

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Water content and nature of solutes in shallow-mantle fluids from fluid inclusions

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/118370 since
Published version:
DOI:10.1016/j.epsl.2012.07.023
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

UNIVERSITÀ DEGLI STUDI DI TORINO

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in *Earth and Planetary Science Letters*, *351-352*, *2012*, *doi: 10.1016/j.epsl.2012.07.023*.

You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), *doi: 10.1016/j.epsl.2012.07.023*

2	Water content and nature of solutes
3	in shallow-mantle fluids from fluid inclusions
4	
5	Maria Luce Frezzotti ¹ , Simona Ferrando ² , Francesca Tecce ³ , Daniele Castelli ²
6 7	¹ Department of Earth Sciences, University of Siena, Via Laterina 8, 53100 Siena, Italy. <u>marialuce.frezzotti@unisi.it;</u> Tel. +39 0577 233929; Fax +39 0577 233938.
8 9	² Department of Earth Sciences, University of Torino, Via V. Caluso 35, 10125 Torino, Italy. <u>simona.ferrando@unito.it</u> : <u>daniele.castelli@unito.it</u>
10 11	³ IGAG – CNR, c/o Department of Earth Sciences, University of Rome "La Sapienza", P.za A. Moro 5, 00185 Roma, Italy. francesca.tecce@cnr.it
12	

13

14 Abstract

15

16	This study discusses new and published data on the composition of fluid inclusions
17	contained in mantle minerals of spinel and garnet peridotite xenoliths, in samples from
18	geodynamically distinct settings (Ethiopian plateau, Hawaii, Canary Islands, and western
19	Mediterranean region). Based on spectroscopic Raman and FTIR analyses we show that,
20	contrary to a commonly held view, fluid inclusions either contain relevant amounts of
21	unsuspected H ₂ O, or represent a "dehydrated" composition from multicomponent aqueo-
22	carbonic fluids. We identify water loss from fluid inclusions through decrepitation, stretching
23	and hydrogen diffusion. We also show that talc, magnesite, chlorides, and sulfates represent
24	common phases in fluid inclusions. Talc and magnesite form through reactions of fluids with the
25	surrounding minerals. Thermodynamic modeling in the MFSHC system of observed reactions
26	between fluid inclusions and surrounding mantle minerals provides the basis for predicting water
27	amounts in shallow-mantle fluids, and suggests $X_{\rm H2O}$ in the range of 10-50 mole %. Model
28	hydrous fluids are relatively enriched solutions, dominated by Si, Cl, and alkalies, with
29	significant Ca, and S, and low Mg and Fe. This study argues that multicomponent hydrous fluids
30	may be widespread in the shallow mantle, not only in subduction zones but also in intraplate and
31	extensional settings.

32

Keywords: Mantle petrology, Upper mantle fluid, fluid inclusions, Raman spectroscopy, FT-IR
 spectroscopy

35 Introduction

36 27

37 38	The volatile (e.g., C, O, H and halogens) inventory in the Earth's upper mantle includes
39	accessory phases, nominally anhydrous minerals (NAMS), along with mobile fluid phases and
40	volatile-rich melts (e.g., Bell et al., 2003; Bolfan-Casanova et al., 2000; Dasgupta and
41	Hirschmann, 2006; Green and Falloon, 1998; Thompson, 1992; Wyllie and Ryabchikov, 2000).
42	Hydrous fluids are critical to understand the structure and dynamics of the upper mantle, as they
43	play a major role during deformation and recrystallization processes, and control partial melting
44	of peridotites in upwelling mantle (Asimow and Langmuir, 2003; Dixon et al., 2004; Hirth and
45	Kohlstedt, 2003; Katayama and Karato, 2008; Katz, et al., 2003). Furthermore, water has a major
46	control on the oxidation state and on the selective enrichment in alkalies, large ion lithophile
47	elements (LILE), and light rare earth elements (LREE) of mantle rocks (Bailey, 1982; Dixon et
48	al., 2002; Kessel et al., 2005). Despite considerable progresses in modeling fluid behavior, our
49	understanding of the exact nature and composition of hydrous mantle fluids is hampered by the
50	absence of distinctive chemical signatures in many peridotites.
Г1	$C \cap H$ fluid expectation is largely dependent on evygen fuggety (40). H \cap and $C \cap$ are

C-O-H fluid speciation is largely dependent on oxygen fugacity (fO_2). H₂O and CO₂ are 51 52 predicted to be the major fluid components in the shallow mantle at $P \le 2-3$ GPa, for fO_2 equal to or greater than the quartz-fayalite-magnetite buffer (QFM) (Connolly, 1995; French, 1966; 53 Huizenga, 2001, 2005; Ohmoto and Kerrick, 1977; Shi and Saxena, 1992; Zhang and Duan, 54 2009, 2010). Studies of gasses contained in or released from magmas, and of accessory mantle 55 minerals (e.g., phlogopite, amphibole and apatite) suggest that fluids should contain CO₂, H₂O, 56 and halogens (Marty and Tolstikhin, 1998; Marty and Zimmermann, 1999; Murck et al., 1978; 57 Oppenheimer et al., 2011; O'Reilly and Griffin, 2000; Patino Douce et al., 2011; Smith et al., 58 1981; Wallace, 2003). 59

Fluid inclusions are the best natural samples to provide evidence for the nature of shallow-mantle fluids. However, we have known for a long time that fluid inclusions in peridotites are

typically CO₂-rich relative to other volatiles (cf. reviews by Andersen and Neumann, 2001; 62 Pasteris, 1987; Roedder, 1965; 1984). This discrepancy between the fluid composition observed 63 in inclusions and that predicted by oxy-thermobarometry has bolstered models that suggest any 64 mobile hydrous component to be partitioned to melt phases, such as silicate and carbonate melts 65 (e.g., Luth, 2003; Murck et al., 1978; Thompson, 1992). Consequently, the apparent absence of 66 H₂O has undermined the credibility of fluid inclusions as tracers of mantle processes, and has 67 brought some authors to propose that most fluid inclusions represent late features, mainly related 68 69 to deep magma degassing during ascent of peridotite xenoliths (e.g., Pasteris, 1987).

A full survey of fluid inclusions in mantle rocks does not fit the view of "pure" CO₂ fluids 70 well. For example, Andersen et al. (1984) first proposed CO₂-brine fluids in peridotites from 71 extensional mantle settings based on the association of carbonate and chlorine-bearing 72 amphibole in CO₂ inclusions in peridotites from Bullenmeri (SE Australia). Similarly, Frezzotti 73 et al. (2002a, and b) suggested that aggregates of talc and NaCl lining CO₂ inclusion cavities in 74 olivine from peridotite of Tenerife (Canary Islands) formed as the result of post-entrapment 75 76 chemical reaction between CO₂-brine fluids and the surrounding minerals. Recently, H₂O has 77 been detected in deep diamond-bearing CO₂-rich fluid inclusions in garnet pyroxenites from 78 Oahu, Hawaii (Frezzotti and Peccerillo, 2007). In addition, brine inclusions have been described 79 in peridotites from subduction-zone settings with increasing frequency (e.g., Hidas et al., 2010; McInnes et al., 2001; Scambelluri et al., 1997; Trial et al., 1984). 80

This study is aimed to check for the presence of water in fluid inclusions formed at mantle depths in several suites of metasomatized peridotite xenoliths from the Ethiopian plateau, Hawaii, and the western Mediterranean region, using Raman and Fourier transform infrared (FT-IR) microspectroscopies. We compare the present results with the results of previously published studies and critically reevaluate the composition of fluid phases at shallow-mantle depths. The present study documents that there is, or there was, a hydrous solute-rich hydrous component in many mantle fluids trapped as inclusions. A thermodynamic model to evaluate the H₂O budget in
shallow-mantle fluids is proposed. Although the present study focuses on mantle rocks, our
approach is equally applicable to eclogites, migmatites, and granulites in the lower continental
crust, where hydrous fluids are often predicted but not observed in fluid inclusions (e.g.,
Hollister, 1990; Touret, 1981, 2001).

92

93 1. Description of studied samples

94

We have investigated fluid inclusions in several suites of metasomatized spinel and garnet 95 peridotite xenoliths. Rocks were selected from intraplate or extensional tectonic settings related 96 recent to Plio-Quaternary volcanism. Our goal was to focus on fluid inclusions formed at mantle 97 depths in order to study the composition of mobile mantle fluid phases. For this reason, we 98 selected those peridotites which did not show significant melt infiltration, and where fluid 99 100 inclusions did not contain glass (i.e., volatile-rich melts). Fluid inclusions were analyzed in olivine, orthopyroxene and clinopyroxene. Studied peridotites and fluid inclusions are described 101 in the following paragraphs and presented in Table 1. 102 103 Six pargasite-bearing spinel lherzolites were selected from a suite of peridotites in Quaternary 104 basanitic lavas from a cinder cone located in the Lake Tana region, part of the Ethiopian Plateau 105 (Ferrando et al., 2008; Table 1). Rocks show protogranular to porphyroclastic textures and equilibrated in the lithosphere at 950-1015 °C and 1.3-2.0 GPa (Ferrando et al., 2008). 106 Peridotites contain Cl-rich pargasite, and cryptic enrichments in Fe, Al, LILE and Pb are 107 observed in clinopyroxene (Frezzotti et al., 2010). Coeval CO2-rich fluid inclusions tiny (5-30 108 µm) occur in olivine and orthopyroxene porphyroclasts and subordinately in clinopyroxene, 109 along short intragranular trails. Orthopyroxene is rich in fluid inclusions and preserves the 110 111 highest density fluids (Table 1). Liquid water was detected in three CO₂-rich inclusions in

orthopyroxene and olivine under the microscope and the heating-freezing stage. From these observations, the estimated fluid composition is $X_{CO2} = 0.64$, $X_{H2O} = 0.33$, $X_{Na} = 0.006$, $X_{Mg} =$ 0.006, $X_{CI} = 0.018$, and the calculated isochores indicate trapping pressures, *P*, of 1.4-1.5 GPa, at 950 °C (Table 1). Modeled fluid composition is in agreement with the formation of Cl-rich metasomatic hydrous phases and with metasomatic enrichments in clinopyroxenes (Frezzotti et al., 2010). High Cl, LILE, and Pb in model metasomatic fluid phases point to a contribution of recycled altered oceanic lithosphere component in their source.

119 Four garnet pyroxenite samples were borrowed from the Jackson collection (Jackson and 120 Wright, 1970) of the National Museum of Natural History (Washington D.C., USA). These are from alkali-post erosional stage Honolulu volcanics (< 1 m.y.) at Salt Lake Crater (SLC), Koolau 121 shield, in the Island of Oahu, Hawaii (Clague and Frey, 1982; Lassiter at al., 2000; Sen, 1988). 122 123 SLC garnet pyroxenites show coarse granular textures and consist of clinopyroxene (diopside-124 augite; > 60 % vol), olivine, orthopyroxene, garnet, and spinel. Garnet is of secondary origin, and mainly formed through exsolution from pyroxene during recrystallization processes. 125 126 Although amphibole and phlogopite were previously reported (cf., Sen, 1988), traces of phlogopite were observed only in one sample. SLC garnet pyroxenites were interpreted as crystal 127 cumulates from the recent Hawaiian volcanism in the Pacific lithosphere (P = 1.6-2.2 GPa). 128 Recent reports of majoritic garnet and of microdiamonds imply a much deeper origin (ca. 4.5-5 129 GPa; Frezzotti and Peccerillo, 2007; Keshav and Sen, 2001, 2003; Keshav et al., 2007; Wirth 130 131 and Rocholl, 2003). According to Keshav et al. (2007), garnet pyroxenites represent highpressure cumulates related to polybaric magma fractionation in the asthenosphere. Early high-132 density to superdense CO₂ (d = 1.16-1.21 g/cm³) fluid inclusions (\leq 5–6 µm) occur in 133 clinopyroxene and subordinately in orthopyroxene, generally distributed along (010) directions. 134 135 Superdense CO_2 is recognized by initial melting at the temperature of partial homogenization to liquid (-56.6°C; ThLs); final melting (TsL) occurs at temperatures up to - 50.8°C (Table 1; 136 Frezzotti et al., 1992). Early inclusions contain microdiamonds and traces of H₂O, N₂ and H₂S 137

(Frezzotti and Peccerillo, 2007), but no glass/melt. Rare carbonate inclusions, and mixed CO2 + carbonate \pm diamond inclusions have also been observed. These characteristics are consistent 139 with a genetic link of fluids with ephemeral carbonate-rich melt generated in the asthenosphere 140 141 within the diamond stability field (Frezzotti and Peccerillo, 2007).

Four spinel phlogopite-harzburgites and one dunite from central Italy occur in lamproitic lavas of 142 Torre Alfina volcano (0.9-0.8 M.y.; Conticelli and Peccerillo 1990). Xenoliths consist of olivine 143 and subordinate (3-12 vol. %) orthopyroxene porphyroclasts showing protogranular textures (Table 144 145 1). Rare anhedral clinopyroxene occurs in the interstices between deformed olivines. Brownish to black spinels are also present as isolated coarse crystals (> 1 mm) or as smaller grains. Metasomatic 146 phlogopite is present in amounts variable from less than 1 up to 10% of the rock by mode. This has 147 Sr-Nd (87 Sr/ 86 Sr ~ 0.716 - 0.717; 143 Nd/ 144 Nd ~ 0.5121) isotopic signatures close to those of the host 148 lamproites (Conticelli, 1998). Geothermobarometric studies indicate equilibrium pressures, P, of ca. 149 150 1.2-1.6 GPa, corresponding to a depth of 50 to 60 km, and temperatures, T, of 950–1080 °C (Pera et al., 2003; unpublished data). Rare CO2-rich fluid inclusions are observed only in a few 151 152 orthopyroxene porhyroclasts. Inclusions are tiny ($\leq 5 \mu m$) and distributed along (010) directions. Mantle melting and generation of lamproites took place during opening of Western 153 Mediterranean basins, after the Europe-Africa continental collision. Central Italian peridotites 154 represent samples of a "hot" lithosphere, located close to the asthenosphere-lithosphere boundary 155 (Frezzotti et al., 2009). Metasomatism involved the presence of subducted fluids/melts of 156 157 continental origin related to older subduction events of Alpine age (Peccerillo, 2005, and references 158 therein). Three spinel dunites and two spinel pyroxenites from Sardinia are from the spatter cone of 159 160 Monte Lisiri volcano (~0.9-0.1 Ma; Lustrino et al., 2000), near the village of Ittireddu in the Logudoro region, which is part of the recent Plio-Pleistocene anorogenic alkaline mafic volcanism 161

in northern Sardinia. Dunites show porphyroclastic textures and consist mostly of olivine 162

porphyroclasts, with very subordinate orthopyroxene and undeformed interstitial clinopyroxene 163

164	grains. Granular pyroxenites are dominated by clinopyroxene (> 85 vol. %), with subordinate
165	olivine and orthopyroxene. Mineral thermometry indicates relatively low temperatures (950°C). In
166	pyroxenites, modal metasomatism is testified by the presence of phlogopite (1-2 vol. %) with high
167	Cl contents (ca. 0.4-0.5 wt %). In dunites and pyroxenites, intragranular trails of CO ₂ -rich fluid
168	inclusions tiny (5–20 $\mu m)$ are abundant in orthopyroxene and clinopyroxene, the highest CO_2
169	densities being recorded in clinopyroxene (Table 1). In Sardinia, the origin of pyroxenites has been
170	related to deep cumulus processes, whereas peridotites have been interpreted as upper mantle
171	residues variably affected by metasomatic processes by melts derived from partial melting of lower
172	crustal rocks (Lustrino et al., 2000; 2004). Peccerillo (2005), however, did not exclude that
173	metasomatism of the lithosphere beneath northern Sardinia might have occurred by subduction-
174	related fluids or melts in Oligo-Miocene times, based on composition of mafic rocks.
175	Among selected samples, pyrope garnet is present only in Hawaiian pyroxenites, and it does
176	not contain mantle fluid inclusions. In order to study the post-entrapment evolution of fluid
177	inclusions in garnet, we additionally included one sample of whiteschist from the Dora Maira
178	Massif in western Alps (Italy), a slice of continental crust that experienced subduction to ultra-
179	high pressure conditions (P= 3.5 GPa, T= 750°C) (e.g., Ferrando et al., 2009, and references
180	therein). Abundant aqueous fluid inclusions have been previously described in pyrope from these
181	lithologies (Ferrando et al., 2009; Philippot and Selverstone, 1991).
182	

183 2. Analytical Methods

184

Raman spectra of minerals and fluid inclusions containing C and H were acquired with a
Labram microspectrometer (HORIBA Jobin Yvon) at the University of Siena. A polarized 514.5
nm water-cooled Ar-ion laser was used as the excitation source. The measured laser power was
300-500 mW at the source, and about 80% less at the sample surface. Raman spectra were
collected through an OLYMPUS 100x objective (0.9 numerical aperture: excitation spot 1x1x5

190	μ m in volume) for an acquisition time variable from 30 s to 180 s for each spectrum, and 1 to 10
191	accumulations. The slit width was set at 100 $\mu\text{m},$ and the corresponding spectral resolution was
192	1.5 cm ⁻¹ . Frequency wavenumbers of the Raman modes in the region $0-1800 \text{ cm}^{-1}$ were
193	calibrated daily by the position of the diamond peak at 1331.7 cm ⁻¹ . Peak assignment of solid,
194	gaseous, and liquid phases was done by comparison with our reference library and database of
195	Raman spectra (<u>http://www.dst.unisi.it/geofluids/raman/spectrum_frame.htm;</u> Frezzotti et al.,
196	2012).

197 Morphological and chemical analyses of mineral phases in open fluid inclusions were performed through scanning electron microscopy (SEM; Philips XL30) at the University of 198 Siena. This instrument is equipped with an energy-dispersive spectrometer (EDS-Philips EDAX 199 DX4). Selected doubly polished sections containing fluid inclusions were broken after 200 201 immersion in liquid nitrogen. Broken samples were immediately mounted on stubs and carbon 202 coated. Operating conditions were as follows: accelerating voltage 20 kV, beam current 23-25 µA, working distance 10-12 mm. Element maps with the theoretical inner pattern were obtained 203 using the ZAF method of correction. Natural silicates and oxides have been used as standards. 204 205 To reveal water diffusion from fluid inclusions into the structure of surrounding minerals, we mapped the distribution -and concentrations of structurally_-bound hydrogen in nominally 206 anhydrous minerals by synchrotron based FT-IR microspectroscopy. We selected those mantle 207 minerals where liquid H₂O was proven in fluid inclusions: olivine and pyroxenes from Ethiopian 208 209 peridotite xenoliths (Frezzotti et al., 2010), and garnet from Dora Maira whiteschists (Ferrando et al., 2009). Analyses were performed by Fourier transform infrared (FT-IR) microspectroscopy 210 at the infrared beam-line SISSI (Source for Imaging and Spectroscopic Studies in the Infrared) 211 operating at the synchrotron laboratory ELETTRA in Trieste. Spectra were collected on a FTIR 212 spectrometer (Bruker IFS66/v) fitted with a Hyperion IR microscopy with a liquid-nitrogen-213 cooled HgCdTe (MCT) detector. Infrared microscopy was performed on an infrared microscopy 214 system (Bruker) with a 16× magnification infrared objective. Spectra were collected at resolution 215

Formatted: Default Paragraph Font, Font: Calibri, 11 pt, Italian (Italy)

216	of 4 cm ⁻¹ and signal averaged for 128 scans on each data collection. Background spectra were
217	recorded in air. For IR imaging studies, we used double-polished thick sections of xenoliths of
218	known thickness. The spectral images were collected scanning areas of variable sizes (200-450
219	μm -long and 200-450 μm -wide), following a regular grid of square-aperture dimension of 20 μm
220	equidistant by 20 μ m in both directions (i.e., totals of 100-400 spectra), using a computer-
221	controlled automated X-Y mapping stage. Interpretation of unpolarized spectra of H ₂ O followed
222	the classical group frequency approach in which absorption bands are assigned to specific
223	vibrational modes. OH concentrations in mineral phases were estimated from the integrated
224	absorbance using the Beer-Lambert law (Paterson, 1982). Experimentally determined calibration
225	constants for orthopyroxene are from Bell et al. (1995), and for olivine are from Bell et al.
226	(2003). Since unpolarized FT-IR H_2O measurements are affected by large errors (30-50 %; cf.,
227	Demouchy et al., 2006), and imaging revealed H variations with position within single minerals,
228	measured water contents are reported in intervals of tens of ppm, emphasizing the relative
229	variations with distribution within single grains. Note that, liquid H ₂ O and/or hydrous minerals
230	in fluid inclusions were also suggested by FT-IR absorption bands. However, spectra are not
231	reported in the present paper, since we consider FT-IR microspectroscopy a less reliable
232	diagnostic technique than Raman, because of its poorer resolution, and absence of confocality.
233	Petrogenetic grids were calculated in the MgO-FeO-SiO ₂ -H ₂ O-CO ₂ (MFSHC) model system
234	using the thermodynamic approach of Connolly (1990) and the internally consistent
235	thermodynamic data set and equation of state for H ₂ O-CO ₂ of Holland and Powell (2011),
236	modified considering a typical mantle $\#mg [Mg/(Mg+Fe^{2+}) = 0.9]$ for olivine and
237	orthopyroxene.
238	
239	
240	

242 3. **Results**

244	Water in CO ₂ -rich fluid inclusions is traditionally revealed by optical studies, although
245	identification may be difficult in dense and often colored mantle minerals (cf., Roedder, 1972).
246	Water can be detected simply by using Raman and FT-IR spectroscopic techniques (cf., Frezzotti
247	and Peccerillo, 2007; Hidas et al., 2010; McMillan et al., 1996, and references therein). Results
248	are given in Table 2 and discussed in the following sections. Note that the potential of Raman
249	microspectroscopy for identifying water in mantle fluid inclusions has been known since the 80's
250	(e.g., Pasteris and Wanamaker, 1988). However, researchers failed to detect H ₂ O in fluid
251	inclusions at that time, probably because of the non-confocality and lower sensitivity of old
252	instruments.
253	4.1 Uncovering aqueous fluids inside inclusions: Raman spectroscopy and EDAX-EDS analyses
254	In almost all studied fluid inclusions H ₂ O in not visible. One exception is represented by a
255	few relatively-large fluid inclusions (> $20 - 30 \ \mu m$) in orthopyroxene of spinel lherzolites from
256	the Ethiopian plateau, where thin ($\leq 1 \ \mu m$) liquid water films were recognized. In these
257	inclusions, presence of H ₂ O was confirmed by clathrates melting during microthermometric
258	studies at low temperatures (Table 2).
259	Raman microspectroscopy revealed the presence of liquid water in a minority of optically
260	"pure" CO_2 fluid inclusions (10-30 μ m in size), for which pyroxenes were the enclosing
261	minerals, and a hydrous nature was recognized for the host mantle peridotites (e.g., Ethiopian
262	plateau and Central Italy; Table 2 and Fig. 1a). For example, a Raman spectrum of liquid H_2O is
263	reported in Figure 1b. The characterizing feature consists of a broad band centered
264	approximately at 3400-3450 cm^{-1} in the OH stretching region from 2900 to 3800 cm^{-1} . In those
265	fluid inclusions of less than 5 μm in size, a water film rimming the CO_2 does not generate a
266	discernible liquid H ₂ O Raman spectrum. However, Raman detection of H ₂ O was possible also in

these cases by spectra of isolated H₂O molecules dissolved in the CO₂ fluid (Table 2; Frezzotti and Peccerillo, 2007). 268

A coat of hydrous silicates and/or carbonates distributed along the rims of fluid inclusions 269 270 was more commonly identified in place of molecular H₂O (Table 2; Fig 2 a-d). Talc (Tlc) was recognized by its band distribution in the OH⁻ region at 3677 cm⁻¹ (Fig. 2f). More rarely, band 271 distribution at 3450, 3638, 3673 cm⁻¹ was observed, which corresponds to Mg-chlorite 272 273 (Mg₅AlSi₃AlO₁₀(OH)₈; not shown). Magnesite (Mgs) was identified by its diagnostic Raman modes at 1092, 738, and 328 cm⁻¹ (Fig. 2e). Whereas the presence of carbonates in fluid 274 275 inclusions was revealed by optical microscopy (Fig. 2c and d), talc and chlorite were generally 276 overlooked. The type and amount of minerals lining CO₂-rich inclusions depend mainly on the nature of the surrounding mineral (Table 2). In olivine, hydrous silicates and carbonates are 277 278 common phases (Fig. 2b and c), and in a few cases completely fill the inclusions, without any 279 fluid left (Fig. 2d). Conversely, in orthopyroxene and clinopyroxene, while carbonates are common, hydrous silicate minerals are less frequent (Fig. 2a). 280

281 Morphological observations by SEM images inside opened fluid inclusions showed that talc 282 is constituted by very fine flakes, forming micrometer-sized packages distributed parallel to the 283 enclosing mineral phase along the inclusions cavity walls (Fig. 3a and b). Talc and magnesite are 284 often glazed by a thin coating, probably precipitated during opening of fluid inclusions (Fig. 3b). SEM-EDAX spectra indicate that the coating consists of Ca, Cl, S, K, and minor Si, Na, Al and 285 Fe (Fig. 3c). Ca and S correspond to gypsum (Raman analysis, Fig. 3d and e). Other elements 286 suggest the presence of KCl, NaCl, and probably SiO₂ and Fe-Al oxides (Fig. 3c-e). 287 In clinopyroxene from hydrous peridotites (Table 1), EDS-EDAX analyses showed that 288 CO2-rich inclusions occur in contact with a euhedral hydrous mineral, similar in size and 289 290 chemically identical to the metasomatic phase present in the rocks: pargasite in peridotites from the Ethiopian plateau (Fig. 4a and c), and phlogopite in peridotites from Sardinia (Italy) (Fig. 4b 291 292 and d).

294 <u>4.2 Mapping water diffusion from fluid inclusions: FT-IR spectroscopy</u>

295 Mapped hydrogen gradients in olivine, orthopyroxene and garnet revealed the change from molecular water in the fluid inclusions to OH⁻ bonds in the surrounding anhydrous minerals. 296 Figure 5 reports the FT-IR synchrotron map of orthopyroxene and garnet hosting several fluid 297 inclusion trails (f.i. in Fig. 5a and c). In orthopyroxene, the mapped sample area is 450x450 µm 298 (for a total of 180 spectra), and the x-y spatial resolution is 20x20 µm (on the order of the 299 inclusion size). The FT-IR map in Fig. 5b clearly shows an exponential increase of bonded 300 hydrogen approaching the inclusion region. The increase of hydrogen content is evident from 301 302 symmetrical differently colored haloes in orthopyroxene: calculated H₂O contents range from 303 about 50-100 ppm far from fluid inclusions (more than 100 µm) to about 400-600 ppm, close to 304 fluid inclusions. In garnet (mapped area 400x400 µm; x-y resolution 20x20 µm), we observed a four- to fivefold enrichment of water in areas close to fluid inclusions (Fig. 5d). Hydrogen 305 gradients recorded by map contours represent actual water content variations in garnet with the 306 exception of the fluid inclusion trail area where water contents above 180-200 ppm in part result 307 from a contribution of molecular H₂O from the inclusions (red to pink areas in Fig. 5d). 308 In olivine (Fig. 6a; mapped area 280x280 µm; x-y resolution 20x20 µm), water enrichment is 309 310 less significant than in orthopyroxene and garnet. FT-IR maps in figures 6b and c show the distribution of OH⁻ absorption bands in two separate regions: 3000-3600 cm⁻¹ corresponding to 311 OH⁻ in olivine (Fig. 6b), and 3600-3800 cm⁻¹ corresponding to OH⁻ in serpentine or talc (Fig. 6c; 312 313 Khisina et al., 2001). The distribution of the strongest absorbance peak of water migration points to hydrogen diffusion from single fluid inclusions into the surrounding olivine. Presence of talc 314 or serpentine close to fluid inclusion trails further suggest that hydration reactions occurred not 315 only inside fluid inclusions but also in surrounding olivine (Fig. 6b). 316

317 In clinopyroxene, water enrichments close to fluid inclusion trails were not observed.

318

319 5 Discussion

320 <u>5.1 There was water in fluid inclusions formed at shallow-mantle depths</u>

The present study highlights significant dehydration of shallow-mantle fluids after trapping as 321 inclusions. Diffusive loss of H2O due to re-equilibration between the inclusion and host is 322 323 demonstrated by the strong FT-IR absorbance peak of water migration in the host nominally anhydrous mantle minerals. Transport of water could have occurred under conditions of 324 325 differential pressures and fluid fugacity at high P and T through lattice defects and microfractures. A high-concentration of dislocations around fluid inclusions was previously 326 reported in olivine from Canary Islands peridotites, and was proposed to be the main mechanism 327 for molecular fluid loss (Viti and Frezzotti, 2000; 2001). This diffusion-scenario is conceivable 328 considering the extremely fast diffusion of H in olivine (Mackwell and Kohlstedt, 1990), and 329 reinforces models proposed for selective H₂O loss from CO₂-H₂O inclusions in quartz (Bakker 330 and Jansen, 1991; Romer et al., 2006; Sterner and Bodnar, 1989; Watson and Brenan, 1987). 331

Further, dehydration of mantle fluids is induced by reactions between residual H_2O fluids in the inclusions and the surrounding minerals. In magnesian olivine, the association of talc and magnesite may form at low *T* and *P* through the following reaction:

$$4Mg_2SiO_4 + H_2O + 5CO_2 = Mg_3Si_4O_{10}(OH)_2 + 5MgCO_3$$
(1)

However, talc and magnesite relative volumes observed in fluid inclusions (Fig. 3a) suggest that sub-equal molar amounts of these two phases were produced during the reaction, given that the molecular weight of talc is about five times that of magnesite (379 vs. 84), for similar densities (2.78 vs. 3.01 g/cm³). Relative proportions of talc and magnesite can be greatly modified if H₂O-CO₂ fluids contained SiO₂ in solution:

341

$$342 2Mg_2SiO_4 + H_2O + CO_2 + 2SiO_2(aq) = Mg_3Si_4O_{10}(OH)_2 + MgCO_3 (2)$$

343 In magnesian orthopyroxene, formation of talc and magnesite can be described by a reaction:

$$4MgSiO_3 + H_2O + CO_2 = Mg_3Si_4O_{10}(OH)_2 + MgCO_3$$
(3)

However, while magnesite represents a common phase in fluid inclusions, talc is more rare.It is thus possible that a second reaction such as:

$$349 \qquad MgSiO_3 + CO_2 = MgCO_3 + SiO_2 \tag{4}$$

351	might have occurred between H_2O - CO_2 fluids of variable X_{H2O} and surrounding orthopyroxene.
352	In contrast, fluid inclusions in clinopyroxene do not seem to contain or have contained H_2O .
353	Talc and magnesite are rare, and FT-IR absorption maps do not show significant water
354	enrichments. This result is surprising, given that the capacity of clinopyroxene to store H_2O
355	greatly exceeds that of olivine at upper mantle pressures (Aubaud et al, 2004). Although we may
356	have overlooked some processes, as the studied clinopyroxene is from hydrous peridotites where
357	metasomatic amphibole or phlogopite are present, our preferred explanation for the analytical
358	data is that reaction of the hydrous fluid occurred along microfractures at the infiltration stage,
359	prior to inclusion formation. Hydration of clinopyroxene during microfracture healing is
360	suggested by formation of tiny pargasite (or phlogopite) grains, occurring with CO2 fluid
361	inclusions along the same microfracture (Fig. 4). In olivine and orthopyroxene, similar hydration
362	reactions are inhibited, since they occur at lower temperatures below most mantle geotherms (see
363	also section 5.2), and hydrous mantle fluids are trapped inside inclusions. Interestingly, Lamb et
364	al. (1987) proposed a similar evolution to explain selective CO ₂ enrichments observed in fluid
365	inclusions of some high-grade metamorphic rocks.

367 <u>5.2 Amounts of water in shallow-mantle fluids</u>

368	A critical question to petrological and geophysical studies is how much water was originally
369	present in shallow-mantle fluids. This issue can be investigated by modeling the reactions
370	between H ₂ O-CO ₂ fluid inclusions and surrounding magnesian orthopyroxene (Mg/Mg+Fe=0.9)

371 in peridotites. For magnesian olivine, similar reactions cannot be modeled since they require SiO₂ in the fluid (cf., reaction 2 in 5.1). Figure 7 shows T-X_{H2O} phase diagrams for the MFSHC 372 model system at different pressures. The model reactions can be used to simulate the chemical 373 374 re-equilibrations between aqueous-carbonic fluids with different X_{H2O} in inclusions and surrounding orthopyroxene. These diagrams show that the minimum X_{H2O} necessary to induce 375 hydration reactions between fluid inclusions and surrounding minerals increases with increasing 376 377 fluid pressure. If we consider the formation of talc inside a fluid inclusion in orthopyroxene, at 1 GPa, the minimum X_{H2O} is 0.25 (see invariant point 1 in Fig. 7b), while at 0.5 GPa, it decreases 378 379 to X_{H2O} =0.1 (invariant point 1 in Fig. 7c). The maximum X_{H2O} should not exceed 0.5 regardless of pressure, since ensuing reactions would consume equal amounts of H₂O and CO₂, whereas 380 observed fluid inclusions have CO₂-rich compositions. From figure 7, it is also evident that 381 382 reactions between H₂O-CO₂ fluid inclusions and the surrounding minerals cannot be a mantle 383 process, as talc and/or magnesite only forms as temperatures decrease below about 700-600°C for variable pressures. We propose that eruption provides the conditions to induce reactions. In 384 385 explosive eruptions, temperatures of xenoliths fall below 600°C over 5-10 sec. of ballistic transport through the air (Shaw, 2009). Even in slower-cooling lavas, xenoliths take only a few 386 hours to reach the same temperatures. 387

388 A strong dependency on pressure for hydrous fluid inclusion evolution is illustrated in Figure 8. Consider a dense CO_2 -H₂O fluid inclusion with X_{H2O}=0.3 in orthopyroxene formed at 1.5 GPa 389 and 1000°C in a mantle peridotite. When this inclusion ascends rapidly and adiabatically in a 390 xenolith within the host magma, it will effectively become overpressurized (path a in Fig. 8). If 391 decrepitation does not occur, it arrives at the surface, and subsequent syn-, and post-eruptive 392 393 decrease of temperature will cool the fluid in the inclusion along an isochore (path b in Fig. 8). At temperatures below approximately 700°C, CO2-H2O fluid reaction with surrounding minerals 394 promotes the formation of magnesite in inclusions, but not hydrous phases (i.e., reaction 4 in 395 396 5.1). As far as a fluid inclusion remains overpressurized during adiabatic ascent and cooling,

hydrous phases cannot form. When the same fluid inclusion decrepitates during ascent, so that fluid density resets to a lower value corresponding, for example, to P < 1GPa (below point 1 in Fig. 8), syneruptive cooling along isochore (path c in Fig. 8) would make the CO₂-H₂O fluids in the inclusion to react to form talc + magnesite (reaction 3 in 5.1).

In summary, thermodynamic modeling suggests that up to 50 mole % water should have been 401 present in fluid inclusions formed at mantle depths in order to drive the observed reactions in 402 403 orthopyroxene. Petrogenetic grids also show that syneruptive cooling in host peridotite xenoliths 404 promotes fluid reactions with surrounding minerals. Lower overpressures in the fluid inclusion require a lower minimum water amount in the fluid in order for hydration reactions to take place. 405 It appears reasonable to conclude that hydration reactions associated with diffusive water loss 406 407 reset fluid inclusions to the minimum concentration of H₂O and produce a dehydration trend which may result in the "pure CO2" inclusions often described in mantle minerals. It is 408 noteworthy to recall that any geobarometric data derived from similar CO2-rich inclusions could 409 result in underestimates, since CO2-rich fluids would have residual composition and density 410 considerably lower than that of the original mantle fluids at the time of entrapment. 411

412

413 <u>5.3 Reevaluation of shallow-mantle fluid composition</u>

414 In the absence of pristine inclusions in mantle minerals, an accurate characterization of the chemistry of the aqueous fluid component is complicated. Even so, the identity of minerals 415 precipitating inside fluid inclusions through reactions with surrounding minerals gives 416 417 information on the nature of species in solution. Ubiquitous talc forming through fluid reaction with surrounding host phases indicates Si as a major solute component (cf., reactions 2 and 3 in 418 5.1). Additionally, relevant amounts of Cl, S, Ca, K, and Na are revealed by chlorides and 419 420 gypsum precipitated in inclusions on cooling. Interestingly, K seems to be present in relatively higher amounts than Na. Sulfur has been identified either as hydrogen sulfide gas (H_2S), 421 422 elemental sulfur (S₈), or as sulfate ions (hydrated form of SO₃) (Table1) depending on the

423 oxidation state of the fluid, and indeed sulfur appears to bear a major control over the oxidation
424 state. The sulfate ions detected in some fluid inclusions are a real feature, since, eventual
425 postentrapment fluid inclusion redox-reactions would tend to reduce sulfur (Grishina et al.,
426 1992).

The model composition of saline multicomponent mantle fluids that emerges from the present 427 study is in agreement with formation of Cl-rich hydrous metasomatic phases and with extreme 428 429 LILE enrichments in the studied peridotites (cf., section 2). In addition, the applicability of new chemical data to natural mantle fluids is supported by studies on major element solubility at high 430 P and T. Experimental data up to 3 GPa and 1300°C indicate alkalis as the most soluble species 431 in aqueous fluids, followed by Cl, Si, and Ca, while Mg and Fe are relatively less soluble 432 (Brenan et al., 1995; Dvir et al., 2011; Eggler, 1987; Kawamoto et al., 2004; Manning, 2004; 433 Nakamura and Kushiro, 1974; Newton and Manning, 2002; Stalder et al., 2001). For example, 434 435 Nakamura and Kushiro (1974) estimated that 20 wt. % silica is dissolved in H₂O fluids coexisting with mantle enstatite at 1.5 GPa and 1280°C. The presence of CO₂ in the fluid 436 437 strongly depresses the solubility of silica, while the presence of chlorine has the opposite effect (cf., Newton and Manning, 2010). 438 Previous direct measurements indicated that 10-14 wt% solutes (in NaCl equivalent) are 439 present in hydrous fluid inclusions from the Ethiopian plateau (see section 2). Measured solute 440 concentrations are in agreement with 2-5 wt% Cl (or 3.5-9 wt. % in NaCl equivalent) predicted 441 442 for mantle fluids (Burgess and Turner, 1995), and with 6-10 wt % solutes measured in H₂O-rich subduction fluids (1-2 GPa; Manning, 2004). The total fluid solute content cannot have been 443 extreme in order to trap homogeneous fluids in inclusions (Figs. 1 and 2). High-salinity aqueous 444 fluids, having a large immiscibility solvus in the CO2-H2O-NaCl system, would have been 445 446 immiscible with CO₂ at the considered mantle P-T conditions (Touret, 1992; 2009). Phase

separation (into L+V) would have formed distinct CO₂-rich and saline-aqueous fluid inclusions

448 in mantle minerals, which have not been observed. Based on these observations, the concentrated

brines (NaCl ≥ 50 wt %; Scambelluri et al., 1997) described in fluid inclusions of some
peridotites from subduction settings are likely to reflect the evolution of multicomponent fluids
towards increasing solute/H₂O ratios either by decompression-induced phase separation in the
CO₂-H₂O-salt fluid system, or by postentrapment inclusion "dehydration" trends.

453

454 <u>5.4 Origin of water and chlorine in shallow-mantle fluids</u>

455 Cl-bearing hydrous fluids may be common in subduction zones, generated by the breakdown of hydrous minerals (e.g., serpentine; Manning, 2004; Poli and Schmidt, 2002; Scambelluri et 456 al., 2001; Sharp and Barnes, 2004). Thus, peridotites from mantle wedges are the best candidates 457 to find hydrous fluid inclusions. In this respect, fluid inclusions in peridotites from Central Italy 458 and Sardinia may testify to metasomatic fluids released during old subduction events. As noted 459 by Peccerillo (2005), in Italy and the southern Tyrrhenian sea, Plio-Quaternary magma 460 461 generation does not necessarily need to be coeval with subduction and mantle metasomatism; it may postdate these processes, and could be triggered by changes in thermal regimes in the upper 462 mantle. 463

Our data raise the question of the origin of aqueo-carbonic fluids carrying significant amounts 464 of Cl in the lithosphere within the context of intraplate and extensional mantle settings (e.g., 465 Ethiopia, and Hawaii) (Le Roux et al., 2006; Michael and Schilling, 1989; Seaman et al., 2004; 466 Stolper et al., 2004). In the east African lithosphere, evidence for mantle metasomatism driven 467 468 by Cl-bearing hydrous fluids is consistently reported from several xenolith localities and supposed to have occurred during the early stages of mantle upwelling. The Cl-pargasite bearing 469 lithosphere under the Ethiopian plateau is considered to have been modally metasomatized by 470 471 CO2-brine fluids, probably derived by degassing of deep carbonate rich melts during early stages 472 of upwelling of the Afar mantle zone (Frezzotti et al., 2010). Additionally, Cl-rich pargasite in spinel lherzolites of Zabargad Island is interpreted to have formed just before the early rifting 473 474 phase of the Red Sea (Agrinier et al., 1993). In a similar way, the growth of amphibole \pm Clapatite in spinel peridotites from Yemen has been proposed to have been induced by the influx of
carbonatitic melts and hydrous fluids from the Afar plume during the Oligocene (Baker et al.,
1998). At Hawaii, Iceland, and Azores, Cl-enrichment in the lithosphere is indicated by the high
Cl/F ratios of melt inclusions in OIB (e.g., Dixon et al., 2008; Le Roux et al., 2006; Michael and
Schilling, 1989; Seaman et al., 2004; Stolper et al., 2004).

There should be other water and Cl-sources besides active subduction. Evidence for hydrous 480 mantle fluids away from subduction zones has been obtained in cratonic areas by fluid inclusions 481 482 in fibrous diamonds, where fluids consist of three main components: a carbonate melt, a silicate melt, and a hydro-saline fluid (e.g., Izraeli et al., 2001; Klein-BenDavid et al., 2004; 2007; 483 Kopylova et al., 2010; Navon et al., 1988). The hydrous fluid component is enriched in SiO₂, 484 Al₂O₃, halides, and alkalis (mainly K), similar to shallower hydrous fluids reported by this study. 485 The total solute content is, however, considerably higher in diamond fluids (e.g., Cl up to ca. 35 486 487 wt. %), possibly reflecting the increase of elements solubility at greater P and T ($P \ge 4-5$ GPa; e.g., supercritical fluid phases; Bureau and Keppler, 1999; Kawamoto et al., 2004; Kessel et al., 488 2005; Manning, 2004). In diamonds, continuous compositional variations of fluid inclusions are 489 observed, suggesting that all components might be genetically related, most likely evolved from 490 a "primitive" carbonate-rich melt (cf., Klein-BenDavid et al., 2004, and references therein). 491 Recent experimental evidence shows that immiscibility processes in this silicate-carbonate-H2O 492 system facilitate the chlorine enrichment of the carbonate melt or of the aqueous fluid, not only 493 494 at high pressures in the diamond stability field, but also at lithospheric pressures (Litasov and Ohtani, 2009; Litasov et al., 2011; Safonov, 2011). 495 It is conceivable to suppose that Cl-bearing hydrous shallow mantle fluids might have been 496 497 formed through hydro-saline carbonate melts. As mentioned above, the model composition of 498 hydrous shallow mantle fluids in spinel peridotites is similar to that of the aqueous fluid

component trapped deeper, in diamonds. Further comparisons are difficult because of the limited

data. Fluxes of CO₂-H₂O and Cl in the lithosphere could have been generated by degassing of

501	upwelling carbonate-rich melts at pressures below the carbonate-stability field (2–2.5 GPa;
502	Dobson et al., 1996; Hammouda and Laporte, 2000). Since fluid data from mantle rocks in
503	intraplate and extensional tectonic settings are limited, it is not known whether carbonate-melt
504	degassing may be the main source of lithospheric hydrous fluids, or some other mechanisms,
505	such as silicate melt – fluid immiscibility, have to be invoked. In any case, the deep association
506	of CO ₂ , H ₂ O, carbonates, and diamonds preserved in fluid inclusions of Hawaiian garnet
507	pyroxenites (Frezzotti an Peccerillo, 2007) was interpreted to have caught this process in the act
508	

509 6. Conclusions

510

511 The methodology presented in this paper shows that water is an elusive component in fluid inclusions in many hydrous and anhydrous upper mantle peridotites (i.e., Hawaii, Ethiopia, 512 Canary Islands, and the western Mediterranean region). In shallow-mantle rocks, "pure CO2" 513 inclusions observed optically should be considered to contain less than 20 mole % of H₂O, in 514 515 absence of spectroscopic analysis. Raman identification of H2O, as OH, bound in hydrous silicates lining fluid inclusions suggests that hydrous fluid/host mineral chemical reactions 516 517 represent a common postentrapment process, leading to fluid inclusion dehydration. FT-IR analysis of the distribution of water enrichment in mantle minerals suggests further dehydration 518 through decrepitation, stretching, and H₂O diffusion. 519

Although shallow mantle fluids are generally dominated by CO_2 , constraints from thermodynamic modeling in the MFSHC system suggest that up to 50 mole % H₂O could be present. Water activity (a_{H2O}) is expected to be low (probably < 0.4), in agreement with the anhydrous nature of many peridotite xenoliths. However, the existence of a hydrous fluid component will influence the physical and chemical evolution of the shallow mantle. Presence of H₂O and solutes makes migration of fluids more effective (Mibe et al., 1998, 1999; 2002; Watson and Brenan. 1987). Moreover, the solute content in such hydrous fluids will affect transport and partitioning of elements inducing metasomatism in mantle rocks (Ayers, 1998;
Keppler, 1996; Kessel at al., 2005; Konrad-Schmolke et al., 2011).

In extending present results to a broad statement about the composition of shallow-mantle fluid inclusions, we propose that multicomponent fluids are widespread in the shallow mantle, not only in subduction-zone settings, but also in extensional or intraplate settings. However, a stronger validation requires further spectroscopic (re)investigation of fluid inclusions in mantle peridotites.

534

535 Acknowledgments

We acknowledge T. Anderesen, J. Touret and an anonymous reviewer for most constructive
reviews. We also thank B. Marty for his stimulating comments which greatly improved the
manuscript. We are grateful to the National Museum of Natural History (Washington D.C.) for
providing the Salt Lake Crater peridotite samples. We thank M. Placidi for the fine technical
assistance on Raman spectroscopy, A. Perucchi for help in FT-IR maps treatment, as well as R.
Bonelli and G. Giorgetti for help with SEM analyses. This study was supported by the Italian
PRIN/2008BYTF98.

544 References

- Agrinier, P., Mével, C., Bosch, D., Javoy, M., 1993. Metasomatic hydrous fluids in amphibole
 peridotites from Zabargad Island (Red Sea). Earth Planet. Sci. Lett. 120, 187–205.
- 547 Andersen, T., Neumann, E.R., 2001. Fluid inclusions in mantle xenoliths. Lithos 55, 301-320.
- Andersen T., O'Reilly, S.Y., Griffin W.L., 1984. The trapped fluid phase in upper mantle
- xenoliths from Victoria. Implications for mantle metasomatism. Contrib. Mineral. Petrol. 88,72-85.
- Asimow, P.D., Langmuir, C.H., 2003. The importance of water to oceanic mantle melting
 regimes. Nature 421, 815-820.
- Aubaud C., Hauri, E.H., Hirschmann, M.M., 2004. Hydrogen partition coefficients between
 nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31, L20611,
 doi:10.1029/2004GL021341.
- Ayers, J., 1998. Trace element modeling of aqueous fluid–peridotite interaction in the mantle
 wedge of subduction zones. Contrib. Mineral. Petrol. 132, 390-404. Bailey, D.K., 1982.
 Mantle metasomatism--Continuing chemical change within the Earth. Nature 296, 525-530.
- Bailey, D.K., 1982. Mantle metasomatism: Continuing chemical change within the earth. Nature
 296,525-530.
- Baker, J.A., Chazot, C., Menzies, M., Thirwall, M., 1998. Metasomatism of the shallow mantle
 beneath Yemen by the Afar plume: implications for plumes, flood volcanism, and intraplate
 volcanism. Geology 26, 431–434.
- Bakker, R.J., Jansen, J.B.H., 1991. Experimental post-entrapment water loss from synthetic CO₂ H₂O inclusions in natural quartz. Geochim. Cosmochim. Acta 55, 2215-2230.
- Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995. Quantitative analysis of trace OH in garnet and
 pyroxenes. Am. Mineral. 80, 465-474.
- Bell, D.R., Rossman, G.R., Maldener, J., Endisch, D., Rauch, F., 2003. Hydroxide in olivine: a
 quantitative determination of the absolute amount and calibration of the IR spectrum. J.
 Geophys. Res. 108, 2105. doi:10.1029/2001JB000679.
- Bolfan-Casanova, N., Keppler, H., Rubie, D.C., 2000. Water partitioning between nominally
 anhydrous minerals in the MgO-SiO₂-H₂O system up to 24 GPa: implications for the
 distribution of water in the Earth's mantle. Earth Planet. Sci. Lett. 182, 209-221.
- Brenan, J.M., Shaw, H.F., Reyrson, F.J., Phinney, D.L., 1995. Mineral aqueous fluid partitioning
 of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of
 mantle and deep crustal fluids, Geochim. Cosmochim. Acta 59, 3331-3350.
- Bureau, H., Keppler, H., 1999. Complete miscibility between silicate melts and hydrous fluids in
 the upper mantle: experimental evidence and geochemical implications. Earth Planet. Sci.
 Lett. 165, 187-196.
- Burgess, R., Turner, G., 1995. Halogen geochemistry of mantle fluids in diamonds, in: Farley,
 K.A. (Ed.), Volatiles in the Earth and Solar system. Proc. AIP Conf. 341, 91–98.
- Clague, D.A., Frey, F.A., 1982. Petrology and trace element chemistry of the Honolulu
- volcanics, Oahu: implication for the oceanic mantle below Hawaii, J. Petrol. 23, 447–504.
 Connolly, J.A.D., 1990. Multivariable phase diagrams: an algorithm based on generalized
- 585 thermodynamics. Am. J. Sci. 290, 666-718.

- Connolly, J.A.D., 1995. Phase-diagram methods for graphitic rocks and application to the system
 C-O-H-FeO-TiO₂-SiO₂. Contrib. Mineral. Petrol. 119, 94-116.
- Conticelli, S., 1998. The effect of crustal contamination on ultrapotassic magmas with lamproitic
 affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and
 xenoliths, Central Italy. Chem. Geol. 149, 51-81.
- Conticelli, S., Peccerillo, A., 1990. Petrological significance of high-pressure ultramafic
 xenoliths from ultrapotassic rocks of Central Italy. Lithos 24, 305 322.
- Dasgupta, R., Hirschmann, M.M., 2006. Melting in the Earth's deep upper mantle caused by
 carbon dioxide. Nature 440, 659-662.
- Demouchy, S., Jacobsen, S.D., Gaillard, F., Stern, C.R., 2006. Rapid magma ascent recorded by
 water diffusion profiles in mantle olivine. Geology 34, 429-432.
- 597 Dixon, J.D.A., Clague, B., Cousens, M.L., Monsalve, Uhl, J., 2008, Carbonatite and silicate melt
 598 metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles,
 599 trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii,
 600 Geochem. Geophys. Geosyst. 9, Q09005, doi:10.1029/2008GC002076.
- Dixon, J.E., Dixon, T.H., Bell, D.R., Malservisi, R., 2004. Lateral variation in upper mantle
 viscosity: role of water. Earth Planet. Sci. Lett. 222, 451–67
- Dixon, J.E., Leist, L., Langmuir, C., Schilling, J.G., 2002. Recycled dehydratrated lithosphere
 observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385-389.
- Dobson, D.P., Jones, A.P., Rabe, R., Sekine, T., Kurita, K., Taniguchi, T., Kondo, T., Kato, T.,
 Shimomura, O. and Urakawa, S., 1996. In-situ measurement of viscosity and density of
 carbonate melts at high pressure. Earth Planet. Sci. Lett. 143, 207–215.
- Dvir, O, Pettke, T., Fumagalli, P., Kessel, R., 2011. Fluids in the peridotite–water system up to 6
 GPa and 800: new experimental constrains on dehydration reactions. Contrib. Mineral.
 Petrol. 161, 829-844.
- Eggler, D.H., 1987. Solubility of major and trace elements in mantle metasomatic fluids:
 experimental constraints. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism.
 Academic Press, New York, 21-42
- Ferrando, S., Frezzotti, M.L., Neumann, E.R., De Astis, G., Peccerillo, A., Dereje, A., Gezahegn,
 Y., Teklewold, A. 2008. Composition and thermal structure of the lithosphere beneath the
 Ethiopian plateau: evidence from mantle xenoliths in basanites, Injibara, Lake Tana
 Province. Mineral. Petrol. 93, 47-78.
- Ferrando, S., Frezzotti, M.L., Petrelli, M., Compagnoni, R., 2009. Metasomatism of continental
 crust during subduction: the UHP whiteschists from the Southern Dora-Maira Massif (Italian
 Western Alps), J. Metamorphic Geol. 27, 739 756.
- French, B.M., 1966. Some geological implications of equilibrium between graphite and a C-H-O
 gas phase at high temperatures and pressures. Rev. Geophys. 4, 223-254.
- Frezzotti, M.L., Peccerillo, A., 2007. Diamond-bearing COHS fluids in the mantle beneath
 Hawaii. Earth Planet. Sci. Lett. 262, 273-283.
- Frezzotti, M.L., Burke, E.A.J., De Vivo, B., Stefanini, B., Villa, I.M., 1992. Mantle fluids in
 pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii). Eur. J. Mineral. 4, 1137–1153.
- Frezzotti, M.L., Andersen, T., Neumann, E.R, Simonsen, S.L., 2002a. Carbonatite melt-CO₂
 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping,
- 629 immiscibility and fluid–rock interaction in the upper mantle. Lithos 64,77-96.

- Frezzotti, M.L., Touret, J.L.R., Neumann, E.R., 2002b. Ephemeral carbonate melts in the upper
 mantle: carbonate-silicate immiscibility in microveins and inclusions within spinel
 peridotite xenoliths, La Gomera, Canary Islands. Eur. J. Mineral. 14, 891–904.
- Frezzotti, M.L., Peccerillo, A., Panza, G., 2009. Carbonate metasomatism and CO2 lithosphereastenosphere degassing beneath the Western Mediterranean: an integrated model arising
- from petrological and geophysical data. Chem. Geol. 262, 108-120.
- Frezzotti, M.L., Ferrando, S., Peccerillo, A., Tecce, F., Petrelli, M., 2010. Chlorine-rich
 metasomatic H₂O-CO₂ fluids in amphibole-bearing peridotites from Injibara (Lake Tana
 region, Ethiopian plateau): nature and evolution of volatiles in the mantle of a region of
 continental flood basalts. Geochim. Cosmochim. Acta, 74, 3023 -3039.
- Frezzotti, M.L., Tecce, F., Casagli, A., 2012. Raman spectroscopy for fluid inclusion analysis. J.
 Geochem. Expl. 112, 1-20.
- Green, D.H., Falloon, T.J., 1998. Pyrolite: a Ringwood concept and its current expression. in
 Jackson, J. (Ed.), The Earth's Mantle. Cambridge Univ. Press, New York, pp. 311-378.
- Grishina, S., Dubessy, J., Kontorovitch, A., Pironon, J., 1992. Inclusions in salt beds resulting
 from thermal metamorphism by dolerite sills (eastern Siberia, Russia). Eur. J. Mineral. 4,
 1187-1202
- Hammouda, T., Laporte, D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology
 28, 283–285.
- Hidas, K., Guzmics, T., Szabó, C., Kovács, I., Bodnar, R.J., Zajacz, Z., Nédli, Z., Vaccari, L.,
 Perucchi, A., 2010. Coexisting silicate melt inclusions and H₂O-bearing, CO₂-rich fluid
 inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central
 Hungary). Chem. Geol. 274, 1-18.
- Hirth, G., Kohlstedt, D.L., 2003. Rheology of the upper mantle and the mantle wedge: a view
 from the experimentalists, in: Eiler J. (Ed.), Inside the Subduction Factory. AGU,
 Washington, D.C., pp. 83–105.
- Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent
 thermodynamic dataset for phases of petrological interest, involving a new equation of state
 for solids. J. metamorphic Geol. 29, 333-383.
- Hollister, L.S., 1990. Enrichment of CO₂ in fluid inclusions in quartz by removal of H₂O during
 crystal-plastic deformation. J. Struct. Geol. 12, 895-901.
- 661 Huizenga, J.M., 2001. Thermodynamic modeling of C-O-H fluids. Lithos, 55. 101–114.
- Huizenga, J.M., 2005. C-O-H, an Excel spreadsheet for composition calculations in the C-O-H
 fluid system. Comput. Geosci. 31, 797-800.
- Jackson, E.D., Wright, T.L., 1970. Xenoliths in the Honolulu volcanic series, Hawaii, J. Petrol.
 11, 405–430.
- Izraeli, E.S., Harris, J.W., Navon, O., 2001. Brine inclusions in diamonds: a new upper mantle
 fluid. Earth Planet. Sci. Lett. 187, 323-332.
- Katayama, I., Karato S.I., 2008. Low-temperature, high-stress deformation of olivine under
 water-saturated conditions. Phys. Earth Planet. Int. 168, 125-133.
- Katz, R.F., Spiegelman, M., Langmuir, C.H., 2003. A new parameterisation of hydrous mantle
 melting. Geochem. Geophys. Geosyst. 4, 9, 1073.
- 672 Kawamoto, T., Matsukage, K.N., Mibe, K., Isshiki, M., Nishimura, K., Ishimatsu, N., Ono, S.,
- 673 2004. Mg/Si ratios of aqueous fl uids coexisting with forsterite and enstatite based on the
- phase relations in the Mg_2SiO_4 -SiO_2-H₂O system. Am. Mineral. 89,1433-1437.

- Keppler H., 1996. Constraints from partitioning experiments on the composition of subductionzone fluids, Nature 380, 237-240.Keshav, S., Sen, G., 2001. Majoritic garnets in Hawaiian
 xenoliths: preliminary results. Geophys. Res. Lett. 28, 3509-3512.
- Keshav, S., Sen, G., 2003. A rare composite xenolith from Salt Lake Crater, Oahu: high-pressure
 fractionation and implications for kimberlitic melts in the Hawaiian mantle. Contrib.
 Mineral. Petrol. 144, 548-558.
- Keshav, S., Sen, G., Presnall, D.C., 2007. Garnet-bearing xenoliths from Salt Lake Crater, Oahu,
 Hawaii: High-pressure fractional crystallization in the oceanic mantle. J. Petrol. 48, 1681 1724.
- Kessel R., Schmidt M.W., Ulmer P., Pettke T., 2005. Trace element signature of subductionzone fluids, melts and supercritical liquids at 120-180 km depth, Nature, 437, 724-727.
- Khisina, N.R., Wirth, R., Andrut, M., Ukhanov, AV., 2001. Extrinsic and intrinsic mode of
 hydrogen occurrence in natural olivines: FTIR and TEM investigation. Phys. Chem. Miner.
 28, 291-301.
- Klein-BenDavid, O., Izraeli, E.S., Hauri, E., Navon O., 2004. Mantle fluid evolution a tale of
 one diamond. Lithos 77, 243–253.
- Klein-BenDavid, O., Izraeli, E. S., Hauri, E., Navon, O., 2007. Fluid inclusions in diamonds
 from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim.
 Cosmochim. Acta 71, 723–744.
- Konrad-Schmolke, M., Zack, T., Brien, P.J., 2011. Fluid migration above a subducted slab:
 thermodynamic and trace element modeling of fluid–rock interaction in partially overprinted
 eclogite-facies rocks (Sesia Zone, Western Alps). Earth Planet. Sci. Lett. 311, 287-298.
- Kopylova, M., Navon, O., Dubrovinsky, L., Khachatryan, G., 2010. Carbonatitic mineralogy of
 natural diamond-forming fluids. Earth Planet. Sci. Lett. 291, 126-137.
- Lamb, W.M., Valley J.W., Brown P.E., 1987. Post-metamorphic CO₂-rich fluid inclusions in
 granulites. Contrib. Mineral. Petrol. 96, 485-495.
- Lassiter, J.C., Hauri, E.H., Reiners, P., Garcia, M.O., 2000. Generation of Hawaiian posterosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth Planet. Sci. Lett.
 178, 269-284.
- Le Roux, P.J., Shirey, S.B., Hauri, E.H., Perfit, M.R., Bender, J.F., 2006. The effects of variable
 sources, processes and contaminants on the composition of northern EPR MORB (8–10°N
 & 12–14°N): evidence from volatiles (H₂O, CO₂, S) and halogens (F, Cl). Earth Planet. Sci.
 Lett. 251, 209–231.
- Litasov, K.D., Othani, E., 2009. Phase relations in the peridotite–carbonate–chloride system at
 7.0–16.5 GPa and the role of chlorides in the origin of kimberlite and diamond. Chem. Geol.
 262, 29-41.
- Litasov, K.D., Shatskij, A.F., Pokhilenko, N.P., 2011. Phase relations and melting in the systems
 of peritotie-H2O-CO2 and eclogite-H2O-CO2 at pressures up to 27 GPa. Doklady Earth Sci.
 437, 669-674.
- Lustrino, M., Melluso, L., Morra, V., 2000. The role of lower continental crust and lithospheric
 mantle in the genesis of Plio-Pleistocene volcanic rocks from Sardinia (Italy). Earth Planet.
 Sci. Lett. 180, 259–270.
- 717 Lustrino, M., Brotzu, P., Lonis, R., Melluso, L., Morra, V., 2004. European subcontinental
- mantle as revealed by Neogene volcanic rocks and mantle xenoliths of Sardinia. 32nd Int.
- 719 Geol. Congr., Post-Congress Guide P69, p. 42.

720	Luth, R.W., 2003. Mantle volatiles - distribution and consequences, in: Carlson, R. (Ed.) The
721	Mantle and Core, Volume 2, Holland, H.D., Turekian, K.K. (Eds.) Treatise on
722	Geochemistry. Elsevier-Pergamon, Oxford, pp. 519-561.
723	in the monthe L Coophyse Bas 05, 5070, 5089
724	In the mantle, J. Geophys. Res. 95, 50/9-5088.
725	Manning, C.E., 2004. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1-
726	10. Mate D. Talatilkin I.N. 1000 CO. flower from mid-score siders are ad alarmer. Chamical
727	Marty, B., 10istiknin, I.N., 1998. CO_2 fluxes from mid-ocean ridges, arcs and plumes, Chemical
728	Geology, 145, 255-248.
729	Marty, B., Zimmermann L., 1999. Volaties (He, C, N, Ar) in midocean ridge basans:
730	Assessment of shahow-level fractionation and characterization of source composition,
731	Geochini. Cosmochini. Acta, 05, 5019-5055.
732	metacometican of eccentic sub one mentle. Libin Denue New Cuiness netrology and
733	metasomatism of oceanic sub-arc manue, Linir, Papua New Guinea, petrology and
734	geochemistry of fluid-metasomatised manue wedge xenofitins. Earth Planet. Sci. Lett. 188,
735	109-103. McMillen DE Dubassy I. Hamlay D. 1006 Daman Microscopy, Amplications in Earth
730 727	planetary and anyironmental sciences in: Turrell G. Corset G. (Eds.). Academic Press, pp.
/3/ 720	pranetary and environmental sciences, in: Turren, G., Corset, G. (Eds.), Academic Press, pp. 280–251
730	207-551. Miles K. Eujiji T. Vaguda, A. 1008. Connectivity of aguagus fluid in the Earth's upper mentle
739	Goophys Bos Lett 25, 1222 1226
740	Mibe K Eujij T Vagude A 1000 Control of the logation of the veloping front by aqueous
741	fluid connectivity in the month wedge. Nature 401, 250, 262
742	Mile K Eujij T Vasuda A 2002 Composition of aqueous fluid coexisting with mantle
745	minerals at high pressure and its hearing on the differentiation of the Earth's mantle
744	Geochim Cosmochim Acta 66, 2273–2285
746	Michael P.I. Schilling L.G. 1989 Chlorine in mid-ocean ridge magmas: evidence for
740	assimilation of seawater-influenced components. Geochim Cosmochim Acta 53, 3131–
748	3143
749	Murck BW Burruss RC Hollister LS 1978 Phase equilibria in fluid inclusions in
750	ultrarnafic xenoliths Amer Mineral 63 40-46
751	Nakamura Y Kushiro I 1974 Composition of the gas phase in Mg ₂ SiO ₄ -SiO ₂ -H ₂ O at 15 kbar
752	in: Year Book Carnegie Inst. Wash 73 pp. 255-258
753	Navon, O., Hutcheon, I.D., Rossman, G.R., Wasserburg G.J., 1988. Mantle-derived fluids in
754	diamond micro-inclusions. Nature 335, 784–789.
755	Newton, R.C., Manning, C.E., 2002. Solubility of enstatite- forsterite in H ₂ O at deep crust/upper
756	mantle conditions: 4 to 15 kbar and 700 to 900°C. Geochim. Cosmochim. Acta 66, 4165-
757	4176.
758	Newton, R.C., Manning, C.E., 2010. Role of saline fluids in deep-crustal and upper-mantle
759	metasomatism: insight from experimental studies. Geofluids 10, 58-72.
760	Ohmoto, H., Kerrick, D., 1977. Devolatilization equilibria in graphitic systems. Am. J. Sci., 277
761	1013-1044.
762	Oppenheimer C., Moretti, R., Kyle, P.R., Eschenbacher, A., Lowenstern, J.B., Hervig, R.L.,
763	Dunbar, N.W., 2011. Mantle to surface degassing of alkalic magmas at Erebus volcano,
764	Antarctica. Earth Planet. Sci. Lett. 306, 261-271.

- O'Reilly, S.Y., Griffin, W.L., 2000. Apatite in the mantle: implications for metasomatic 765 processes and high heat production in Phanerozoic mantle. Lithos 53, 217-232. 766 Pasteris, J.D., 1987. Fluid inclusions in mantle xenoliths, in: Nixon, P.H. (Ed.) Mantle Xenoliths. 767 Wiley, pp. 691-708. 768 Pasteris, J.D., Wanamaker, B.J., 1988. Laser Raman microprobe analysis of experimentally re-769 equilibrated fluid inclusions in olivine: Some implications for mantle fluids. Am. Mineral. 770 771 13, 1074-1088. Paterson, M., 1982. The determination of hydroxyl by infrared absorption in quartz, silicate 772 glasses and similar materials. Bull. Mineral. 105, 20-29. 773 774 Patiño Douce, A.E., Roden, M.F., Chaumba, J., Fleisher, C., Yogodzinski, G., 2011. Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite 775 volatile contents, and the halogen and water budgets of planetary mantles. Lithos 14-31. 776 Philippot, P., Selverstone, J., 1991. Trace-element-rich brines in eclogitic veins: implications for 777 fluid composition and transport during subduction. Contrib. Mineral. Petrol. 106, 417-430. 778 779 Peccerillo, A., 2005. Plio-Quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Heidelberg. 365 pp. 780 Pera, E., Mainprice, D., Burlini, L., 2003. Anisotropic seismic properties of the upper mantle 781 782 beneath the Torre Alfina area (northern Apennines, central Italy), Tectonophysics 370, 11– 783 30. 784 00175-6. 785 Poli, S., Schimidt, M.W., 2002. Petrology of subducted slabs. Ann. Rev. Earth Planet. Sci., 30, 207-235. 786 787 Roedder, E., 1965. Liquid CO₂ inclusions in olivine-bearing nodules and phenocrysts from basalts. Amer. Mineral. 50, 1746-1782. 788 789 Roedder, E., 1972. Composition of fluid inclusions, in: Fleischer, M., (Ed.) Data of Geochemistry, 6th edition, U.S. Geological Survey Professional Paper 440JJ. 790 791 Roedder, E., 1984. Fluid Inclusions. Mineral. Soc. America. Rev. Mineral. 12. 792 Romer, R.L., Franz, L., Wirth, R., 2006. Chemical and isotopic effects of retrogression in metamorphic fluid inclusions. Contrib. Mineral. Petrol. 151, 174-186. 793 Safonov, O.G., 2011. Interaction of model peridotite with (Ca, Na₂)CO₃-KCl melts and H₂O-794 KCl fluids at 1.0-2.5 GPa. Vestnik Otdelenia nauk o Zemle RAN, 3, NZ6086, 795 doi:10.2205/2011NZ000216. 796 Scambelluri, M., Piccardo, G.B., Philippot, P., Robbiano, A. and Negretti, L., 1997. High salinity 797 fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. 798 Earth Planet. Sci. Lett. 148, 485-500. 799 Scambelluri, M., Bottazzi, P., Trommmsdoff, V., Vannucci, R., Hermamann, J., Gòmez-800 801 Pugnaire, M.T., Lòpez-Sànchez Vizcaino V., 2001. Incompatible element-rich fluids 802 released by antigorite breakdown in deeply subducted mantle. Earth Planet. Sci. Lett., 192, 803 457-470. 804 Seaman, C., Sherman, S.B., Garcia, M.O., Baker, M.B., Balta, B. Stolper, E., 2004. Volatiles in 805 glasses from the HSDP2 drill core. Geochem. Geophys. Geosyst. 5, Q09G16. 806 doi:10.1029/2003GC000596. Sen, G., 1988. Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau 807
- shield, Oahu, Hawaii: implications for petrology of the post-eruptive lithosphere beneath
 Oahu, Contrib. Mineral. Petrol. 100, 61–91.

- Sharp, Z.D., Barnes, J.D., 2004. Water-soluble chlorides in massive seafloor serpentinites: a
 source of chloride in subduction zones. Earth Planet. Sci. Lett. 226, 243–254.
- Shaw, C., 2009. Caught in the act The first few hours of xenolith assimilation preserved in
 lavas of the Rockeskyllerkopf volcano, West Eifel, Germany. Lithos 112, 511-523.
- Shi, P.F., Saxena, S.K., 1992. Thermodynamic modeling of the C-H-O-S fluid system. Am.
 Mineral. 77, 1038-1049.
- Smith, J.V., Delaney, J.S., Hervig, R.L., Dawson, J.B., 1981. F and Cl in the upper mantle:
 geochemical implication, Lithos 14, 133–147.
- Stalder R., Ulmer, P., Thompson, A.B., and Gunther, D., 2001. High pressure fluids in the
 system MgO-SiO₂-H₂O under upper mantle conditions. Contrib. Mineral. Petrol. 140, 607–
 618.
- Sterner, S.M., Bodnar, R.J., 1989. Synthetic fluid inclusions. VII. Re-equilibration of fluid
 inclusions in quartz during laboratory-simulated metamorphic burial and uplift. J.
 Metamorphic Geol. 7, 243-260.
- Stolper, E., Sherman, S., Garcia, M.O., Baker, M.B., Seaman, C., 2004. Glass in the submarine
 section of the HSDP2 drill core, Hilo, Hawaii. Geochem. Geophys. Geosyst. 5, doi:
 10.1029/2003GC000553.
- Thompson, A.B., 1992. Water in the Earth's upper mantle. Nature 358, 295-302.
- Touret, J.L.R., 1981. Fluids in metamorphic rocks. Chap. 8, in: Short Course in Fluid Inclusions:
 Application to Petrology. Miner. Assoc. Canada, Calgary, 6, pp. 182-208.
- Touret, J.L.R., 1992. CO₂ transfer between the Upper Mantle and the atmosphere: temporary
 storage in the lower continental crust. Terra Nova 4, 87-98.
- 832 Touret, J.L.R., 2001. Fluids in metamorphic rocks. Lithos 55, 1-25.
- Touret J.L.R., 2009. Mantle to lower-crust fluid/melt transfer through granulite metamorphism.
 Russian Geol. Geophys. 50, 1052-1062.
- Trial, A.F., Rudnick, R.L., Ashwal, L.D., Henry, D.J., Bergman, S.C., 1984. Fluid inclusions in
 mantle xenoliths from Ichinomegata, Japan: Evidence for subducted H₂O. EOS Trans.
 Amer. Geophys. Union 65, 306.
- Viti, C., Frezzotti, M.L., 2000. Re-equilibration of glass and CO₂ inclusions in xenolith olivine: a
 TEM study. Am. Mineral. 85, 1390-1396.
- Viti, C., Frezzotti, M.L., 2001. Transmission electron microscopy applied to fluid inclusion
 investigations. Lithos 55, 125 138.
- Wallace, P.J., 2003. From mantle to atmosphere: magma degassing, explosive eruptions, and
 volcanic volatile budgets. Developments in Volcanology, Volume 5, pp 105-127.
- Watson, E.B., Brenan, J.M., 1987. Fluids in the lithosphere, 1. Experimentally determined
 wettening characteristics of CO₂-H₂O fluids and their implications for fluid transport, host rock physical properties, and fluid inclusion formation. Earth Planet. Sci. Lett. 85, 497–515.
- Wirth, R, Rocholl, A., 2003. Nanocrystalline diamond from the Earth's mantle underneath
 Hawaii. Earth Planet. Sci. Lett. 211, 357-369.
- Wyllie, P.J., Ryabchikov, I.D., 2000. Volatile components, magmas, and critical fluids in
 upwelling mantle. J. Petrol. 41, 1195-1206.
- Zhang, C., Duan, Z., 2009. A model for C–O–H fluid in the Earth's mantle. Geochim.
 Cosmochim. Acta 73, 2089-2102.
- Zhang, C., Duan, Z., 2010. GFluid: An Excel spreadsheet for investigating C–O–H fluid
 composition under high temperatures and pressures. Comp. Geosc. 36, 569-572.

855 856

857 Captions to Figures

858

Fig. 1 - Raman detection of optically hidden liquid water in fluid inclusions. a) Trail of fluid
inclusions in orthopyroxene. White asterisks indicate those fluid inclusions where liquid H₂O
was detected by Raman spectroscopy. b) Raman spectrum of liquid H₂O rimming CO₂ in a fluid
inclusion in Fig. 2a.

863

Fig. 2 - Different extents of fluid inclusion-host reactions as detected by Raman 864 microspectroscopy. Inclusions show textural evidence for an increasing reaction degree with the 865 866 enclosing mineral going from microphotographs a-b, to c and d. a) Decrepitated high-density (monophase) CO₂ fluid inclusion containing magnesite (Mgs) in orthopyroxene. b) Magnesite 867 (Mgs) and talc (Tlc) in apparently preserved high density (monophase) CO₂ fluid inclusions 868 869 distributed along a trail in olivine. c) Decrepitated and reacted fluid inclusion in olivine. 870 Inclusion contains two phase (liquid + vapor) CO2, Mgs, and Tlc. d) Decrepitated and reacted fluid inclusion in olivine. The inclusion is filled by aggregates of Tlc and Mgs, with no visible 871 872 fluid left. e) Raman modes of magnesite inside fluid inclusions. Unlabelled peaks refer to enclosing olivine. f) OH Raman modes of talc recorded inside fluid inclusions. 873

875	Fig. 3 - EDS-EDAX and Raman analyses in open fluid inclusions. a) Electron microphotograph
876	of an open inclusion in olivine. Talc (Tlc) and magnesite (Mgs) coat the inclusionwalls. b)
877	Electron microphotograph of an open fluid inclusion in orthopyroxene. Tlc is distributed along
878	the inclusion walls. A thin microcrystalline coating of gypsum, KCl, NaCl, SiO ₂ , and Fe-Al
879	oxides is observed on talc crystals (inset). c) Qualitative EDS-EDAX chemical analysis of the
880	coating shown in Fig. 3b (inset image). d) Main Raman modes of gypsum inside the fluid
881	inclusion in Fig. 3b. Unlabelled peaks refer to enclosing orthopyroxene. e) OH Raman modes of

gypsum. Raman spectra in Fig. 3d and e were collected in the same area of EDS-EDAX analysis(inset image in 3b).

884

Fig. 4 - Association of fluid, and hydrous-silicate inclusions in clinopyroxene (Cpx) from 885 hydrous peridotites. a) Photomicrograph showing trailbound fluid inclusions (f.i.) and pargasite 886 (Prg) in Cpx in peridotites from Ethiopia. b) Photomicrograph showing trailbound fluid 887 888 inclusions (f.i.) and phlogopite (Phl) in Cpx in peridotites from Sardinia. c) Back scattered electron image showing f.i. (black) and Prg (dark gray) distribution in Cpx. Spinel inclusions are 889 also visible (white). Back scattered electron image image of f.i. (black) and Phl distribution in 890 Cpx. Note that Phl and Prg inclusions have the same chemical composition as metasomatic 891 phases in rocks. 892

893

894 Fig. 5 - Synchrotron FT-IR imaging of water distribution in orthopyroxene and garnet 895 surrounding fluid inclusions. (a) Microphotograph showing fluid inclusion (f.i.) distribution in 896 the investigated orthopyroxene area, plane polarized light. (b) Absorbance map in the 3000-3600 897 cm⁻¹ region and calculated water contents in Opx (ppm). (c) Microphotograph of garnet containing fluid inclusions (f.i.), crossed polars. (e) Absorbance map in the 3000–3800 cm⁻¹ 898 region and relative calculated water contents in Grt (ppm). In FT-IR maps, the color scale is 899 proportional to OH⁻ enrichment (increasing from blue to pink). Measured water contents are 900 drawn with a precision of 20's of ppm. Ol = olivine; Spl = spinel. 901

902

Fig. 6 - Synchrotron FT-IR imaging of water distribution in olivine. Microphotograph of
investigated area in olivine containing several fluid inclusions. b) Absorbance map in the 3000–
3600 cm⁻¹ region and calculated water contents in olivine (ppm). The color scale is proportional
to OH⁻ enrichment (increasing from blue to pink). Measured water contents are drawn with a
precision of 10's of ppm. c) Qualitative distribution map of OH absorbance for talc and

serpentine in the 3600–3800 cm⁻¹ region, which allows to qualify hydrated phases in olivine.
a.u.: arbitrary units.

911	Fig. 7 – T -X _{H2O} petrogenetic grids at 1.5 GPa, 1.0 GPa, 0.5 GPa, and 0.1 GPa in the MgO-FeO-
912	SiO_2 -H ₂ O-CO ₂ system, calculated with En and Fo compositions at #mg = 0.9, calculated with the
913	thermodynamic approach of Connolly (1990). White dots are the invariant points. Black solid
914	curves highlight possible reactions between H2O-CO2 fluids trapped in inclusions and the
915	surrounding magnesian orthopyroxene. All reaction equations are written such that the high- X_{CO2}
916	assemblage is on the right side. The occurrence of talc as product of reactions depends on fluid
917	pressure and on X_{H2O} (invariant point 1), see 5.2.
918	
919	Fig. 8 - $P-T$ petrogenetic grid at $X_{H2O} = 0.3$ in the MgO-FeO-SiO ₂ -H ₂ O-CO ₂ system, calculated
920	with En and Fo compositions at $\#$ mg = 0.9. White dots are the invariant points. Black thick solid
921	curves highlight possible reactions between H ₂ O-CO ₂ fluids trapped in inclusions and the
922	surrounding orthopyroxene. All reaction equations are written such that the low- $X_{\rm H2O}$
923	assemblage is on the right side. The oval and the star indicate the P - T conditions of fluid
924	inclusion trapping and fluid inclusion decrepitation, respectively. The thick black arrow (a)
925	represents the P - T path of a mantle xenolith within the host lava. The dashed grey lines represent
926	isochores of preserved (b), and decrepitated (c) fluid inclusions. The two thin black arrows
927	represent the <i>P</i> - <i>T</i> paths of preserved (high density, isochore b), and decrepitated (low density,
928	isochore c) fluid inclusions. As evident from the grid, syn-, and post-eruptive reactions between
929	fluid inclusions and surrounding orthopyroxene can produce hydrous minerals (talc) only in low-
930	density fluid inclusions (c).

- Raman and FTIR in fluid inclusions can verify the hydrous nature of mantle fluids.
- Shallow mantle inclusions either contain H₂O or represent "dehydrated" fluids.
 Hydrous fluid inclusions carry significant amounts of Si, Cl, S, K, Ca, and Na.

•Solute-rich hydrous fluids may be widespread in the shallow mantle.

Figure 1 Click here to download Figure: Fig. 1.eps

Figure 2 Click here to download Figure: Fig. 2.eps

3400

3500

3600

3700 cm⁻¹

Figure 4 Click here to download Figure: Fig. 4.eps

H₂O content in orthopyroxene

H₂O content in olivine

Table 1 - Sample description

Peridotites							CO ₂ -rich fluid inclusions					
Locality	Host rock	Rock type (n° of samples)	Texture	Mineralogy (vol%)	<i>P-T</i> conditions	Host	Tm _{co2} (°C)	ThL _{CO2} (°C)	ThsL _{CO2} (°C)	TsL _{CO2} (°C)	Tm _{Clat} (°C)	<i>P</i> from isochores
Hawaii	Honolulu volcanics: Alkali basalt, Basanite, Nephelinite lavas	Grt Pyroxenite	granular	OI (5-15)	1000 °C	OI	-56.8/-56.6	-56.6/25				>1.8 GPa
Oanu, Salt Lake		(4)		Opx (5-10)	> 4.5 GPa	Орх	-56.8/-56.6	-56.6/24	-57.8/-56.6	-57/-56.5		>1.8 GPa
Crater				Cpx (65-85)		Срх	-57/-56.6	-56.6/9.8	-58.2/-56.7	-57.9/-50.8		
				Grt-Spl (1-6)								
				PhI (0-traces)								
Ethiopian	Basanite	Spl Lherzolite (6)	protogranuar to porphyroclastic	OI (50-70)	950–1015 °C	Ol1	-57.6 / -56.5	-30.5 / 27.3			2.7	1.4–1.5 GPa
volcanic plateau	lavas			Opx (20-30)	1.3–2 GPa	Opx1	-57.6 / -56.2	-39.2 / 30.9			5.6	
Injibara				Cpx (10-20)		Срх	-57.9 / -56.3	-33.1 / 30.9				
				Spl (2-7)								
				Prg (1)								
Italy	Alkali basalt	Spl Pyroxenite	granular	OI (8-10)	950-1050 °C	01		-13.8 / -4.8				0.95 GPa
Sardinia, Mt Lisiri	scoriae	(2)		Opx (10-12)	0.9-1.5 GPa	Орх	-56.8 / -56.6	-24 / 9.3				
				Cpx (80-85)		Срх	-56.7 / -56.5	-14 / 29.3				
				Spl (1-4)								
				PhI (1-2)								
		Spl Dunite	porphyroclastic	OI (90-95)		Opx1	-56.6	-11.7 / 3				1 GPa
		(3)		Opx (<1)		Срх	-57 / -56.6	-27.3 / 26.1				
				Cpx (1-6)								
				Spl (1-3)								
Central Italy	Lamproite lavas	Spl Harzburgite, Spl Dunite	, protogranular	OI (80-95)	950-1080 °C	Opx1						12 GPa*
Torre Alfina				Opx (3-12)	1.2-1.6 GPa	- 1	-	-				
		(3+1)		Cpx (1-4)								
		、 /		Spl (1-4)								
				Phl (1-10)								

OI = Olivine; Opx = Orthopyroxene; Cpx = Clinopyroxene; SpI = Spinel; Grt = Garnet; Prg = Pargasite; PhI = Phlogopite; Tm = temperature of melting; ThL = temperature of homogenization to liquid in presence of solid CO2 - superdense CO2 inclusions; TsL= temperature of solid CO2 final melting - superdense CO2 inclusions; HhI = hydrohalite; Clat = clathrate; OI1, Opx1 = olivine and orthpyroxene porphyroclasts; * Pressures derived from Raman CO2 density data (cf., Frezzotti et al., 2012).

Mantle R	ocks		Water and solutes in individual fluid inclusions						S
Locality	Pock type	Hydrous	Host			Fluid composition			
Locality	поск туре	Minerals	Mineral	Microsc.	Microther.	Raman	FT-IR	EDS Microprobe	
Canary*	Sp Lherz.	No	OI	No	No	Talc - Magnesite	-	Talc - NaCl	CO ₂
	Sp Harz.		Орх	No	No	-	-	No	+
			Срх	No	No	-	-	No	H_2O , SiO ₂ and NaCl
Hawaii	Grt Pyrox.	No	OI	No	No	$H_2O - CO_2$	-	No	CO ₂ (Carbonate melt)
			Орх	No	No	$H_2O - CO_2$	-	-	+
			Срх	No	No	$H_2O - CO_2$	-	No	H_2O , H_2S and N_2
			Grt	No	No	No	-	-	
Ethiopia	Sp Lherz.	Prg	OI	No	No	Talc/Clinochlore (rare) Magnesite $-H_2O - CO_2$	H ₂ O - OH ⁻	Magnesite - Talc	CO ₂
			Орх	Yes	Yes	$H_2O - CO_2$	H_2O	-	+
			Срх	No	No	-	No	-	H_2O , SiO ₂ , KCI and NaCI
Sardinia	Sp Pyrox.	Phl	OI	No	No	Talc - Magnesite	-	K, Cl, S, Ca, Na	CO ₂
	Sp Dun.		Орх	No	No	Talc (rare) - Magnesite	-	K, Cl, S, Ca, Na	+
			Срх	No	No	Gypsum (rare) Dolomite - Talc (rare)	-	-	H_2O , Si O_2 , KCI, NaCI, CaS O_4
Central	Sp Harz.	Phl	Орх	No	No	$H_2O - CO_2 - S_8$	-	-	$CO_2 + H_2O$ and S
Italy	Sp Dun.		Срх	No	No	No	-	-	

Table 2 - Detection of water and solutes in fluid inclusions in mantle mineral us	using different	analytical techniques
---	-----------------	-----------------------

OI = Olivine; Opx = Orthopyroxene; Cpx = Clinopyroxene; Sp = Spinel; Grt = Garnet; Prg = Pargasite; PhI = Phlogopite; Lherz. = Lherzolite; Harz. = Harzburgite; Dun. = Dunite; Pyrox. = Pyroxenite; f.i. = Fluid inclusions; Microsc. = Microscopy; Microther. = Microthermometry; - = not analyzed. * data from Frezzotti et al., 2002a.