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Existence and multiplicity of homoclinic orbits

for potentials on unbounded domains

Paolo Caldiroli
SISSA

34014 Trieste, Italy

Synopsis. We study the system q̈ = −V ′(q) in RN where V is a potential with
a strict local maximum at 0 and possibly with a singularity. First, using a minimizing
argument, we can prove existence of a homoclinic orbit when the component Ω of
{x ∈ RN : V (x) < V (0)} containing 0 is an arbitrary open set; in the case Ω
unbounded we allow V (x) to go to 0 at infinity, although at a slow enough rate.
Then, we show that the presence of a singularity in Ω implies that a homoclinic
solution can be found also via a min–max procedure and, comparing the critical
levels of the functional associated to the system, we see that the two solutions are
distinct whenever the singularity is “not too far” from 0.

Key words: Hamiltonian systems, homoclinic orbits, singular potentials, crit-
ical point, minimax argument.
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Introduction

In this work we study the conservative second order Hamiltonian system

(HS) q̈ + V ′(q) = 0

where q ∈ RN and V is a C1 real function defined on some open subset of RN . In particular
we look for homoclinic orbits, i.e. solutions of (HS) defined on R and doubly asymptotic,
with their derivatives, to some periodic solution of (HS). Actually, we consider the special
case in which this periodic orbit is an equilibrium point p for V (i.e. a point where V ′(p) = 0);
in this case the conditions for a solution q of (HS) to be a homoclinic orbit to p reduce to
q(±∞) = p and q̇(±∞) = 0 and obviously q 6≡ p.

Although these kind of orbits were first shown by Poincaré [12], it is only recently
that they have been tackled with a variational approach, which seems quite natural for
the structure of the problem. In fact, through this approach, several questions have been
successfully investigated, also for more general hamiltonian systems as

(H) ẋ = JH ′(x)

where x ∈ R2N , J = ( 0N

IN

−IN
0N

) and a Hamiltonian of the following form:

H(x) =
1
2
x ·Ax + R(x)

being A a symmetric constant matrix such that JA is hyperbolic (i.e. sp(JA)∩ iR = ∅) and
R(x) = o(|x|2) as x → 0, so that x = 0 is a hyperbolic point for H.

A first existence result of homoclinic solutions of (H) was established by Coti Zelati,
Ekeland and Séré [5] under the hypotheses R positive, convex and globally superquadratic (i.e.
satisfying R′(x)·x ≥ αR(x) for all x ∈ R2N , with α > 2); in this work the solution is obtained
as critical point of the dual action functional, using the mountain–pass lemma. The lack
of compactness due to the unboundedness of the domain is overcome by the concentration–
compactness principle of P. L. Lions [11]. Then Hofer and Wysocki [10] dropped the convexity
assumption and found a homoclinic orbit applying a linking theorem to the action functional
defined on H1/2(R;R2N ). The same result was achieved by Tanaka [20] who obtained the
homoclinic orbit as limit in the C1

loc topology of T–periodic solutions of (H) as T →∞. This
method was introduced by Rabinowitz [14] to study the second order system (HS) with V of
the form:

(1) V (q) = −1
2
q · Lq + W (q)

being L a positive definite symmetric matrix and W globally superquadratic and such that
W ′(q) = o(|q|) as q → 0.

Some of the above–mentioned results are also valid if H —for (H)— or V —for (HS)—
depend explicitly on time in a periodic way. Indeed, Séré in [16] first showed that this time
dependence is the key to obtain multiplicity results; this fact was afterwards employed in
other works as [6] and [18], concerning, like [16], the existence of infinitely many homoclinics.

In the autonomous case, recently, Ambrosetti and Bertotti [1] and Rabinowitz and
Tanaka [15], with different techniques, were able to get the existence of a homoclinic so-
lution for (HS) without the superquadraticity condition, but assuming that the component
Ω of {x : V (x) < 0} ∪ {0} containing 0 is bounded and V ′(x) 6= 0 for any x ∈ ∂Ω. In some
sense, the analogous thing was done by Séré [17] for the first order system as (H), supposing



that Σ \ {0} is compact and of restricted contact type, where Σ = {x : H(x) = 0} is the
zero–energy surface.

The main results here are theorems 2.2 and 3.1.
In theorem 2.2 we prove the existence of one homoclinic orbit when Ω is an open set in

RN (not necessarily bounded) and V is eventually singular in a point e ∈ Ω in the sense that
V (x) → −∞ as x → e.

This result generalizes [1], where Ω is assumed to be bounded and V to satisfy a strong
force condition near the singularity, [15], which also assume Ω to be bounded and take V to
be regular, and [19], which allows V to be singular (requiring the strong force condition) but
take lim sup|x|→∞ V (x) < 0.

Our solution is founded as limit of minima of problems similar to that of [15]. The
difficulties here are: (a) to show that such sequence converges to a solution bounded in L∞,
(b) to prove that the limit is a non–collision solution. We remark that our assumptions allow
V (x) to go to 0 as |x| → ∞, even if not too fast (see assumptions (V3) and (V3′)).

In theorem 3.1 we prove the existence of a second solution under suitable assumptions.
More precisely, we show that the presence of a singularity implies that a solution can be
found also via a min–max procedure. We then prove, comparing the critical levels, that such
a solution is different from the one found via theorem 2.2 whenever the singularity is “not
too far” from 0, thus obtaining theorem 3.1.

Let us remark that the interest of this result lies in the fact that, contrary to the non–
autonomous case, very little is known about the multiplicity of homoclinic solutions for
conservative systems; we mention here a recent work of Ambrosetti and Coti Zelati [2],
where the authors, with a variational approach and by means of the Ljusternik–Schnirelmann
theory, prove the existence of two homoclinic orbits of (HS) for V of the form (1), with W
superquadratic, satisfying a “pinching” condition:

a|q|α ≤ W (q) ≤ b|q|α

provided that b/a < 2
α−2

2 .

1. Homoclinics in unbounded domains

We study the system (HS) in RN ruled by a potential V ∈ C1(RN ;R) with a local
maximum at some point p. Without loss of generality we can suppose p = 0 and V (0) = 0;
so, the origin is an equilibrium for (HS). We look for homoclinic orbits to 0. Let Ω be the
component of {x ∈ RN : V (x) < 0} ∪ {0} containing 0. Notice that V (x) < 0 if x ∈ Ω \ {0}
and V (x) = 0 if x ∈ ∂Ω ∪ {0}. We will find a solution of (HS) on R+ = [0,∞) as critical
point of the usual Lagrangian functional

I(u) =
∫ ∞

0

(
1
2
|u̇|2 − V (u)

)
dt

associated to (HS). To be precise, we consider the Hilbert space

E+ =
{

u ∈ W 1,2
loc (R+;RN ) :

∫ ∞

0

|u̇|2dt < ∞
}

equipped with the norm

‖u‖2+ = |u(0)|2 +
∫ ∞

0

|u̇|2dt.



Fixed an open set ω ⊆ Ω containing 0, we define

Γ(ω) = {u ∈ E+ : u(0) ∈ ∂ω u(∞) = 0 u(t) ∈ ω ∀t ∈ R+}

and look for a solution of (HS) on R+ as minimum of I on Γ(ω). In particular we write
Γ = Γ(Ω).
Rabinowitz and Tanaka [15] proved the following result:

Theorem 1.1. Let V ∈ C1(RN ;R) with V (0) = 0 satisfying
(V1) Ω is open, i.e. the point 0 is a strict local maximum for V ;
(V2) V ′(x) 6= 0 for any x ∈ ∂Ω.
Then, given an open bounded set ω ⊆ Ω containing 0, there is a function q ∈ C2(R+;RN ) so-
lution of (HS) with energy 0 and such that q ∈ Γ(ω), q(t) ∈ ω for t > 0 and I(q) = inf

u∈Γ(ω)
I(u).

If in addition Ω is bounded, then (HS) admits a homoclinic orbit described by a even function
x ∈ C2(R;RN ), such that x+ = x|R+ ∈ Γ and I(x+) = inf I(Γ).

Now we want to discuss the case Ω unbounded to give a similar result using the previous
theorem. For any R > 0 set BR = {x ∈ RN : |x| < R} and ΓR = Γ(Ω ∩ BR). By theorem
1.1, for any R > 0 we can find a solution qR of (HS) on R+, with energy zero and such that
qR ∈ ΓR, qR(t) ∈ Ω for t > 0 and I(qR) = inf I(ΓR). Observe that if qR̄(0) ∈ ∂Ω for some
R̄ > 0, we can reflect qR̄, by defining x(t) = qR̄(|t|) for t ∈ R, to obtain a homoclinic orbit
for (HS) with the desired properties. So, the problem is to show that it cannot happen that
|qR(0)| = R for any R > 0.
Firstly we notice that for all R > 0

(2) 0 < I(qR) ≤ c

where c = inf I(Γ) < ∞. Indeed, fixed R > 0, for any u ∈ Γ there is a time to ≥ 0 such that
u(·+ to) =: v ∈ ΓR and so I(v) ≤ I(u); then I(qR) ≤ I(u) for all u ∈ Γ, and (2) follows.
At this point, it is useful to distinguish the cases ∂Ω bounded, i.e. RN \ Ω bounded, and
∂Ω unbounded, even if the result obtained in the second case (theorem 1.4) is meaningful for
any Ω with boundary.

Theorem 1.2. Let V ∈ C1(RN ;R) with V (0) = 0 satisfying (V1) and (V2). Let Ωc be
bounded with ∂Ω non–empty and suppose:

(V3) there are a constant Ro > 0 and a function U ∈ C1(RN ;R) such that |U(x)| → ∞ as
|x| → ∞ and −V (x) ≥ |U ′(x)|2 for |x| ≥ Ro.

Then (HS) admits a homoclinic orbit described by a even function x ∈ C2(R;RN ), such that
x+ = x|R+ ∈ Γ and I(x+) = inf I(Γ).

Remark 1.3. Notice that (V3) is formally the so–called strong force condition, introduced
by Gordon in [9] to deal with singular potentials, i.e. functions ϕ such that ϕ(x) → −∞ as
x → xo, where xo is some point of RN , representing the singularity. Usually this condition
governs the rate at which ϕ(x) → −∞ as x → xo; for example it is satisfied when ϕ(x) =
−|x − xo|−α in a neighbourhood of xo, with α ≥ 2. In our case the property (V3) tells us
that, as |x| → ∞, V (x) can go to 0, but not too fast. For instance, if V (x) = −|x|−α for |x|
large, (V3) is verified when α ≤ 2. As we will see in the proof, (V3) implies that if u ∈ Γ is
an unbounded function, then I(u) must diverge.



Proof. Suppose, by contradiction, that |qR(0)| = R for any R > 0. Since qR ∈ ΓR, for
any R > Ro there is TR ∈ R+ such that |qR(TR)| = Ro and |qR(t)| > Ro for t ∈ [0, TR).
Hence, using (V3) and (2), we get for any R > Ro:

(3)

|U(qR(0))| ≤ |U(qR(TR))− U(qR(0))|+ |U(qR(TR))|

≤

∣∣∣∣∣
∫ TR

0

U ′(qR(t)) · q̇R(t) dt

∣∣∣∣∣+ |U(qR(TR))|

≤

(∫ TR

0

|U ′(qR(t))|2dt

) 1
2
(∫ TR

0

|q̇R(t)|2dt

) 1
2

+ |U(qR(TR))|

≤

(∫ TR

0

−V (qR(t)) dt

) 1
2 (∫ ∞

0

|q̇R(t)|2dt

) 1
2

+ |U(qR(TR))|

≤ I(qR) + |U(qR(TR))| ≤ c′ < ∞

while |U(qR(0)| → ∞ as R → ∞. Therefore for some R̄ > 0 it must be qR̄(0) ∈ ∂Ω; hence
qR̄ ∈ Γ and, from (2), I(qR̄) = inf I(Γ). Moreover q̇R̄(0) = 0 and, setting x(t) = qR̄(|t|) for
t ∈ R, we obtain the desired homoclinic orbit.

q.e.d.

Next we examine the case ∂Ω unbounded, and show how some conditions for V at infinity
in Ω and along its boundary give the existence of a solution of (HS) characterized as minimum
point of the Lagrangian functional I on the set Γ. We denote by ρ(x) the distance of x from
the boundary of Ω.

Theorem 1.4. Let V ∈ C2(RN ;R) with V (0) = 0 satisfying (V1) and (V2). Suppose
∂Ω 6= ∅ and

(V3′) there are constants δ,Ro > 0 and α ∈ (0, 2] such that V (x) ≤ −|x|−α min{δ, ρ(x)} for
any x ∈ Ω \BRo

;
(V4) there are constants a, b > 0 and λ ≥ 1 such that:

i. V (x) ≥ −λ ρ(x)
|x|α for any x ∈ S;

ii. |ρ′′(x)ξ · ξ| ≤ a |ξ|2 for any x ∈ S and ξ ∈ RN ;
iii. ρ(x) ρ′(x) · V ′(x) ≤ b V (x) for any x ∈ S;

where S = {x ∈ Ω \BRo
: ρ(x) < δ}.

Then (HS) admits a homoclinic orbit described by a even function x ∈ C2(R;RN ), such that
x+ = x|R+ ∈ Γ and I(x+) = inf I(Γ).

Remark 1.5. We point out that theorem 1.4 covers the cases Ω bounded and Ωc bounded,
too; indeed if Ω is bounded the hypotheses (V3′) and (V4) are trivially satisfied; if Ωc is
bounded, again the hypothesis (V4) is automatically true and (V3′) reduces to (V3) with
U(x) = δ log |x| if α = 2 or U(x) = δ (1− α

2 )−1|x|1−α
2 if α ∈ (0, 2).

Remark 1.6. The condition (V3′) is the analogous of (V3) with the same meaning
explained in remark 1.3; however the presence of ∂Ω is reflected by the term ρ(x), by virtue
of which V (x) can go to 0 on ∂Ω. Actually the assumption (V4) i. gives a boundedness from
above for |V | in the strip S and, with (V3′), implies that for any x ∈ S ρ(x)

|x|α ≤ |V (x)| ≤
λ ρ(x)
|x|α . We also notice that the condition (V4) ii. expresses a control about the curvature of

the boundary of Ω that cannot become too much large. The (V4) iii. forces an orbit entering



S to have at most one point with least distance from ∂Ω; more exactly, as we will see in the
proof, the function t 7→ ρ(q(t)) is convex when q(t) ∈ S, provided that q is a solution of (HS)
with energy zero. This assumption looks like assumption (V6) of theorem 3.1.

Proof. The result follows from theorems 1.1 and 1.2 if ∂Ω is bounded (see remark
1.5). Then we will assume ∂Ω to be unbounded. As in the proof of theorem 1.2, we argue
indirectly, supposing that |qR(0)| = R for any R > 0. First of all, we give some notations:
since qR ∈ ΓR, for any R ≥ Ro there is TR ∈ R+ such that |qR(TR)| = Ro and |qR(t)| > Ro

for t ∈ [0, TR). Call εR = inf
t∈[0,TR]

ρ(qR(t)); then, let tR ∈ [0, TR] such that ρ(qR(tR)) = εR

and put xR = qR(tR). Moreover we will write IA(u) =
∫

A
( 1
2 |u̇|

2 − V (u))dt for A ⊆ R+ and
u ∈ Γ and define for any r > 0 ϕ(r) = 2

2−α r1−α
2 in the case 0 < α < 2 and ϕ(r) = log r for

α = 2.

1st step: if ρ(qR(t)) ≥ ε for any t ∈ [t1, t2] and t2 ≤ TR then

(4) ϕ(qR(t1)) ≤ ϕ(qR(t2)) +
1√

min{ε, δ}
I[t1,t2](qR)

In fact, we point out that ϕ′(r)2 = r−α and so, by (V3′), we have:

ϕ(qR(t1)) ≤ ϕ(qR(t2)) +
∫ t2

t1

ϕ′(|qR(t)|) |q̇R(t)| dt

≤ ϕ(qR(t2)) +
(∫ t2

t1

dt

|qR(t)|α

) 1
2
(∫ t2

t1

|q̇R(t)|2dt

) 1
2

.

Now, call A = {t ∈ [t1, t2] : ρ(qR(t)) ≥ δ} and B = [t1, t2] \A and observe that∫ t2

t1

dt

|qR(t)|α
≤ 1

δ

∫
A

−V (qR(t)) dt +
1
ε

∫
B

−V (qR(t)) dt.

Thus we get

ϕ(qR(t1)) ≤ ϕ(qR(t2)) +
1√

min{ε, δ}

(∫ t2

t1

−V (qR(t)) dt

) 1
2
(∫ t2

t1

|q̇R(t)|2dt

) 1
2

≤ ϕ(qR(t2)) +
1√

min{ε, δ}
I[t1,t2](qR).

2nd step:

(5) lim
R→∞

εR = 0

We apply (4) to any qR with R ≥ Ro in the interval [0, TR] and get:

ϕ(R) ≤ ϕ(Ro) +
1√

min{εR, δ}
I(qR) ≤ co +

c1√
min{εR, δ}

so that, by the definition of ϕ, (5) follows immediately.



Before passing to the next step we point out that for any R ≥ Ro there exists a point zR ∈ ∂Ω
such that |xR − zR| = εR. By definition of εR, the segment [xR, zR] is contained in Ω. If
|zR| > R there is a unique z̄R ∈ [xR, zR] such that |z̄R| = R; in this case we redefine zR = z̄R.
Hence [xR, zR] ⊂ Ω ∩BR and zR ∈ ∂(Ω ∩BR). Finally put mR = max

x∈[xR,zR]
|V (x)|.

3rd step: for any R ≥ Ro

(6)
√

2εRmR + ϕ(|xR|) ≥ ϕ(R)

If tR = 0, (6) is obvious. If tR > 0 we consider the function QR : R+ → RN defined in this
way:

QR(t) =
{

zR + vRt 0 ≤ t ≤ τR

qR(t− τR + tR) t > τR

where vR = xR−zR

τR
and τR > 0 must be chosen in a suitable manner. We observe that

QR ∈ ΓR and

I(QR) ≤ ε2
R

2τR
+ τRmR + I(qR)− I[0,tR](qR).

We minimize ε2
R

2τR
+ τRmR taking τR = εR√

2mR
. On the other hand, we can use (4) to estimate

I[0,tR](qR), so that

I(QR) ≤ εR

√
2mR + I(qR) +

√
εRϕ(|xR|)−

√
εRϕ(R).

Then, the fact that I(qR) = inf I(ΓR) implies readily (6).

4th step:

(7) lim
R→∞

|xR|
R

= 1

By (5) and by the hypothesis (V4) i., for any R large enough mR ≤ m < ∞ and so, for
0 < α < 2, (6) gives

c2
√

εR + |xR|1−
α
2 ≥ R1−α

2

and then

1−
c2
√

εR

R1−α
2
≤
(
|xR|
R

)1−α
2

≤ 1

that implies (7). In the case α = 2, we obtain

c2
√

εR + log |xR| ≥ log R

that is
ec2

√
εR ≥ R

|xR|
≥ 1

and (7) follows again.

For R sufficiently large, say R ≥ R1, by (5), we know that xR ∈ S. But qR ∈ ΓR and so,
there is sR ∈ (tR, TR] such that qR(sR) ∈ ∂S and qR(t) ∈ S if t ∈ [tR, sR). Call yR = qR(sR).

5th step:

(8) lim
R→∞

|yR|
R

= 1



Since each qR is solution of (HS) with energy zero, using the hypotheses (V4) ii. and iii. it
holds that for any t ∈ [tR, sR]

d2

dt2
ρ(qR(t)) = ρ′′(qR(t))q̇R(t) · q̇R(t) + ρ′(qR(t)) · q̈R(t)

≥ −a |q̇R(t)|2 − ρ′(qR(t)) · V ′(qR(t))

≥ 2aV (qR(t))− b
V (qR(t))
ρ(qR(t))

≥ b− 2aδ

|qR(t)|α

.

We can always suppose δ < b
4a so that for any t ∈ [tR, sR]

d2

dt2
ρ(qR(t)) ≥ b

2Rα
.

Hence, taking into account that d
dt ρ(qR(tR)) ≥ 0, we deduce that

δ ≥ ρ(qR(sR))− ρ(qR(tR)) ≥
∫ sR

tR

dt

∫ t

tR

ds
d2

ds2
ρ(qR(s)) ≥ b

4Rα
(sR − tR)2

and so
|yR| ≥ |xR| − |yR − xR| ≥ |xR| −

∫ sR

tR

|q̇R| dt ≥

≥ |xR| − (sR − tR)
1
2

(∫ sR

tR

|q̇R|2dt

) 1
2

≥ |xR| − c3R
α
4

where c3 is a positive constant independent on R. Therefore

|xR|
R

− c3

R1−α
4
≤ |yR|

R
≤ 1

that gives (8).

We need again other quantities: for R ≥ R1 set ε′R = inf
t∈[sR,TR]

ρ(qR(t)), let t′R ≥ sR such that

ρ(qR(t′R)) = ε′R and put x′R = qR(t′R).

6th step:

(9) lim
R→∞

ε′R = 0

One can prove (9) exactly as (5), applying (4) to each qR with R ≥ R1 in the interval [sR, TR]
and using (8).

7th step:

(10) lim
R→∞

|x′R|
R

= 1

Arguing as for the third step, we can show that for any R large enough√
2ε′Rm′

R + ϕ(|x′R|) ≥ ϕ(|yR|)



where m′
R = max

x∈[x′
R

,z′
R

]
|V (x)| and z′R is a point of ∂(Ω∩BR) such that [x′R, z′R] ⊂ Ω ∩BR and

|x′R − z′R| ≤ ε′R. Hence, following the line of the fourth step, we obtain (10).

From the results found up to now, we deduce that for any R large enough there exists an
instant s′R ∈ [sR, t′R) such that ρ(qR(s′R)) = δ and qR(t) ∈ S for t ∈ (s′R, t′R].

8th step: conclusion.
For any R sufficiently large we consider the function Q′

R : R+ → RN defined in this way:

Q′
R(t) =

{
z′R + v′Rt 0 ≤ t ≤ τ ′R
qR(t− τ ′R + t′R) t > τ ′R

where v′R = x′R−z′R
τ ′

R
and τ ′R = ε′R√

2m′
R

. We notice that Q′
R ∈ ΓR and

I(QR) ≤ ε′R

√
2m′

R + I(qR)− I[0,t′
R

](qR).

Now we give a different estimate for I[0,t′
R

](qR), arguing in this way: in general, for any u ∈ Γ,
it can be easily shown that

(11) I[t1,t2](u) ≥ |u(t2)− u(t1)|
√

2 min
t∈[t1,t2]

|V (u(t))|

(see lemma 3.6 in [13]). Using this formula, we obtain that

I[0,t′
R

](qR) ≥ I[s′
R

,t′
R

](qR) ≥ (δ − ε′R)

√
2ε′R
Rα

and consequently, for R large enough:

I(QR) ≤ I(qR) + ε′R

√
2m′

R −
δ

2

√
2ε′R
Rα

.

Since I(qR) = inf I(ΓR), it must be

(12)
√

ε′Rm′
R ≥ δ

2R
α
2

.

But the hypothesis (V4) iii. implies that

m′
R ≤ λε′R

(|x′R| − ε′R)α

which, for (12), gives

ε′R ≥

√
δ

λ

(
|x′R|
R

−
ε′R
R

)α

and this one is in contrast with (9) and (10). Now the conclusion of the proof is the same as
for theorem 1.2.

q.e.d.



Remark 1.7. It is clear from the proof that it is possible to replace the hypotheses (V4)
ii. and iii. with a weaker assumption, that is

2 ‖ρ′′(x)‖V (x) + ρ′(x) · V ′(x) ≤ − a

|x|β

for any x ∈ S, being a > 0 and β ∈ (0, 4).

2. Singular potentials and non–collision solutions

In this section we will deal with a potential V with a strict local maximum at 0 and a
singularity at a point e ∈ RN \{0}. We use the same notations of section 1 about Ω , E+ , Γ,
etc. The problem (HS) in this setting was already studied by Tanaka [19] in the case Ω = RN

and lim sup|x|→∞ V (x) < 0 and by Ambrosetti and Bertotti [1] for Ω bounded; both of them
assume the strong force condition near the singularity and use minimax methods, different
in the two cases. Here we are interested in the case in which Ω is an arbitrary open with
boundary and use the same minimizing argument of section 1. In this kind of approach it is
not necessary to make any assumption about the behaviour of V near the singularity e. In
this way we find a generalized solution (see [3] and definition 2.1 below) which could cross
the singularity. But since this orbit is a minimum point of I on the set Γ one can show that
the solution has actually no collisions whenever the potential satisfies some local property
near e, weaker than the strong force condition.

We recall here the definition of generalized solution as given by Bahri and Rabinowitz
in [3].

Definition 2.1. A function q ∈ C(I;RN ), where I is an interval of R, is called generalized
solution of (HS) in I, with energy h, if
(i) the set q−1(e) has measure zero;
(ii) q ∈ C2(I \ q−1(e);RN ) satisfies (HS) on I \ q−1(e);
(iii) 1

2 |q̇(t)|
2 + V (q(t)) = h for any t ∈ I \ q−1(e).

The cardinality of q−1(e) defines the number of collisions of q. If I = R, q 6≡ 0 and q(±∞) =
q̇(±∞) = 0, q is said generalized homoclinic orbit of (HS). Clearly such a solution has energy
zero.

Theorem 2.2. Let V ∈ C1(RN \ {e};R) with V (0) = 0 and lim
x→e

V (x) = −∞ satisfying

(V1) and (V2).
Then, given an open bounded set ω ⊆ Ω containing 0 and e, (HS) possesses a general-
ized solution q on R+, with energy 0, at most one collision and such that q ∈ Γ(ω) and
I(q) = inf

u∈Γ(ω)
I(u).

Moreover, suppose ∂Ω 6= ∅ and, for Ω unbounded, assume that (V3′) and (V4) hold. Then
(HS) admits a generalized homoclinic orbit described by a even function x ∈ C(R;RN ), such
that x+ = x|R+ ∈ Γ and I(x+) = inf I(Γ).

Proof. Fix an open bounded set ω ⊆ Ω containing 0 and e. With the same argument
used to prove theorem 1.1, one can easily see that there is a function q ∈ Γ(ω) with the
property (ii) of definition 2.1 and such that I(q) = inf

u∈Γ(ω)
I(u). Thus, we have to show that q



satisfies (i) and (iii). Actually we notice that q is an injective function; otherwise, if it were
q(t1) = q(t2) for some t2 > t1 ≥ 0, we could consider a new function Q defined by

Q(t) =
{

q(t) 0 ≤ t ≤ t1
q(t + t2 − t1) t > t1

and observe that Q ∈ Γ(ω) and I(Q) < min
u∈Γ(ω)

I(u). Then, in particular, we deduce that

q−1(e) is at most a singleton. Finally we claim that q has always energy zero. In fact, first
of all, since V does not depend on t, the energy is constant, i.e.

1
2
|q̇|2 + V (q(t)) = ho for t ∈ (0, τ)(13.a)

1
2
|q̇|2 + V (q(t)) = h∞ for t > τ(13.b)

where τ = max{0, q−1(e)}. Knowing that q ∈ E+ and I(q) < ∞ and using (13.b), we obtain
h∞ = 0 and q̇(∞) = 0. If q−1(e) = τ > 0 take the following function:

Q(t) =
{

q(λt) 0 ≤ t ≤ τ
λ

q
(
t + τ − τ

λ

)
t > τ

λ

with a suitable λ > 0. It’s clear that Q ∈ Γ(ω) and∫ ∞

τ
λ

(1
2
|Q̇|2 − V (Q)

)
dt =

∫ ∞

τ

(1
2
|q̇|2 − V (q)

)
dt∫ τ

λ

0

(1
2
|Q̇|2 − V (Q)

)
dt = λ

∫ τ

0

1
2
|q̇|2dt +

1
λ

∫ τ

0

−V (q) dt

To minimize the last expression we choose λ =
√

P
K where P =

∫ τ

0
−V (q) dt and K =∫ τ

0
1
2 |q̇|

2dt. In this way we find that
∫ τ

λ

0

(
1
2 |Q̇|

2−V (Q)
)
dt = 2

√
KP . Since I(q) = inf

u∈Γ(ω)
I(u),

it must be K + P ≤ 2
√

KP , that is K = P . But (13.a) implies that K − P = hoτ ; then
ho = 0 because τ > 0.

q.e.d.

Now we are interested in finding conditions for V near the singularity assuring the
existence of non collision solutions. This will be possible in the case of a strong force potential
or when V is a radial function near the singularity, with a suitable behaviour, including the
Keplerian case.

Proposition 2.3. Under the hypotheses of theorem 2.2, if in addition V verifies the
strong force condition, that is:

(SF) there is a neighborhood Ne of e and a function U ∈ C1(Ne\{e};R) such that |U(x)| → ∞
as x → e and −V (x) ≥ |U ′(x)|2 for any x ∈ Ne \ {e},

then the function q such that I(q) = inf I(Γ) (see theorem 2.2) describes a non–collision orbit,
i.e. q−1(e) = ∅; therefore q is a classical solution of (HS) on R+.

Proof. It’s enough to notice that, in general, if u ∈ Γ(ω) and I(u) < ∞ then u(t) 6= e for
all t ∈ R+. In fact, by contradiction, if there were some t > 0 with u(t) = e then there would



exist to ∈ (0, t) such that u(to) ∈ ∂Ne and u(s) ∈ Ne \ {e} for any s ∈ (to, t). Therefore,
with passages similar to (3), we infer that

|U(u(s))| ≤
√

2 I(u) + |U(u(to))| < ∞

whereas |U(u(s))| → ∞ as s → t−.
q.e.d.

Proposition 2.4. Under the hypotheses of theorem 2.2, if in addition it holds that:
(V5) there exist a constant r◦ > 0 and a function φ ∈ C1((0, r◦);R) such that V (x) = φ(|x−e|)

for all x ∈ Br◦(e) \ {e} and r φ′(r) →∞ as r → 0+,
then the function q such that I(q) = inf I(Γ) (see theorem 2.2) describes a non–collision orbit.

Remark 2.5. If (V5) holds, then φ(r)/ log r →∞ as r → 0+ (but in general the viceversa
is not true).
In the case V (x) = −

∣∣ log |x − e|
∣∣β for x ∈ Br◦(e) \ {e}, the condition (V5) is satisfied if

and only if β > 1. Moreover we note that (V5) is verified by potentials with the following
behaviour:

V (x) = − 1
|x− e|α

+ ϕ(|x− e|) for x ∈ Br◦(e) \ {e}

with α > 0 and ϕ ∈ C1((0, r◦);R) such that limr→0+ r1+αϕ′(r) ∈ (−α, +∞]. It is also clear
that this characterization does not exhaust all the cases described by (V5).

Before proving the previous proposition, we recall the definition and the fundamental
properties of the convexified of a real function.
Let I be an interval of R and let f be a function from I into R, bounded from below. We
call convexified of f on I the function f̂ : I → R defined by:

f̂(x) = sup
(a,b)∈A(f)

(ax + b) for all x ∈ I

where A(f) = {(a, b) ∈ R2 : ax + b ≤ f(x) ∀x ∈ I}. It holds that f̂ ≤ f on I and f̂ = f if
and only if f is convex and lower semicontinuous on I.
Moreover, given two applications f, g : I → R bounded from below, if f ≤ g on I, then f̂ ≤ ĝ
on I.
In the sequel, we will make use of the following result.

Lemma 2.6. Let f ∈ C((0, a);R) bounded from below and such that x f(x) → ∞ as
x → 0. Then f̂ ∈ C((0, a);R) and x f̂(x) →∞ as x → 0.

Proof. The continuity of f̂ at an arbitrary point x ∈ (0, a) follows by the convexity of
f̂ and by the fact that f̂ is bounded from below. In addition, it holds that for any M > 0
there is some xM ∈ (0, a) for which f(x) ≥ M

x if x ∈ (0, xM ). Therefore, noticing that the
function x 7→ M

x is convex, we obtain that f̂(x) ≥ M
x for any x ∈ (0, x′M ) with x′M ∈ (0, xM ].

Hence x f̂(x) →∞ as x → 0.
q.e.d.

Proof of proposition 2.4. The argument will be by contradiction, supposing q−1(e) = {τ}.
For any r ∈ (0, ro), t1, t2 > 0 are uniquely determinated by these conditions: t1 < τ < t2,



q(ti) ∈ ∂Br(e) for i = 1, 2 and q(t) ∈ Br(e) for t ∈ (t1, t2). We point out that, since V is radial
on Bro(e), as long as q(t) ∈ Bro(e), the angular momentum does not change throughout the
motion, and its value is zero, because the orbit goes through the singularity. Thus q follows
a straight line inside Bro

(e), even if along possibly different directions, before and after the
collision. To be precise:

q(t) = e + ρ(t) e1 if t ∈ (t1, τ)
q(t) = e + ρ(t) e2 if t ∈ (τ, t2)

where ρ(t) = |q(t) − e| , ei = q(ti)−e
|q(ti)−e| (i = 1, 2). The contradiction will be reached con-

structing a function Q ∈ Γ(ω) such that I(Q) < I(q).
To begin, we show that the singularity is crossed without change of direction. In fact, if not,
consider the function Q different from q only for t ∈ (t1, t2), where is defined as projection of
the motion q along the segment joining q(t1) to q(t2). Explicitly:

Q(t) =
{

q(t) t ∈ [0, t1] ∪ [t2,+∞)
1
2

(
q(t1) + q(t2)

)
+ ê · (q(t)− e) ê t ∈ (t1, t2)

where ê = e2−e1
|e2−e1| (notice that e1 6= e2 since q is injective). It can easily checked that

Q ∈ Γ(ω),
∫ t2

t1
|Q̇|2dt = 1−e1·e2

2

∫ t2
t1
|q̇|2dt and

∫ t2
t1
−V (Q)dt ≤

∫ t2
t1
−V (q)dt. Then, if e1 6= −e2,

I(Q) < I(q).
In the case e1 = −e2 take Q = q + geo where eo is a fixed vector of RN with norm one,
orthogonal to e1 and g is a scalar function defined in the following way:

g(t) =


t−t1

δ µ t ∈ (t1, t1 + δ)
µ t ∈ (t1 + δ, t2 − δ)
t2−t

δ µ t ∈ (t2 − δ, t2)
0 t ∈ [0, t1] ∪ [t2,+∞)

with appropriate µ, δ > 0. Observe that Q ∈ Γ(ω) and |Q(t)− e| ≤ r for t ∈ [t1, t2] if µ and
δ are small enough. Moreover, called h = geo, it holds that∫ t2

t1

|Q̇|2dt =
∫ t2

t1

|q̇|2dt + 2
µ2

δ
(14) ∫ t2

t1

(
V (q)− V (Q)

)
dt = −

∫ t2

t1

(∫ 1

0

V ′(q + λh) · h dλ

)
dt.

Let f be the convexified of φ′ on (0, ro). Since rφ′(r) → +∞ as r → 0+, for lemma 2.6,
rf(r) → +∞ and, changing ro if necessary, we can say that f(r) > 0 for r ∈ (0, ro). Being
q(t) + λh(t) ∈ Br(e) for t ∈ (t1, t2) and λ ∈ (0, 1), it holds that

V ′(q + λh) · h = φ′(|q + λh− e|) (q + λh− e) · h
|q + λh− e|

≥

≥ λ |h|2 f(|q + λh− e|)
|q + λh− e|

≥ λ |h|2 f(|q − e|+ |h|)
|q − e|+ |h|

and thus ∫ t2

t1

(
V (q)− V (Q)

)
dt ≤ −1

2

∫ t2

t1

|h|2 f(|q − e|+ |h|)
|q − e|+ |h|

dt.

Since |q(t)− e| ≤ ‖q̇‖2|t− τ | 12 = C|t− τ | 12 , then |q(t)− e| ≤ µ if |t− τ | ≤ σµ = µ2

C2 . Therefore∫ t2

t1

(
V (q)− V (Q)

)
dt ≤ −1

2

∫ τ+σµ

τ−σµ

|h|2 f(|q − e|+ |h|)
|q − e|+ |h|

dt ≤ −1
2

f(2µ)
2µ

∫ τ+σµ

τ−σµ

|h|2dt.



Taking µ so that [τ − σµ, τ + σµ] ⊆ [t1 + δ, t2 − δ] we conclude that∫ t2

t1

(
V (q)− V (Q)

)
dt ≤ − µ3

2C2
f(2µ)

and finally, using (14):

I(Q)− I(q) ≤ −µ2

(
−1

δ
+

µ

2C2
f(2µ)

)
But we know that r f(r) → +∞ as r → 0+; so, choosing µ sufficiently small, we find
I(Q) < I(q).

q.e.d.

3. Existence of a second homoclinic orbit

As in the previous section, we consider a potential V with a strict local maximum at 0
and a singularity at a point e ∈ RN \{0} and, at the beginning, assume that Ω is bounded and
the strong force condition holds near the singularity. Under the hypotheses (V1) and (V2) we
know that (HS) admits a homoclinic classic solution given by a even function x ∈ C2(R;RN ),
such that x(0) ∈ ∂Ω.

Now, our purpose is to find an other homoclinic orbit, geometrically different from x; to
do this, we exploit the fact that V is singular at the point e and, roughly speaking, we look
for an orbit describing a loop inside Ω around e. This new solution will be obtained with an
argument similar to that used by Benci and Giannoni in [4] and by Tanaka in [19]. Actually,
in [19] the potential V is assumed strictly negative at any x 6= 0, e so that the Lagrangian
functional is automatically bounded from below. In our case we overcome this difficulty by
modifying V in a suitable way. Moreover, as in [19], we assume a condition of quasi–concavity
for V near 0 —hypothesis (V6)— verified, for instance, for V like (1). Finally we require a
geometrical property, which will allow us to compare the critical levels of the two solutions.

Before stating our result, we introduce some notations: for any δ > 0 let Vδ = {x ∈ Ω :
V (x) ≤ −δ}, let V 0

δ and V 1
δ be the components of Ω \ Vδ containing 0 and ∂Ω respectively

and call rδ =dist(V 0
δ , V 1

δ ). Then set Σ = {x ∈ RN : |x− e| = |e|} and v = sup
x∈Σ∩Ω

|V (x)|.

Theorem 3.1. Let V ∈ C1(RN \ {e};R) with V (0) = 0, Ω bounded, e ∈ Ω \ {0} and
lim
x→e

V (x) = −∞. Moreover suppose V satisfies (V1), (V2), (SF) and :

(V6) (only for N ≥ 3) there is some δ > 0 such that V (x) + 1
2V ′(x) · x ≤ 0 for any x ∈ Bδ

and V ∈ C1,1(Bδ;R);
(V7) there is some δ′ > 0 such that 2π|e|

√
2v < rδ′

√
δ′.

Then (HS) admits two geometrically distinct homoclinic orbits.

The proof consists of four main steps: firstly, fixed T > 0, we set up an approximating
Dirichlet problem on [0, T ] using a potential VT obtained cutting V out of Ω to a level T−1;
with a minimax method we get a solution qT describing a sort of loop with initial and final
point at 0, around the singularity. In the second part we give some uniform estimates for the
approximating solutions that allow to pass to the limit T →∞ (third step) and, after some
remarks, find a function y ∈ C1(R;RN ) satisfying the energy equation on R and solution
of (HS) on the set {t : y(t) ∈ Ω}. At the end, using the geometrical hypothesis (V7) we



compare the values of the Lagrangian functional at x and y and deduce that the second orbit
y cannot touch the boundary of Ω. This implies that y is a homoclinic solution different from
x and describes a loop inside Ω.

I – APPROXIMATING PROBLEM

We start by modifying the potential V out of Ω, as explained before.

Lemma 3.2. Fixed λ > 0, for any T > 0 there is a function VT ∈ C1(RN \{e};R) with
the following properties:
(i) VT (x) = V (x) for x ∈ Ω \ {e};
(ii) VT (x) = 0 if dist (x, Ω) ≥ co

T ;
(iii) VT (x) ≤ λ

T for any x ∈ RN \ {e};
(iv) |V ′

T (x)| ≤ c1 for any x 6∈ Ω,
where co and c1 are positive constants independent on x and T .

Proof. To begin, we prove that given ε > 0 there is a function fε ∈ C∞(RN ;R) such
that 0 ≤ fε ≤ 1, fε(x) = 0 for x ∈ Ω, fε(x) = 1 if dist(x,Ω) ≥ ε and |f ′ε(x)| ≤ AN

ε for
any x ∈ RN with AN constant with respect to x and ε but depending on the dimension N .
In fact, pick ϕ ∈ C∞(RN ;R) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 0 if |x|∞ ≤ 1

2 and ϕ(x) = 1 if
|x|∞ ≥ 1; for any x ∈ RN let ϕε(x) = ϕ

(
x
ε

)
and

gε(x) =
∏

y∈Yε

ϕε(x− y)

where
Yε = {y = (y1, . . . , yN ) ∈ RN : y1, . . . , yN ∈ εZ, dist∞(y, Ω) ≤ 1

2ε}.

One can readily see that gε(x) = 0 for x ∈ Ω, gε(x) = 1 if dist∞(x, Ω) ≥ 3
2ε and clearly

0 ≤ gε ≤ 1 and gε ∈ C∞(RN ;R). In addition, taken x ∈ Ωc with dist∞(x,Ω) < 3
2ε the

derivative of gε at x involves at most 2N terms corresponding to some points y1, . . . , y2N ∈ Yε

so that ∣∣∣∣∂gε

∂xi
(x)
∣∣∣∣ = ∣∣∣∣gε(x)

2N∑
j=1

1
ϕε(x− yj)

1
ε

∂ϕ

∂xi

(
x− yj

ε

) ∣∣∣∣ ≤ AN

ε
.

Since |x|∞ ≤
√

N |x|, taking fε = gη with η = 2
3
√

N
ε we obtain the desired function. Now,

fixed λ > 0, let a = (2 maxx∈∂Ω |V ′(x)|)−1. If dist(x, ∂Ω) < λa
T then |V (x)| ≤ λ

T because
there is a point yx ∈ ∂Ω such that |x−yx| < λa

T and so |V (x)| ≤ |V ′(yx)| |x−yx|+ 1
2a |x−yx| ≤

1
a |x− yx| ≤ λ

T . Finally, for any x ∈ RN \ {e} define:

VT (x) = (1− fλa
T

(x))V (x).

The properties of fλa
T

imply the thesis.
q.e.d.

For T > 0 let ET = W 1,2
0 ([0, T ];RN ) be the Hilbert space with the usual norm ‖u‖2T =∫ T

0
|u̇|2dt; consider its open subset ΛT = {u ∈ ET : u(t) 6= e ∀t ∈ [0, T ]} and the functional

IT : ΛT → R given by IT (u) =
∫ T

0

(
1
2 |u̇|

2−VT (u)
)
dt for u ∈ ΛT . Notice that, for lemma 3.2

(iii), the functional IT is bounded from below: IT (u) ≥ 1
2‖u‖

2
T − λ for any u ∈ ΛT .



It can be shown in a standard way that IT ∈ C1(ΛT ;R) and q ∈ ΛT is a critical point
of IT if and only if is classical solution of the following Dirichlet problem:

(DT )

{
q̈ + V ′

T (q) = 0 in (0, T )
q(0) = q(T ) = 0

We approach to the problem of the existence of critical points for IT in a different way
according to N = 2 or N > 2.

Case N = 2

Let Γ∗T = {u ∈ ΛT : ind(u) = 1} where ind(u) denotes the number of winding of u
around the point e in some direction. To be precise ind(u) =

∫
γ

dz
z−e with z ∈ R2 and γ

a closed curve in R2 parametrized by u. Clearly Γ∗T is not empty, so that we can consider
inf I(Γ∗T ).

Lemma 3.3. For any T > 0 there exists qT ∈ Γ∗T such that IT (qT ) = inf IT (Γ∗T ).
Moreover qT is a critical point of IT .

Proof. Let (un) ⊂ Γ∗T be a sequence such that IT (un) → inf IT (Γ∗T ) as n → ∞. Then
for any n ∈ N it holds that 1

2‖un‖2T = IT (un) +
∫ T

0
VT (un)dt ≤ C + λ with C independent

on n. Hence, possibly for a subsequence, (un) converges to some q ∈ ET weakly in ET and
uniformly on [0, T ]. The strong force condition implies that q ∈ ΛT ; otherwise, if q(t) = e for
some t ∈ [0, T ], then for any n ∈ N there is tn ∈ [0, t) such that un(tn) ∈ ∂Ne and un(s) ∈ Ne

for s ∈ (tn, t); hence, arguing as in proposition 2.3, we obtain for any n ∈ N

|U(un(t))| ≤
√

2 IT (un) + |U(un(tn))| ≤ C ′ + max
x∈∂Ne

|U(x)| < ∞

while |U(un(t))| → ∞ as n → ∞. In addition ind(q) = lim ind(un) = 1, so that q ∈ Γ∗T .
For the dominated convergence theorem we infer that

∫ T

0
−VT (q)dt = lim

∫ T

0
−VT (un)dt

and, on the other hand, using the weak convergence, lim inf
∫ T

0
|u̇n|2dt ≥

∫ T

0
|q̇|2dt; thus

IT (q) ≤ lim inf IT (un) = inf IT (Γ∗T ) and so, for q ∈ Γ∗T , IT (q) = min IT (Γ∗T ).
To verify the second statement it suffices to notice that if u ∈ Γ∗T , ϕ ∈ Cc((0, T );R2) and
s ∈ R then u+sϕ ∈ Γ∗T for |s| small enough. Therefore, since q ∈ Γ∗T and IT (q) = min IT (Γ∗T ),
for any ϕ ∈ Cc((0, T );R2) it holds that

lim
s→0

IT (q + sϕ)− IT (q)
s

=
∂IT (q)

∂ϕ
= 0

that is I ′T (q) = 0.
q.e.d.

Case N > 2

Here, we follow Bahri and Rabinowitz [3] to define and solve a minimax problem giving
the existence of a non–zero solution for (DT ).

Let ΓT = {γ ∈ C(DN−2; ΛT ) : γ(x) = 0 ∀x ∈ ∂DN−2} where DN−2 = {x ∈ RN−2 :
|x| ≤ 1}. Given γ ∈ ΓT , the function (x, t) 7→ γ̃(x, t) = γ(x)(t)−e

|γ(x)(t)−e| is well defined on



DN−2 × [0, T ]. Being γ(x)(t) = 0 for (x, t) ∈ ∂(DN−2 × [0, T ]), we can consider as domain
of γ̃ the quotient DN−2 × [0, T ]/∂(DN−2 × [0, T ]) ' SN−1 so that γ̃ is a continuous function
from SN−1 into SN−1 (we use the notation SM = {x ∈ RM+1 : |x| = 1}). In this way the
set Γ∗T = {γ ∈ ΓT : deg(γ̃) 6= 0} is well defined and non–empty (see lemma 1.2 of [3]) and the
number

c(T ) = inf
γ∈Γ∗

T

max
x∈DN−2

IT

(
γ(x)

)
is meaningful. Notice that, adopting the agreement D0 = {0} for N = 2, then Γ∗T corresponds
to that one defined in the case N = 2 and c(T ) = inf IT (Γ∗T ).

Lemma 3.4. IT satisfies the Palais–Smale condition.

Proof. Let (un) ∈ ΛT be a Palais–Smale sequence. With the same argument of the
previous proof, we obtain that, possibly passing to a subsequence, un converges to some
q ∈ ΛT weakly in ET and uniformly on [0, T ] and, by the strong force condition, q ∈ ΛT .
Now, using the fact that I ′T (un) → 0, in a standard way one can verify that un → q strongly
in ET .

q.e.d.

Lemma 3.5. For any T > 0 c(T ) > 0 and c(T ) is a critical level for IT .

Proof. First, we show that c(T ) > 0. In fact, fix δ ∈ (0, |e|2 ) such that B2δ ⊆ Ω;
taken a generic γ ∈ Γ∗T , since deg(γ̃) 6= 0 there exists (xo, to) ∈ DN−2 × [0, T ] such that
|γ(xo)(to)| ≥ 2δ. Call u = γ(xo). For u(0) = 0, there are t1, t2 ∈ (0, to] such that t1 < t2,
u(t1) ∈ ∂Bδ, u(t2) ∈ ∂B2δ and u(t) ∈ B2δ \Bδ for t ∈ (t1, t2). Let A = {t ∈ [0, T ] : u(t) ∈ Ω}
and B = [0, T ] \A. Then, called µδ = inf{−V (x) : x ∈ B2δ \Bδ} it holds that

IT (u) ≥ 1
2

∫ t2

t1

|u̇|2dt +
∫

A

−V (u)dt +
∫

B

−VT (u)dt

≥ 1
2

δ2

t2 − t1
+ µδ(t2 − t1)− λ ≥

√
2µδδ − λ = µ.

Fixing λ ∈ (0,
√

2µδδ), we deduce that maxx∈DN−2 IT (γ(x)) ≥ µ > 0 and so, by the arbi-
trariness of γ, c(T ) ≥ µ > 0 follows for any T > 0.
To prove the second statement we use a standard deformation lemma according to that, since
IT satisfies the Palais–Smale condition, if c is not a critical value of IT , then for any ε̄ > 0
there are an ε ∈ (0, ε̄) and a deformation η of ΛT in ET that sends the sublevel Ic+ε

T into the
sublevel Ic−ε

T , lowers the values of the functional IT and acts identically out of Ic+ε̄
T \ Ic−ε̄

T

(here Ia
T = {u ∈ ΛT : IT (u) ≤ a}). By contradiction suppose that c(T ) is not a critical level

of IT . For the first part, we can apply the previous result choosing c = c(T ) and ε̄ = 1
2c(T )

and find a deformation η of ΛT and an ε ∈ (0, ε̄) with the above–mentioned properties.
Given an arbitrary γ ∈ Γ∗T we show that η ◦ γ ∈ Γ∗T . Clearly η ◦ γ ∈ C(DN−2;ET ) and
for any x ∈ DN−2 IT ((η ◦ γ)(x)) ≤ IT (γ(x)) < ∞ so that, by (SF), η ◦ γ(x) ∈ ΛT . Since
0 6∈ Ic+ε̄

T \ Ic−ε̄
T , if x ∈ ∂DN−2 then η ◦ γ(x) = η(0) = 0. Hence η ◦ γ ∈ ΓT . Moreover the

homotopy invariance of the degree implies that deg(η̃ ◦ γ)=deg(γ̃) 6= 0 and so η ◦ γ ∈ Γ∗T .
Now take γo ∈ Γ∗T such that maxx∈DN−2 IT (γo(x)) ≤ c+ε and call γ1 = η ◦γo. Then γ1 ∈ Γ∗T
and being η(Ic+ε

T ) ⊆ Ic−ε
T , we get maxx∈DN−2 IT (γ1(x)) ≤ c−ε in contrast with the definition

of c.
q.e.d.



II – UNIFORM ESTIMATES

For any T > 0 let qT ∈ ΛT be the solution of (DT ), founded as minimum point of IT on
Γ∗T for N = 2, or as minimax point of IT with respect to Γ∗T in the case N > 2.

Lemma 3.6. There is δo > 0 such that |qT |∞ ≥ δo for each T > 0.

Proof. If N = 2 it suffices to notice that |qT |∞ ≥ |e| for any T > 0 because ind(qT ) = 1.
In the case N > 2 we use the hypothesis (V6) in the following way: let hT be the total energy
of qT ; it holds that hT = 1

2 |q̇T (0)|2 ≥ 0. Now, if hT = 0, then qT would be solution of the
Cauchy problem: {

q̈ + V ′
T (q) = 0 in (0, T )

q(0) = q̇(0) = 0

and, by the uniqueness of the solution, for VT = V is C1,1 in a neighborhood of 0, it follows
that qT (t) = 0 for any t ∈ [0, T ], in contrast with the fact that c(T ) > 0. So, hT > 0 for any
T > 0 and consequently:

1
2

d2

dt2
|qT (t)|2 = −2VT (qT (t))− V ′

T (qT (t)) · qT (t) + 2hT > −2VT (qT (t))− V ′
T (qT (t)) · qT (t).

For (V6) d2

dt2 |qT (t)|2 > 0 if qT (t) ∈ Bδo
(we can always suppose Bδo

63 e and Bδo
⊂ Ω so that

VT = V in Bδo
). Let t∗T ∈ [0, T ] such that |qT (t∗T )| = |qT |∞. Being d2

dt2 |qT (t∗T )|2 ≤ 0, we
deduce that qT (t∗T ) 6∈ Bδo

, i.e. |qT |∞ ≥ δo.
q.e.d.

Lemma 3.7. Chosen To > 0, for each T ≥ To ‖qT ‖T ≤ constant.

Proof. Firstly we notice that 1
2‖qT ‖2 ≤ IT (qT ) + λ for any T > 0. Then we have to

show that c(T ) ≤ constant independent on T . For e ∈ Ω and Ω is open, fixed To > 0,
there is γ ∈ Γ∗To

such that γ(DN−2 × [0, To]) ⊂ Ω. Let T ≥ To. For any x ∈ DN−2 define
γT (x) = γ(x)χ[0,To], where χ[0,To](t) = 1 if t ∈ [0, To] and 0 otherwise. We point out that
γT ∈ Γ∗T and IT (γT (x)) = ITo

(γ(x)) for all x ∈ DN−2, so that c(T ) ≤ max
x∈DN−2

ITo
(γ(x)) for

any T ≥ To. Notice also that To is arbitrary.
q.e.d.

Lemma 3.8. There is ρ > 0 such that |qT (t)− e| ≥ ρ for each t ∈ [0, T ] and T > 0.

Proof. Suppose the lemma is false. Then there are two sequences (Tn) and (tn), with
0 < tn < Tn, such that qTn(tn) → e as n →∞; moreover for any n ∈ N there is sn ∈ (0, tn)
such that qTn(sn) ∈ ∂Ne and qTn(t) ∈ Ne for t ∈ (sn, tn). The usual inequality, obtained
with (SF),

|U(qTn(tn))| ≤
√

2 ITn(qTn) + |U(qTn(sn))| ≤ C ′ + max
x∈∂Ne

|U(x)| < ∞

gives the contradiction.
q.e.d.



III – LIMIT PROCESS

By lemma (3.6), for any T > 0 there is τT ∈ (0, T ) such that |qT (τT )| = δo and |qT (t)| <
δo if t ∈ (0, τT ). Now, define

yT =
{

qT (t + τT ) for t ∈ [−τT , T − τT ]
0 for t ∈ R \ [−τT , T − τT ]

All the functions yT belong to the Hilbert space E = {u ∈ W 1,2
loc (R;RN ) :

∫∞
−∞ |u̇|2dt < ∞}

endowed with the norm ‖u‖2 = |u(0)|2+
∫∞
−∞ |u̇|2dt; moreover, by lemma 3.7, ‖yT ‖ ≤ constant

for any T > To. Then there are a sequence Tn → ∞ and a function y ∈ E to that (yTn
)

converges, weakly in E and uniformly on the compact subsets of R. Clearly y 6≡ 0 because
|y(0)| = δo. Other properties of this function y are listed in the following lemma.

Lemma 3.9.
(i) y ∈ C1(R;RN ) and, possibly for a subsequence, yTn

→ y in C1
loc(R;RN );

(ii) y(t) ∈ Ω \Bρ(e) for any t ∈ R;
(iii) 1

2 |ẏ(t)|2 + V (y(t)) = 0 for any t ∈ R;
(iv) y ∈ C2(R \ T ;RN );
(v) ÿ(t) + V ′(y(t)) = 0 for any t ∈ R \ T ,
where T = {t ∈ R : y(t) ∈ ∂Ω}.

Proof. (i). Let Ro = 2 diam Ω, fix To > 0 and call C1 = sup{|VT (x)| : T > To, x ∈
BRo

\ Bρ(e)} and C2 = sup{|V ′
T (x)| : T > To, x ∈ BRo

\ Bρ(e)}. Clearly C1, C2 < ∞ and,
from lemmas 3.5 and 3.8 (or 3.3 and 3.8 for the case N = 2), we deduce that for any n ∈ N:

|ẏTn |∞ + |ÿTn |∞ ≤ C3

with C3 positive constant independent on n. So, by Ascoli–Arzelà theorem, passing to a
subsequence, if necessary, ẏTn

→ z in Cloc(R;RN ); but ẏTn
→ ẏ weakly in L2(R;RN ), so

that yTn → y in C1
loc(R;RN ).

(ii) and (iii). For lemma 3.8, y(t) 6∈ Bρ(e) for all t ∈ R. Then, notice that hTn → ∞ as
n → ∞, because 0 ≤ hTn

Tn ≤ ITn
(qTn

) + 2
∫ Tn

0
VTn

(qTn
)dt ≤ C4 + 2λ < ∞. Therefore,

passing to the limit n →∞ in the energy equation for yTn , we get

1
2 |ẏ(t)|2 + V (y(t)) = 0 if y(t) ∈ Ω

ẏ(t) = 0 if y(t) 6∈ Ω
c

and this implies y(t) ∈ Ω for any t ∈ R, so that the energy equation is satisfied on R.

(iv) and (v). Pick a compact interval [t1, t2] in an arbitrary component of R \ T . For any
t ∈ [t1, t2] y(t) ∈ Ω and then, for n sufficiently large yTn(t) ∈ Ω, so that V ′

Tn
(yTn(t)) =

V ′(yTn(t)) → V ′(y(t)). From the dominated convergence theorem and from the result (i) we
deduce that∫ t2

t1

−V ′(y(t))dt = lim
n→∞

∫ t2

t1

−V ′
Tn

(yTn
(t))dt = lim

n→∞

∫ t2

t1

ÿTn
(t)dt = ẏ(t2)− ẏ(t1).

Hence, for the continuity of −V ′ ◦ y on [t1, t2] we can say that ẏ admits derivative and solves
(HS) on [t1, t2]. For the arbitrariness of [t1, t2], the proof is complete. q.e.d.



In the next lemma we complete the description of the solution y.

Lemma 3.10.
(vi) y(−∞) = 0 and ẏ(±∞) = 0;
(vii) If T is empty or bounded from above then y(∞) = 0;
(viii) If T 6= ∅ then to := inf T > −∞ and the function t 7→ y+(t) = y(to − t), for t ≥ 0,
belongs to Γ and solves (HS) on R+ with energy zero.

Proof. Let L− be the α–limit set of the function (y, ẏ), given by

L− = { (ξ, ξ̇) ∈ RN ×RN : there exist tn → −∞ with (y(tn), ẏ(tn)) → (ξ, ξ̇) }.

For the properties (ii) and (iii) of y, L− ⊆ {(ξ, ξ̇) : ξ ∈ Ω, 1
2 |ξ̇|

2 + V (ξ) = 0}. Since y ∈ E,
there is ξ ∈ ∂Ω ∪ {0} such that (ξ, 0) ∈ L−. Now, if ζ ∈ Ω \ {0} is an other limit point
of y(t) as t → −∞, then the trajectory of y would cross infinitely many often the corona
B2r(ζ)\Br(ζ) where r > 0 is choosen small enough so that β = min

r≤|x−ζ|≤2r
|V (x)| > 0. Hence,

for the formula (11), it should be
∫
R
|ẏ|2dt ≥

√
2β r n for any n = 1, 2, . . . , contradicting the

fact that y ∈ E. Therefore L− ⊆ (∂Ω ∪ {0}) × {0}. In the same manner we can prove that
the ω–limit set of (y, ẏ), denoted by L+, is contained in (∂Ω ∪ {0}) × {0}. So ẏ(t) → 0 as
t → ±∞.
Since |y(t)| < δo for any t < 0 and δo can be choosen in such a way B2δo ⊂ Ω, T is bounded
from below and y is a solution of (HS) on (−∞, 0). Therefore L− is invariant and consequently
cannot contain the points (x, 0) with x ∈ ∂Ω because of (V2). Then L− = {(0, 0)} and in
particular y(t) → 0 as t → −∞.
The same argument holds in the case t →∞ if we assume T empty or bounded from above.
The statement (viii) follows immediately from the properties of y given in lemma 3.9.

q.e.d.

Remark 3.11. Let us observe that, for V like (1), the above discussion holds also replacing
our min–max class Γ∗T by the mountain–pass one:

Γ̃T = {γ ∈ C([0, 1]; ΛT ) : γ(0) = 0 , IT (γ(1)) < 0}.

Using such a class one finds a sequence of critical points q̃T of IT which satisfy the same
uniform estimates of lemmas 3.6, 3.7 and 3.8 and so converge weakly to a non–zero solution
of (HS) on R. This is indeed the approach taken by Ambrosetti and Bertotti in [1]; but their
modification of V makes it more difficult to obtain estimates for q̃T . On the other hand we
have not followed such a procedure since the estimates we need to find a second solution (see
below) do not hold for the sequence (q̃T ).

IV – EXISTENCE OF TWO HOMOCLINICS

At this point, to conclude the proof of theorem 3.1 we have to show the following last
result.

Lemma 3.12. T = ∅.

Proof. Fix To > 0 and let γo ∈ Γ∗To
such that γo(DN−2× [0, To]) = Σ. Then, for any x ∈

DN−2 define γT (x) = γo(x)χ[0,To], with χ[0,To] as in the proof of lemma 3.7. Clearly γT ∈ Γ∗T ,



γT (DN−2× [0, T ]) = Σ and IT (γT (x)) = K(x)+PT (x) where K(x) = 1
2

∫ To

0

∣∣ d
dtγo(x)

∣∣2 dt and
PT (x) =

∫ To

0
−VT (γo(x))dt. Since PT (x) ≤ Tov for any x ∈ DN−2, it follows that for T ≥ To

(14) c(T ) ≤ Tov + max
x∈DN−2

K(x).

We can always suppose that for any x ∈ DN−2 γo(x) describes a circular orbit passing for

the origin, with radius ρs ≤ |e| and angular speed ωo = 2π
To

so that max
x∈DN−2

K(x) =
2π2|e|2

To
.

Hence, with an appropriate choice of To (14) becomes:

c(T ) ≤ 2π|e|
√

2v

and, consequently
‖yT ‖2T ≤ 4π|e|

√
2v + 2λ

where yT is the approximating solution solving (DT ). Therefore, since y is weak limit of yTn

as n →∞, the following inequality holds:

(15) I(y+) ≤ 4π|e|
√

2v + 2λ.

Now, if x ∈ E denotes the homoclinic orbit of (HS) given by theorem 2.2 and x+ = x|R+ , for
x(0) ∈ ∂Ω and x has energy zero, we get that

I(x+) =
∫ ∞

0

|ẋ+|2dt ≥
∫
Tδ′

|ẋ+|2dt ≥ (2rδ′)2

|Tδ′ |

where Tδ′ = {t ∈ R+ : x(t) ∈ Vδ′}. On the other hand:

I(x+) =
∫ ∞

0

−V (x+) dt ≥
∫
Tδ′

−V (x+) dt ≥ δ′|Tδ′ |

and so

(16) I(x+) ≥ 2rδ′
√

δ′.

Then, by (V7), fixing λ ∈ (0, rδ′
√

δ′ − 2π|e|
√

2v), from (15) and (16) it follows that I(y+) <
I(x+). Now keeping into account that I(x+) = inf I(Γ), from lemma 3.10 (viii) we infer that
T = ∅. q.e.d.

By eliminating the hypothesis (SF) we find a result similar to theorem 3.1 concerning
generalized homoclinic orbits.

Theorem 3.13. Let V ∈ C1(RN \ {e};R) with V (0) = 0, Ω bounded, e ∈ Ω \ {0} and
lim
x→e

V (x) = −∞. Suppose (V1), (V2), (V6) and (V7) hold.

Then (HS) admits two geometrically distinct generalized homoclinic orbits.

Proof. For any ε > 0 small enough, let Vε ∈ C1(RN \ {e};R) satisfying the hypotheses
of theorem 3.1 and such that Vε(x) = V (x) if |x−e| ≥ ε and Vε ≤ V on RN \{e}. Let (qT,ε)T

be the family of the approximating solutions corresponding to the problem for Vε, ruled by
the equation

(HS)ε q̈ + V ′
ε (q) = 0.



Coming back to lemmas 3.6 and 3.7, it is easy to recognize that for any ε ∈ (0, εo) and T > To

it holds that
|qT,ε|∞ ≥ δo , ‖qT,ε‖T ≤ C

with δo and C positive constants independent on ε and T . We define yT,ε by translating qT,ε so
that |yT,ε(0)| = δo and |yT,ε(t)| < δo for t < 0. Finally let yε be the limit of the approximating
solutions yT,ε as T → ∞. Such a yε is a homoclinic solution of (HS)ε. Moreover, for any
ε ∈ (0, εo) we get that |yε(0)| = δo |yε(t)| ≤ δo for t ≤ 0 and

∫∞
−∞ |ẏε|2dt ≤ C ′. Hence

there are a sequence εn → 0 and a function y ∈ E such that yεn → y uniformly on the
compact subsets of R and ẏεn

→ ẏ weakly in L2
loc(R,RN ). Then |y(0)| = δo, |y(t)| ≤

δo for t ≤ 0, y(t) ∈ Ω for all t ∈ R and
∫∞
−∞−V (y)dt < ∞; in fact

∫∞
−∞−V (y)dt ≤

lim inf
∫∞
−∞−Vεn

(yεn
)dt = lim inf

∫∞
−∞

1
2 |ẏεn

|2dt ≤ C ′. Therefore y−1(e) is a set of measure
zero and I(y) < ∞. Moreover, keeping into account that for any ε ∈ (0, εo) yε solves (HS)ε

and its energy is zero, for any compact K contained in an arbitrary component of R \ y−1(e)
we get:

yεn → y in C2(K;RN )

ÿ(t) + V ′(y(t)) = 0 for any t ∈ K

1
2
|ẏ(t)|2 + V (y(t)) = 0 for any t ∈ K.

Therefore y is a non–zero generalized solution of (HS) on R, with energy zero. Then, we
argue exactly as in the proofs of lemmas 3.10 and 3.12 and obtain the thesis; more precisely,
first we get y(t) → 0 as t → −∞ and ẏ(t) → 0 as t → ±∞; then we can see that y(t) ∈ Ω
for all t ∈ R. Otherwise, if to = inf{t : y(t) ∈ ∂Ω} > −∞, we can define the function
y+(t) = y(to−t) for t ≥ 0 and, noticing that y+ ∈ Γ and using (V7), we have the contradiction
I(y+) < I(x+) = inf I(Γ), where x+ is the generalized solution of (HS) given by theorem 2.2.
Finally we infer that y(t) → 0 as t → ∞. Thus y is a generalized homoclinic orbit of (HS)
describing a loop inside Ω and so different from the solution found in theorem 2.2.

q.e.d.

Using proposition 1.3, we can state similar results when Ω is unbounded and its boundary
is non–empty and bounded.

Theorem 3.14. Let V ∈ C1(RN \ {e};R) with V (0) = 0, Ωc bounded, ∂Ω 6= ∅,
e ∈ Ω \ {0} and lim

x→e
V (x) = −∞. Suppose (V1), (V2), (V3), (V6), (V7) and (SF) hold.

Then (HS) admits two geometrically distinct homoclinic orbits.

Proof. Theorem 2.2 and proposition 1.3 give a first solution x. To find the second one,
we can repeat the argument used to prove theorem 3.1; we notice that all the passages hold
again and the only new thing to show is a limitation for the approximating solutions qT with
respect to the sup norm. Arguing indirectly, if it were |qTn

|∞ →∞ for some sequence (Tn),
then, for (V3), with the same passages of (3), we would infer that for any n ∈ N:

|U(qTn
(tn))| ≤

√
2 ITn(qTn) + |U(qTn(sn))|

where tn is the time that achieves |qTn(tn)| = |qTn |∞ and sn ∈ (0, tn) is such that |qTn(sn)| =
Ro while |qTn

(t)| > Ro if t ∈ (sn, tn). But IT (qT ) is bounded independently on T and the
same holds for |U(qTn

(sn))|; therefore |U(qTn
(tn))| < constant, contradicting the fact that

|U(qTn
(tn))| → ∞, if |qTn

(tn)| → ∞. Now, since |qT |∞ and ‖qT ‖T are bounded by constants
independent on T , the weak limit of the approximating solutions, possibly translated, is



a non–zero function y ∈ C2(R;RN ) with the properties (i)–(viii) of lemmas 3.9 and 3.10.
Finally we distinguish x from y using the hypothesis (V7) in the same way of the proof of
lemma 3.12.

q.e.d.

Remark 3.15. As for theorem 3.13, if we omit the hypothesis (SF) in the previous
theorem we get two generalized homoclinic solutions, geometrically distinct.

Remark 3.16. If Ω = RN we are in the situation studied in [19], where the author finds
a homoclinic orbit assuming that lim sup|x|→∞ V (x) < 0. Arguing exactly as in the previous
proof, we can improve this assumption allowing V to go to 0 at infinity.

References

1 A. Ambrosetti and M. L. Bertotti. Homoclinics for second order conservative systems.
in ”Partial Differential Equations and Related Subjects” (ed. M. Miranda), Pitman
Research Note in Math. Ser., 1992

2 A. Ambrosetti and V. Coti Zelati. Multiple homoclinic orbits for a class of conservative
systems. Rend. Sem. Univ. Padova 89 (1993), 177–194.

3 A. Bahri and P. H. Rabinowitz. A Minimax Method for a Class of Hamiltonian Systems
with Singular Potentials. J. Funct. Anal. 82 (1989), 412–428.

4 V. Benci and F. Giannoni. Homoclinic Orbits on Compact Manifolds. J. Math. Anal.
Appl. 157 (1991), 568–576.
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14 P. H. Rabinowitz. Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy.
Soc. Edinburgh Sect. A 114 (1990), 33–38.

15 P. H. Rabinowitz and K. Tanaka. Some results on connecting orbits for a class of
Hamiltonian systems. Math. Z. 206 (1991), 473–499.
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