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Resistant Hypertriglyceridemia in a Patient
With High Plasma Levels of

Apolipoprotein CII
To the Editor:

Human apolipoprotein CII (apo CII) consists of 79 amino acid
residues and is required as a cofactor in the hydrolysis of triacylg-
lycerides of chylomicrons and VLDL by lipoprotein lipase.1,2 Famil-
ial apo CII deficiency is an autosomal recessive genetic disorder
characterized by fasting hypertriglyceridemia and an accumulation
of chylomicrons in the plasma.3 Shachter et al4 generated transgenic
mice overexpressing human apo CII, and these authors reported the
unexpected observation of marked hypertriglyceridemia with an
accumulation of triglyceride-enriched VLDL in the plasma. We are
the first to report a case of resistant hypertriglyceridemia in a young
man with high plasma levels of apo CII (turbidimetric method by
Alpha-Biotech, Milan, Italy).

A 42-year-old white man was referred to our lipid clinic for diet-
and drug-resistant hypertriglyceridemia. His familial history was
positive for cardiovascular diseases (father with hypercholesterol-
emia and myocardial infarction). He had stopped smoking 9 years
ago. He presented a history of chest pain, but the baseline ECG and
a strength test were normal. He also underwent an ultrasound scan of
the abdomen, which showed normal morphology of the liver and
gallbladder. His blood pressure was normal (120/80 mm Hg), and he
usually performed adequate physical activity. The Table shows the
lipid profile of the patient at the first visit, after 1 month of diet
therapy (1800 kcal/d and total abstention from alcohol consumption),
and after 1 month of diet plus 400 mg of fenofibrate. We also treated
the patient with 1200 mg33/d of gemfibrozil without changes in the

lipid profile. No floating chylomicrons were detected in the plasma
sample after 24 hours at 4.0°C, although the plasma remained turbid.
The results of laboratory tests included a fasting plasma glucose of
82 mg/dL, an alanine aminotransferase level of 23 IU/L, an aspartate
aminotransferase of 13 IU/L, and ag-glutamyl transpeptidase of 30
IU/L. Considering the lack of results with drug therapy, the patient
is currently being treated with diet only.

The molecular mechanisms of hypertriglyceridemia are not well
understood; however, it is well known that apo CII stimulates
lipoprotein lipase. The possibility that the high plasma levels of
triglycerides described in this case were related to impaired remnant
particle removal could be ruled out, considering the normal plasma
cholesterol levels; we can argue that the defect could be in the
lipolysis. Furthermore, it has been shown that high levels of apo CII
directly inhibit lipoprotein lipase5 and that a high level of human apo
CII is inhibitory to mouse lipoprotein lipase.4 It has been considered
that an excess of apo CII may impair lipolysis by decreasing the
access of lipoprotein particles to lipases; in fact, apo CII has been
shown to decrease the association of lipoprotein lipase with phos-
pholipid vesicles, and thus, excess apo CII may interfere with the
association of triglyceride-rich lipoproteins with glycosaminogly-
cans, thereby impairing both lipolysis and particle clearance.4 This
case raises the possibility that overexpression of apo CII could have
a different role in the catabolism of triglyceride-rich lipoproteins,
leading to increased levels of several atherogenic species, including
cholesterol-enriched VLDL.
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Oxidized LDL Can Promote Human
Monocyte Survival

To the Editor:
It is likely that in the early stages of atherosclerosis, circulating

monocytes migrate into the subendothelial space, where they can
mature into foam cells.1–5 There is in vivo and in vitro evidence for
both foam cell death but also enhanced survival and growth.6–22

Human peripheral blood monocytes ($95% pure) were obtained
by countercurrent elutriation and usually cultured in minimal essen-
tial medium, a-modification (a-MEM)/1% pooled normal human
serum (HS).23,24 The number of viable cells was measured by
scraping the tissue culture surface and counting them in a hemocy-
tometer with trypan blue exclusion or by propidium iodide staining
(flow cytometry). Oxidized LDL (ox-LDL) was prepared as before.14

Lipid Profile of a Patient With Resistant Hypertriglyceridemia
at Baseline, 1 Month After Diet Therapy (1800 kcal and Total
Abstention From Alcohol Consumption), 1 Month After Diet
and 400 mg of Fenofibrate, and 1 Month After Diet and 3600
mg of Gemfibrozil

Baseline

Diet
1800 of
kcal/d

Diet1
400 mg

Fenofibrate

Diet1
3600 mg

Gemfibrozil

Body mass index, kg/m2 23 19.8 20 19.9

Triglycerides, mg/dL 550 451 485 456

Total cholesterol, mg/dL 190 146 195 182

HDL cholesterol, mg/dL 45 49 67 54

HDL2 cholesterol, mg/dL 16 13 18 14

HDL3 cholesterol, mg/dL 29 36 49 40

Apo AI, mg/dL 119 126 109 114

Apo B, mg/dL 106 100 105 121

Apo CII, mg/dL 15.4 15.6 14.8 15.9 (11.2
after

removal
of TRL)

Apo CIII, mg/dL 6.0 7.2 6.3 6.2 (6.1
after

removal
of TRL)

Lipoprotein(a), mg/dL 44.9 45.0 38.6 42.6

APOE genotype E3/E3

TRL indicates triglyceride-rich lipoproteins. Apolipoproteins CII and CIII
were measured in total plasma and after ultracentrifugation to remove VLDL
and chylomicrons (triglyceride-VLDL after ultracentrifugation was raised to
1000 mg/dL). The normal range in adult males for apo CII is: 1.0–5.5 mg/dL;
for apo CIII, 6.0–12.0 mg/dL.
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The number of viable monocytes declined when they were left
untreated or treated with native LDL; this loss was reduced by both
ox-LDL and acetylated LDL (ac-LDL; see the Table). A dose
response for the ox-LDL effect is provided in the online Figure
(please see http://atvb.ahajournals.org) and, as we found before with
murine macrophages,14 doses of ox-LDL #50 mg/mL generally
promoted survival; at these survival-inducing doses, the cells spread
on the tissue culture surface and remained attached. In contrast, at
higher concentrations, viable cell numbers again declined. With
different ox-LDL preparations, the effective survival dose response
varied to some extent. The ability of ox-LDL to enhance human
monocyte survival was confirmed with monocytes from 30 donors.
We previously found that prior adherence of the monocytes for a
short period under serum-free conditions, followed by culture in 1%
HS, improved the subsequent viability of the cells.24 Under these
conditions, ox-LDL was able to maintain the original cell number
(online Table I; please see http://atvb.ahajournals.org).

It is possible that the enhanced human monocyte survival by
ox-LDL described above is due to endogenous granulocyte macro-
phage–colony stimulating factor (GM-CSF) and/or CSF-1.25–27 For
ox-LDL–treated cultures, no evidence could be found for a require-
ment for either CSF by using blocking monoclonal antibodies to the
ligands and to the CSF-1 receptor (online Tables II and III; please see
http://atvb.ahajournals.org). For most experiments, the antibodies
reduced the number of viable cells in the untreated cultures,
suggesting that endogenous GM-CSF and CSF-1 play a role in
monocyte survival in 1% HS (online Tables II and III); this
inhibitory effect on basal survival led, in some experiments, to an
apparent reduction in the number of viable cells in the ox-LDL–

treated cultures, which could, however, be accounted for by an effect
on the survival of the non–ox-LDL–treated cells (data not shown).

Prior studies have found that ox-LDL caused apoptosis in
adherence-prepared human monocyte cultures.12 However, in that
study, only ox-LDL concentrations$50 mg/mL were examined, and
the toxic response increased as the concentration of the lipoprotein
was raised to 200mg/mL; the effects of lower concentrations were
not reported. From our studies, it is important to titrate the concen-
tration of each ox-LDL batch on human monocytes. Our findings on
the reversal of cell death by ox-LDL are similar to what we have
published previously with murine macrophages.14 Others have found
that human macrophages, derived after maturation from 9-day
cultures of monocytes, subsequently showed a proliferative response
when treated with 10 to 50mg/mL ox-LDL.5 We found no evidence
of increased DNA synthesis (tritiated thymidine incorporation) over
the 5-day period in our ox-LDL–treated human monocytes (data not
shown).

The few studies that have measured the amounts of oxidation
products, eg, oxysterols, present in foam cells from human lesions
have found them to be small28; also during the early stages of
atherosclerosis, the amount of ox-LDL is likely to be low. It could
therefore be argued that lower ox-LDL loadings could more likely
better represent the in vivo situation than the high (toxic) levels,
although it could be imagined that at more advanced stages of the
disease, increased accumulation of ox-LDL may generate a toxic
effect.29 Our data could help explain both the increased numbers of
foam cells, as well as the presence of apoptotic cells, in atheroma
(see also Reference 14).

We have demonstrated above that ac-LDL was quite potent in
promoting human monocyte survival. Uptake of ox-LDL by macro-
phages occurs in part through the ac-LDL receptor,30,31 but several
lines of evidence point to the existence of a number of receptors for

Effect of Ox-LDL and Ac-LDL on Human Monocyte Survival

Treatment Cell No., 31025

z z z 0.2360.02

LDL 0.2460.02

Ox-LDL 1.160.1

Ac-LDL 1.060.1

Elutriation-purified human monocytes were plated at 23105 cells in
a-MEM/1% HS and were either left untreated or treated with 50 mg/mL LDL,
ox-LDL, or ac-LDL. After 5 days, viable cell number was determined
(hemocytometer, trypan blue exclusion). Data are from a representative
experiment, which was repeated 18 times with cells from different donors, and
are mean values6SEM from triplicate cultures.Figure I. Effect of ox-LDL dose on human monocyte survival.

Elutriation-purified human monocytes were plated at 23105

monocytes (t50) in a-MEM/1% HS and were either left
untreated or treated with increasing concentrations of ox-LDL.
After 5 days, viable cell number was determined (hemocytome-
ter, trypan blue exclusion). Data are from a representative
experiment, which was repeated 12 lines with monocytes from
different donors, and are mean values1SEM from triplicate
cultures.

TABLE II. Effect of Antibody to GM-CSF on Ox-LDL–Induced
Human Monocyte Survival

Treatment

Cell No., 31025

2a-GM-CSF 1a-GM-CSF

z z z 0.2360.03 0.1260.02

Ox-LDL 0.8060.04 0.7960.03

GM-CSF 0.7860.03 0.4060.04

Elutriation-purified human monocytes were plated at 1.53105 monocytes in
a-MEM/1% HS and were either left untreated or treated with ox-LDL (50
mg/mL) or GM-CSF (100 U/mL), in the absence (2) or presence (1) of
anti–GM-CSF antibody (15 mg/mL). After 5 days, viable cell number was
determined. Data are provided from a representative experiment. The experi-
ments were repeated another 12 times with different monocyte populations.

TABLE III. Effect of Antibodies to CSF-1 and to Its Receptor
on Ox-LDL–Induced Human Monocyte Survival

Treatment

Cell No., 31025

No Antibody 1a-CSF-1 1a-CSF-1R

z z z 0.2360.03 0.2160.03 0.0660.01

Ox-LDL 0.8060.04 0.8960.04 0.7760.05

CSF-1 0.7860.04 0.4560.03 0.2060.03

Elutriation-purified monocytes were plated at 1.53105 monocytes in
a-MEM/1% HS and were either left untreated or treated with ox-LDL (50
mg/mL) or CSF-1 (1250 U/mL), in the absence or presence of anti–CSF-1
antibody (2 mg/mL) or anti–CSF-1 receptor (R) antibody (50 ng/mL). After 5
days, viable cell number was determined. Data are provided from a represen-
tative experiment with monocytes from different donors and are mean
values6SEM from triplicate cultures. The experiment was performed with the
same cells that were used in the experiment of Table II. The experiment was
repeated another 14 times with different monocyte populations.
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ox-LDL.32 The contribution of different receptor usage to the effects
on human monocyte survival remains to be elucidated. Our result
with ac-LDL and human monocytes is consistent with our findings in
murine macrophages;14 in contrast, others have distinguished ac-
LDL from ox-LDL by the inability of the former to induce murine
macrophage growth.33

In summary, foam cells in atherosclerotic plaques are widely
believed to result from the uptake by monocytes/macrophages of
LDL after its modification, eg, by oxidation. Human monocytes
slowly die in vitro, an apoptotic process that has been reported to be
enhanced after addition of ox-LDL.12 We report here that the effect
of ox-LDL on the survival of elutriation-purified human monocytes
in vitro is dose dependent, with high concentrations being toxic but
lower concentrations in fact promoting survival. Ac-LDL, but not
native LDL, was also active in enhancing monocyte survival.
Addition of blocking monoclonal antibodies to either GM-CSF or
CSF-1 failed to provide evidence for an essential role for these CSFs
in ox-LDL–promoted monocyte survival. The data could help
explain both the increased numbers of foam cells, as well as the
presence of apoptotic cells, in atheroma.

John A. Hamilton
Genevieve Whitty

Arthritis and Inflammation Research Centre
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Heart Research Institute
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8. Bjökerud S, Bjökerud B. Apoptosis is abundant in human atherosclerotic
lesions, especially in inflammatory cells (macrophages and T cells), and
may contribute to the accumulation of gruel and plaque instability.Am J
Pathol. 1996;149:367–380.

9. Reid VC, Mitchinson MJ, Skepper JN. Cytotoxicity of oxidized low-
density lipoprotein to mouse peritoneal macrophages: an ultrastructural
study.J Pathol. 1993;171:321–328.

10. Reid VC, Hardwick SJ, Mitchinson MJ. Fragmentation of DNA in
P388D1 macrophages exposed to oxidised low-density lipoprotein.FEBS
Lett. 1993;332:218–220.

11. Marchant CE, Law NS, van der Veen C, Hardwick SJ, Carpenter KL,
Mitchinson MJ. Oxidized low-density lipoprotein is cytotoxic to human
monocyte-macrophages: protection with lipophilic antioxidants.FEBS
Lett. 1995;358:175–178.

12. Hardwick SJ, Hegyi L, Clare K, Law NS, Carpenter KL, Mitchinson MJ,
Skepper JN. Apoptosis in human monocyte-macrophages exposed to
oxidized low density lipoprotein. J Pathol. 1996;179:294–302.

13. Mallat Z, Ohan J, Leseche G, Tedgui A. Colocalization of CPP-32 with
apoptotic cells in human atherosclerotic plaques.Circulation. 1997;6:
424–428.

14. Hamilton JA, Myers D, Jessup W, Cochrane F, Byrne R, Whitty G, Moss
S. Oxidized LDL can induce macrophage survival, DNA synthesis, and
enhanced proliferative response to CSF-1 and GM-CSF.Arterioscler
Thromb Vasc Biol. 1999;19:98–105.

15. Yui S, Sasaki T, Miyazaki A, Horiuchi S, Yamazaki M. Induction of
murine macrophage growth by modified LDLs.Arterioscler Thromb.
1993;13:331–337.

16. Sakai M, Miyazaki A, Hakamata H, Sasaki T, Yui S, Yamazaki M,
Shichiri M, Horiuchi S. Lysophosphatidylcholine plays an essential role
in the mitogenic effect of oxidized low density lipoprotein on murine
macrophages.J Biol Chem. 1994;269:31430–31435.

17. Villaschi S, Spagnoli LG. Autoradiographic and ultrastructural studies on
the human fibro-atheromatous plaque.Atherosclerosis. 1983;48:95–100.

18. Gordon D, Reidy MA, Benditt EP, Schwartz SM. Cell proliferation in
human coronary arteries.Proc Natl Acad Sci U S A. 1990;87:4600–4604.

19. Rosenfeld ME, Ross R. Macrophage and smooth muscle cell proliferation
in atherosclerotic lesions of WHHL and comparably hypercholesterol-
emic fat-fed rabbits.Arteriosclerosis. 1990;10:680–687.

20. Katsuda S, Coltrera MD, Ross R, Gown AM. Human atherosclerosis, IV:
immunocytochemical analysis of cell activation and proliferation in
lesions of young adults.Am J Pathol. 1993;142:1787–193.

21. Rekhter MD, Gordon D. Active proliferation of different cell types,
including lymphocytes, in human atherosclerotic plaques.Am J Pathol.
1995;147:668–677.

22. Wang J, Wang S, Lu Y, Weng Y, Gown AM. GM-CSF and M-CSF
expression is associated with macrophage proliferation in progressing and
regressing rabbit atheromatous lesions.Exp Mol Pathol. 1994;61:
109–118.

23. Hart PH, Whitty GA, Piccoli DS, Hamilton JA. Synergistic activation of
human monocytes by granulocyte-macrophage colony-stimulating factor
and IFN-g. Increased TNF-a but not IL-1 activity.J Immunol. 1988;141:
1516–1521.

24. Finnin M, Hamilton JA, Moss ST. Direct comparison of the effects of
CSF-1 (M-CSF) and GM-CSF on human monocyte DNA synthesis and
CSF receptor expression.J Interferon Cytokine Res. 1999;19:417–423.

25. Brugger W, Kreutz M, Andreesen R. Macrophage colony-stimulating
factor is required for human monocyte survival and acts as a cofactor for
their terminal differentiation to macrophages in vitro.J Leukoc Biol.
1991;49:483–488.

26. Hamilton JA. Colony stimulating factors, cytokines and monocyte-mac-
rophages: some controversies.Immunol Today. 1993;14:18–24.

27. Biwa T, Hakamata H, Sakai M, Miyazaki A, Suzuki H, Kodama T,
Shichiri M, Horiuchi S. Induction of murine macrophage growth by
oxidized low density lipoprotein is mediated by granulocyte macrophage
colony-stimulating factor.J Biol Chem. 1998;273:28305–28313.

28. Hulten LM, Lindmark H, Diczfalusy U, Bjorkhem I, Ottosson M, Liu Y,
Bondjers G, Wiklund O. Oxysterols present in atherosclerotic tissue
decrease the expression of lipoprotein lipase messenger RNA in human
monocyte-derived macrophages.J Clin Invest. 1996;97:461–468.

29. Jovinge S, Crisby M, Thyberg J, Nilsson J. DNA fragmentation and
ultrastructural changes of degenerating cells in atherosclerotic lesions and
smooth muscle cells exposed to oxidized LDL in vitro.Arterioscler
Thromb Vasc Biol. 1997;17:2225–2231.

30. Sparrow CP, Parthasarathy S, Steinberg D. A macrophage receptor that
recognizes oxidized low density lipoprotein but not acetylated low
density lipoprotein.J Biol Chem. 1989;264:2599–2604.

31. Arai H, Kita T, Yokode M, Narumiya S, Kawai C. Multiple receptors
for modified low density lipoproteins in mouse peritoneal macro-
phages: different uptake mechanisms for acetylated and oxidized low
density lipoproteins.Biochem Biophys Res Commun. 1989;159:
1375–1382.

32. Krieger M. The other side of scavenger receptors: pattern recognition for
host defense.Curr Opin Lipidol. 1997;8:275–280.

33. Martens JS, Lougheed M, Gomez-Munoz A, Steinbrecher UP. A modi-
fication of apolipoprotein B accounts for most of the induction of mac-
rophage growth by oxidized low density lipoprotein.J Biol Chem. 1999;
274:10903–10910.

Letters to the Editor 2331

 at Biblioteche biomediche Universita' di Torino on August 28, 2009 atvb.ahajournals.orgDownloaded from 

http://atvb.ahajournals.org

