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ASYMPTOTIC BEHAVIOR FOR A CLASS OF MULTIBUMP SOLUTIONS

TO DUFFING–LIKE SYSTEMS

Paolo CALDIROLI, Piero MONTECCHIARI and Margherita NOLASCO
SISSA, International School for Advanced Studies, via Beirut 4

34013 Trieste, Italy

ABSTRACT

We consider a class of second order Hamiltonian systems q̈ = q − V ′(t, q) where
V (t, q) is asymptotic at infinity to a time periodic and superquadratic function
V+(t, q). We prove the existence of a class of multibump solutions whose ω-limit is
a suitable homoclinic orbit of the system at infinity q̈ = q − V ′

+(t, q).

1. Statement of the results

In this paper we study a class of second order Hamiltonian systems of the type:

q̈ = −U ′(t, q) (HS)

where U ′(t, q) denotes the gradient with respect to q of a smooth potential U : R×
RN → R, having a strict local maximum at the origin. Precisely, we assume:

(h1) U ∈ C1(R × RN ,R) with U ′(t, ·) locally Lipschitz continuous uniformly with
respect to t ∈ R;

(h2) U(t, 0) = 0 and U(t, q) = −1
2q · L(t)q + V (t, q) with V ′(t, q) = o(|q|), as q → 0,

uniformly with respect to t ∈ R and L(t) is a symmetric matrix such that c1|q|2 ≤
q · L(t)q ≤ c2|q|2 for any (t, q) ∈ R×RN with c1, c2 positive constants.

Moreover, we ask the potential U to be asymptotic to a time periodic potential U+

in the limit t → +∞. In fact we assume that there exists U+ : R×RN → R of the
form U+(t, q) = −1

2 q · L+(t) q + V+(t, q), satisfying (h1), (h2) and

(h3) there is T > 0 such that U+(t, q) = U+(t + T, q) for any (t, q) ∈ R×RN ;
(h4) (i) there is (̄t, q̄) ∈ R×RN such that U+(̄t, q̄) > 0;

(ii) there are two constants β > 2 and α < β
2 − 1 such that:

βV+(t, q)− V ′
+(t, q) · q ≤ αq · L+(t)q for all (t, q) ∈ R×RN ;

(h5) U ′(t, q)− U ′
+(t, q) → 0 as t → +∞ uniformly on the compact sets of RN .

The problem of existence and multiplicity of homoclinic orbits (i.e., solutions to
(HS) satisfying q(t) → 0 and q̇(t) → 0 as t → ±∞) has been deeply investigated by
variational methods in several papers [1–6]. We also mention [7–11] for the first order
systems.

In particular we refer to [12] for the case of asymptotically time periodic potential
U satisfying (h1)–(h5) (see also [13]). In [12] it is proved that if, in addition,



(∗) the set of homoclinics of the system at infinity

q̈ = −U ′
+(t, q) (HS)+

is countable,

then (HS) admits an uncountable set of bounded motions and countably many ho-
moclinics of multibump type. These solutions leave the origin and come back in a
neighborhood of it finitely or infinitely many times staying near translations of a par-
ticular homoclinic solution v+ of (HS)+. This dynamics was firstly shown in [10] for
first order convex Hamiltonian systems periodic in time.

In the present work we prove the following theorem.

Theorem 1.1. If U satisfies (h1), (h2) and there exists U+ for which (h1)–(h5) and
(∗) hold then there is a homoclinic solution v+ of (HS)+ such that for any sequence
(rn) ⊂ R+ there are N ∈ R and a sequence (dn) ⊂ N for which if (pn) ⊂ Z satisfies
p1 ≥ N and pn+1 − pn ≥ dn (n ∈ N), and if σ = (σn) ∈ {0, 1}N, then there is a
solution vσ of (HS) such that

|vσ(t)− σnv+(t− pnT )| < rn and |v̇σ(t)− σnv̇+(t− pnT )| < rn

for any t ∈ [12(pn−1 +pn)T, 1
2(pn +pn+1)T ] and n ∈ N, whit the agreement p0 = −∞.

In addition, any vσ satisfies vσ(t) → 0 and v̇σ(t) → 0, as t → −∞, and, if σn = 0
definitively, then vσ is a homoclinic orbit.

We remark that for a constant sequence rn = r (n ∈ N), theorem 1.1 gives
the main result contained in [12]. By theorem 1.1, choosing rn → 0, we obtain the
following result, which we think interesting in its own.

Corollary 1.2. Under the same assumptions of theorem 1.1, (HS) admits an un-
countable set of multibump solutions whose α-limit is {0} and whose ω-limit is Γ+,
where Γ+ = {(v+(t), v̇+(t)) : t ∈ R} ∪ {0}.
We recall that the α-limit and the ω-limit of a solution q are respectively the sets
α(q) = { (q̄, p̄) ∈ R2N : ∃ tn → −∞ s.t. (q(tn), q̇(tn)) → (q̄, p̄) } and ω(q) = { (q̄, p̄) ∈
R2N : ∃ tn → +∞ s.t. (q(tn), q̇(tn)) → (q̄, p̄) }.

If the potential U is doubly asymptotic to two, possibly distinct periodic potentials
U+ as t → +∞ and U−, as t → −∞, we can prove the existence of multibump
solutions of (HS) of mixed type.

Theorem 1.3. If U satisfies (h1), (h2) and there exist U± for which (h1)–(h5) and
(∗) hold, then there are homoclinic orbits v± of (HS)± such that (HS) admits an
uncountable set of multibump solutions whose α-limit is 0 or Γ− and whose ω-limit
is 0 or Γ+.

Remark 1.4. If we specialize theorem 1.3 to the case U periodic in time, we get
the existence of a homoclinic v of (HS) and an uncountable set of connecting orbits
between 0 and v and between v and itself.

We conclude by noting that, as shown in [12], the hypotheses (h1)–(h5) and (∗)
are verified in the case of the perturbed Duffing–like equation

q̈ = q − a(t)(1 + ε cos(ω(t)t)) q3



where a, ω ∈ C1(R), a(t) → a+ > 0, ω(t) → ω+ 6= 0 as t → +∞, a is bounded and
ε 6= 0 is sufficiently small.

2. Outline of the proof of Theorem 1.1

For simplicity we consider the case L(t) = L+(t) = I and T = 1. The general
case can be studied by similar arguments.

Variational setting and notation

It is well known that the system (HS) defines a variational problem in a natural
way. In fact, the homoclinic solutions to (HS) are the critical points of the action
functional ϕ : X = H1(R,RN) → R defined by

ϕ(u) = 1
2‖u‖

2 −
∫
R V (t, u) dt

where ‖u‖ is the standard norm of H1(R,RN) induced by the inner product 〈u, v〉 =∫
R(u̇ · v̇ + u · v) dt. Analogously we define the functional ϕ+ associated to V+.

It turns out that ϕ and ϕ+ are of class C1 and ϕ′(u)v = 〈u, v〉−
∫
R V ′(t, u) · v dt

for any u, v ∈ X (the corresponding expression holds for ϕ′+).
For a, b ∈ R we denote {a ≤ ϕ ≤ b} = {u ∈ X : a ≤ ϕ(u) ≤ b }, K = {u ∈

X : u 6= 0, ϕ′(u) = 0 }, Kb = K ∩ {ϕ ≤ b} and K(a) = K ∩ {ϕ = a}, and similarly
for {a ≤ ϕ+ ≤ b}, K+, Kb

+ and K+(a).
We denote Br(v) the open ball in X of radius r centered in v ∈ X and for any

interval I ⊂ R, Br(v; I) = {u ∈ X : ‖u− v‖I < r}, where ‖u‖2
I =

∫
I(|u̇|2 + |u|2) dt .

Moreover, for S ⊆ X and 0 ≤ r1 < r2 we denote Ar1,r2(S) =
⋃

v∈S Br2(v) \ B̄r1(v).

Palais Smale sequences

First of all we note that thanks to (h1) and (h2) the origin is a strict local
minimum for ϕ (and ϕ+).

Lemma 2.1. For any ε > 0 there exists δ > 0 such that for any given interval I ⊆ R,
with |I| ≥ 1 and for any u ∈ X with ‖u‖I ≤ δ we have∫

I V (t, u) dt ≤ ε‖u‖2
I and

∫
I V ′(t, u) · v dt ≤ ε‖u‖I‖v‖I , ∀v ∈ X.

In particular we have that
ϕ(u) = 1

2‖u‖
2 + o(‖u‖2) and ϕ′(u) = 〈u, ·〉+ o(‖u‖) as u → 0 .

Now, we study the bounded Palais Smale (PS) sequences for ϕ and ϕ+. We point
out that the results stated in the next two lemmas follow assuming only (h1) and
(h2), and they are inspired to concentration–compactness arguments [14]. We refer
to [12] for the proofs.

Lemma 2.2. If (un) ⊂ X is a PS sequence at the level b (namely ϕ(un) → b and
‖ϕ′(un)‖ → 0) weakly convergent to some u ∈ X, then ϕ′(u) = 0 and (un − u) is a
PS sequence at the level b − ϕ(u). Moreover, un → u strongly in H1

loc(R,RN) and
the following alternative holds: either

(i) un → u strongly in X, or (ii) ∃ |tnk
| → ∞ s.t. infk |unk

(tnk
)| > 0.

Therefore, if (un) ⊂ X is a PS sequence which converges weakly but not strongly
to some u ∈ X, then there exists a positive number r such that for any T > 0 we have



lim sup ‖un‖|t|>T > r. Thanks to lemma 2.1 this value r can be taken independent of
the sequence (un). In fact,

∃ ρ > 0 such that if lim sup ‖un‖ ≤ 2ρ and ϕ′(un) → 0 then un → 0. (2.3)

By (2.3) and lemma 2.2 we obtain the following local compactness property.

Lemma 2.4. Let un → u weakly in X and ϕ′(un) → 0. If there exists T > 0 for
which lim sup ‖un‖|t|>T < ρ or if diam {un} < ρ, then un → u strongly in X.

By assuming also the hypotheses (h3) and (h4) we can state further properties
concerning the PS sequences for ϕ+.

First of all we point out that the hypothesis (h4.ii) implies that

(1
2 −

1
β −

α
β )‖u‖2 ≤ 1

β‖ϕ
′
+(u)‖ ‖u‖+ ϕ+(u) ∀u ∈ X.

Therefore, any PS sequence (un) for ϕ+ is bounded in X and lim inf ϕ+(un) ≥ 0.

Thanks to (h3) the functionals ϕ+ and ‖ϕ′+(·)‖ are invariant under Z–translations.
By these facts and lemma 2.2, it is possible to characterize in a sharp way the PS
sequences for ϕ+, as already done in [4] and [7].

Lemma 2.5. Let (un) ⊂ X be a PS sequence for ϕ+ at the level b. Then there
are v0 ∈ K+ ∪ {0} , v1, . . . , vk ∈ K+, a subsequence of (un), denoted again (un),
and corresponding sequences (t1n), . . . , (tkn) ⊆ Z, with |tjn| → +∞ (j = 1, . . . , k) and
tj+1
n − tjn → +∞ (j = 1, . . . , k − 1), as n →∞, and such that:

‖un − (v0 + v1(· − t1n) + . . . + vk(· − tkn))‖ → 0

b = ϕ+(v0) + · · ·+ ϕ+(vk).

By lemma 2.1 and the assumption (h4), we infer (see [15]) that the functional ϕ+

verifies the geometrical hypotheses of the mountain pass theorem.

Then, if we define Γ = { γ ∈ C([0, 1], X) : γ(0) = 0 , ϕ+(γ(1)) < 0 } and
c = infγ∈Γ maxs∈[0,1] ϕ+(γ(s)), we have that c > 0 and that there is a PS sequence at
the level c. This fact and lemma 2.5 imply that K+ 6= ∅.

Consequences of the assumption (∗)
To get further compactness properties of the functional ϕ+, it is convenient to

introduce, following [10], two suitable sets of real numbers. Let us fix a level b > c.
Setting Sb

PS = {(un) ⊂ X : ϕ′+(un) → 0 , lim sup ϕ+(un) ≤ b}, we define

D = {r ∈ R : ∃ (un), (ūn) ∈ Sb
PS s.t. ‖un − ūn‖ → r}.

Φ = {l ∈ R : ∃ (un) ∈ Sb
PS s.t. ϕ+(un) → l}.

By lemma 2.5, D and Φ can be characterized by means of the set K+. As proved in
[15, lemma 3.10] we get

D = {(∑k
j=1 ‖vj − v̄j‖2)

1
2 : k ∈ N, vj , v̄j ∈ K+ ∪ {0},

∑
ϕ+(vj) ≤ b,

∑
ϕ+(v̄j) ≤ b},

Φ = {∑k
j=1ϕ+(vj) : k ∈ N , vj ∈ K+} ∩ [0, b].

By the assumption (∗), the sets D and Φ are countable and, since they are closed
([15, lemma 3.7]), we obtain the following lemma.

Lemma 2.6. (i) For any r ⊂ (0, ρ
2) \D, there exists δ = δ(r) > 0 such that



inf{‖ϕ′+(u)‖ : u ∈ Ar−δ,r+δ(K
b
+) ∩ {ϕ+ ≤ b} } > 0.

(ii) For any interval [a1, a2] ⊂ R+ \ Φ it holds that
inf {‖ϕ′+(u)‖ : a1 ≤ ϕ+(u) ≤ a2 } > 0 .

From lemmas 2.4 and 2.6(i), using a deformation argument, it is possible to show
that the functional ϕ+ admits a critical point of local mountain pass type (see [15;
section 4] for the proof).

Lemma 2.7. There exist c̄ ∈ [c, b), r̄ ∈ (0, ρ
2), a sequence (rn) ⊂ (0, r̄) \ D with

rn → 0 and a sequence (vn) ⊂ K+(c̄) with vn → v+ ∈ K+(c̄), such that for any h > 0
there is a sequence of paths (γn,h) ⊂ C([0, 1], X) satisfying:
(i) γn,h(0), γn,h(1) ∈ ∂Brn(vn);
(ii) γn,h(0) and γn,h(1) are not connectible in Br̄(v+) ∩ {ϕ+ < c̄};
(iii) range γn,h ⊆ B̄rn(vn) ∩ {ϕ+ ≤ c̄ + h};
(iv) range γn,h ∩ Arn− 1

2δn,rn
(vn) ⊆ {ϕ+ ≤ c̄− h};

(v) supp γn,h(s) ⊂ [−Rn,h, Rn,h] for any s ∈ [0, 1],
where Rn,h > 0 is independent of s, and δn = δ(rn) is given by lemma 2.6(i).

We recall that two points u0, u1 ∈ X are not connectible in a ⊂ X if there is no
path joining u0 and u1 with range contained in A.

We point out that, by the Z–invariance of ϕ+, any translation by p ∈ Z of a path
γn,h satisfies properties (i)–(v) with respect to vn(· − p).

Multibump functions

We introduce some notation. For k ∈ N and d = (d1, . . . , dk−1) ∈ Nk−1 we set
P (k, d) = {(p1, . . . , pk) ∈ Zk : pi+1 − pi ≥ 2d2

i + 3di ∀ i = 1, . . . , k − 1}, and, for
p ∈ P (k, d) we define the intervals:

Ii = (1
2(pi−1 + pi) , 1

2(pi + pi+1)) (i = 1, . . . , k)
Mi = (pi + di(di + 1), pi+1 − di(di + 1)) (i = 1, . . . , k − 1)

M0 = (−∞, p1 − d1(d1 + 1)), Mk = (pk + dk−1(dk−1 + 1), +∞) and M =
⋃k

i=0 Mi,
with the agreement that p0 = −∞ and pk+1 = +∞.

In addition we introduce the functionals ϕi : X → R (i = 1, . . . , k) defined by

ϕi(u) = 1
2‖u‖

2
Ii
−

∫
Ii

V+(t, u) dt. We notice that ϕ+ =
∑k

i=1 ϕi and any ϕi is of class

C1 on X with ϕ′i(u)v = 〈u, v〉Ii
−

∫
Ii

V ′
+(t, u) · v dt for any u, v ∈ X.

Thanks to lemma 2.7 we obtain the following result. Let (rn) ⊂ (0, r̄)\D, rn → 0,
and (vn) ⊂ K+(c̄) be given by lemma 2.7 and let (δn) ⊂ R+ be assigned by lemma
2.6(i). Let us denote r1,n = rn − 1

3δn, r2,n = rn − 1
4δn and r3,n = rn − 1

5δn. Then we
have:

Corollary 2.8. Taking a sequence (hn) ⊂ R+ and setting for n ∈ N d̃n =

max {Rn,hn , Rn+1,hn+1
} , then for any k ∈ N and p ∈ P (k, d̃), the surface G : Q =

[0, 1]k → X defined by G(θ1, . . . , θk) =
∑k

i=1 γi,hi
(θi)(· − pi). satisfies the following

properties:
(i) G(∂Q) ⊆ X \ ⋂k

i=1 Br3,i(vi(· − pi); Ii);
(ii) G(θ)|Mi

= 0 for any θ ∈ Q and i ∈ {1, . . . , k};



(iii) for any θ ∈ Q such that G(θ) ∈ X \ ⋂k
i=1 Br1,i(vi(· − pi); Ii) there exists i = i(θ)

for which G(θ) ∈ {ϕi ≤ c̄− hi};
(iv) range G ⊂ ⋂k

i=1{ϕi ≤ c̄ + hi};
(v) ϕi(G(θ)) = ϕ+(γi,hi

(θi)(· − pi)).

A common pseudogradient vector field for ϕ and ϕi

We point out that by (h5), the operator ϕ′(u) is close to ϕ′+(u) for those elements
u ∈ X with support at infinity, as stated in the next lemma (see [12; lemma 4.2] for
a proof).

Lemma 2.9. For any ε > 0 and for any C > 0 there exists N ∈ R such that
‖ϕ′(u)− ϕ′+(u)‖ ≤ ε ,

for any u ∈ X with ‖u‖ ≤ C and supp u ⊆ [N, +∞).

Next lemma states the existence of a common pseudogradient vector field for ϕ
and ϕi.

Let (rn) ⊂ (0, r̄) \D, rn → 0, and (vn) ⊂ K(c̄) be given by lemma 2.7. Let us fix
r1,n, r2,n, r3,n as above. Moreover, let us fix sequences (an), (bn) and (λn) ⊂ R+ such

that [an−λn, an+2λn] ⊂ (c̄−hn, c̄) \Φ and [bn−λn, bn+2λn] ⊂ (c̄+hn, c̄+ 3
2hn) \Φ.

Lemma 2.10. There exist µn = µn(rn) > 0, N ∈ R and ε̄n = ε̄n(rn, an, bn, λn) > 0
such that: for any εn ∈ (0 , ε̄n) there exists d̄n ∈ N (n ∈ N) for which for any k ∈ N
and p ∈ P (k, d), with p1 > N there exists a locally Lipschitz continuous function
W : X → X which verifies

(W0) max1≤i≤k ‖W(u)‖Ii
≤ 1, ϕ′(u)W(u) ≥ 0, ∀u ∈ X, W(u) = 0 ∀u ∈ X \B3;

(W1) ϕ′i(u)W(u) ≥ µi if r1,i ≤ ‖u− vi(· − pi)‖Ii
≤ r2,i, u ∈ B2 ∩ {ϕi ≤ bi};

(W2) ϕ′i(u)W(u) ≥ 0 ∀u ∈ {bi ≤ ϕi ≤ bi + λi} ∪ {ai ≤ ϕi ≤ ai + λi};
(W3) 〈u,W(u)〉Mi

≥ 0 ∀ i ∈ {0, . . . , k} if u ∈ X \M,

where M≡ ⋂k
i=0 B√

ε(0; Mi) and Bj ≡
⋂k

i=1 Brj,i(vi(· − pi); Ii) for j = 1, 2, 3.

Moreover if K ∩B2 = ∅ then there exists µp > 0 such that
(W4) ϕ′(u)W(u) ≥ µp, ∀u ∈ B2.

Approximating k-bump solutions

Theorem 2.11. If U satisfies (h1), (h2) and there exists U+ for which (h1)–(h5)
and (∗) hold then for any given sequence (ρn) ∈ R+ there exist N ∈ R and a
sequence (dn) ⊂ N such that for every k ∈ N and p ∈ P (k, d), with p1 > N , we have

K ∩ ⋂k
i=1 Bρi(v+(· − pi); Ii) 6= ∅, where v+ is given by lemma 2.7.

Proof. Arguing by contradiction there exists a sequence (ρn) ⊂ R+ such that for any
N ∈ R and for any sequence (dn) ⊂ N there exist k ∈ N and p ∈ P (k, d), with

p1 > N , for which K ∩ ⋂k
i=1 Bρi(v+(· − pi); Ii) = ∅. Let (rn) ⊂ (0, r̄) \ D, rn → 0

and (vn) ⊂ K(c̄) be given by lemma 2.7. Without loss of generality, passing to a
subsequence if necessary, we can assume B2rn(vn) ⊂ Bρn(v+) for any n ∈ N.

Let µn and ε̄n be given by lemma 2.10. Let us define ∆n = 1
4µn(r2,n − r1,n).

Then, we fix hn < 1
8∆n, an and bn as above, with bn − an < 1

4∆n and 0 < εn <

min{ε̄n, 1
4δ2

rn−1
, 1

4δ2
rn

, 1
8(c̄− an)} such that

∫
I |V+(t, u) dt ≤ 1

8‖u‖
2
I for |I| ≥ 1.



Now, we fix dn > max {d̃n, d̄n, 2} and such that max {‖vn+1‖2
t<−dn

, ‖vn‖2
t>dn

}
< εn, where d̃n is given by corollary 2.8 and d̄n by lemma 2.10.

For these values of dn and for N given by lemma 2.10 there exist k ∈ N and p ∈
P (k, d), with p1 > N , for which

⋂k
i=1 Bri(vi(· − pi); Ii) ⊆

⋂k
i=1 Bρi(v+(· − pi); Ii). So

that, by the contrary assumptions, there exists a vector field W satisfying properties
(W0)-(W4).

Now, we consider the flow associated to the Cauchy problem
dη
ds = −W(η) , η(0, u) = u

to deform the surface G given by corollary 2.8 for this values of (hi)i=1,...,k and
(pi)i=1,...,k.

Since W is a bounded locally Lipschitz continuous vector field, the flow η is
globally defined. Moreover, by (W0) the flow does not move the points outside B3.
This implies, by corollary 2.8(i),

η(s, G(θ)) = G(θ) ∀ θ ∈ ∂Q , ∀ s ∈ R. (2.12)

Since ϕ(B2) is a bounded set, by (W4) there exists τ > 0 such that for any
θ ∈ Q for which G(θ) ∈ B1 there is [s1, s2] ⊂ (0, τ ] with η(s1, G(θ)) ∈ ∂B1,
η(s2, G(θ)) ∈ ∂B2 and η(s, G(θ)) ∈ B2 \ B̄1 for any s ∈ (s1, s2). Therefore for any
θ ∈ Q there is an index i = i(θ) ∈ {1, . . . , k} such that, by (W1), ϕi(η(s2, G(θ))) ≤
ϕi(η(s1, G(θ))) − 2∆i. By corollary 2.8(iv) and since, by (W2), the sets {ϕi ≤ bi}
and {ϕi ≤ ai} are positively invariant, we obtain ϕi(η(s2, G(θ))) ≤ bi − 2∆i < ai

and hence ϕi(η(τ,G(θ))) ≤ ai. Moreover, by (iii) of corollary 2.8, for any θ for which
G(θ) ∈ X \B1 there exists i = i(θ) such that η(s, G(θ)) ∈ {ϕi ≤ ai} for any s ∈ R+.
Hence, setting Ḡ(θ) = η(τ,G(θ)), we get

∀ θ ∈ Q, ∃i ∈ {1, . . . , k} such that ϕi(Ḡ(θ)) < ai. (2.13)

By (2.13) we have that
(2.14) there exists i ∈ {1, . . . , k} and ξ ∈ C([0, 1], Q) such that ξ(0) ∈ {θi = 0}, ξ(1) ∈

{θi = 1} and ϕi(Ḡ(θ)) < ai, for any θ ∈ range ξ.

Indeed, assuming the contrary, the set Di = {θ ∈ Q : ϕi(Ḡ(θ)) ≥ ai } separates in Q
the faces {θi = 0} and {θi = 1}, for any i ∈ {1, . . . , k}. Then, using a Miranda fixed
point theorem, it follows that

⋂
i Di 6= ∅, in contradiction with the property (2.13)

(see [15]).
By (W3), the set M is positively invariant under the flow. Then, by corollary

2.8(ii),
η(s, G(Q)) ∈M ∀ s ∈ R+ . (2.15)

Now, let us take a cut-off function χ ∈ C∞(R, [0, 1]) with supt∈R |χ̇(t)| < 1
2

(this can be done since infi=1...k di > 2) such that χ(t) = 1 if t ∈ Ii \ M and
χ(t) = 0 if t ∈ R \ Ii, where the index i is given by (2.14). Then ‖χ u‖2

Ii∩M ≤
2‖u‖2

Ii∩M and ‖(1 − χ) u‖2
Ii∩M ≤ 2‖u‖2

Ii∩M for any u ∈ X. We define a path

g : [0, 1] → X by setting g(s) = χḠ(ξ(s)), s ∈ [0, 1]. By (2.12) and lemma 2.7(v),



we have that g(0) = γi,hi
(0)(· − pi) and g(1) = γi,hi

(1)(· − pi). We finally show that
g(s) ∈ Br̄(v+(· − pi)) ∩ {ϕ+ < c̄}, for any s ∈ [0, 1] contradicting lemma 2.7(ii). In
fact one easily get that range g ⊂ B2ri(vi(· − pi)).

Then, setting u = Ḡ(ξ(s)), we have ϕ+(g(s)) = ϕi(g(s)) ≤ ϕi(u) + 1
2‖χ u‖2

Ii∩M +∫
Ii∩M (V+(t, u)−V+(t, χ u)) dt ≤ ai+4 ‖χ u‖2

Ii∩M . Since, by (2.15) ‖u‖Ii∩M ≤ εi+εi−1,
we get ϕ+(g(s)) < c̄.

Remarks. (i) The multibump homoclinic solutions of (HS) given by theorem 2.11
are close to translations of v+ in the H1 norm on suitable intervals. Hence they are
close in the C0 norm and, since they verify (HS), in the C1 norm, too.
(ii) Taking the C1

loc closure of the set of the multibump homoclinic solutions of (HS),
using the Ascoli–Arzelà theorem, we get solutions with infinitely many bumps, as
stated in theorem 1.1.
(iii) Corollary 1.2 follows from theorem 1.1, taking a sequence rn → 0 and any
sequence (σn) with infinitely many 1’s. Thus we have multiplicity both for the arbi-
trariness of (rn) and for the arbitrariness of (σn).
(iv) Similar arguments apply to prove theorem 1.3. We refer to [12] for the construc-
tion of multibump solutions of mixed type.
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