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Abstract This paper presents a land classification in zones featured by differ-
ent criticality levels of atmospheric pollution, considering pollutant time series
as functional data: we call this proposal “Functional Zoning”. We aim to meet
a request of European laws that impose to distinguish zones needing further
actions from those needing only maintenance according to air quality status.
To carry out zoning for Piemonte (northern Italy), we consider the hourly
concentration fields of the main pollutants produced by a deterministic air
quality model, and we preprocess them by assimilating observations gathered
by monitoring networks. In order to consider administrative units which pol-
icy makers refer to, we present three different alternatives to upscale data to
municipality scale. Then, to aggregate by pollutant, we evaluate two strategies
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to summarize time series: air quality index assessment, and use of the Mul-
tivariate Functional Principal Component Analysis (MFPCA), respectively.
Therefore, we partition municipalities clustering air quality time series and
MPFCA scores, and finally we illustrate a comparison study of the different
strategies’ results.

Keywords Functional Data · B-spline · Cluster Analysis · PAM (Partitioning
Around Medoids) · Atmospheric Pollution

1 Introduction

European and Italian directives (Dir. 96/62/EC and D. Lgs. 351/99 art. 6) es-
tablish that Italian regions have to identify different land zones in connection
to air quality status with the aim to plan suitable actions. In fact, in order
to improve or preserve air quality conditions, policy makers define recovery,
action or maintenance plans for the different areas.
To enforce these directives, it is necessary to find a classification strategy that
takes jointly into account several critical pollutants. Regional or provincial
environmental agencies deal with this issue to provide support to policy mak-
ers, and generally employ classical methodologies, as decision trees or cluster
analysis. Environmental agencies consider pollutant concentration statistical
summaries, limit value exceedances, and variables featuring land and munici-
palities to assign a municipality to a zone. Examples of such variables include
pollutant emission density, inhabitant density, orography, and meteorological
variables.

In literature, to our knowledge, the land classification problem is not ap-
proached in the air quality context, whereas it is discussed in several other
applied sciences, sometimes with a different terminology. For instance, Hain-
ing (2003) calls “regionalization” a particular classification where spatial units
are aggregated according to spatial contiguity or adjacency constraints. These
constraints impose that the spatial units within a region must be geographi-
cally connected. In this context, Duque et al (2007) make an interesting review
of different techniques, grouping them with respect to the strategy applied for
satisfying the spatial contiguity constraints, directly or indirectly expressed.
Also, Jacquez (2008) and Aldstadt (2010) describe different approaches for
spatial clustering, whereas Guo (2008) and Duque et al (2010) employ them
in geographical sciences for the 2004 US presidential election data and georef-
erenced socio-demographic data in Accra, Ghana, respectively.
In the agricultural framework, Wang et al (2010) carry out a regionalization of
crop cultivation in China employing first a classical cluster analysis, and then
modifying the resulting groups in order to preserve spatial contiguity, through
a Geographical Information System (GIS) software.

Without considering spatial contiguity, Wang and Ni (2008) develop a Pro-
jection Pursuit Dynamic Clustering applied on a multivariate dataset, in order
to classify China land according to water resources. Also, in the water quality
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context Robertson and Saad (2003), and Robertson et al (2005) present a re-
gional classification scheme, meaning the partition of large areas into zones
with similar environmental natural (not anthropic) factors affecting water
quality: they develop an approach called SPARTA (SPAtial Regression-Tree
Analysis) and its land-use-adjusted version. Note that this approach is similar
to the strategies adopted by environmental local agencies to obtain zones in the
air quality context. Analogously here, we do not take into account contiguity
or adjacency in an explicit way, since our goal is not a spatial aggregation.

In this paper we propose a functional approach to partition a land in zones
characterized by different criticality levels of atmospheric pollution, that we
call “Functional Zoning”. Specifically, we consider air pollutant time series pro-
vided by a deterministic air quality model on a regular grid, and preprocessed
by assimilating observations, as functional data (Ramsay and Silverman 2005).
We then classify them by using functional clustering, where the Partitioning
Around Medoids (PAM) algorithm is embedded (as in Ignaccolo et al 2008)
in place of the k -means one, as proposed by Abraham et al (2003). Thus the
allocation to a specific zone preserves information about pollution temporal
patterns and does not take into account any other information. By considering
air pollutant time series exclusively, we do not include any other information
about covariates, while this is necessary in model-based approaches (e.g. James
and Sugar 2003, and Fruhwirth-Schnatter and Kaufmann 2008). Although our
approach is proposed in the air quality context, it could be adopted whenever
there are time series - that can be treated as functional data - observed in a
spatial domain to be zoned.
Our proposal can be applied to time series observed on grid points, but since
municipalities are the reference territorial administrative units for undertaking
actions, we suggest three different algorithms to upscale data from a regular
grid to the municipality scale. On the other hand, to support policy decisors it
is not sufficient to apply our proposal separately per pollutant. Therefore, in
order to have a multi-pollutant zoning, we propose at first a functional clus-
tering of air quality index time series, calculated by aggregating by pollutant.
Then we consider multivariate functional principal component analysis as an
alternative technique to summarize the main pollutant time series (PAM al-
gorithm is employed to cluster functional principal component scores). The
different analysis strategies (three upscaling algorithms times two pollutants’
aggregations) are applied on air quality data of Piemonte (Northern Italy) in
2005. Then, these strategies are compared by looking at differences between
cluster labels in the zoning outcomes in order to suggest a final choice.

The paper is organized as follows. A description of the available dataset
and of the convenient preprocessing is provided in Section 2. Section 3 reviews
the functional clustering approach and explains the two pollutant aggregation
strategies, while Section 4 presents the three different alternatives to upscale
data to a municipality scale. In Section 5, we illustrate the results of the
proposed techniques concerning the main critical air pollutants in Piemonte,
both separately per pollutant, and considering them jointly. Section 6 includes
comparison among zoning outcomes and discussion.
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2 Data description and preprocessing

The information we are going to use consists of observed data gathered from
irregularly spaced sites of monitoring networks in Piemonte and the surround-
ing area, and “simulated” data, given as output of a deterministic model on
a regular thick grid. Note that the European law allows to use both observed
and simulated data for the air quality assessment.
The simulated time series are output of a three-dimensional deterministic
modeling system (C.T.M. F.A.R.M., Chemistry Transport Model Flexible Air
Quality Regional Model) implemented by the environmental agency ARPA
Piemonte (Bande et al 2007a). This model chain is capable to process meteo-
rological observations and to simulate air pollutant transport, transformation
and diffusion; moreover, it is effectively used in order to support the environ-
mental department of Piemonte region in the annual evaluation of air quality
status. Concentration fields of the main atmospheric pollutants (such as CO,
SO2, O3, PM10 and NO2), emission fields, principal meteorological and tur-
bulence fields are produced on a hourly basis over a regular grid that has an
horizontal resolution of 4 km and covers Piemonte, neighbor Italian regions
and foreign countries (see Fig. 1). The total covered surface is 220×284 km2.
In this paper, we analyze concentration values of CO, SO2, PM10 and NO2

in the year 2005 and we do not include O3 time series, even if O3 is one of
the main critical pollutants during the summer (Cocchi and Trivisano 2002,
Bodnar et al 2008). Indeed, ozone is a by-product arising from the reaction
between nitrogen oxides and volatile organic compounds, and thus it seems
appropriate to consider in our analysis its precursors.
The observed data are provided by the regional environmental agencies of
Piemonte and its neighbor regions. There are 26 PM10 monitoring sites (Fig. 1)
that record daily data, while CO, SO2 and NO2 are monitored by respectively
40, 12 and 61 instruments providing hourly data. Given the limited num-
ber of monitoring sites and their absence in a few areas, a “standard” krig-
ing would not be able to provide a good pollutant prediction on the whole
Piemonte region. The kriging variance would be larger in the areas uncovered
by the monitoring network, and everywhere when the monitoring sites are only
12. Therefore, we take advantage of the availability of the data simulated on
Piemonte and its neighborhood.
When comparing the output of the deterministic model with the observed
data, it turns out that pollutant concentration is sometimes underevaluated
or overevaluated (see Fig. 2 for an example). In fact, PM10 concentration levels
are clearly underevaluated in the winter semester (from October to March),
especially for monitoring sites out of Torino metropolitan area. The NO2 out-
put is characterized by underestimation of concentration peaks due to adverse
weather conditions, while CO and SO2 concentrations are overestimated. How-
ever, simulated levels of CO and SO2 are below the law thresholds, as well as
their observed levels. In order to improve pollutant model output, we prepro-
cess the simulated data through Kriging with External Drift (KED, Wacker-
nagel 2003), by employing the geoR package in R (Development Core Team
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Fig. 1 Spatial domain of the deterministic model with orography, and overimposed PM10

monitoring sites

2010): concentration fields are “corrected” by assimilating observed data, be-
fore being used in the clustering procedure.

KED implementation follows Van de Kassteele et al (2009) that combine
observations and deterministic dispersion model data of atmospheric NOx con-
centration. Specifically, the kriging is applied on the observed data and the
external drift is constituted by the deterministic model output. Exploratory
analysis of pollutant data observed at the different sites showed skewed dis-
tributions and standard deviation correlated with mean. Therefore, in order
to stabilize the variances and make the distributions approximately normal, a
Box-Cox transformation (Box and Cox 1964) is applied to the original data
separately per pollutant, and transformed observations are interpreted as re-
alizations of a Gaussian process Y (s) at spatial location s, in the domain S.
This spatial process has the following structure

Y (s) = µ(s) + w(s) + ε(s),

where µ(s) = ξ0 + X(s)ξ1, ∀s ∈ S, is the spatial deterministic component
(trend or drift), X is the deterministic variable that represents the model out-
put and ξ = {ξ0, ξ1}′ is the parameter vector. The process w(s) is stationary
Gaussian with zero mean, sill σ2, and spatial correlation function ρ(·) with
range φ. Finally, ε ∼ N(0, τ2) is the measurement error field, where τ2 is the
nugget. For the definition of sill, range and nugget see Cressie (1993).
We consider an exponential spatial correlation function for each pollutant.
In order to fit the model, we estimate first the parameters of the Box-Cox
transformation, and then the parameters of the model, in both cases by the
likelihood method, separately for each pollutant and time point. Then, con-
centration fields are corrected at each time.

The model output preprocessing performs well: the improvement is clear
when we look simultaneously at simulated, observed and corrected distribu-
tion boxplots, especially during the summer for NO2 and the winter for PM10,
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(a) NO2 in Orbassano (b) PM10 in Borgaro

Fig. 2 Boxplots by month of observed (red), simulated (blue) and corrected by KED (green)
distributions for two monitoring sites of NO2 and PM10. The time scale is month, from
January (1) to December (12)

for all the sites. Figure 2 shows two examples in two different monitoring sites
for NO2 and PM10 distributions. Moreover, we carried out a cross-validation
analysis in order to evaluate the KED performance, and it shows that krig-
ing results are satisfactory. The results of this analysis are not reported here
because they are beyond the goal of this paper (for further details see Ghigo
2009 - unpublished thesis).

3 Multi-pollutant functional zoning

Functional clustering methods (see Abraham et al 2003 and Ignaccolo et al
2008) could be directly employed on each pollutant: indeed considering grid
points’ pollutant time series as functional data and clustering estimated coeffi-
cients, we obtain several zoning outcomes of the same land. However, decisors
need to jointly consider different pollutants in order to get a multi-pollutant
zoning: for this reason we propose two strategies for pollutant aggregation.
We suggest to aggregate time series of different pollutants by using an air qual-
ity index - called BC index - and, alternatively, to summarize them by means of
Functional Principal Component Analysis (FPCA). While Functional Cluster
Analysis (FCA) is applied on air quality index time series, the PAM algorithm
is employed to cluster functional principal component scores.
In order to make pollutants comparable, we standardize and temporally ag-
gregate them with respect to the aggregation functions reported in Table 1,
provided by EU directives (1999/30/EC and 2000/69/EC).

3.1 Functional clustering on BC index

Through synthetic environmental indices it is possible to reduce multivariate
information to an univariate one. It is well-known that local agencies use in-
dices as summary values for measuring pollutant effect on human health and
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Table 1 Information about analyzed pollutants provided by European directives (slp =
standard limit value for the pollutant p)

Pollutant Temporal aggregation function slp Unit of measure
CO Daily maximum of 8 hours moving average 10 mg/m3

NO2 Daily maximum 200 µg/m3

PM10 Daily mean 50 µg/m3

SO2 Daily mean 125 µg/m3

on natural environment.
The family of air quality indices proposed by Bruno and Cocchi (2002) allows
to aggregate different pollutants in space and time, using the standard limit
values (slp in Table 1) to standardize and make data dimensionless; we refer to
this family as BC indices. For our purposes, we aggregate in time and by type
of pollutant in order to obtain daily time series of the air quality index for
each site. Unlike classical air quality indices, the BC index is not featured by
weights, since dividing each pollutant value by its standard limit we already
take into account its higher or smaller criticality.
For a fixed site, let xpdh be the elementary measurement where p = 1, . . . , P
indexes the pollutants, d = 1, . . . , 365 the days and h = 1, . . . , 24 the hours.
First, we temporally aggregate data according to the aggregation functions in
Table 1, obtaining a daily value xpd = f(xpdh). Then, we choose to aggregate
over pollutants by the maximum function, in order to keep information about
critical cases, obtaining a BC index time series for the fixed site. Therefore the
index is defined as

Id = max
p

(xpd
slp

)
d = 1, . . . , 365, (1)

where, as said before, slp represents the pollutant standard limit value.
For all the sites, we consider these time series {Id}d=1,...,365 as observed

functional data and assume the existence of a continuous function underlying
the data (Ramsay and Silverman 2005): each curve is summarized by a vector
of B-spline coefficients in Rg+K+1, where K is the knot number and g is the
degree of B-splines. Then, we cluster the spline coefficients and obtain groups
of sites, through a functional cluster analysis where PAM algorithm is embed-
ded (Kaufman and Rousseeuw 2005). The choice falls on this non-hierarchical
algorithm because it provides an object - the socalled “medoid” - representing
the cluster, which in this case is a fitted curve showing the temporal evolution
of the air quality index at a certain site. Moreover, this algorithm suggests
the suitable clusters’ number to split the objects and provides useful cluster
features by the socalled “silhouette plot”. Indeed, the silhouette plot shows a
“silhouette width” for each object that represents a belonging measure of the
object to a cluster and could have a negative value if misclassification hap-
pens. Thus, by averaging silhouette widths over a cluster, we can compare the
quality of different groups; similarly, by averaging silhouette widths over all
objects we have an index s̄k, changing with the number of groups k. PAM
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suggests to choose k such that s̄k reaches the maximum (for further details
see Kaufman and Rousseeuw 2005).

3.2 Clustering of Multivariate FPCA scores

In order to aggregate pollutants, as an alternative technique in the functional
context, we explore the Functional Principal Component Analysis in its multi-
variate version (MFPCA, Ramsay and Silverman 2005, p. 167, and Henderson
2006), that clearly takes into account pollutant interactions. We review here
some MFPCA theory and set the notation.

Let Gpi(t), p = 1, . . . , P and i = 1, . . . , n, be a functional object for the
p-th pollutant and i-th site, assumed to be a smooth function underlying the
pi-th time series, that is the datum ypij , j = 1, . . . ,m, is associated with the
curve value Gpi(tj) by the model

ypij = Gpi(tj) + εpij

where εpij are independent random errors.
In the multivariate functional context, the weight functions subject to the

orthonormality constraints (||αr||2 =
∫
T αr(t)

2dt = 1 and
∫
T αr(t)αs(t)dt = 0

for r 6= s) that maximize the sample variance of the principal component scores
are P - dimensional vectors αr(t) = {α1

r(t), . . . , α
P
r (t)}, where r indicates the

r-th component. The functions αpr(t) are solutions of the eigenequation

P∑
p∗=1

∫
T
cpp∗(t, t?)αp

∗
(t?)dt? = λαp(t) p = 1, . . . , P,

where cpp∗(t, t?) denotes the covariance function of Gpi(t) when p = p∗, while
cpp∗ is the cross-covariance function when p 6= p∗. Note that the eigenfunction
components αpr(t) are defined over the same time range T of the functional
data.
Therefore, the r-th principal component scores are

zir =

P∑
p=1

∫
T
αpr(t)Gpi(t)dt, i = 1, . . . , n. (2)

MFPCA is employed on standardized (divided by slp) time series of the an-
alyzed pollutants and its implementation takes place estimating Gpi by means
of B-splines using the fda package in R environment (pca.fd with centered
curves). After we have obtained the principal component scores, we choose
the suitable number of functional principal components (FPCs). Sites are then
grouped by clustering the first few FPC scores by PAM algorithm. Note that
now the medoids are not functions since the temporal component is integrated
out in Eq. (2).

The choice of B-splines is classic for nonperiodic data, but recently Kayano
and Konishi (2009) have proposed to use Gaussian basis expansion instead of
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B-splines since they deal with unbalanced data (time series observed at pos-
sibly different time points). Our pollutant data are already balanced because,
as we said before, through the aggregation functions (provided by air quality
EU directives) we obtain daily values.

4 Upscaling

In order to enforce air quality legislation and therefore perform actions to
improve air quality, policy makers have to refer to administrative units, that
are municipalities. So, it is necessary to upscale the “corrected” air quality time
series from the grid point scale to the municipality one and, for this purpose,
we consider three alternative procedures.

The aggregation at municipality scale could be realized solving the so-
called “Change Of Support Problem” (COSP), that is “concerned with infer-
ence about the values of the variable at points or blocks different from those at
which it has been observed” (Gelfand 2010, chap. 29, p. 522). With this mean-
ing, a solution of COSP presumes to fit a model or, at least, to implement an
universal block kriging. Moreover, with a more complex model it is possible to
combine data at different scales provided by numerical models and monitoring
networks, realizing a data fusion and solving COSP at the same time. How-
ever, the goal of this paper is land classification and we propose solutions to
carry out data fusion and upscaling at a very reasonable computational cost
and at a moderate complexity such that practitioners could be encouraged to
implement them.

To retrieve a block value we can consider the integral over the area that
provides a block average (BA), that is

Z(B) =
1

|B|

∫
B

Z(s)ds, (3)

where B ⊆ S ⊆ R2, Z is a spatial stochastic process defined by a random
variable family {Z(s) : s ∈ S} and s a generic spatial location in the domain
S. Since our spatial domain is discretized through grid points, after we have
identified the ci points belonging to a municipality, Equation (3) becomes

Cci =

ci∑
l=1

γilzil,

where Cci represents the mean pollutant concentration in a municipality, zil
is the value of the stochastic process and γil is the weight for the l-th point
of the i-th municipality (it will be referred to as Municipality Block Average
or Munic. BA). More specifically, weights are calculated as the ratio between
municipality area belonging to the l-th cell (a point in the grid represents a
cell) and the total municipality area.
Moreover, as alternative weights, we propose to consider the built-up surface
percentages (referred to as Built BA). Indeed, the built-up surface percentage
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is an important indicator of the anthropic activity which could be associated
with more pollution in a municipality, whereas a wide country area could not
contribute at all. Now, weights are the ratio between municipality built-up
area belonging to the l-th cell and the total municipality built-up area.
Further, we propose to upscale taking the 90-th percentile (referred to as 90th
perc.) of the values observed in the set of cells belonging to the considered
municipality. This is a measure of extreme cases in a municipality, and it is
taken in a precautionary perspective. Although from this point of view the
maximum could seem the natural statistic to consider, it could be an outlier,
either too extreme or too rare. Therefore, the choice of the 90-th percentile
guarantees a better robustness.

5 Piemonte zoning

We employ the methodologies introduced above on Piemonte preprocessed
pollutants’ datasets (1763 grid point time series per pollutant), and then on
upscaled datasets (1206 municipality time series per pollutant). In the follow-
ing, results for the main critical pollutants are presented, first separately and
then jointly. In order to better highlight the criticality of the resulting zones,
all the maps are characterized by a color gradation (as traffic lights) changing
with cluster mean values (green, orange, red and purple) that provides a sort
of group ranking.
For land classification we analyze NO2, PM10, CO and SO2. Since previous
exploratory analysis show that NO2 and PM10 are more critical than CO and
SO2, in Subsection 5.1 only NO2 and PM10 results are discussed. A first anal-
ysis on single pollutants is illustrated in Bande et al (2007b), even if in this
previous work simulated data are not preprocessed and we classify all the grid
points of the model output (the whole rectangular region of Figure 1). The fol-
lowing subsections show results of multi-pollutant zoning carried out through
the proposed strategies: while Subsection 5.2 introduces the results on regular
grid time series, Subsection 5.3 presents findings on the municipality ones.

5.1 Zoning for single pollutants

In order to provide a land classification featured by each pollutant concentra-
tion, we carry out a Functional Cluster Analysis on single pollutant time series.
This step of our analysis is important for two reasons: on one hand decisors
are interested in the critical pollutants and consequently in zoning outcomes
based on them (despite the need to base decisions on global air quality status);
on the other hand, the resulting maps for single pollutants can be helpful in
the interpretation of the following multi-pollutant zoning outcomes, looking
at possible similarities between single- and multi-pollutant maps.

First, we produce a land classification on 1763 Piemonte grid points for
single pollutants and then we refer to municipalities using the three upscaling
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approaches described in Section 4. Moreover, to select the “best” number k
of clusters to partition all the curves, we look at the average silhouette width
over all objects s̄k and generally we choose the k that yields the highest s̄k;
sometimes we make an exception, opportunely described when necessary.

Table 2 Average silhouette width over the cluster (s̄c), number of grid points or municipal-
ities (nc) and color featuring each cluster in the grid point and municipality classifications
(in the three upscaling cases)

NO2 PM10

cluster C1 C2 C3 C4 C1 C2 C3

color green orange red purple green orange red
Grid points

s̄c 0.61 0.14 0.26 0.10 0.54 0.24 0.08
nc 635 347 537 244 805 460 498

Munic. BA
s̄c 0.52 0.21 0.17 0.12 0.45 0.24 0.13
nc 387 325 321 173 328 365 513

Built BA
s̄c 0.53 0.11 0.18 0.14 0.44 0.24 0.12
nc 333 428 300 145 342 355 509

90th perc.
s̄c 0.47 0.18 0.20 0.05 0.49 0.26 0.07
nc 377 304 309 216 311 393 502

In Table 2 we show results for each classification obtained for NO2 and
PM10, while Figure 3 focuses on the upscaling case 90th perc..
NO2 cluster structure is quite similar when zoning results concern the grid
points and when they are related to the municipality time series obtained
after the three upscaling techniques. Indeed, these outcomes are character-
ized by four clusters stretching in according to roadway networks and main
cities (see Fig. 3(a)). Even if k = 4 corresponds to the third s̄k suggested by
PAM, our choice falls upon it because it makes easier to distinguish emission
sources. These are concentrated in biggest conurbations and industrial areas of
Piemonte (Torino, Alessandria, Novara and their suburbs) that belong to the
cluster 4 (C4). C3 includes zones around highways, main connection roads and
northern plain and piedmont areas, while the cluster 2 is formed by remaining
plain and piedmont areas. Mountains belong to C1. The medoids in Figure 3(a)
highlight the big variation that exists, especially in the winter months, among
sites belonging to different groups: it reaches 30 µg/m3 for some time points.

As for PM10, k = 3 gives the best s̄k for the grid points case, and this k
is also kept for the other cases because it corresponds to the three directive
plans (recovery, action, and maintenance) and it makes easier to compare all
the resulting PM10 maps. Figure 3(b) shows the three clusters in the 90th perc.
upscaling case, but the other zoning outcomes are very similar. Indeed they
reflect morphology: the flat country belongs to C3, piedmont areas to C2 and
mountains to C1.

Values of s̄c (that represent the average silhouette widths of objects be-
longing to a cluster) in Table 2 highlight that grid points and municipalities
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(a) NO2 (b) PM10

Fig. 3 Medoids (top) and municipality zoning outcome maps (bottom) for NO2 and PM10

in the 90th perc. case. The background layers show the regional boundaries, the highway
network and the municipality built-up area

of the NO2 cluster 1, C1,NO2
, - and also C1,PM10

- lie well within their cluster
although some of them are spatially very far away. C4,NO2

and C3,PM10
have a

low s̄c instead: since they group cities having similar features of industrializa-
tion and morphology but not comparable for road conditions and population,
low s̄c values look proper. Moreover, Table 2 provides the numerousness nc of
each cluster. Looking at nc in the three different upscaling cases, we can ob-
serve that some units “migrate” from one group to another one, even if cluster
structures are quite similar.

5.2 Multi-pollutant zoning on grid points

As we already mentioned, to look at the regional air quality status and to pro-
vide one zoning outcome for all pollutants, two time series summary methods
are proposed, through BC air quality index and MFPCA (Section 3). First of
all, we implement these two strategies on 1763 grid point time series in order
to have a benchmark to evaluate the persistence of the resulting clusters when
we move at municipality scale (in Section 5.3).
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During the PAM step we choose the second best value, that is k = 3
for both the strategies: the “best” is obtained with k = 2 that provides a
meaningless partition from the policy point of view, because it splits Torino
and the metropolitan area from the rest of Piemonte, in a too simplistic way.

(a) PM10 (b) BC index (c) MFPCA

Fig. 4 PM10, BC and MFPCA zoning outcome maps (bottom) and corresponding medoids
(top) of Piemonte grid points. The background layers show the regional boundaries, the
highway network and the municipality built-up area

As illustrated in Section 3.1, we classify functional BC indices by using the
PAM algorithm. This multi-pollutant zoning outcome is characterized by s̄3

equal to 0.33. Figure 4(b) shows that the metropolitan area and almost the
whole Po valley belong to C3, piedmont regions to C2 and mountains to C1

again. Moreover Table 3 provides average silhouette width and numerousness
for every cluster. Note that these values are very similar to those obtained
when we zone PM10 grid points (Tab. 2): the same number of grid points
belongs to cluster 3 in both the classifications, and a few grid points move
from C1,BC to C2,PM10

, keeping about the same s̄c. Also PM10 and BC index
maps and medoids are very similar, as it can be seen in Figure 4. Therefore,
we can gather that the PM10 drives the construction of BC index defined in
Eq. (1).

When we summarize pollutant time series through MFPCA(see Section 3.2)
we cluster the functional principal component scores by PAM. Figure 4(c) dis-
plays the zoning outcome and the right side of Table 3 shows numerousness
and average silhouette width for every cluster, whereas the overall average
silhouette width s̄3 is 0.46. In this analysis we take into account the first
two principal components that explain 90.89% of the total variability. The
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Table 3 Average silhouette width over the cluster (s̄c), number of grid points (nc) and
color featuring each cluster

BC index MFPCA scores
cluster C1 C2 C3 C1 C2 C3

color green orange red green orange red
s̄c 0.55 0.23 0.09 0.29 0.69 0.32
nc 784 481 498 473 710 580

most critical cluster C3 includes main connection roads and industrial areas,
grouping the biggest towns. C2 is characterized by piedmont areas, and C1 by
mountains. Since

∑P
p=1 ||αpr ||2 = 1 by construction, ||αpr ||2 provides the pro-

portion of the variability in the r-th component ascribable to variation in the
p-th pollutant curves. For the first principal component, 91.97% of variation is
attributable to PM10 curves, that is ||αPM10

1 ||2 = 0.9197; 7.69% is associated
with NO2 while the other pollutants play no substantial role (SO2: 0.11%, CO:
0.23%). Also in the second principal component, the higher variability propor-
tion concerns PM10 (||αPM10

2 ||2 = 0.9808); the other contributions are 0.59%,
1.12% and 0.21% for NO2, SO2 and CO, respectively. Then, it is possible to
say that fine particulate matter explains almost all the variability of the first
two principal components, or rather they are essentially affected by PM10.
When comparing the two outcomes, Table 3 highlights that C2,MFPCA is fea-
tured by nc and s̄c bigger than C2,BC ones, whereas conversely nc and s̄c of
C1,MFPCA are smaller than those of C1,BC , as displayed by the different or-
ange and green zones in Fig. 4(b) and (c). As for C3, the value of s̄C3,MFPCA

is
bigger than s̄C3,BC

meaning that C3,MFPCA is more homogeneous than C3,BC .

5.3 Multi-pollutant zoning on municipalities

The three upscaling techniques illustrated in Section 4 are now implemented
to refer to municipalities. We decided to keep k = 3 that makes easier to
compare new zoning results with the previous ones, and corresponds to the
number of plans that currently policy makers have to define. The resulting
maps are shown in Figure 5. Generally, the most critical group C3 lengthens
over the main road network, including main conurbations (Torino, Alessandria
and Novara) and their industrialized suburbs. The intermediate C2 is formed
by piedmont municipalities. Mountain municipalities are grouped in the less
critical C1 that is featured by the highest average silhouette width for every
obtained classification (Table 4). Overall, the municipalities’ partition resem-
bles the grid points’ one (see Fig. 4(b)-(c) and Fig. 5), meaning that the three
upscaling techniques do not shuffle the zoning outcomes. Moreover, at first
glance, it seems that in all the municipalities’ maps PM10 overbears the other
pollutants as it can be seen by comparing Figure 5(a)-(f) with Figure 3(b).

Specifically, with regard to BC index zoning on municipalities, we have to
emphasize that Figure 6(a) is associated with Figure 5(b) and it is a helpful
instrument to look at the temporal evolution of the BC index in the three
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(a) BC Munic. BA (b) BC Built BA (c) BC 90th perc.

(d) MFPCA Munic. BA (e) MFPCA Built BA (f) MFPCA 90th perc.

Fig. 5 BC index (top) and MFPCA (bottom) multi-pollutant zoning outcome maps in the
three upscaling cases. The background layers show the regional boundaries, the highway
network and the municipality built-up area

zones. The left side of Table 4 shows that a small number of municipalities mi-
grates from a group to another one when we change the upscaling algorithm,
supporting the fact that maps are quite similar. Also the overall average silhou-
ette widths (s̄3 = 0.252; 0.245; 0.241 for Munic. BA, Built BA and 90th perc.
respectively) and the medoids are comparable (the interested reader can see
Fig. 3.15 in Ghigo 2009 - unpublished thesis). Moreover, 90th perc. map (see
Fig. 5(c)) seems to better reflect Piemonte land use: for instance the orange
zone in southern Piemonte adheres to main road connections, while the red
one in the south-east is due to the closeness to Genova metropolis. Munic. BA
outcome seems to present some misclassifications instead, for instance most
southern mountain municipalities belong to C2 instead of C1.
To understand which pollutants have a part in the BC index construction, we
look at the medoid time series composition, as we are used in the classical
PCA. Thus in Figure 6(b) for the Built BA case, medoid values at each time
instant are drawn with a different shape depending on which pollutant gives
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(a) Smoothed medoids (b) Medoids time series

Fig. 6 Medoids and their time series for BC index zoning in Built BA case. The point shape
in time series changes with the pollutant giving the maximum in Eq. (1)

Table 4 Average silhouette width over the cluster (s̄c), number of municipalities (nc) and
color featuring each cluster in the three upscaling cases

BC index MFPCA scores
cluster C1 C2 C3 C1 C2 C3

color green orange red green orange red
Munic. BA

s̄c 0.48 0.23 0.13 0.55 0.32 0.20
nc 297 389 520 336 355 515

Built BA
s̄c 0.45 0.23 0.13 0.50 0.34 0.18
nc 317 361 528 378 331 497

90th perc.
s̄c 0.50 0.25 0.07 0.59 0.29 0.24
nc 309 403 494 303 447 456

the maximum in Eq. (1). We can observe that the predominant shape is the
PM10 one, although SO2 prevails on a few summer days. So, as we supposed
before, PM10 seems to be the driving pollutant. For the Munic. BA case the
analogous plot looks very similar to Figure 6(b), whereas in the 90th perc. one
the SO2 shape never appears.

When clustering MFPCA scores, we take into account the first three func-
tional principal components: indeed the percentages of explained variability
are 91.5%, 91.3% and 92.5%, as Table 5 shows. The summary values obtained
by applying the PAM on the MPCA scores are reported in the right side of
Table 4, and the overall average silhouette widths are s̄3 = 0.331; 0.328; 0.344
for Munic. BA, Built BA and 90th perc., respectively. Even if the maps in
Fig. 5(d)-(f) seem quite similar to the BC index ones, there are maybe some
misclassifications. For instance, Built BA and 90th perc. place Cuneo (the red
isolated unit in the south-west) in the red zone, while a preliminary data anal-
ysis suggests that it is not so critical; indeed the negative silhouette widths
warn about a possible misclassification. Moreover, based on knowledge of land
use we would expect that some municipalities were in the critical C3. Instead,
as for Munic. BA and Built BA, some municipalities in the north-west (near
Valle D’Aosta, see Fig. 5(d) and (e)) featured by well-travelled connection
roads belong to C2 instead of C3. Analogously, for 90th perc. in Figure 5(f),
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there are some municipalities close to the industrialized Genova in the south-
east belonging to C2.

Table 5 Explained variabilities and variability percentages (||αp
r ||2) for each pollutant of

the first three FPCs, in the three upscaling cases

Explained ||αp
r ||

2

Variability PM10 NO2 SO2 CO
Munic. BA

65.6 1st FPC 0.9095 0.0503 0.0381 0.0021
20.5 2nd FPC 0.5740 0.0119 0.4134 0.0007
5.4 3rd FPC 0.8813 0.0686 0.0491 0.0010
91.5 Total

Built BA
66.4 1st FPC 0.9127 0.0532 0.0320 0.0021
19.5 2nd FPC 0.5968 0.0111 0.3913 0.0008
5.4 3rd FPC 0.8738 0.0789 0.0463 0.0010
91.3 Total

90th perc.
75.8 1st FPC 0.9116 0.0821 0.0030 0.0033
12 2nd FPC 0.9690 0.0012 0.0280 0.0018
4.7 3rd FPC 0.7616 0.2363 0.0006 0.0015
92.5 Total

Now, we can look at the proportion of variability of the components at-
tributable to each pollutant curves (remember that

∑P
p=1 ||αr||2 = 1). Table 5

shows that FPCs are composed almost completely by PM10. Only for the sec-
ond FPC of the two BA upscaling cases, some variability is explained by SO2

(||αSO2
2 || = 41.34% and 39.13% respectively), while in the third FPC of the

90th perc. case 23.63% of variability is associated to NO2. Thus, PM10 looks
like the driving pollutant of the functional principal components, as well as of
the BC index.

6 Discussion

In order to support policy makers in enforcing European laws, environmental
local agencies have to provide a land classification in relationship with air qual-
ity status. In this paper, we propose a functional approach to zone, applied on
corrected air pollutant time series that are provided by a deterministic model.
The preprocessing of simulated data through a KED procedure is carried out
separately for each pollutant.
There are two convenient “constraints” to consider. First: recovery, action or
maintenance plans have to be determined on the basis of the air quality status,
implying the need for an aggregation of critical pollutants. Second: plans have
to be applied to administrative units where responsibilities are well defined,
so that any proposal is feasible in practice if zoning results concern municipal-
ities. To satisfy the first need, we suggest an aggregation of several pollutants
in the BC air quality index (that is the input of the functional clustering) and,
alternatively, a summary of data by MFPCA (employing PAM algorithm on
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(a) 90th perc. (7.96 %) (b) Munic. BA (13.93 %) (c) Built BA (15.84 %)

(d) 90th perc.–Munic. BA
(10.45 %)

(e) 90th perc.–Built BA
(11.28 %)

(f) Munic. BA–Built BA
(6.13 %)

(g) 90th perc.–Munic. BA
(21.23 %)

(h) 90th perc.–Built BA
(23.38 %)

(i) Munic. BA–Built BA
(7.30 %)

Fig. 7 Maps of the differences between cluster labels in zoning outcomes: BC versus MF-
PCA (top), BC versus BC (center), MFPCA versus MFPCA (bottom) in the three upscaling
cases. The municipality color reflects the belonging, or not, to the same cluster in the com-
pared classifications: blue corresponds to “-1” in Table 6, white to “0”, magenta to “+1” and
purple to “+2”. The number in round brackets represents the percentage of municipalities
with different cluster labels in the two compared outcomes
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Table 6 Frequency distributions of the differences between cluster labels in two compared
zoning outcomes (changing pollutants’ aggregation and upscaling algorithm)

-1 0 1 -1 0 1 -1 0 1 2
BC-MFPCA

90th perc. Munic. BA Built BA
32 1110 64 62 1038 106 50 1015 140 1

BC–BC
90th perc.–Munic. BA 90th perc.–Built BA Munic. BA–Built BA
82 1080 44 81 1070 55 31 1132 43 0

MFPCA–MFPCA
90th perc.–Munic. BA 90th perc.–Built BA Munic. BA–Built BA
141 950 115 124 924 158 17 1118 65 6

functional principal component scores). Then, in order to refer to municipal-
ities, we propose to upscale data from a regular grid to municipality scale by
means of three different methods: i) averaging the field values weighted by
areas over the cells belonging to a certain municipality; ii) averaging using as
weight the built-up percentage for every cell; iii) taking the 90-th percentile
over the cell values in a municipality.

Crossing the proposed two pollutant aggregations and three upscaling so-
lutions, we obtain six classifications of municipalities in Piemonte for the year
2005, as shown through six maps in Figure 5. Obviously, a choice is necessary.
To compare the zoning outcomes and realize a sensitivity analysis, we map the
differences between cluster labels (1, 2 and 3) in Figure 7(a)-(i) and we present
their frequency distributions in Table 6. The municipalities that belong to the
same group in the two compared outcomes - white in the maps of Figure 7
- vary from 924 to 1132 (see the frequencies of “0”). The “migrating” munic-
ipalities, from a cluster to another one, are colored: blue corresponds to “-1”,
magenta to “+1” and purple to “+2”. Since the clusters are labeled from 1 to 3
according to a criticality ranking (based on the average air quality index), we
can read a difference “-1” as a shift towards a more critical zone, and interpret
a large frequency of “-1” as indication of a more preventive zoning outcome:
when we compare two zoning outcomes a large number of “-1” suggests that
the second zoning strategy is more preventive. Indeed, overall the strategies,
the frequency of “-1” varies from 17 to 141. Instead a difference equal to “+1”
indicates a shift of a municipality towards a less critical zone and the frequency
of “+1” changes from 43 to 158. Finally, there are some purple municipalities
(7 in total) that move from cluster C3 in the first zoning outcome to C1 in the
second one.

The colored municipalities in the difference maps in Figure 7 do not ap-
pear randomly distributed, and a randomness test based on joint counts (Cliff
1970) confirms that. If the colored municipalities were randomly distributed
on the difference maps, the two compared zoning outcomes could be consid-
ered the same. Instead, they are grouped and located between mountain and
piedmont zones, as well as piedmont and plain zones, that roughly coincide
with boundaries between two different clusters.
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When comparing the two pollutant aggregation strategies (BC versus MF-
PCA) with the same upscaling algorithm, through the difference maps in Fig-
ure 7(a)-(c), we can see that 90th perc. outcomes are very similar (differences
are mostly focused in the south-east of the region). In fact, the percentage
of municipalities with different cluster labels is only 7.96% (corresponding to
96 out of 1206). This percentage is at most 15.84% in the case of Built BA
upscaling.

In order to carry out a sensitivity analysis with respect to the upscaling
procedure, we plot the difference maps in Figure 7(d)-(f) for the BC index and
in Figure 7(g)-(i) for the MFPCA. In both the cases, the smallest percentage
of migrating municipalities is observed in the comparison of the two weighted
block average methods (6.13% for BC and 7.30% for MFPCA). Instead, the
highest percentages of migrating municipalities occur when we compare 90th
perc. with a block average method in the case of MFPCA pollutant aggrega-
tion: 21.23% and 23.38% in Figure 7(g) and (h). Therefore MFPCA approach
turns out to be less robust than the BC index with respect to the upscaling
method.

In addition to the above better robustness to the upscaling procedures, we
have other reasons to prefer FCA on BC index rather than PAM on MFPCA
scores. First of all, the construction of the BC index time series makes them
easily interpretable for policy makers who can also look at the medoids to
have an idea of the temporal evolution of the BC index in the corresponding
zone. Then, since the frequency of “-1” is smaller than the frequency of “+1”
in the three upscaling cases at the first row of Table 6, the BC zoning outcome
appears more preventive than the MFPCA one. Finally, a further “merit” of
the FCA on BC procedure is that it does not take into account either spatial
correlation or spatial contiguity among municipalities (spatial correlation is
implicitly considered in MFPCA instead) so that it does not force neighbors
to be in the same zone and provides a zoning outcome based exclusively on
the similarity of the air quality status.

As for the choice of an upscaling method, we can see from Table 6 that
zoning outcomes are more cautionary with the Munic. BA procedure: the
frequency of “-1” is greater than that of “+1” when we compare Munic. BA
with 90th perc., and vice versa in the comparison Munic. BA versus Built BA
in both the pollutant aggregation methods (see the second and the third row
of Table 6). However, discussing the choice from an interpretive point of view
with policy makers, it seems that BC 90th perc. approach has more consistent
results with their previous knowledge about Piemonte land and air quality
status (as already said for Fig. 5(c)).

Very recently Kayano et al (2010) have proposed a multivariate FCA that
allows to consider all pollutants without synthesizing them. Their proposal is
an alternative to the use of FCA on the BC index that we could take into
account in the future. Nevertheless, first of all an assessment of the compu-
tational cost of that methodology would be necessary, whereas we have a low
cost for the proposed FCA on BC index. Moreover we stress again that the
use of PAM provides information about the air quality temporal evolution in
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the zones and warning about a possible misclassification of a municipality.
Another issue that could be worthy of attention is the data assimilation and
upscaling by means of fitting a hierarchical model, as suggested in Gelfand
(2010, chap. 29, p. 536). However, the related computational costs are surely
higher than those necessary to implement the KED preprocessing and an up-
scaling algorithm.
Therefore, our proposal provides environmental agencies and policy makers
with a useful and easy-to-read instrument to prepare recovery, action, and
maintenance plans for the different zones at a very reasonable computational
cost. Moreover, the outline of the comparison study could be interesting for
more general purposes, for example to compare municipalities’ classifications
year by year.
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