a closed goal, then

|=A Ds ⊃ G if and only if |=A,H Ds ⊃ G

where |=A,H denotes the satisfiability in Kripke A-interpretations with constant domain UP

and A = {[t1] . . . [tn]ϕ ⊃ [s1] . . . [sm]ϕ | [t1] . . . [tn] → [s1] . . . [sm] ∈ Ax}.

XI.3. Herbrand domains 129

Theorem XI.3.1

Ds |=A,H G

completeness

soundness
-�

Theorem XI.2.5
Theorem XI.2.3

Theorem XI.2.2
Theorem XI.2.1

Theorem III.3.1
Theorem III.3.2

Theorem IX.3.2

T ω
〈Ds,Ax〉(⊥)(ε) ||=Ax G

@
@

@
@R@
@

@
@I

@
@

@
@I@
@

@
@R

Ds |=A G

�
�

�
�	

�
�

�
�	

Ds `A G

Ds `u
A G

�
�

�
��

�
�

�
��

〈Ds,Ax〉, ε `o G

?

6

Figure XI.1: Summary of the results about NemoLOG.

Proof. (Only if part) If |=A Ds ⊃ G then, Ds ⊃ G holds in all Kripke A-interpretations.
In particular, Ds ⊃ G is true in all Kripke A-interpretations with constant domain UP . (If
part) Let us assume that |=A,H Ds ⊃ G and 6 |=A P ⊃ G. By Theorem XI.2.3, we have that
T ω

P (⊥)(ε) 6||=Ax G. Hence, by Theorem XI.2.4, property 1), we have that MAx
c , ε 6 |=A G.

On the other hand, MAx
c , ε |=A Ds, by Theorem XI.2.4, property 2), thus, we have that

MAx
c , ε |=A Ds and MAx

c , ε 6 |=A G, i.e. MAx
c , ε 6 |=A Ds ⊃ G. Since, by construction, MAx

c

is a Kripke A-interpretation with constant domain UP , we have that MAx
c , ε 6|=A,H Ds ⊃ G,

a contradiction. 2

Figure XI.1 summarizes the results obtained about NemoLOG.

130 XI. Fixed Point Semantics

Chapter XII

Related work

In this part of the thesis, we have developed a modal extension of logic programming
that is based on the class of inclusion modal logics. This language (called NemoLOG) is
a modal extension of the language of Horn clauses. More precisely, the modal operators
may occur in front of clauses, clause heads and in front of goals, and are of the form [t],
where t is a term. The properties of the modal operators used in a program, that is the
underlying inclusion modal logic that characterizes it, are specified by a set of inclusion
clause. Actually, these clauses represent the set A of inclusion axioms.

Furthermore, we have defined a goal directed proof procedure. Its main advantage is
that it is modular with respect to the axiom clauses. This feature is achieved by using
a notion of derivation relation between sequences of modalities, which only depends on
the properties of modalities themselves. We have also defined a fixpoint semantics by
generalizing the standard construction for Horn clauses. It is used to prove soundness
and completeness of the operational semantics with respect to model theoretic semantics
and it works for the whole class of logics identified by the inclusion axioms. Last but not
least, a comparison with the proof theory given in the first part of the thesis is made. In
particular, we have shown that in the case of programs and goals of NemoLOG we can
restrict to uniform proof as presented in [Miller et al., 1991].

XII.1 Languages based on inclusion modal logics

In [Baldoni et al., 1993] a logic programming language which provides modules as a basic
feature is defined. This language is a clausal fragment of an inclusion multimodal logic. In
fact, in order to deal with modules, Horn clauses are extended with a collection of modal
operators [mi] of type K. Module composition can be obtained by allowing modules to
export clauses or derived facts. To achieve this purpose, a modal operator 2 of type S4 is
introduced, which makes it possible to distinguish among clauses local to a module, clauses
that are fully exported from a module, and those whose consequences are exported. This
language allows to model different kinds of modules presented in the literature (so that
in each situation the kinds of module that suit better can be adopted). Furthermore,

131

132 XII. Related work

this language provides some well-known features of object-oriented programming, like the
notion of self.

NemoLOG includes the language in [Baldoni et al., 1993] because it is not restricted to
a particular inclusion modal logic and because the occurrence of modal operators in front
of clauses and clause heads is not restricted to a particular form. Moreover, from the point
of view of the programming language it is wider and more flexible. In fact, it allows to
define nested and parametric modules and it is possible to represent dependencies among
modules in a hierarchy.

In [Baldoni et al., 1997a] an extension of the language in [Baldoni et al., 1993] is
presented. In this proposal, both multiple universal modal operators and embedded impli-
cations are allowed. The authors show that this extension is well suited for structuring
knowledge and, more specifically, for defining module constructs within programs for repre-
senting agents beliefs and, also, for hypothetical reasoning. The language is again a clause
fragment of the multimodal logic of the proposal in [Baldoni et al., 1993], however, besides
the embedded implications, free occurrences of modal operators are allowed in front of
clauses, clause heads, and goals. In the same way of the language in [Baldoni et al., 1993],
a set of modal operators of type K has been used to define modules, by associating a
modality with each module for labeling its clauses. In a more general setting, these modal-
ities are used to provide reasoning capabilities in a multiple agents situation, by associating
a modal operator with each agent to represent its beliefs. Moreover, a modal operator 2 of
type S4 has been used as a weaker version of the common knowledge operator of [Halpern
and Moses, 1992].

In [Baldoni et al., 1997a] embedded implications are allowed to occur both in goals
and in clause bodies. Languages with embedded implications have been extensively studied
[Gabbay and Reyle, 1984; Gabbay, 1985; Miller, 1986; McCarty, 1988a; McCarty, 1988b].
These languages allow implications of the form D ⊃ G which provide a way of introducing
local definitions of clauses: the clauses in D are intended to be local to the goal G, as
they can be used only in a proof of G. The meaning of embedded implications, is that of
hypothetical insertion: the goal D ⊃ G is derivable from a program P if G is derivable from
the program updated with D. When intuitionistic logic is taken as the underlying logic of
this language, like in N Prolog [Gabbay and Reyle, 1984; Gabbay, 1985] and in [Miller et
al., 1991], embedded implications allow hypothetical reasoning to be performed, and for
this reason they are often called hypothetical implications.

In [Giordano et al., 1992; Giordano and Martelli, 1994] the problem of defining struc-
turing facilities in a language with embedded implications is studied. In some way, an
embedded implication D ⊃ G could be compared to what is called a block in Algol-like
languages, that is, a pair 〈definitions, statement〉, where D is a set of clause definitions and
G plays the role of the statement. In [Giordano et al., 1992] it is shown how different logic
languages with embedded implications (or blocks) can be obtained by choosing different
visibility rules for locally defined clauses. On the other hand, in [Giordano and Martelli,
1994], a modal extension of Horn clause logic (based on the S4 logic and, consequently, on
an inclusion modal logic) is defined to provide a unifying framework in which these differ-
ent kinds of local definitions of clauses can be integrated. These extensions with embedded

XII.1. Languages based on inclusion modal logics 133

implications provide different notions of a block, from which various kinds of modules can
also be defined, by introducing some syntactic sugar.

In [Baldoni et al., 1997a] embedded implications have been used to introduce local
definitions of clauses like blocks in imperative programming and for performing some form
of hypothetical reasoning. In particular, since 2 is an S4 modality, the language subsumes
N Prolog: by adopting the well-known translation of intuitionistic logic to modal logic S4,
N Prolog clauses can be translated in this language.

The logic programming language presented in [Baldoni et al., 1997a] is modal logic
refinement of hereditary Harrop formulae [Miller et al., 1991], and it lies on the same line
as other logic programming languages which are not based on classical first-order logic, like,
for instance, those based on intuitionistic logic [Gabbay and Reyle, 1984; Gabbay, 1985;
McCarty, 1988a; McCarty, 1988b; Miller, 1986; Miller, 1989a; Miller, 1989b], higher-order
logic [Miller et al., 1991], and linear logic [Hodas and Miller, 1991].

In [Baldoni et al., 1996b] a translation to standard Horn clauses for the language in
[Baldoni et al., 1997a] is presented, this translation method consisting of two steps. In
the first step all embedded implications are eliminated so to obtain a program consisting
only of modal Horn clauses. This step requires the introduction of a new modal operator
for each embedded implication, so that the extracted clauses can be used only in the right
environment. The second step is based on an approach similar to the functional translation:
modalities are eliminated by adding to each predicate an argument which represents the
modal context.

Despite the fact that NemoLOG does not allow embedded implications to occur in goals
and in the body of clauses, it can deal with modal operators which are characterized
by more complex properties than the ones in [Baldoni et al., 1997a]. Due to the fact
that it is possible to define “ad hoc” interaction axioms by means of the inclusion axiom
clauses, NemoLOG can express more sophisticated knowledge information and, then, it is
better suited to perform epistemic reasoning. Furthermore, as we have seen in Chapter X,
inclusion axiom clauses allow to define hierarchical dependencies among modules in a simple
way.

In [Baldoni et al., 1993; Baldoni et al., 1997a], the logic is described by defining a
sequent calculus for it. The sequent calculus is used to prove soundness and completeness
of the proof procedures with respect to the model theoretic semantics showing that the
proof procedure looking for derivations which correspond to sequent proofs of a certain
form. The approach could be regarded as being complementary to the one in [Giordano and
Martelli, 1994]. In fact, in [Giordano and Martelli, 1994], the soundness and completeness
of the proof procedure with respect to the Kripke semantics has been proved by making
use of a Henkin-style canonical model construction. In [Baldoni et al., 1993; Baldoni et
al., 1997a], instead, the goal directed proof procedures is proved sound and complete by
means of a sequent calculus.

If we compare the kind of sequent proofs in [Baldoni et al., 1993; Baldoni et al., 1997a]
with uniform proofs as presented in [Miller et al., 1991], we can observe that the former are
not uniform. As already remarked in Chapter IX, this happens because a prefixed sequent
calculus is not used. In fact, since NemoLOG subsumes the language in [Baldoni et al.,

134 XII. Related work

1993] and that we have proved that for programs and goals in NemoLOG there exists a
notion of uniform proof, we have that a notion of uniform proof exists also for the language
in [Baldoni et al., 1993]. Furthermore, we believe that a similar proof could be given also
for the language in [Baldoni et al., 1997a] provided that the prefixed sequent calculus like
the one here adopted is used.

In [Baldoni et al., 1996a], it is presented a framework for developing modal extensions of
logic programming, which is parametric with respect to the properties chosen for the modal
operators and which allow sequences of universal modalities to occur in front of clauses,
goals, and clause heads. This work is at the basis of our logic programming language
NemoLOG.

Finally, we would like to mention the modal programming language LA for reasoning
about actions presented in [Baldoni et al., 1997b]. LA makes use of abductive assumptions
to deal with persistence and provides a solution to the ramification problem by allowing one-
way “causal rules” to be defined among fluents. Both the semantics and the goal directed
abductive proof procedure are defined within the argumentation framework [Bondarenko
et al., 1993; Dung, 1993b] developing a three-valued semantics which can be regarded as a
generalization of Dung’s admissibility semantics [Dung, 1993a] to modal settings.

The language LA can be regarded as an extension of Gelfond and Lifschitz’ language
A [Gelfond and Lifschiftz, 1993]. However, rather than following the way of defining a
language with an “ad hoc” (and high-level) semantics and, then, translating it into a
logic programming language with negation as failure, in [Baldoni et al., 1997b] actions
are represented by modal operators and the semantics is a standard Kripke semantics.
The reason is that modal logics allow to interpret actions as state transitions through the
accessibility relations in a natural way.

XII.2 Other languages

NemoLOG bears strong similarities with MOLOG [Fariñas del Cerro, 1986] (later evolved
in TIM [Balbiani et al., 1991]), a framework for modal logic programming in which the user
can fix the underlying modal logic. In MOLOG both existential and universal modalities
can occur in front of clauses, in front of clause heads, and in front of goals. A resolution
procedure (close to Prolog resolution) is defined for modal Horn clauses in the logic S5
which contains only universal modal operators of the form knows(t), where t is an arbitrary
term. TIM is a meta-level inference system which can support some well-known modal sys-
tems and epistemic logics such as Q, T , S4, and S5 and it provides a general methodology
to implement non-classical logics. Though the language in similar to ours, the properties of
S5 modalities are different from the ones we have considered, in the sense that we did not
take into account S5. In [Balbiani et al., 1988], instead, a modal SLD-resolution method
is presented for a fragment of MOLOG in which 2 cannot be used in the bodies of modal
clauses (while 3 can). Some different modal systems (Q, T and K4) are considered. A
fixpoint semantics is also provided.

Modal logic programming languages based on S5 have been also proposed in [Akama,

XII.2. Other languages 135

1986]. There, a program is defined as a set of modal definite clauses whose literals are pre-
fixed by any sequence of universal and existential modalities. An SLD-resolution procedure
is defined for these languages.

In NemoLOG universal modalities are allowed to freely occur in front of clauses, clause
heads and clause bodies (or goals), while existential modal operators are not allowed. In
particular, differently than other languages proposed in the literature, like TEMPLOG
[Abadi and Manna, 1989], Temporal Prolog [Gabbay, 1987], the fragment of MOLOG in
[Balbiani et al., 1988], and the language in [Akama, 1986], existential modalities are not
allowed to occur in front of goals. In spite of this limitation, the features of parametric
modalities and the possibility of introducing inclusion axioms, make NemoLOG well suited
for performing some epistemic reasoning, for defining parametric and nested modules, for
representing inheritance in a hierarchy of classes and for reasoning about actions.

Actually, NemoLOG could be extended to allow existential modalities in front of goals.
Indeed, due to the analogy between universal (existential) quantifiers and universal (exis-
tential) modalities, and from the fact that, in standard logic programs, universal quantifiers
occur in front of clauses, while existential quantifiers occur in front goals, the use of exis-
tential modalities should be possible. Of course, to deal with existential modalities 〈t〉 in
front of goals, the proof procedure presented in Chapter IX should be modified substan-
tially. The main difference would be that, since existential modalities 〈t〉 do not distribute
on conjunctions, a goal 〈t〉(G1 ∧ G2) cannot be proved by proving the two subgoals 〈t〉G1

and 〈t〉G2. For this reason, the policy of recording the sequence of modalities that are
found in front of a goal in a context Γ does not work in that case in a straightforward way.

TEMPLOG is a temporal logic programming language and it allows temporal operators
like © (next moment in time), 2 (from now on), and 3 (sometime in the future) to occur in
Horn clauses. 3 is allowed in front of goals while 2 is not. In our language, while existential
modalities are not admitted, universal modalities can occur in goals and clause bodies.
Despite these differences, there are some similarities with TEMPLOG. In particular, in
TEMPLOG a distinction is made between initial clauses (G ⊃ A and G ⊃ 2A), and
permanent clauses (2(G ⊃ A)). This distinction is quite similar to ours between local,
static and dynamic clauses (see Chapter X).

Temporal Prolog [Gabbay, 1987] allows occurrences of temporal operators like F (some-
time in the future), P (sometime in the past), 2 (always). This language is rather different
from ours and in particular, it admits embedded implications in clause heads.

We have already mentioned to the translation approach to modal logics in Chapter VII.
In the case of modal logic programming, this approach has been used in [Debart et al.,
1992; Nonnengart, 1994] to obtain a standard Prolog program starting form Horn clauses
extended with modal operators. In [Debart et al., 1992] the functional translation method
is extended to multimodal logic and it is applied to modal logic programming. The modal-
ities considered are both universal and existential, and are of any type among KD, KT ,
KD4, KT4, KF . Interaction axioms of the form I(ai, aj) : [ai]ϕ ⊃ [aj]ϕ are allowed but,
in [Debart et al., 1992], general inclusion axioms as the ones in NemoLOG are not con-
sidered. Nonnengart has proposed a mixed approach based on a relational and functional
translation [Nonnengart, 1993]. One of his aims is to avoid theory unification. As a partic-

136 XII. Related work

ular case, following this approach, modal Horn clauses can be directly translated to Prolog
clauses [Nonnengart, 1994]. This method requires that accessibility relation properties are
first-order predicate logic definable. Moreover, if Prolog is to be used as a first order in-
ference machine, accessibility relation properties must be defined through Horn clauses.
In particular, he can provide Prolog translation for modalities with the properties of KD,
KT , KD4, S4 and he can also deal with axioms like (B) : ϕ ⊃ 23ϕ, and, hence, with
logics like KDB, KD45 and S5.

An optimization of the functional translation method for the class of inclusion logics
has been proposed in [Gasquet, 1993], where, however, seriality is assumed for each modal
operator. Then, since we deal with modal Horn clauses containing only universal modal-
ities, the case we consider can be regarded as a special instance of the one in [Gasquet,
1993]. In particular, in the case when only ground terms can occur within modalities in
the program, in the goal and in the axioms (which is the one he considers), the generality
of equational unification may be replaced with a notion of matching (or a notion of string
rewriting). Differently than [Gasquet, 1993], we deal with parametric modalities. How-
ever, in the general case when variables occur within modalities we also need some form
of equational unification.

Conclusions

In this thesis we have studied the class of normal multimodal logics determined by axiom
schemas of the form

[t1][t2] . . . [tn]ϕ ⊃ [s1][s2] . . . [sm]ϕ (n > 0,m ≥ 0)

This class is called inclusion modal logics because it is characterized by particular inclusion
properties between accessibility relations. For this class of logics we have defined a prefixed
analytic tableau calculus and given some undecidability and decidability results. First-order
is also considered, though only in the case of increasing domains.

Afterwards, we have extended the class of the considered multimodal logics and, in
particular, we have focused on the ones that are characterized by axiom schemas of the
form

Ga,b,c,d : 〈a〉[b]ϕ ⊃ [c]〈d〉ϕ

where the labels of the modal operators are arbitrarily complex parameters, built from
the atomic ones, by using an operator of composition and an operator of union. The
incestual axiom copes with most of the well-known axioms, such as T , D, B, 4, 5, and
their multimodal versions. For this class of logics we have introduced a tableau calculus
that is a generalization of the one presented for the inclusion modal logics.

In the course of this work, we have also defined a logic programming language based
on the above class of inclusion modal logics. This language, called NemoLOG, extends the
Horn clause language by allowing free occurrences of universal modal operators in front of
clauses, in front of clause heads, and in front of goals. NemoLOG is parametric with respect
to the class of inclusion modal logics and this feature is achieved by adding to a program
a collection of inclusion axiom clauses of the form [t1] . . . [tn] → [s1] . . . [sm], one for each
inclusion axiom schema of the considered logic.

NemoLOG is particularly suitable to represent knowledge and beliefs of agents. More-
over, due to the fact that we can characterize our modal operators by means of arbitrary
inclusion axioms, our language is particularly well-suited to performing epistemic reason-
ing in a multiagent situation with interactions between agents. Moreover, in a software
engineering settings, we have shown how to use NemoLOG to modularize logic programs
in order to enhance their readability and reusability; parametric and nested modules are
considered. Furthermore, NemoLOG allows to define hierarchies among modules and in-
heritance mechanisms similar to the ones of object-oriented languages.

137

138 Conclusions

NemoLOG has a goal directed proof procedure which is modular with respect to the
properties of modalities: it uses a notion of derivation relation between sequences of modal
operators, which only depends on the properties of modalities themselves. As it is usual
in logic programming setting, a fixed point semantics is given and it is used to prove the
soundness and the completeness of the proof procedure with respect to model theoretic
semantics.

Indeed, despite the fact that NemoLOG shows quite a simple operational semantics,
where the properties of the modal operators are factored out by means of a derivation
relation, we think that it is better to consider the NemoLOG language as a framework for
developing modal extension of logic programming aimed at solving particular problems.
The examples shown in Chapter X can actually be reconsidered in this perspective: on one
hand, restricting to specific cases it is possible to improve the language itself for the case
at issue, optimizing at the same time the computational aspects, while on the other hand
the general framework supplies theoretical results that can be inherited by the specific case
studies. For instance, in the case of the problem of dealing with inheritance in hierarchies of
modules and, in a more general setting, with the introduction of object-oriented features
in a logic programming language, tackled in Chapter X, only a few axiom kinds were
used. It would be interesting to deepen this investigation by making the proof procedure
effective, i.e. to see if the general procedure, which cannot be implemented in an easy
way, can be operationalized for the case of interest. Another example is the restriction
of the language to dealing with actions and change. We are currently working at the
development of a specialization of the framework for reasoning about dynamic domains in
a logic programming setting [Baldoni et al., 1997b; Baldoni et al., 1998b]. To summarize,
we think that it is important to consider Logic Programming as a general framework that
supplies proof theories and other theoretical results that, specialized or extended ad hoc
for the particular application, can be exploited for building languages and systems that
solve a broad variety of problems.

Nevertheless, the work presented in this thesis is in progress and lots of problems are
still open.

We have shown that the class of right-regular modal logics is decidable, however, we say
nothing about the decidability of the inclusion modal logics based on left type-0 grammars,
i.e. grammars whose production rules are of the form A→ A′σ or A→ σ, where A, A′ are
variables and σ is a string of terminals. We believe that also this class is decidable but the
technique used to prove the decidability for the right-regular modal logics does not work
for it.

Another open problem regards a decision procedure. Apart from the naive algorithm
given by generating all finite Kripke interpretations for checking whether or not a formula
is a theorem, we have seen that our tableau calculus is not a decision procedure even if
it deals with decidable modal logics. It would be interesting to transform it in a decision
procedure, in the line of the works in [Fitting, 1983; Massacci, 1994].

In Chapter VI, we have introduced complex parameters as labels for the modal oper-
ators. In this case, we have used an operator of composition and an operator of union,

Conclusions 139

however, further extensions could also be incorporated. For example, we could add the
iteration operator “∗” and the test operator “?” of dynamic logic to the language. In this
case two questions would arise: how to extend the tableau calculus in order to deal with
these new operators? And, moreover, what is the relationship among multimodal logics
and dynamic logics? A recent work [De Giacomo and Massacci, 1996] shows a tableau
calculus for dynamic logic that could be at the basis for such a kind of study.

As remarked in [Fitting, 1996], although resolution is the most used approach to au-
tomated deduction, tableaux will continue to have a great importance because they are
relatively easy to develop due to the strong relationship with the semantics issue, i.e. they
rely on the explicit construction of models. We think it would also be a goal of this re-
search to develop a theorem prover for better studying the expressive features of the logics
considered; this would also help to implement a NemoLOG inference machine.

We have seen, in Chapter IV, that the validity problem for the whole class of inclusion
modal logic is undecidable and it still remains undecidable even though we restrict our
attention to some subclasses. However, we have not studied what happens restricting to
modal Horn clauses of NemoLOG. For example, the class of inclusion modal logics based on
context-free grammars is undecidable but the method used to prove this in Theorem IV.2.2
does not work in the case of formulae of NemoLOG.

Furthermore, another important problem related to our logic programming language
that we have not studied is the computational complexity of the satisfiability. On the
other hand, when we do not consider the multimodal case, our definition of modal Horn
clauses falls into the one given in [Fariñas del Cerro and Penttonen, 1987; Chen and Lin,
1994] where the problem of the complexity of the satisfiability of modal Horn clauses is
studied for different modal logics. In particular, in [Chen and Lin, 1994], it is shown that
the satisfiability problem of modal Horn clauses for each of K, T , and S4 is PSPACE-
complete.

Finally, it is worth noting that in Chapter IX we have proved that for programs and
goals of NemoLOG there exists a uniform proof in the prefixed sequent calculus that we
have defined. However, we do not know if such a kind of proof exists also for fragments
of inclusion modal logics that are wider than the clausal fragment we have given. In
particular, we refer to the possibility of extending our language allowing free occurrences
of embedded implications in goals and clause bodies in the line of [Giordano and Martelli,
1994; Baldoni et al., 1997a]. The existence of a uniform proof would be a powerful tool to
study a goal directed proof procedure for the extended language.

140 Conclusions

Appendix A

Some examples of translated NemoLOG

programs

In this appendix we present some example of NemoLOG programs translated into standard
Horn clause logic obtained applying the translation method defined in Section IX.4.

Before presenting the programs, it is necessary to give some more information. In
particular, we have represented a sequence of modal operators by means of the list of
labels of the modalities themselves. For example, the sequence [animal][bird][tweety] is
represented by [animal, bird, tweety]. Consequently, the operator “•” defined at page 98
is simply implemented by the predicate append/3, the concatenation relation for lists:

% The concatenation relation for lists.

append([], L2, L2).

append([X | L1], L2, [X | L]):-

append(L1, L2, L).

In this way a translated clause would be of the form:

A0(X) :− derive(Γb,Γh, X, Y),
append(Y,Γg1

, Yg1
), A1(Yg1

),
. . . ,
append(Y,Γgm

, Ygm
), Am(Ygm

)

However, in order to simplify the form of a translated clause, we have chosen to move the
append at the top of a predicate definition, before the call of the predicate derive/4. To
do so we need to add another argument to all predicate definition:1

A0(X1, X2) :− append(X1, X2, X), derive(Γb,Γh, X, Y), A1(Yg1
,Γg1

), . . . , Am(Ygm
,Γgm

)

The following predicate definitions are common to all programs.

1Note that, in the programs presented in the following we use the predicate derive1/5 which performs
the concatenation and derivation operations together.

141

142 A. Some examples of translated NemoLOG programs

% The membership relation.

member(X, [X | _]):-!.

member(X, [_ | List]):-

member(X, List).

% The prefix relation. The element that forms the prefix

% must be among the ones which belong to a given set.

prefix_in([], _, _).

prefix_in([X | Prefix], [X | List], Set):-

member(X, Set),

prefix_in(Prefix, List, Set).

% The predicate derive/5 performs the concatenation of the

% lists X1 and X2 and the derivation operation returning

% the new context in Y.

derive1(Gamma_b, Gamma_h, X1, X2, Y):-

append(X1, X2, Gamma),

derive(Gamma_b, Gamma_h, Gamma, Y).

For each example in the following we show the “ad hoc” derive/4 predicate and the
translated program.

Program A.1 : Fibonacci numbers.

derive([], [], [], []).

derive([], [always | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [always, next]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [next | Gamma_h], [next | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([always | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [always, next]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([next | Gamma_b], Gamma_h, [next | Gamma], [next | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

fib(X1, X2, 0):-

derive1([], [], X1, X2, _).

fib(X1, X2, 1):-

derive1([], [next], X1, X2, _).

143

fib(X1, X2, A):-

derive1([always], [next, next], X1, X2, Y),

fib(Y, [], B),

fib(Y, [next], C),

A is B + C.

Program A.2 : Friends puzzle I and II.

derive([], [], [], []).

derive([peter], [john | Gamma_h], Gamma, [peter]):-

prefix_in(Prefix, Gamma, [peter, john]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([wife(peter)], [john | Gamma_h], Gamma, [peter]):-

prefix_in(Prefix, Gamma, [wife(peter), peter, john]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [peter, john | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [peter, john]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [fool | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [fool, wife(peter), peter, john]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [wife(peter), john | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [wife(peter), peter, john]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [wife(peter) | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [wife(peter), peter]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [peter | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [peter]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [john | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [john]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([peter, john | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [peter, john]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([wife(peter), john | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [wife(peter), peter, john]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([fool | Gamma_b], Gamma_h, Gamma, NResult):-

144 A. Some examples of translated NemoLOG programs

prefix_in(Prefix, Gamma, [fool, wife(peter), peter, john]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([wife(peter) | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [wife(peter), peter]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([peter | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [peter]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([john | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [john]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

time(X1, X2):-

derive1([], [peter], X1, X2, _).

time(X1, X2):-

derive1([wife(peter)], [john], X1, X2, Y),

time(Y, [peter]).

place(X1, X2):-

derive1([], [peter, john], X1, X2, _).

appointment(X1, X2):-

derive1([peter, john], [], X1, X2, Y),

place(Y, []),

time(Y, []).

% In the case of Friends puzzle II the relation appointment

% is defined by the following one:

appointment(X1, X2):-

derive1([fool], [], X1, X2, Y),

place(Y, []),

time(Y, []).

Program A.3 : Bubblesort I.

derive([], [], [], []).

derive([], [export | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [export, list, sort]),

append(Prefix, Suffix, Gamma),

derive([], [list | Gamma_h], [list | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [sort | Gamma_h], [sort | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([export | Gamma_b], Gamma_h, Gamma, NResult):-

145

prefix_in(Prefix, Gamma, [export, list, sort]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([sort | Gamma_b], Gamma_h, [sort | Gamma], [sort | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

% module list.

new_append(X1, X2, [], X, X):-

derive1([export, list], [], X1, X2, _).

new_append(X1, X2, [A | B], C, [A | B1]):-

derive1([export, list], [], X1, X2, Y),

new_append(Y, [], B, C, B1).

% module sort.

busort(X1, X2, L, S):-

derive1([export, sort], [], X1, X2, Y),

new_append(Y, [list], C, [A, B | D], L),

B < A, !,

new_append(Y, [list], C, [B, A | D], M),

busort(Y, [], M, S).

busort(X1, X2, S, S):-

derive1([export, sort], [], X1, X2, _).

Program A.4 : Bubblesort II.

derive([], [], [], []).

derive([], [export | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [export, list, sort]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [list | Gamma_h], [list | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [sort | Gamma_h], [sort | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([export | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [export, list, sort]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([sort | Gamma_b], Gamma_h, [sort | Gamma], [sort | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

% module list.

146 A. Some examples of translated NemoLOG programs

new_append(X1, X2, [], X, X):-

derive1([export, list], [export], X1, X2, _).

new_append(X1, X2, [A | B], C, [A | B1]):-

derive1([export, list], [export], X1, X2, Y),

new_append(Y, [], B, C, B1).

% module sort.

busort(X1, X2, L, S):-

derive1([export, sort], [export], X1, X2, Y),

new_append(Y, [list], C, [A, B | D], L),

B < A, !,

new_append(Y, [list] ,C, [B, A |D], M),

busort(Y, [], M, S).

busort(X1, X2, S, S):-

derive1([export, sort], [export], X1, X2, _).

Program A.5 : Bubblesort III and IV.

derive([], [], [], []).

derive([], [export | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [export, list, sort(_),

ascending, descending, cartesian(_, _)]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [list | Gamma_h], [list | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [ascending | Gamma_h], [ascending | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [descending | Gamma_h], [descending | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [sort(X) | Gamma_h], [sort(X) | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [cartesian(X, Y) | Gamma_h], [cartesian(X, Y) | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([export | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [export, list, sort(_),

ascending, descending, cartesian(_, _)]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([ascending | Gamma_b], Gamma_h, [ascending | Gamma], [ascending | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([descending | Gamma_b], Gamma_h, [descending | Gamma], [descending | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([sort(X) | Gamma_b], Gamma_h, [sort(X) | Gamma], [sort(X) | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([cartesian(X, Y) | Gamma_b], Gamma_h, [sort(X) | Gamma], [cartesian(X, Y) | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

147

% module list.

new_append(X1, X2, [], X, X):-

derive1([export, list], [], X1, X2, _).

new_append(X1, X2, [A | B], C, [A | B1]):-

derive1([export, list], [], X1, X2, Y),

new_append(Y, [], B, C, B1).

% module ascending.

ordered(X1, X2, A, B):-

derive1([export, ascending], [], X1, X2, _),

A < B.

% module descending.

ordered(X1, X2, A, B):-

derive1([export, descending], [], X1, X2, _),

A > B.

% module cartesian(Ord1, Ord2).

ordered(X1, X2, [A, B], [U, V]):-

derive1([export, cartesian(Ord1, Ord2)], [], X1, X2, Y),

ordered(Y, [Ord1], A, U).

ordered(X1, X2, [A, B], [A, V]):-

derive1([export, cartesian(Ord1, Ord2)], [], X1, X2, Y),

ordered(Y, [Ord2], B, V).

% module sort(Order).

busort(X1, X2, L, S):-

derive1([export, sort(Order)], [], X1, X2, Y),

new_append(Y, [list], C, [A, B | D], L),

ordered([export, sort(Order)], [Order], B, A),

new_append(Y, [list], C, [B, A | D], M),

busort(Y, [], M, S).

busort(X1, X2, S, S):-

derive1([export, sort(Order)], [], X1, X2, _).

Program A.6 : Animal taxonomy I.

derive([], [], [], []).

derive([],[export | Gamma_h], Gamma, []):-

prefix_in(Prefix, Gamma, [export, animal, horse, bird, tweety]),

append(Prefix, Suffix, Gamma),

derive([], Gamma_h, Suffix, _).

derive([], [animal | Gamma_h], [animal | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [horse | Gamma_h], [horse | Gamma], []):-

148 A. Some examples of translated NemoLOG programs

derive([], Gamma_h, Gamma, _).

derive([], [bird | Gamma_h], [bird | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [tweety | Gamma_h], [tweety | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([export | Gamma_b], Gamma_h, Gamma, NResult):-

prefix_in(Prefix, Gamma, [export, animal, horse, bird, tweety]),

append(Prefix, Suffix, Gamma),

derive(Gamma_b, Gamma_h, Suffix, Result),

append(Prefix, Result, NResult).

derive([animal | Gamma_b], Gamma_h, [animal | Gamma], [animal | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([horse | Gamma_b], Gamma_h, [horse | Gamma], [horse | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([bird | Gamma_b], Gamma_h, [bird | Gamma], [bird | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([tweety | Gamma_b], Gamma_h, [tweety | Gamma], [tweety | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

% class animal.

mode(X1, X2, walk):-

derive1([animal, export], [], X1, X2, _).

mode(X1, X2, run):-

derive1([animal, export], [], X1, X2, Y),

no_of_legs(Y, [], X),

X >= 2.

mode(X1, X2, gallop):-

derive1([animal, export], [], X1, X2, Y),

no_of_legs(Y, [], X),

X >= 4.

% class horse.

no_of_legs(X1, X2, 4):-

derive1([animal, horse, export], [], X1, X2, _).

covering(X1, X2, hair):-

derive1([animal, horse, export], [], X1, X2, _).

% class bird.

no_of_legs(X1, X2, 2):-

derive1([animal, bird, export], [], X1, X2, _).

covering(X1, X2, feather):-

derive1([animal, bird, export], [], X1, X2, _).

mode(X1, X2, fly):-

derive1([animal, bird, export], [], X1, X2, _).

% class tweety.

149

owner(X1, X2, fred):-

derive1([animal, bird, tweety, export], [], X1, X2, _).

Program A.7 : Animal taxonomy II and Humans.

derive([], [], [], []).

derive([], [animal | Gamma_h], [X | Gamma], []):-

member(X, [animal, horse, bird, tweety, human(_, _), peter, jane, john]),

derive([], Gamma_h, Gamma, _).

derive([], [bird | Gamma_h], [X | Gamma], []):-

member(X, [bird, tweety]),

derive([], Gamma_h, Gamma, _).

derive([], [horse | Gamma_h], [horse | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [tweety | Gamma_h], [tweety | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [human(S, A) | Gamma_h], [human(S, A) | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [human(male, 30) | Gamma_h], [X | Gamma], []):-

member(X, [human(male, 30), peter]),

derive([], Gamma_h, Gamma, _).

derive([], [human(female, 42) | Gamma_h], [X | Gamma], []):-

member(X, [human(female, 42), jane]),

derive([], Gamma_h, Gamma, _).

derive([], [human(male, 45) | Gamma_h], [X | Gamma], []):-

member(X, [human(male, 45), john]),

derive([], Gamma_h, Gamma, _).

derive([], [mathematician | Gamma_h], [X | Gamma], []):-

member(X, [mathematician, john]),

derive([], Gamma_h, Gamma, _).

derive([], [peter | Gamma_h], [peter | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [jane | Gamma_h], [jane | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([], [john | Gamma_h], [john | Gamma], []):-

derive([], Gamma_h, Gamma, _).

derive([animal | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-

member(X, [animal, horse, bird, tweety, human(_, _), peter, jane, john]),

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([bird | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-

member(X, [bird, tweety]),

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([horse | Gamma_b], Gamma_h, [horse | Gamma], [horse | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([tweety | Gamma_b], Gamma_h, [tweety | Gamma], [tweety | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([human(S, A) | Gamma_b], Gamma_h, [human(S, A) | Gamma], [human(S, A) | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([human(male, 30) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-

member(X, [human(male, 30), peter]),

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([human(female, 42) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-

150 A. Some examples of translated NemoLOG programs

member(X, [human(female, 42), jane]),

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([human(male, 45) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-

member(X, [human(male, 45), john]),

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([mathematician | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-

member(X, [mathematician, john]),

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([peter | Gamma_b], Gamma_h, [peter | Gamma], [peter | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([jane | Gamma_b], Gamma_h, [jane | Gamma], [jane | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

derive([john | Gamma_b], Gamma_h, [john | Gamma], [john | Result]):-

derive(Gamma_b, Gamma_h, Gamma, Result).

% class animal.

mode(X1, X2, walk):-

derive1([animal], [], X1, X2, _).

mode(X1, X2, run):-

derive1([animal], [], X1, X2, Y),

no_of_legs(Y, [], X),

X >= 2.

mode(X1, X2, gallop):-

derive1([animal], [], X1, X2, Y),

no_of_legs(Y, [], X),

X >= 4.

% class horse.

no_of_legs(X1, X2, 4):-

derive1([horse], [], X1, X2, _).

covering(X1, X2, hair):-

derive1([horse], [], X1, X2, _).

% class bird.

no_of_legs(X1, X2, 2):-

derive1([bird], [], X1, X2, _).

covering(X1, X2, feather):-

derive1([bird], [], X1, X2, _).

mode(X1, X2, fly):-

derive1([bird], [], X1, X2, _).

% class tweety.

owner(X1, X2, fred):-

derive1([tweety], [], X1, X2, _).

% class human(S, A).

151

sex(X1, X2, S):-

derive1([human(S,A)], [], X1, X2, _).

age(X1, X2, A):-

derive1([human(S,A)], [], X1, X2, _).

no_of_legs(X1, X2, 2):-

derive1([human(S,A)], [], X1, X2, _).

likes(X1, X2, logic):-

derive1([human(S,A)], [], X1, X2, Y),

sex(Y, [], male),

age(Y, [], Ag),

Ag < 40.

likes(X1, X2, logic):-

derive1([human(S,A)], [], X1, X2, Y),

sex(Y, [], female).

% class mathematician.

likes(X1, X2, logic):-

derive1([mathematician], [], X1, X2, _).

likes(X1, X2, math):-

derive1([mathematician], [], X1, X2, _).

152 A. Some examples of translated NemoLOG programs

Index of Symbols

4M(t, t′), 12

4(t), 12

A, 12, 49, 82
A, 86
A-downward satured, 30, 51
A-inclusion frame, 15, 49
A-mapping, 28, 51
A-satisfiable, 28
A-satisfiable in, 16
A-satisfiable under, 28
A-satisfiable with respect to, 16
A-valid in, 16, 91
A-valid with respect to, 16
w ρt w

′, 21, 59
w ρt;t′ w

′, 60
w ρt∪t′ w

′, 60
α, 22
α-rule, 23, 59
α1, 22
α2, 22
[always], 15, 83
∧ , 9, 45
aw, 49
Ax, 82
[Ax], 84

BF (t), 46, 50
BFc(t), 50
β, 22
β-rule, 23, 59
β1, 22
β2, 22
⊥, 119
B(P), 119

•, 98

C, 84
C, 49
,, 45
;, 53
◦, 16
[t; t′], 54
C∗, 84

DEFC, 82
∆, 90
δ, 50
δ0(c), 50
derG, 39
`, 11
⇒Ax, 85
∗
⇒Ax , 84
derive/4, 98
⇒∗

G, 34
⇒G, 34
D, 46, 126
DH , 128
Ds, 82
[Ds], 86

ε, 53, 81
∅, 119
[ε], 54
≡, 40
〈t〉, 10
∃, 45
[export], 106

F, 10, 21
FL(ϕ), 40

153

154 Index of Symbols

[fool], 14
FOR, 9, 46, 54
∀, 45
frame, 10, 47
FL, 10
FA

L , 16
FLFO

, 47
FA

LFO
, 49

FG
L , 57

FUNCn, 45

G, 55
G, 86
G, 33
G-incestual frame, 57
G-satisfiable, 57
G-valid, 57
G-downward satured, 66
G-mapping, 65
G-satisfiable, 65
G-satisfiable under, 65
Ga,b,c,d, 12, 55
Γ, 82
γ, 50
Γb, 86
Γh, 86
γ0(c), 50
[Γ]Ax, 85
Gk,l,m,n, 12, 55
GOAL, 81
Gtr, 101
(V, T, P, S), 33
G, 89
Γb(G ⊃ ΓhA), 86

I, 54
i : Ds, 91
i : G, 91
IL, 10
IA
L , 12

IA
LFO

, 49

IG
L , 55
⊃ , 9, 45

INC, 82
|=A,H , 128
i, 21
=, 119
I, 119
(=,v=), 119
v=, 119
IPA

L , 16
IPA

LFO
, 49

IP G
L , 57

I(t, t′), 12

J , 46, 126
JH , 128
t, 119

K, 12
K(t), 11
K4, 12
K4n, 12
Kn, 12
Kripke A-interpretation, 16

first-order, 49
Kripke G-interpretation, 57
Kripke interpretation, 10

first-order, 46
KT4, 12

LABELS, 53
L ∧ , 90
L, 9, 54
L(G), 35
L∃, 90
LFO, 45
LFO, 49
L∀, 90
L ⊃, 90
L ⊃′, 92
L[t], 90
L¬, 90

M , 10
ML, 10
MFL(ϕ), 40

Index of Symbols 155

I, 28, 65
maximal SA

L -consistent, 17
MA

c , 17, 30, 51
MAx

c , 126
MG

c , 67
u, 119
[mi], 105
MOD, 9
[.], 9, 45
MA

L , 16
MLFO

, 47
MA

LFO
, 49

MG
L, 57

NemoLOG, 81
[next], 83
¬, 9, 45
ν-rule, 23, 59
ν, 22
νt

0, 22

ω, 58, 121
`o, 86
∨, 9, 45

P (t, t′), 12
P , 33
p(t1, . . . , tn), 46
Pw, 49
(, 9, 45
), 9, 45
ξ(w0, wn), 34
ξ(w0, wn), 35
π-rule, 23, 59
πt, 22
πt

0, 22
PREDn, 45
w : Z, 21
α → β, 33
P , 82
〈Ds,Ax〉, 82
P tr, 98

Q, 128

R, 47, 126
R

FL(ϕ)
t , 40

R, 54
R ∧ , 90
→, 81
R∃, 90
R∀, 90
ρ-derives, 34
(ρ(a))∗, 58
ρ-rule, 23, 59, 90
ρα-rule, 59
ρβ-rule, 59

→A
G , 90
→A
∅ , 91
R ⊃, 90
R[t], 90
R¬, 90
Rt, 10
Rt-idealizable, 28, 65

S4, 12
|=, 10
|=A , 16
|=V , 47
satisfiable, 10
|=G , 57
satisfiable in, 11, 48
satisfiable with respect to, 11, 48
S, 28, 65
SL, 11
SL-provable, 11
SA
L , 12

SA
L -consistent, 17

SA
L -provable, 17

`SLD, 101
S4n, 12
∗, 58
S, 33
ϕ[t/x], 46
⊇, 16
SG
L , 55

T , 12

156 Index of Symbols

T (t), 12
T, 10, 21
T , 33
T A
L -provable, 24

TERM, 45
Θ, 90
T A
LFO

-provability, 50

T G
L -provable, 61
Tn, 12
T ω

P , 122
T ω

P (⊥), 122
TP , 120
T , 81, 89

∪, 53
[t ∪ t′], 54
[t], 10, 81
[t]ϕ, 12
UP , 120, 128

V , 47, 126
VH , 128
V FL(ϕ), 40
V , 33
valid in, 11, 48
valid with respect to, 11, 48
V , 10
VAR, 9, 45
ϕT (q), 35
`A, 91
`u
A, 94

w, 40, 59
W FL(ϕ), 40
w-available, 50
w-parameter, 49
WC , 21
||=Ax, 120
W , 10, 46, 126
wt, 17
(wt)s, 18

Z, 21

Bibliography

Abadi, M. and Manna, Z. (1989). Temporal Logic Programming. Journal of Symbolic
Computation, 8(3):277–295. [xi, 83, 135]

Akama, S. (1986). A Proposal of Modal Logic Programming. In Proc. of the 6th Canadian
Conference on Artificial Intelligence, pages 99–102. [xi, 134, 135]

Artosi, A., Benassi, P., Governatori, G., and Rotolo, A. (1996). Labelled
Proofs for Quantified Modal Logic. In Alferes, J. J., Pereira, L. M., and Orlowska,
E., editors, Logics in Artificial Intelligence, JELIA ’96, volume 1126 of LNAI, pages
70–86. Springer-Verlag. [72, 73]

Auffray, Y. and Enjalbert, P. (1992). Modal Theorem Proving: An equational
viewpoint. Journal of Logic and Computation, 2(3):247–297. [74, 101]

Balbiani, P., Fariñas del Cerro, L., and Herzig, A. (1988). Declarative seman-
tics for modal logic programs. In Proc. of the International Confonference on Fifth
Generation Computer Systems, FGCS’88, pages 507–514, Tokyo. [xi, 123, 128, 134,
135]

Balbiani, P., Herzig, A., and Lima Marques, M. (1991). TIM: The Toulouse
inference machine for non-classical logic programming. In Proc. of the International
Workshop on Processing Declarative Knowledge, PDK’91, volume 567 of LNAI, pages
366–382. Springer-Verlag. [xi, 134]

Baldoni, M., Giordano, L., and Martelli, A. (1993). A Multimodal Logic to define
Modules in Logic Programming. In Miller, D., editor, Proc. of the International Logic
Programming Symposium, ILPS’93, pages 473–487, Vancouver. The MIT Press. [77,
84, 88, 105, 131–134]

Baldoni, M., Giordano, L., and Martelli, A. (1996a). A Framework for Modal
Logic Programming. In Maher, M., editor, Proc. of the Joint International Conference
and Symposium on Logic Programming, JICSLP’96, pages 52–66, Bonn. The MIT
Press. [134]

Baldoni, M., Giordano, L., and Martelli, A. (1996b). Translating a Modal Lan-
guage with Embedded Implications into Horn Clause Logic. In Dyckhoff, R., Herre,

157

158 Bibliography

H., and Schroeder-Heister, P., editors, Proc. of the 5th International Workshop on Ex-
tensions of Logic Programming, ELP’96, volume 1050 of LNAI, pages 19–33. Springer-
Verlag. [97, 133]

Baldoni, M., Giordano, L., and Martelli, A. (1997a). A Modal Extention of Logic
Programming: Modularity, Beliefs and Hypothetical Reasoning. Technical Report RT
36/97, Dipartimento di Informatica, University of Turin. Accepted for the pubblication
in the Journal of Logic and Computation. A short version appears in the Proc. of the
1994 Joint Conference on Declarative Programming, GULP-PRODE 1995, pages 324–
335. [xi, 49, 77, 84, 96, 105, 132–134, 139]

Baldoni, M., Giordano, L., and Martelli, A. (1998a). A Tableau Calculus for Mul-
timodal Logics and Some (Un)Decidability Results. In de Swart, H., editor, Proc. of the
International Conference on Analytic Tableaux and Related Methods, TABLEAUX’98.
Springer-Verlag. To appear in the LNAI serie. [xi]

Baldoni, M., Giordano, L., Martelli, A., and Patti, V. (1997b). An Abductive
Proof Procedure for Reasoning about Actions in Modal Logic Programming. In Dix,
J., Pereira, L. M., and Przymusinski, T. C., editors, Proc. of the 2nd International
Workshop on Non-Monotonic Extensions of Logic Programming, NMELP’96, volume
1216 of LNAI, pages 132–150. Springer-Verlag. [xi, 104, 134, 138]

Baldoni, M., Giordano, L., Martelli, A., and Patti, V. (1998b). A Modal
Programming Language for Representing Complex Actions. Technical report, Dipar-
timento di Informatica, Univeristà degli Studi di Torino. [138]

Baudinet, M. (1989). Temporal logic programming is complete and expressive. In Proc. of
the 16th ACM Symposium on Principle of Programming Languages, POPL’89, pages
267–280, Austin, Texas. [xi, 123, 128]

Beckert, B. and Goré, R. (1997). Free Variable Tableaux for Propositional Modal
Logics. In Galmiche, D., editor, Proc. of the International Conference on Automatic
Reasoning with Analytic Tableaux and Related Methods, TABLEAUX’97, volume 1227
of LNAI, pages 91–106. Springer-Verlag. [xi, 7]

Bondarenko, A., Toni, F., and Kowalski, R. A. (1993). An Assuption-based Frame-
work for Non-monotonic Reasoning. In Pereira, L. M. and Nerode, A., editors, Proc.
of 2nd International Workshop on Logic Programming and Non-monotonic Rasoning,
pages 171–189. The MIT Press. [134]

Bonner, A. J., McCarty, L. T., and Vadaparty, K. (1989). Expressing database
queries with intuitionistic logic. In Lusk, L. and Overbeek, R. A., editors, Proc. of the
1989 North American Conference on Logic Programming, pages 831–850. The MIT
Press. [119]

Bibliography 159

Book, R. V. (1987). Thue Systems as Rewriting Systems. Journal of Symbolic Compu-
tation, 3(1-2):39–68. [37, 78, 85]

Bowen, K. A. and Kowalski, R. A. (1982). Amalgamating Language and Metalan-
guage in Logic Programming. In Clark, K. and Tarnlund, S., editors, Logic Program-
ming, pages 153–172. Academic Press. [105]

Brogi, A., Lamma, E., and Mello, P. (1990a). A general framework for structuring
logic programs. Technical Report 4/1, Progetto Finalizzato Sistemi Informatici e
Calcolo Parallelo — Sottoprogetto 4, Linguaggi di Nuova Concezione. [78, 115–117]

Brogi, A., Lamma, E., and Mello, P. (1990b). Inherritance and Hypothetical Rea-
soning in Logic Programming. In Proc. of the European Conference on Artificial
Intelligence, ECAI’90, pages 105–110, Stockholm. [78, 112, 114, 115, 117]

Brogi, A., Mancarella, P., Pedreschi, D., and Turini, F. (1992). Meta for
Modularising Logic Programming. In Proc. of the META’92, Stockholm. [105]

Brogi, A., Mancarella, P., Pedreschi, P., and Turini, F. (1994). Modular
Logic Programming. ACM Transactions on Programming Languages and Systems,
16(4):1361–1398. [105]

Bugliesi, M. (1992). A Declarative View of Inheritance in Logic Programming. In
Apt, K., editor, Proc. of the Join International Conference and Symposium on Logic
Programming, JICSLP’92, pages 113–127, Washington. The MIT Press. [107, 112]

Bugliesi, M., Lamma, E., and Mello, P. (1994). Modularity in Logic Programming.
Journal of Logic Programming, 19 & 20:443–502. [xiii, 77, 105, 112]

Catach, L. (1988). Normal Multimodal Logics. In Proc. of the 7th National Conference
on Artificial Intelligence, AAAI ’88, volume 2, pages 491–495, Sait Paul, Minnesota.
Morgan Kaufmann. [4, 7, 12, 53, 55, 57, 58, 69]

Catach, L. (1991). TABLEAUX: A General Theorem Prover for Modal Logics. Journal
of Automated Reasoning, 7(4):489–510. [xi, 4, 22, 73]

Chellas, B. F. (1980). Modal Logic: an Introduction. Cambridge University Press. [7,
12, 42, 55, 57]

Chen, C. C. and Lin, I. P. (1994). The computational complexity of the satisfiability
of modal Horn clauses for modal propositional logics. Theoretical Computer Science,
129:95–121. [139]

Chen, W. (1987). A Theory of Modules based on Second Order Logic. In Proc. of the
Intenational Symposium on Logic Programming, ILPS’87, pages 24–33, S. Francisco.
[105]

160 Bibliography

Cialdea, M. and Fariñas del Cerro, L. (1986). A modal Herbrand’s property.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32(6):523–530.
[128]

Cunningham, J. and Pitt, J. (1996). Distributed Modal Theorem Proving with KE.
In Miglioli, P., Moscato, U., Mundici, D., and Ornaghi, M., editors, Proc. of the
5th International Workshop on Theorem Proving with Analitic Tableaux and Related
Methods, TABLEAUX ’96, volume 1071 of LNAI, pages 160–176. Springer-Verlag. [xi,
7, 22, 72, 73]

D’Agostino, M. and Modadori, M. (1994). The Taming of the Cut. Journal of Logic
and Computation, 4:285–319. [72]

De Giacomo, G. and Lenzerini, M. (1995). PDL-based framework for reasoning about
actions. In Topics of Artificial Intelligence. Proc. of AI*IA’95, National Congress of
the Italian Association for Artificial Intelligence, volume 992 of LNAI, pages 103–114.
Springer-Verlag. [xi]

De Giacomo, G. and Massacci, F. (1996). Tableaux and Algorithms for Propositional
Dynamic Logic with Converse. In McCune, W., editor, Automated Deduction —
CADE-15, volume 1249 of LNAI, pages 613–627. Springer. [22, 69, 139]

Debart, F., Enjalbert, P., and Lescot, M. (1992). Multimodal logic programming
using equational and order-sorter logic. Theoretical Computer Science, 105(1):141–166.
[xi, 135]

Dung, P. M. (1993a). Negations as Hypothesis: an Abductive Foundation for Logic
Programming. In Furukawa, K., editor, Proc. of International Conference on Logic
Programming, ICLP’91, pages 852–857. The MIT Press. [134]

Dung, P. M. (1993b). On the Acceptability of Arguments and its fundamental role
for Logic Programming. In Proc. of International Joint Conference on Articificial
Intelligence, IJCAI’93, pages 852–857. Morgan Kaufmann. [134]

Enjalbert, P. and Fariñas del Cerro, L. (1989). Modal Resolution in Clausal
Form. Theoretical Computer Science, 65(1):1–33. [xi, 12, 55]

Fariñas del Cerro, L. (1986). MOLOG: A System that extends Prolog with Modal
Logic. New Generation Computing, 4(1):35–50. [xi, 134]

Fariñas del Cerro, L. and Herzig, A. (1995). Modal Deduction with Applications
in Epistemic and Temporal Logics. In Gabbay, D. M., Hogger, C., and Robinson, J.,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 4,
pages 499–594. Oxford Science Publications. [xi, 4, 12, 15]

Fariñas del Cerro, L. and Penttonen, M. (1987). A note on the complexity of the
satisfiability of modal Horn clauses. Journal of Logic Programming, 4:1–10. [139]

Bibliography 161

Fariñas del Cerro, L. and Penttonen, M. (1988). Grammar Logics. Logique et
Analyse, 121-122:123–134. [xii, 5, 6, 17, 18, 33, 34, 37]

Fariñas del Cerro, L. and Penttonen, M., editors (1992). Intensional Logics for Program-
ming. Studies in Logic and Computation. Oxford Science Pubblications. [xi]

Fischer, M. J. and Ladner, R. E. (1979). Propositional Dynamic Logic of Regular
Programs. Journal of Computer and System Sciences, 18(2):194–211. [7, 33, 39]

Fisher, M. and Owens, R., editors (1993a). Executable Modal and Temporal Logics, volume
897 of LNAI. Springer-Verlag. [xi]

Fisher, M. and Owens, R. (1993b). An Introduction to Executable Modal and Tem-
poral Logics. In Proc. of the IJCAI’93 Workshop on Executable Modal and Temporal
Logics, volume 897 of LNAI, pages 1–20. Springer-Verlag. [77]

Fitting, M. (1973). Model Existence Theorems for Modal and Intuitionistic Logics.
Journal of Symbolic Logic, 38(4):613–627. [22, 30]

Fitting, M. (1983). Proof Methods for Modal and Intuitionistic Logics, volume 169 of
Synthese library. D. Reidel, Dordrecht, Holland. [xi, xii, 6, 21, 22, 28, 29, 48, 49,
51, 69, 70, 96, 138]

Fitting, M. (1988). First-Order Modal Tableaux. Journal of Automated Reasoning,
4:191–213. [xi]

Fitting, M. (1993). Basic Modal Logic. In Gabbay, D., Hogger, C. J., and Robinson,
J. A., editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 1, pages 365–448. Oxford Science Publications. [xi, xii, 49]

Fitting, M. (1996). Introduction to the handbook of tableau methods. In D’Agostino
et al., M., editor, Handbook of Tableau Methods, pages 1–47. Kluwer Academic Press.
To appear. [96, 139]

Gabbay, D. M. (1985). NProlog: An Extension of Prolog with Hypothetical Implications.
II. Journal of Logic Programming, 2(4):251–283. [132, 133]

Gabbay, D. M. (1987). Modal and Temporal Logic Programming. In Galton, A., editor,
Temporal Logics and Their Applications, pages 197–237. Academic Press. [xi, 135]

Gabbay, D. M. and Reyle, N. (1984). NProlog: An Extension of Prolog with Hypo-
thetical Implications. I. Journal of Logic Programming, 4:319–355. [132, 133]

Garson, J. W. (1984). Quantification in Modal Logic. In Gabbay, D. and Guenthner,
F., editors, Handbook of Philosophical Logic, pages 249–307. Reidel. [48]

162 Bibliography

Gasquet, O. (1993). Optimization of deduction for multi-modal logics. In Masuch, Marx,
and Plòs, editors, Applied Logic: How, What and Why? Kluwer Academic Publishers.
[5, 74, 136]

Gasquet, O. (1994). Déduction automatique en logique multi-modale par traduction. PhD
thesis, Institute de recherche en informatique de Toulose, Université Paul Sabatier,
Toulose III. [5, 48]

Gelfond, M. and Lifschiftz, V. (1993). Representing Action and Change by Logic
Programming. Journal of Logic Programming, 17:301–321. [134]

Genesereth, M. and Nilsson, N. (1987). Logical Foundations of Artificial Intelligence.
Morgan Kaufmann. [xi, 12, 13, 58, 104]

Giordano, L. and Martelli, A. (1992). A modal framework for structured logic
programs. In Lamma, E. and Mello, P., editors, Proc. of Third Int. Workshop on
Extensions of Logic Programs, ELP’96, volume 660 of LNAI, pages 168–186, Bologna.
Springer-Verlag. [116, 118]

Giordano, L. and Martelli, A. (1994). Structuring Logic Programs: a Modal Ap-
proach. Journal of Logic Programming, 21(2):59–94. [xi, 77, 84, 105, 116, 132,
133, 139]

Giordano, L., Martelli, A., and Rossi, G. F. (1992). Extending Horn Clause Logic
with Implication Goals. Theoretical Computer Science, 95:43–74. [105, 132]

Giordano, L., Martelli, A., and Rossi, G. F. (1994). Structured Prolog: A language
for Structured Logic Programming. Software - Concept and Tools, 15:125–145. [110]

Goldberg, A. and Robson, D. (1983). Smalltalk-80 The Language and its Implemen-
tation. Addison-Wesley Publishing Company. [109]

Goré, R. A. (1995). Tableaux Methods for Modal and Temporal Logics. Technical Report
TR-ARP-16-95, Automated Reasoning Project, Australian National University. To
appear in In M. D’Agostino et al., editor, Handbook of Tableau Methods. Kluwer
Academic Press. [22, 28, 30, 69, 70]

Governatori, G. (1995). Labelled Tableaux for Multi-Modal Logics. In Baumgartner,
P., Hähnle, R., and Posegga, J., editors, Proc. of the 4th Workshop on Theorem
Proving with Analytic Tableaux and Related Methods, TABLEAUX ’95, volume 918 of
LNAI, pages 79–94. Springer-Verlag. [xi, 7, 22, 72, 73]

Governatori, G. (1997). Un modello formale per il ragionamento giuridico. Phd. thesis,
University of Bologna, Bologna. In Italian. [72, 73]

Bibliography 163

Halpern, J. Y. and Moses, Y. (1992). A Guide to Completeness and Complexity for
Modal Logics of Knowledge and Belief. Artificial Intelligence, 54:319–379. [xi, 3, 5,
7, 11–13, 16–18, 55, 58, 103, 104, 132]

Harel, D. (1984). Dynamic Logic. In Gabbay, D. and Guenthner, F., editors, Handbook
of Philosophical Logic, volume II, pages 497–604. D. Reidel Publishing Company. [33,
58]

Harel, D. and Paterson, M. S. (1984). Undecidability of PDL with L = {a2i

| i ≥ 0}.
Journal of Computer and System Sciences, 29:359–365. [33]

Harel, D., Pnueli, A., and Stavi, J. (1983). Propositional Dynamic Logic of Non-
regular Programs. Journal of Computer and System Sciences, 26:222–243. [33]

Hill, P. M. (1993). A Parametrized Module System for Costructing Typed Logic Pro-
grams. In Proc. of International Joint Conference on Articificial Intelligence, IJ-
CAI’93, volume 2, pages 874–880. Morgan Kaufmann. [110]

Hodas, J. and Miller, D. (1991). Logic Programming in a Fragment of Intuitionistic
Linear Logic. In Kahn, G., editor, Sixth Annual Symposium on Logic in Computer
Science, pages 32–42, Amsterdam. [133]

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata theory, lan-
guages, and computation. Addison-Wesley Publishing Company. [33, 34, 37, 38, 85,
101]

Hughes, G. E. and Cresswell, M. J. (1968). A Introduction to Modal Logic. Methuen,
London. [xi, 48]

Hughes, G. E. and Cresswell, M. J. (1984). A Companion to Modal Logic. Methuen.
[12, 40, 42, 55]

Hughes, G. E. and Cresswell, M. J. (1996). A New Introduction to Modal Logic.
Routledge. [xi, 3, 7, 11, 12, 17, 18, 48, 55]

Konolige, K. (1986). A deduction model of belief. Morgan Kaufmann Publishers. [xi]

Kozen, D. and Tiuryn, J. (1990). Logics of Programs. In van Leeuwen, J., editor,
Handbook of Theoretical Computer Science, volume B, pages 788–840. Elsevier Science
Publishers. [33, 58]

Krancht, M. (1995). Highway to the Danger Zone. Journal of Logic and Computation,
5(1):93–109. [37]

Lamma, E., Mello, P., and Rossi, G. F. (1993). Parametric composable in a logic
programming language. Computer Languages, 18(2):105–123. [105, 107, 110, 115–
117]

164 Bibliography

Lloyd, J. W. (1984). Foundations of Logic Programming. Springer-Verlag. [xi]

Mancarella, P. and Pedreschi, D. (1988). An Algebra of Logic Programs. In Proc. of
the Fifth International Conference of Logic Programming, ICLP’88, pages 1006–1023,
Seattle. [105]

Massacci, F. (1994). Strongly Analytic Tableaux for Normal Modal Logics. In Proc. of
the CADE’94, volume 814 of LNAI, pages 723–737. Springer-Verlag. [xi, 22, 69, 70,
138]

McCabe, F. G. (1992). Logic and Objects. International Series in Computer Science.
Prentice-Hall. [78, 107, 110, 112, 114]

McCarty, L. T. (1988a). Clausal Intuitionistic Logic. I. Fixed-Point Semantics. Journal
of Logic Programming, 5(1):1–31. [132, 133]

McCarty, L. T. (1988b). Clausal Intuitionistic Logic. II. Tableau Proof Procedure.
Journal of Logic Programming, 5(2):93–132. [132, 133]

Miller, D. (1986). A Theory of Modules for Logic Programming. In Proc. of the IEEE
Symposium on Logic Programming, pages 106–114. [132, 133]

Miller, D. (1989a). A Logical Analysis of Modules in Logic Programming. Journal of
Logic Programming, 6(2):79–108. [86, 105, 107, 115, 119, 133]

Miller, D. (1989b). Lexical Scoping as Universal Quantification. In Proc. of the 6th
Interantional Conference on Logic Programming, ICLP’89, pages 268–283, Lisbon.
[133]

Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. (1991). Uniform Proofs
as Foundations for Logic Programming. Annals of Pure and Applied Logic, 51:125–157.
[xiii, 78, 89, 94, 131–133]

Monteiro, L. and Porto, A. (1989). Contextual Logic Programming. In Levi, G. and
Martelli, M., editors, Proc. of the 6th International Conference of Logic Programming,
ICLP’89, pages 284–299. The MIT Press. [78, 105, 107, 108, 115]

Monteiro, L. and Porto, A. (1990). A Transformational View of Inheritance in
Logic Programming. In Warren, D. H. D. and Szeredi, P., editors, Proc. of the 7th
International Conference of Logic Programming, ICLP’90, pages 481–494. The MIT
Press. [108, 110]

Moore, R. C. (1980). Reasoning about Knowledge and Action. PhD thesis, MIT, Cam-
bridge, Massachussets. [73]

Nait Abdallah, M. A. (1986). Ions and Local Definitions in Logic Programming. In
Proc. of the STACS’86, volume 210 of LNCS, pages 60–72. Springer-Verlag. [105]

Bibliography 165

Nerode, A. (1989). Some Lectures on Modal Logic. In Bauer, F. L., editor, Logic,
Algebra, and Computation, volume 79 of NATO ASI Series. Springer-Verlag. [xii, 6,
21, 22]

Nonnengart, A. (1993). First-Order Modal Logic Theorem Proving and Functional
Simulation. In Proc. of International Joint Conference on Articificial Intelligence,
IJCAI’93, pages 80–85. Morgan Kaufmann. [74, 135]

Nonnengart, A. (1994). How to use Modalities and Sorts in Prolog. In MacNish, C.,
Pearce, D., and Pereira, L. M., editors, Proc. of the JELIA’94: Logics in Artificial
Intelligence, volume 838 of LNAI, pages 365–378, York, UK. Springer-Verlag. [xi, 74,
135, 136]

Ognjanović, Z. (1994). A tableau-like proof procedure for normal modal logics. Theo-
retical Computer Science, 129:167–186. [xi]

Ohlbach, H. (1991). Semantics-Based Translation Methods for Modal Logics. Journal
of Logic and Computation, 1(5):691–746. [74, 101]

Ohlbach, H. J. (1993a). Optimized Translation of Multi Modal Logic into Predicate
Logic. In Voronkov, A., editor, Proc. of the Logic Programming and Automated Rea-
soning, volume 822 of LNAI, pages 253–264. Springer-Verlag. [74]

Ohlbach, H. J. (1993b). Translation methods for non-classical logics: An overview. Bull.
of the IGPL, 1(1):69–89. [73, 97, 101]

O’Keefe, R. A. (1985). Towards an Algebra for Constructing Logic Programs. In Proc.
of the Symposium on Logic Programming, pages 152–160, Boston. [105]

Orgun, M. and Ma, W. (1994). An overview of temporal and modal logic programming.
In Gabbay, D. and Ohlbach, H., editors, Proc. of the First International Conference
on Temporal Logic, volume 827 of LNAI, pages 445–479. Springer-Verlag. [xi, 77]

Orgun, M. and Wadge, W. W. (1992). Towards a unified theory of intensional logic
programming. Journal of Logic Programming, 13(4):413–440. [123, 128]

Sakakibara, Y. (1986). Programming in Modal Logic: An extension of PROLOG based
on Modal Logic. In Wada, E., editor, Logic Programming ’86, volume 264 of LNCS,
pages 81–91. Springer-Verlag. [xi]

Smullyan, R. M. (1968). First-Order Logic, volume 43 of Ergebnisse der Mathematik.
Springer-Verlag, Berlin. [22]

Stirling, C. (1992). Modal and temporal logics. In Abramsky, S., Gabbay, D. M., and
Maibaum, T. S. E., editors, Handbook of Logic in Computer Science, volume 2, pages
477–563. Clarendon Press, Oxford. [xi]

166 Bibliography

Turini, F. (1995). Extensions of Logic Programming in support of Software Engineering.
In Sessa, M. I., editor, 1985-1995 Ten years of Logic Programming in Italy, pages
241–272. Palladio. [78, 112]

Wallen, L. A. (1990). Automated Deduction in Nonclassical Logics. The MIT Press.
[xi, 49, 96]

Wooldridge, M. and Jennings, N. R. (1995). Agent Theories, Architectures, and
Languages: A survey. In Proc. of the ECAI-94 Workshop on Agent Theories, volume
890 of LNAI, pages 1–39. Springer-Verlag. [xi]

