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MORTALITY SURFACE BY MEANS OF CONTINUOUS TIME

COHORT MODELS

PETAR JEVTIĆ, ELISA LUCIANO, AND ELENA VIGNA

Abstract. We study and calibrate a cohort-based model which captures the
characteristics of a mortality surface with a parsimonious, continuous-time fac-

tor approach. The model allows for imperfect correlation of mortality intensity

across generations. It is implemented on UK data for the period 1900-2008.
Calibration by means of stochastic search and the Differential Evolution opti-

mization algorithm proves to yield robust and stable parameters. We provide

in-sample and out-of-sample, deterministic as well as stochastic forecasts. Cal-
ibration confirms that correlation across generations is smaller than one.

JEL classification: C1, C13, C38, C53, J11.

Keywords: stochastic mortality, age effect, cohort effect, differential evolution

algorithm, mortality forecasting.

1. Introduction

Insurance companies and pension funds are exposed to mortality risk and hope
for the development of a liquid and transparent longevity-linked capital market.
Active trading of mortality derivatives would help them assessing and hedging the
risks they are exposed to, in the same manner as financial models and markets help
them mutualize financial risks. Mortality-risk appraisal consisting in an accurate
but easy-to-handle description of human survivorship is fundamental in this respect.

In spite of this need, no consensus has been reached yet on the best model for
mortality risk modelling. A number of successful proposals have been put forward.
Most of these models, starting from the celebrated Lee and Carter (1992) model
and its several extensions – that include for instance Brouhns et al. (2002) and
Renshaw and Haberman (2003), up to the more recent Cairns et al. (2006b) two-
factors model – are discrete-time descriptions of survivorship evolution. In some
cases though the adoption of a continuous–time approach proves useful. This is the
case when we couple the appraisal of mortality and financial risk, and we adopt some
financial model such as Black-Scholes or Duffie et al. (2000). Another motivation
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for adopting a continuous-time description is the search for closed-form evaluation
formulas for insurance products and their derivatives. Continuous-time stochastic
mortality models for single generation were considered by a number of researchers,
including Milevsky and Promislow (2001), Dahl (2004), Biffis (2005), Cairns et al.
(2006a), Schrager (2006) and Luciano and Vigna (2008).

Be it discrete or continuous-time based, a proper description of mortality risk should
capture several dimensions. Consider survival probabilities over a given horizon.
A satisfactory model should capture their evolution when changing the horizon,
for a fixed initial age and cohort (or generation), and its evolution over cohorts,
for fixed initial age and horizon. Introducing the cohort dimension though adds a
level of complexity to the problem, since it calls for a notion of correlation across
generations, which is by no means easy to capture. In principle one has a whole
“mortality surface” to model. How to do this while keeping a satisfactory trade-off
between the accuracy - or the fit - and the tractability of the model is an open
issue. A theoretical extension of the continuous-time single-generation model to
the mortality surface appears in Biffis and Millossovich (2006). This is followed
by Blackburn and Sherris (2012) who focus also on the calibration aspect. More
specifically, in their attempts to calibrate the whole surface in continuous time they
make the assumption of perfect correlation across generations. However, common
intuition suggests that correlation among close generations is high but not perfect.
This suggestion is often implemented in actuarial practice.

In order to reconcile the calibration of the whole mortality surface with common
actuarial practice, this paper fits the mortality surface by means of a continuous-
time cohort model, that is able to capture correlations across generations. As a
relevant consequence, this model provides the actuary with a calibrated correlation
among generations rather than a “best estimate” one. Given the same initial age,
the intensities of several generations are written in terms of factors, identified via
Principal Component Analysis (PCA). Differential Evolution algorithm is a robust
stochastic search and optimization algorithm which already proved its use across a
wide range of engineering applications. We use it to fit the mortality surface with an
extreme precision. Provided that we fully exploit the power of this stochastic search
algorithm, we discover that the fitted parameters are extremely robust, stable and
lead to correlations across generations that is high but less than one.

The paper unfolds as follows. In Section 2, we review mortality modeling via affine
mortality intensities for a single generation. Then, we develop ex-novo a model for
the mortality intensities of several generations, i.e. we model the mortality surface.
Section 3 specifies a simple two-factor model for modeling the mortality surface,
which will then be calibrated. In Section 4, we discuss the criteria that a good
mortality model for the mortality surface should satisfy. In Section 5, we proceed
to the empirical part. We use PCA to identify the number of relevant factors
and apply it to UK males data from the Human Mortality Database. We review
the Evolutionary Approach to the global minimum/maximum search and use it
in Section 6 to calibrate a two-factor model to a number of UK generations born
between 1900 and 1950. We discuss all of the key criteria introduced in Section 4.
In Section 7 we use polynomial interpolation to further improve parsimoniousness
of the model. In Section 8, we conclude and outline further research.
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2. The Mortality Model

In Section 2.1, we illustrate the stochastic mortality intensity setup for one genera-
tion only – as is standard in this kind of literature. In Section 2.2, we specify how to
move on from the description of the mortality intensity of one generation to the mor-
tality intensities of several generations. This procedure enables us to describe the
whole mortality surface. In Section 2.3, we restrict ourselves to constant-parameter
dynamics of the Ornstein-Uhlenbeck type. The general mortality model is described
in Section 2.4, and a simplified version of it is presented in Section 2.5 .

2.1. The affine mortality framework for the single generation. As in the
standard unidimensional framework of stochastic mortality (see eg Biffis, 2005,
Dahl, 2004) we describe the mortality of a given generation by means of a Cox or
doubly stochastic counting process. Intuitively, the time of death is supposed to be
the first jump time of a Poisson process with stochastic intensity.

Let us introduce a filtered probability space (Ω,F , (Ft)t≥0,P), where P is the real-
world probability measure. The filtration {Ft : 0 ≤ t ≤ T} satisfies the usual prop-
erties of right-continuity and completeness. On this space, let us consider a pre-
dictable process µ(t, x), which represents the mortality intensity of an individual
belonging to a given generation, initial age x at (calendar) time t. His death is the
first stopping time of a doubly stochastic process with intensity µ(t, x).

We model the intensity µ(t, x) of the given generation and initial age x as a function
R(X) of a vector of state processes

X(t) = [X1(t), ..Xn(t)]
>
.

For notational simplicity, in the rest of this section we will omit the argument x.
Therefore, we have that

(1) µ(t) = R(X(t)).

Moreover, in order to keep the model mathematically tractable, we put ourselves in
the affine framework of Duffie et al. (2000) (sometimes referred to as DPS). In this
setting X is a Markov process in some state space D ∈ Rn and it is the solution to
the stochastic differential equation

dX(t) = λ(X(t))dt+ σ(X(t))dZ(t),

where Z is an (Ft)-standard Brownian motion in Rn, λ : D → Rn, σ : D → Rn×n,
λ, σ, and R : D → R are affine:

• λ(x) = K0 +K1x, for K = (K0,K1) ∈ Rn × Rn×n,

• (σ(x)σ(x)>)ij = (H0)ij+(H1)ij ·x, for H = (H0,H1) ∈ Rn×n×Rn×n×n,

• R(x) = r0 + r1x, where (r0, r1) ∈ R× Rn.

The advantage of this affine choice is that it is possible to calculate in closed form
the expectation of functionals of the state variables. In fact, we have

(2) E[e−
∫ T
t
R(X(s))ds | Ft] = eα(t;T )+β(t;T )·X(t),

where the coefficients α(·;T ), β(·;T ) : R+ → Rn satisfy the complex-valued ODEs
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β′(t;T ) = r1 −K>1 β(t;T )− 1

2
β(t;T )>H1β(t;T ),

α′(t;T ) = r0 −K0β(t;T )− 1

2
β(t;T )>H0β(t;T ),

with boundary conditions α(T, T ) = β(T, T ) = 0.

In the actuarial context, if the intensity is given by (1), the expectation (2) is the
survival probability from t to T , conditional on being alive at t:

(3) S(t, T ) = Et
[
e−

∫ T
t
R(X(s))ds] = Et

[
e−

∫ T
t
µ(s)ds].

2.2. Transition from single generations to the whole mortality surface.
In the previous section we have described the mortality intensity of one given gen-
eration. However, our main aim is to describe the whole mortality surface, that
is composed by a number of different generations. We need then to label each
generation with a proper index i ∈ I ⊂ N. Each generation has its own mortality
intensity and the intensities of different generations are correlated. This implies
that the straight replication of the DPS framework n times for n cohorts cannot
be considered satisfactory, because it would fail to catch correlations among the
intensities (unless correlation is perfect, that is typically not the case). Then, in a
very natural way, we assume that the state processes which affect each generation
are driven by Brownian motions that are correlated. Each generation is assigned
its own instantaneous correlation matrix. As a relevant byproduct of this assump-
tion, one obtains correlations among the generations. In order to comply with the
DPS framework, we need uncorrelated Brownian motions. Hence, we need to go
trough the Cholesky decomposition. This can be done as follows. Assume that the
n processes driving the mortality intensity of generation i follow the process

(4) dXi(t) = λ(Xi(t))dt+ σ(Xi(t))dWi(t),

where W i
1(t),W i

2(t), ...W i
n(t) are correlated with instantaneous correlation matrix

ρin×n = {ρilm}1≤l,m≤n, that is proper of generation i, where

(5) ρilmdt =
〈
dW i

l (t), dW
i
m(t)

〉
.

It is well known that – keeping the same filtration – the vector Wi(t) of correlated
Brownian motions can be transformed into a vector of uncorrelated ones, Z(t), as
follows (see for instance Shreve (2004), Section 4.6):

(6) dWi(t) = HidZ(t),

where

Z(t) = [Z1(t), Z2(t), ..., Zn(t)]>,

and Hi is obtained through Cholesky decomposition of the correlation matrix ρi:

(7) ρi = Hi(Hi)>.

If we assume that the n independent sources of risk are the same for each and every
generation, the state process becomes:

(8) dXi(t) = λ(Xi(t))dt+ σ(Xi(t))HidZ(t),

and the DPS framework can be applied.
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This procedure can be followed for any choice of affine processes, for instance in
the case of Ornstein-Uhlenbeck (OU) processes. In this case, the knowledge of the
correlation matrix is all what one needs for the solution of the system of ODEs. OU
processes have been used in related fields – such as interest rate modeling – for their
analytical tractability. In the mortality field they are not new: they have been used
for describing both deterministic and stochastic mortality. Indeed, as for determin-
istic mortality, the Gompertz model can be seen as an Ornstein Uhlenbeck process
with null diffusion coefficient; as for stochastic mortality, when only one generation
is considered, Luciano and Vigna (2008) find that the Ornstein Uhlenbeck process
proves to be appropriate to describe the human mortality intensity. Motivated by
analytical tractability and this evidence, in the next section we will specify the form
of the state processes, and select the Ornstein-Uhlenbeck type.

2.3. Ornstein-Uhlenbeck state processes. We assume that in the description
of the mortality intensity of generation i each state process follows an Ornstein-
Uhlenbeck dynamics. Therefore, we have an n dimensional stochastic process, X(t)
which has the following specification

(9)

dXi
1(t) = ψ1X

i
1dt+ σ1dW

i
1(t)

dXi
2(t) = ψ2X

i
2dt+ σ2dW

i
2(t)

· · ·
dXi

n(t) = ψnX
i
ndt+ σndW

i
n(t),

where ψk ∈ R and σk > 0 for k = 1, 2, ..., n and W i
1(t),W i

2(t), ...W i
n(t) are corre-

lated. The instantaneous correlation matrix for generation i, ρin×n = {ρilm}1≤l,m≤n,
is given by (5). In concise form, we have

dXi(t) = ΨXi(t)dt+ ΣdWi(t),

where

Ψ = diag[ψ1, ψ2, ..., ψn] Σ = diag[σ1, σ2, ..., σn].

Following the above procedure, the state process can be transformed as follows:

(10) dXi(t) = ΨXi(t)dt+ ΣHidZ(t),

where Hi is as in (7), and we can apply the DPS framework. We still have to
specify the function R(·). We take the simplest affine function, namely the sum of
the state variables:

(11) R(Xi(t)) = 1 ·Xi(t).

This is the DPS framework with

K0 = 0, K1 = K>1 = Ψ, r0 = 0, r1 = 1,

Hi
0 = ΣHi(ΣHi)> = ΣHi(Hi)>Σ> = ΣρiΣ>, H1 = 0,

while αi(t;T ) and β(t;T ) satisfy the system1

β′(t;T ) = 1−Ψβ(t;T ),(12)

(αi)′(t;T ) = −1

2
β(t;T )>ΣρiΣ>β(t;T ).

1Notice from the system that the function α(·;T ) depends on the generation i via the correlation
matrix ρi, while the function β(·;T ) does not.
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Before solving it, notice that in the survivorship context it is convenient to set the
valuation time t = 0 and to express time in terms of remaining lifetime τ = T − t.
It is quite natural to be interested in computing the survival probability over the
(variable) horizon or duration τ . To this end, it is convenient to write the survival

probability in terms of a new couple of functions, α̂i(·) and β̂(·) :

(13) Si(0, τ) = E
[
exp

(
−
∫ τ

0

1 ·Xi(s)ds

) ]
= eα̂

i(τ)+β̂(τ)·Xi(0),

where α̂i(·) and β̂(·) solve2

β̂′(τ) = −1 + Ψβ̂(τ),

(α̂i)′(τ) =
1

2
β̂(τ)>ΣρiΣ>β̂(τ),

with boundary conditions

α̂i(0) = 0 and β̂(0) = 0.

The solution for the new functions is

β̂(τ) = −
∫ τ

0

eΨ(τ−s) · 1ds(14)

α̂i(τ) =

∫ τ

0

1

2
β̂(s)>ΣρiΣ>β̂(s)ds.(15)

2.4. General OU APC model. Let us consider a life belonging to generation i,
aged x at initial time 0. Recall that in the previous three sections we dropped the
argument x for notational convenience. However, remind that all of the coefficients
ψ1, ..., ψn, σ1, ..., σn depend also on x. As a consequence, the functions α̂ix(·) and

β̂x(·) depend on x. The survival curve is given by

(16) Six(0, τ) = eα̂
i
x(τ)+β̂x(τ)·Xi

x(0).

which gives us a continuous-time Age-Period-Cohort (APC) model for the mortality
surface. In (16), we can distinguish the cohort effect in α̂i·(·) and Xi

·(0), the period

effect in α̂··(τ) and β̂··(τ), and the initial age effect in α̂·x(·), β̂x(·), and X·x(0).

The period or time effect is both deterministic and stochastic. Time enters in a

deterministic way via the functions α̂(·) and β̂(·), and is also present as a result
of the random evolution of the process Z(·) appearing in (10). In fact, if we put
ourselves at time 0 when the head of generation i is aged x, the survival curve at
time t > 0 for the same head aged x+ t is the random variable Six+t(t, T ). Due to
(2) and (3), this survival curve is given by

(17) Six+t(t, T ) = eα
i
x+t(t)+βx+t(t)·Xi

x+t(t).

2Indeed, we have α̂i(τ) = α(t;T ), β(τ) = β(t;T ). Recalling that τ = T − t, we have

(α̂i)′(τ) =
dα̂i(τ)

dτ
=
dαi(t;T )

dt
·
dt

dτ
= −(αi)′(t;T ), and

β̂′(τ) =
dβ̂(τ)

dτ
=
dβ(t;T )

dt
·
dt

dτ
= −β′(t;T ).
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Applying Ito’s lemma to (17), and considering (10), we can express the dynamics
of dSix+t(t, T ) as a function of the independent Brownian motions Z(t). As a con-

sequence, changes in Z(·) affect directly the evolution of the initial value Xi
x+t(t).

Due to (10), the evolution of the n factors Z(·) over time affects each generation
i in a different way, depending on the specific Hi, that in turn depends on the
specific, generation-based ρi. In other words, each generation i reacts in its proper
way to the period changes in the main factors driving the mortality intensity of
individuals. We find this a desirable and intuitive feature.

Another consequence of (17) is that the evolution of the initial value Xi
x+t(t) –

expression of the change over time of Z(·) – has a different effect on the different

initial ages, via the coefficient βx+t(·). This is quite similar to the β
(2)
x coefficient

of the Lee-Carter model:

logm(t, x) = β(1)
x + β(2)

x κt.

Differently from the existing two- or three-factors APC models in discrete-time, in
this model the cohort effect is not added to the stochastic risk factors Z(·), but it
multiplies them, via the cohort-based matrix Hi.

2.5. Simple OU APC model. The general model described so far, though very
rich, has the drawback of not being parsimonious. Since parsimony is a desirable
property for a mortality model, we will consider and implement a simpler version
of it, where all the coefficients are not age-dependent. In this simpler model the
matrices Ψ and Σ, as well as the sequence of the correlation matrices ρi, i ∈ I are
constant with respect to x.

Let us consider a life belonging to generation i, aged x at initial time 0. According
to this simpler model, her survival curve is given by

(18) Six(0, τ) = eα̂
i(τ)+β̂(τ)·Xi

x(0).

As in the more general model, we can distinguish the cohort effect in α̂i(·) and in

Xi(0), the period effect in α̂(τ) and β̂(τ) and the initial age effect in Xx(0). The

time effect can be seen both in a deterministic way, via α̂(·) and β̂(·), and as a
result of the stochastic evolution of the process Z(·) appearing in (10). As before,
due to (10), the evolution of the n factors Z(·) over time affects each generation i
in different way, depending on the specific Hi, that in turn depends on the specific,
generation-based ρi. Again, each generation i reacts in its proper way to the period
changes in the main factors driving the mortality intensity of individuals.

The similarity with the Lee-Carter model via the effect of the initial age on changes
in Xi

x+t(t) is no longer valid.

3. Simple Two-Factor Model of Survival Probability

In most applications - including the one we are going to present below - the number
of factors required to get a meaningful representation of the mortality rate for
each single generation is limited to two. Moreover, in Section 5 the application
of Principal Component Analysis to our data set supports the use of two-factors
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model as a good starting point. For these reasons, we investigate a two-factor OU
model. For generation i, we have

(19)
dXi

1(t) = ψ1X
i
1dt+ σ1dW

i
1(t)

dXi
2(t) = ψ2X

i
2dt+ σ2dW

i
2(t),

with 〈
dW i

1(t), dW i
2(t)

〉
= ρidt.

Using (10), the process (19) is transformed into

(20)
dX1(t) = ψ1X1dt+ σ1dZ1(t)

dXi
2(t) = ψ2X2dt+ σ2ρ

idZ1(t) + σ2
√

1− (ρi)2dZ2(t),

with dZ1(t)⊥dZ2(t). Notice that in this two-factor model the first process X1(·) is
common to all the generations, and the second one X2(·) affects each generation
with different weights. The mortality intensity of generation i is given by

(21) µi(t) = X1(t) +Xi
2(t).

The functions α̂(·) and β̂(·) which appear in the survival probability (13) are

β̂(τ) = −
∫ τ

0

eΨ(τ−s) · 1ds,(22)

α̂i(τ) =

∫ τ

0

1

2
β̂(s)>ΣρiΣ>β̂(s)ds,(23)

with

(24) eΨ(τ−s) =

[
eψ1(τ−s) 0
0 eψ2(τ−s)

]
,

and

(25) ΣρiΣ> =

[
σ1 0
0 σ2

]
×
[

1 ρi

ρi 1

]
×
[
σ1 0
0 σ2

]>
=

[
σ2
1 ρiσ1σ2

ρiσ1σ2 σ2
2

]
.

Then, the single components of the β̂(·) function are

β̂1(τ) = −
∫ τ

0

eψ1(τ−s)ds =
1

ψ1

(
1− eψ1τ

)
,

β̂2(τ) = −
∫ τ

0

eψ2(τ−s)ds =
1

ψ2

(
1− eψ2τ

)
.

The function α̂i(·) turns out to be

(26) α̂i(τ) =

2∑
j=1

σ2
j

2ψ3
j

(
ψjτ − 2eψjτ +

1

2
e2ψjτ +

3

2

)

+
ρiσ1σ2
ψ1ψ2

(
τ − eψ1τ

ψ1
− eψ2τ

ψ2
+
e(ψ1+ψ2)τ

ψ1 + ψ2
+
ψ2
1 + ψ1ψ2 + ψ2

2

ψ1ψ2(ψ1 + ψ2)

)
.

The model so specified for the intensity of one generation is known in the interest-
rate domain as the two-factor Gaussian model, or G2++, which can be found in
Brigo and Mercurio (2006). It is indeed a model in which each single intensity
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is Gaussian. This can be easily seen not only from the differential representation
(20)-(21), but also from the integral one, i.e.

(27) X1(t) = eψ1tX1(0) + σ1e
ψ1t

√
1

2ψ1
(1− e−2ψ1t) Z1,

X2(t) = eψ2tX2(0) + σ2ρ
ieψ2t

√
1

2ψ2
(1− e−2ψ2t) Z1+

+ σ2
√

1− (ρi)2eψ2t

√
1

2ψ2
(1− e−2ψ2t) Z2,

where Z1 and Z2 are two independent standard normal variables.

As a consequence, each intensity may become negative with positive probability:

(28) Pr(µi(τ) < 0) = Φ

(
− E(µi(τ))√

V ar(µi(τ))

)
,

where Φ(·) is the cumulative distribution function of the standard normal, the
expectation and the variance of µi(τ) are

(29) E(µi(τ)) = f i(0, τ) +

2∑
j=1

σ2
j

2ψ2
j

(
1− eψjτ

)2
+ ρi

2∏
j=1

σj
ψj

(
1− eψjτ

)
,

(30) V ar(µi(τ)) = −
2∑
j=1

σ2
j

2ψj

(
1− eψjτ

)
− 2ρi

σ1σ2
ψ1 + ψ2

(
1− e(ψ1+ψ2)τ

)
,

and f i(0, τ) is the forward mortality intensity for the instant τ :

(31) f i(0, τ) = −∂ logSi(0, τ)

∂τ
=

2∑
j=1

(
eψjτXj(0)−

σ2
j

2ψ2
j

(
1− eψjτ

)2)−
− ρi

2∏
j=1

σj
ψj

(
1− eψjτ

)
.

Given the availability of the closed-form expressions (29), (30) and (31), in con-
crete situations and practical applications it is possible to keep the probability (28)
under any desired threshold, by imposing suitable restrictions on the calibrated
parameters.3 In Section 5, we implement those restrictions to keep the probability
of negative intensity lower than 1%.

3.1. Correlations. On top of analytical tractability, a good feature of this model
is that it provides formulas for instantaneous correlation among the intensities of
different generations. According to (21), for any couple of generations i and j, the
instantaneous mortality intensities follow the SDEs

dµi(t) = [ψ1X1(t) + ψ2X
i
2(t)]dt+ (σ1 + ρiσ2)dZ1(t) + σ2

√
1− (ρi)2dZ2(t),

dµj(t) = [ψ1X1(t) + ψ2X
j
2(t)]dt+ (σ1 + ρjσ2)dZ1(t) + σ2

√
1− (ρj)2dZ2(t).

3In most of the applications to the interest-rate domain the probability turns out to be low without
imposing the constraints. This – together with the other benefits of the G2++ models, as listed
in Brigo and Mercurio (2006) – justifies the use of this model even if it is Gaussian.
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It can be shown that the instantaneous correlation between µi(·) and µj(·) is

(32) Corr[dµ(ti), dµ(tj)] =
(σ1 + ρiσ2)(σ1 + ρjσ2) + σ2

2

√
(1− (ρi)2)(1− (ρj)2)∏

k∈{i,j}
√

(σ1 + σ2ρk)2 + σ2
2(1− (ρk)2)

.

3.2. Stochastic forecasting. Beside the possibility of calculating the correlation
among different generations, this model enables us to make stochastic forecasting
of the survival probability curve at an arbitrary future time p > 0. Indeed, the
survival curve at time p > 0 for a head belonging to generation i is the random
variable Si(p, τ). In the simple two-factors model this survival curve is given by

(33) Si(p, τ) = eα
i(τ−p)+β(τ−p)·Xi(p).

The random vector Xi(p) = (Xi
1(p), Xi

2(p)) can be simulated with low computa-
tional effort using its integral form in (27).

4. Implementation Criteria

There is quite a large consensus on the criteria that a satisfactory mortality model
should fulfill. Here we list and discuss them within the simple OU two-factor model.
The criteria are:

(1) analytical tractability

(2) parsimoniousness

(3) fit to historical data

(4) null or low probability of negative intensities

(5) possibility and ability of deterministic forecasting

(6) possibility and ability of stochastic forecasting

(7) possibility and ability of measuring correlation among different generations

Notice that while the first six criteria are proper of any mortality model, the last
one refers only to models describing the mortality surface.

Some of these criteria refer to the theoretical construction and properties of a mor-
tality model, while other strongly depend on the results of its calibration. Analytical
tractability, parsimoniousness and null probability of negative intensity are proper
of a theoretical model, as is the possibility of forecasting and measuring correlation
among generations. On the other hand, having a good fit to historical data and the
ability of keeping the probability of negative intensity low, as well as the ability in
forecasting and measuring correlation, are proper of the calibrated version.

On theoretical ground, the simple OU two-factor model satisfies all the required
criteria – with the exception of null probability of negative intensity. Analytical
tractability is obvious. As for parsimoniousness, it will be shown later that this
model requires 2 + 4/k parameters for each generation, k being the number of
cohorts considered. Clearly if the number of generations is large (as should be
the case with mortality surface) the number of parameters approaches 2, which is
exactly the case found by Luciano and Vigna (2008) in the single-generation version
of this model. Notice that, in the classical Lee-Carter model, if N is number of
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ages, one would need 2(N − 1) parameters, which is in line with the number of
parameters needed in this model. Moreover, in Section 7 we show that this number
of parameters can be dramatically reduced at the expense of a slightly worse fit.

Deterministic forecasting at time 0 is feasible because the model provides a survival
curve S(0, τ) in closed-form for any duration τ . Stochastic forecasting at time 0
consists in simulating the survival curve which will hold at time p > 0, S(p, τ),
for any duration τ , as illustrated in Section 3.2. This stochastic forecasting is
particularly manageable because the factors driving mortality are Gaussian. This
allows us also to calculate confidence intervals of simulated survival curves. As for
correlations, Equation (32) gives them in closed form.

The corresponding abilities to do forecasting and measuring correlation will be
assessed after having calibrated the model.

5. Calibration Criteria and Method

The calibration of survival probability for either one cohort, multiple cohorts, or
an entire range of cohorts, for a given age range, amounts to

• assessing how many factors are required to provide a meaningful represen-
tation of the mortality surface,

• finding the parameters which make the model-predicted survival probabil-
ities a satisfactory approximation of the observed ones.

The first problem is addressed via Principal Component Analysis, and the sec-
ond one via minimization of a standard, quadratic measurement error. The mini-
mization of the error is performed using a powerful stochastic search algorithm of
Differential Evolution (DE).

5.1. Principal Component Analysis (PCA). The problem of finding the num-
ber of factors high enough to capture the variability of the phenomenon under
examination - in our case, survivorship - and, at the same time, low enough to
ensure an accurate estimate of the parameters, given the available data is tackled
in a standard way, using PCA. In this section, we explain the manner in which it
is applied in the current context. In order to do this, we need to briefly introduce
the dataset at our disposal.

To begin with, we collect cohort death rates for life aged x, belonging to cohort
i at time t, qi(x, t), from the Human Mortality Database (2010) (HMD from now
onwards), for UK males born between 1900 and 1950. The generations i span from
1900 to 1950, with a 5-year step, for a total of k = 11 cohorts.4 We have chosen
x = 40 in order to capture the middle-aged lives, and we examine them until they
have reached age 59, having t = 1, ..., 19. From the rates qi(x, t), we compute the
actual survival frequencies over the duration τ , according to the standard formula

S̃ix(0, τ) =

τ∏
s=1

(1− qi(x+ s− 1, s− 1)),

4Unreported experiments show that all the qualitative results of the paper remain unaltered with
smaller as well as larger time-intervals (such as 2, 7 and 10 years).
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for τ = 1, ..., 19. The choice of 19 is governed by the following reasons: we need to
have a satisfactory number of observed survival frequencies for the last generation
as well. This generation is born in 1950, and is aged 40 in 1990. Since the HMD
has collected data until 2008, the above choice does indeed guarantee that the last
generation has 19 observations. For older generations, even though more than 19
observed survival rates were available in 2008, we have opted not to use them, but
have instead taken 19 observed rates for every generation, in order to keep the fit
properties of the model comparable across generations.5

So as to apply PCA, we use observed survival frequencies to obtain the correspond-
ing average mortality intensity for generation i, duration τj , and initial age x.

µ̄x(0, τj) = − 1

τj
log S̃ix(0, τj) = − 1

τj

τj∑
s=1

log(1− qi(x+ s− 1, s− 1)).

Figures 1 and 2 represent, respectively, the survival probability frequencies and the
average mortality intensity for the generations included in our dataset, and all the
observations in the HMD between 1900 and 2009, for the initial age 40.

Figure 1. Survival Probability Surface representing the dataset

Figure 2. Average Mortality Intensity Surface from the dataset

5Data availability - in particular, the fact of having the observed survival frequencies for ages
beyond 59 for every generation but the 1950 one - will be helpful in assessing the out-of-sample

performance of the model.
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The mean and the first principal component resulting from the PCA, as applied
to the average mortality intensities of all of the generations with the initial age of
40, and for durations τ = 1, ..., 19, account for 95.86% of the variation in the data,
while the mean, the first and the second principal component account for 99.80%
of the variation in the data. This leads us to the conclusion that a 2-factor model
is a reasonable candidate.

5.2. Errors, parameter space and search regions. Once we fix the number
of relevant factors to two, we have four parameters common to all generations
ψ1, ψ2, σ1, σ2 and three parameters for each generation [ρi, Xi

1(0), Xi
2(0)] for total

of 4 + 3k parameters, where k = 11. We collect them in a vector θ ∈ Θ ⊂ R4+3k

θ = [ψ1, ψ2, σ1, σ2, ρ
1, ρ2, ..., ρk, X1

1 (0), X2
1 (0), ..., Xk

1 (0), X1
2 (0), X2

2 (0), ..., Xk
2 (0)].

In principle, we may allow for ψ1, ψ2 ∈ R, σ1, σ2 ∈ R+, −1 ≤ ρi ≤ 1 and −∞ ≤
Xi

1(0), Xi
2(0) ≤ ∞ for i ∈ {1, 2, ...k}. However, during the calibration procedure,

for practical reasons and given the results of preliminary experiments, we restrict
our search space Θ to

Θ =
{
ψ1, ψ2 ∈ [−1, 1], σ1, σ2 ∈ [0, 1], ρ ∈ [−1, 1]k,X1(0) ∈ [−1, 1]k

}
.

Notice that the vector X2(0) is missing from the search space. This is due to the
fact that we impose the constraint that the probability of negative intensities is not
greater than 1%, Pr(µi(τ) < 0) ≤ 1%, for every duration τ ∈ {1, 2, ..., 69}, where
69 = ω − 40 − 1 is the extreme remaining lifetime. The constraint is respected by
appropriately fixing the initial value of the second factor Xi

2(0), for each generation
i. This is attained in two steps. First, for each τ , we replace (31) in (28) and choose
Xi

2(0; τ) so that the constraint is respected. Second, to abide by the constraint for
every τ we take the maximum of the values Xi

2(0; τ) as follows

Xi
2(0) = max{Xi

2(0; τ = 1), Xi
2(0; τ = 2), ..., Xi

2(0; τ = 69)}.

This procedure effectively reduces the number of parameters to four parameters
common to all generations and two parameters per each generation. This means
a total of 4 + 2k parameters, meaning 2 + 4/k parameters for each generation, as
mentioned in Section 4.

The preliminary calibration experiments we have conducted led us to conclude that
for ease of calibration and model interpretation, it might be useful to separate the
parameter space Θ into the following four disjoint regions, that differ from each
other only in the signs of ψ1 and ψ2:

NN ψ1 ∈ [−1, 0], ψ2 ∈ [−1, 0], σ1, σ2 ∈ [0, 1],ρ ∈ [−1, 1]k,X1(0) ∈ [−1, 1]k

NP ψ1 ∈ [−1, 0], ψ2 ∈ [0, 1], σ1, σ2 ∈ [0, 1],ρ ∈ [−1, 1]k,X1(0) ∈ [−1, 1]k

PN ψ1 ∈ [0, 1], ψ2 ∈ [−1, 0], σ1, σ2 ∈ [0, 1],ρ ∈ [−1, 1]k,X1(0) ∈ [−1, 1]k

PP ψ1 ∈ [0, 1], ψ2 ∈ [0, 1], σ1, σ2 ∈ [0, 1],ρ ∈ [−1, 1]k,X1(0) ∈ [−1, 1]k

We address the problem of finding the estimated value of the parameters as follows:
we fix the estimation error, and select an optimization algorithm for the error. As
for the error itself, we minimize the mean square error between the actual and
estimated parameters with the mean computed across generations and maximum
duration τ . This has resulted in the following optimization problem:
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θ∗ = arg min
θ∈Θ

√√√√1

k

k∑
i=1

τ∑
j=1

(S̃i(j)− Si(j;θ))2.

with τ = 19. The choice of the objective function, by no means unique, was guided
by usual practice in financial and actuarial literature.

5.3. Differential Evolution (DE). Given the nature of the data and our model,
it was necessary for us to find very precise values for a large number of parameters,
in the setting of a non-continuous, non-linear, potentially flat and multidimen-
sional objective function. To achieve this high level of solution accuracy, we have
opted to use the Differential Evolution (DE) algorithm, which is a global stochas-
tic search tool. This algorithm was formulated in Storn and Price (1997), and its
effectiveness and robustness have been proven across a wide range of engineering
applications. A practical and detailed exposition of Differential Evolution can be
found in Feoktistov (2006). As far as its application to finance-oriented problems
is concerned, it has been used in the calibration of the Heston model in Gilli and
Schumann (2010), and further elaborated in Gilli and Schumann (2011). In addi-
tion, a useful reference on its application in finance is Ardia et al. (2011), where
it was implemented in the statistical programming language and environment R.
The algorithm, its description and the specifics related to its implementation are
provided in the Appendix.

In total, we have performed 150 calibration experiments (trials). 30 individual trials
have been made for the entire search space, and for each of the regions (Θ, NN, NP,
PN, PP). The number of iterations was set to be nI = 100000, a choice governed
by extensive preliminary experiments.

All of our experiments have been conducted using the grid platform of The Wharton
School, University of Pennsylvania, PA, USA. Each trial has been conducted on a
single 2.5GHz core with 4GB RAM memory, lasting 24 hours on average.

6. Calibration to the UK males population, 1900-1950

Using the DE search algorithm, we minimized the calibration error under the pa-
rameter restrictions described above, for the UK males generations from 1900 to
1950. As explained above, the PCA and the calibration were performed for all the
11 generations born in that range (with 5 years distance in birth). Before pre-
senting the detailed results it is important to notice that the interpretation of the
intensities is quite different across the four regions considered.

In the NN region, we have intensities mean-reverting to zero. Since ψ1, ψ2 are
negative, they are indeed weighted sums of factors which mean-revert to zero. This
is difficult to conceptualize, given that we are working generation by generation.

In the PP region, the intensities of every generation are straightforward extensions
of the Gompertz law, in the sense that - since ψ1, ψ2 are positive - their factors
present a Gompertz-like drift. So, the intensities are sums of factors with a positive
drift. This region then lends itself to standard interpretations.
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The NP region combines a first factor which affects every generation in the same
manner - mean reverting to zero, with a second factor - which instead affects each
generation with a weight dependent on ρi - of the Gompertz type. Symmetrically,
the PN region combines a first factor of the Gompertz type, with a second factor
mean reverting to zero. In principle, we have no reason to prefer one region to
the other: intuition supports both regions. Intensities can come out from either
a common and equally weighted mean reverting factor, together with a common,
not-equally weighted Gompertz one, or vice versa.

Table 1 shows the minimum cost obtained across all of the regions considered - the
entire surface and each of the four sub-regions.

Table 1. Summary of errors obtained across regions

Region Cost (100000 iterations)

Entire 0.000620565995355

NP 0.000623213482169

PP 0.0006951410031433

PN 0.0007798886067686

NN 0.0015177865228648

6.1. Parameter values and residuals plots. Calibration costs, as shown in Ta-
ble 1, indicate that the data at hand are best described by the parameters found
by calibration in the entire region. Even if this minimum lies in the PP region,
parameters obtained by exclusively searching in the PP region have slightly higher
cost. This leads us to the conclusion that the algorithm is more successful when
search is made in the entire region. Our extensive, non reported calibrations, show
that even if we increase the number of iterations, the difference in cost does not
change substantially. The fact that it turns out more efficient searching in the entire
region is apparently counterintuitive. The explanation to this phenomenon is that
when the optimal solution is close to boundary – which is our case – it is easier to
reach it if there are no restrictions in a sufficiently large neighborhood (indeed, if
there are no restrictions, jumps from one vector of parameters to another one are
feasible in every direction).

The cost obtained by searching in the NP region is very close to the best cost
obtained, making this region an equally good candidate, as shown in Table 2.
However, we will remain focused on the results obtained in the entire region, while
bearing in mind that all of the conclusions are very similar for the results obtained
in the NP region, as well. In contrast to the PP and the NP regions, the costs for
PN and NN regions are substantially higher.

The fact that the minimum is obtained in the PP region, that is the most natural
extension of the Gompertz law, reinforces the standard actuarial intuition. The
parameters of the minimum are shown in Table 3. Notice that the parameters of
the second state process X2 are in line with the parameters found by Luciano and
Vigna (2008) for the single generation case. In contrast, the first state process X1

has a negligible drift. The volatilities σ1 and σ2 are same order of magnitude than
the values found by Luciano and Vigna (2008).

In Figure 3 we give the residuals plot for the entire region. It demonstrates that the
quality of calibration is exceptionally high. Apart from one point (for which the
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error is −3× 10−3 all residuals stay in the range [−2× 10−3, 2× 10−3]. Moreover,
no structural patterns can be observed.

Table 2. Calibration results for the NP range

Cost 0.000623213482169

ψ1 -0.000000759867140

ψ2 0.094458222928995
σ1 0.000809865341047
σ2 0.000255507993644

ρ X1(0) X2(0)

1900 0.999999999999997 0.001914489564829 0.002810307411366
1905 0.203832575710220 -0.000173325764832 0.003149605491684

1910 -0.184887841334923 -0.000918083027357 0.003221076614512
1915 -0.283221855026705 -0.000972068597715 0.003158678345694
1920 -0.078522244367503 -0.000806038099239 0.003260704168707
1925 -0.244974348716861 -0.000400779285406 0.002834597714541
1930 -0.420485708967922 0.000126542816362 0.002310756842044

1935 -0.663902687935100 0.000302566907295 0.001896738812892
1940 -0.796581809076778 0.000376485904836 0.001665360110214
1945 -0.978405355219073 0.000412208241716 0.001354942639571

1950 -1.000000000000000 0.000352615384141 0.001354381214249

Table 3. Calibration results for the entire range (parameters in PP)

Cost 0.000620565995355

ψ1 0.000000740897643

ψ2 0.094424069684062
σ1 0.000810431271431
σ2 0.000255756355983

ρ X1(0) X2(0)

1900 0.999999999999999 0.001880353247158 0.002828417849011
1905 0.199224719402607 -0.000206634328718 0.003166989667529
1910 -0.192238943851852 -0.000951378602887 0.003238435491859

1915 -0.290643706099185 -0.001005127076371 0.003175910058005
1920 -0.084383114349336 -0.000839346209620 0.003278107036086
1925 -0.250316766642870 -0.000433647930847 0.002851663487249

1930 -0.424028709807915 0.000094264184875 0.002327403237757
1935 -0.667855536351835 0.000270705008126 0.001913047162555
1940 -0.800059032075857 0.000344882262500 0.001681478737687

1945 -0.981185827217655 0.000380945058314 0.001370811095613

1950 -0.999999999999999 0.000351991785546 0.001355915840057

6.2. Correlations between generations. In Table 4, we present the correlations
table for the calibration results obtained in the entire region. We observe that the
correlations are positive and high, which is in accordance with actuarial intuition.
They stay between 94% and 100% and, as expected, tend to decrease with the
difference in the years of birth. To the best of our knowledge, this is the first research
that provides the actuary with a calibrated and sensible correlation among different
generations. Notice that if we were to calibrate the model using data which include
the Lexis point (i.e. the flexion point of the survival curve) we would be likely to
get lower correlations. We do not present those results since we are interested in
the central ages of life.
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Figure 3. Calibration residuals plot

Table 4. Table of correlations

1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950
1900 1.0000
1905 0.9601 1.0000
1910 0.9497 0.9993 1.0000
1915 0.9489 0.9992 0.9999 1.0000
1920 0.9515 0.9995 0.9999 0.9999 1.0000
1925 0.9491 0.9993 0.9999 1.0000 0.9999 1.0000
1930 0.9496 0.9993 1.0000 0.9999 0.9999 0.9999 1.0000
1935 0.9584 0.9999 0.9995 0.9994 0.9997 0.9995 0.9995 1.0000
1940 0.9693 0.9993 0.9975 0.9973 0.9979 0.9973 0.9975 0.9991 1.0000
1945 0.9961 0.9810 0.9735 0.9729 0.9749 0.9731 0.9735 0.9798 0.9872 1.0000
1950 1.0000 0.9601 0.9497 0.9489 0.9515 0.9491 0.9496 0.9584 0.9693 0.9961 1.0000

6.3. Probability of negative intensities over calendar time/age. Figure 4
shows that, as it should be, the constraint of 1% on the probabilities of negative in-
tensities for the for generations 1900, 1905, . . . , 1945 is respected for all the relevant
durations τ ∈ {1, 2, ..., 69}, and, for most part, well bellow the required level.

Figure 4. Probability of negative mortality intensities surface
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6.4. Deterministic forecasting. Figure 5 illustrates the results of deterministic
forecasting for τ ∈ {1, 2, ..., 40}. In-sample data comprise of points where τ ≤ 19
whereas for τ ≥ 20 comprise out-of-sample data.

We can see that forecasting error is remarkably small, below 1% for in-sample data.
However, it increases up to 26% for out-of-sample data in case of τ = 40 and has
the tendency of a sharp increase afterwards. This increasing tendency has been
observed also by Blackburn and Sherris (2012), who remedy this by introducing a
third factor – proper of very old ages – in their model.

Figure 5. Percentage Forecasting Error

6.5. Stochastic forecast. In Figure 6, we plot the survival curve at time t = 1,
S(1, τ), for generation 1950, as a function of τ . As explained above, the stochastic
mortality framework is characterized by the fact that at t = 0 – when the calibration
is performed – the survival curve which will apply one year later, at t = 1, is a
random variable.

In the OU case, we have S(1, τ) as in (33) with p = 1. We make 100,000 simulations
according to this formula and report in Figure 6 the median (green line), the 5th
percentile (red line) and 95th percentile (blue line) of the simulations as functions
of τ . The figure also contains survival probability as observed one year later (dots).
The in-sample forecasting is very accurate. Almost all the survival probabilities lie
on the median (or very close to it), and therefore they stay in the 90% confidence
interval. For this generation, unreported in-sample forecasting (p ≤ 18) performs
well, with the survival probabilities lying in the confidence interval.

7. Improvement of Parsimoniousness

Up to this point, we have had a total of 4 + 2k parameters to be calibrated:
ψ1, ψ2, σ1, σ2 as well as the vectors ρ and X1(0). The vector X2(0) of k parameters
was found as a function of the previous 4 + 2k parameters and the specified level
of probability of negative mortality intensity.
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Figure 6. Survival probability curve at t = 1, S(1, τ) for genera-
tion 1950

There would be room for further parsimoniousness of the model if one were to
find an adequate interpolating polynomial for the components of the vector X1(0).
Notice that, given any set of k points, it is always possible to find an interpolating
polynomial with degree at most k− 1. A higher degree of parsimoniousness can be
achieved if the degree of the interpolating polynomial is strictly lower than k − 1:
the lower the degree of the polynomial, the higher the gain in parsimoniousness –
at the expense of a worse fit.

In our calibrations, we have taken generations i ∈ {1900, 1905, . . . , 1950}. With
the freely calibrated values of X1900

1 (0), X1905
1 (0), . . . , X1950

1 (0) it is possible to see
that a simple fourth-order polynomial gives a reasonably accurate interpolation.

To this aim, let us introduce s = i− 1900 and set

(34) X1900+s
1 (0) = as4 + bs3 + cs2 + ds+ e,

where s ∈ {0, 5, 10, . . . , 50}.

By changing the implementation of our algorithm we evolve the population of pa-
rameters ψ1, ψ2, σ1, σ2, the vector ρ, and the parameters a,b,c,d and e. In other
words, we replace the k parameters of X1(0) with the five parameters given by
(34). It turns out that each member of the evolving population consists of only
9+k parameters. In addition, we restrict a, b, c, d, e ∈ [−1, 1], a choice well justified
by preliminary unreported experiments, and for each iteration and each member
of population we compute k values of X1(0) and consequently, given all relevant
parameter values and the specified level of probability of negative mortality inten-
sities, we compute X2(0).

The blue dots in Figure 7 report our freely calibrated values of X1900
1 (0), X1905

1 (0),
. . . , X1950

1 (0) , while the green line shows the polynomial fit, and Table 5 reports
the polynomial coefficients for which this fit is achieved. Given the results in Table
6 obtained with this new calibration procedure, and which are the minimum cost
parameters found among 30 additional experiments, we see that the cost compared
to the initial results is only slightly higher. Except for ψ1, all the other parameters
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are very similar. Using the new parameters, we inspect and find that all the relevant
graphs and tables shown in Section 6 are almost identical to those already presented,
and hence we omit them from the text.

Figure 7. Calibrated X1(0) and its polynomial fit.

Table 5. Coefficients of the interpolating polynomial.

Coefficient Value

a 0.00000000505403258
b -0.00000069427655836
c 0.00003225047154600
d -0.00054030580724752
e 0.00194314865699669

Table 6. Calibration results with X1(0) vector interpolated.

Cost 0.00063804096610967

ψ1 0.00127705925258817
ψ2 0.09536413447854090
σ1 0.00080489642885200
σ2 0.00025398075547516

ρ X1(0) X2(0)

1900 0.99999999999998500 0.00194314865699669 0.00276410785888053
1905 0.21868230271321300 -0.00003574439002594 0.00306179447920111
1910 -0.18364914494919500 -0.00087859849347549 0.00317889885787329
1915 -0.29513107966522100 -0.00099240533914958 0.00314349059945193
1920 -0.06625258367917220 -0.00070834612419564 0.00319214918562749
1925 -0.22860527966171200 -0.00028179155711086 0.00275878455683557
1930 -0.42510345100547400 0.00010769814225771 0.00229777835759209
1935 -0.65817303178655500 0.00035637324271326 0.00185486605323652
1940 -0.79031744800522400 0.00043629450170917 0.00162261553581031
1945 -0.98129829498458300 0.00039533316534903 0.00134830311068250
1950 -0.99999999999940800 0.00035717096838659 0.00133968572813659

There are two distinct benefits from this approach. First, we reduce the total
number of parameters to 9 + k, which yields 1 + 9/k per cohort, and for a high
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number of generations this gives a considerable savings. Second, the calibration
time is greatly shortened. Now we no longer need 100,000 iterations, because 40,000
is quite adequate. This brings down the calibration time from average 24 hours to
average 10 hours.

We have just shown that with our base choice of generations and initial ages it is
possible to find an interpolating polynomial with a degree (four) much lower than
k − 1 (ten), giving an almost identical fit. Not reported experiments show that for
the same choice of generations and different initial ages (from the range between
30 and 40 years old) a polynomial of degree four still gives a good interpolation. In
principle, for different choices of cohorts/ages it is always possible to follow the same
procedure. In each case the researcher has to make the desired balance between
parsimoniousness and accuracy of the fit.

8. Conclusions and further research

This paper is a first attempt to construct an effective cohort-based continuous-time
factor model of the mortality surface. We cast the model first in the affine frame-
work, then specialize it to Ornstein-Uhlenbeck factors. The resulting longevity
intensity model extends the G2++ interest-rate model, since the factors have dif-
ferent weights for each generation. The main novelty of the model with respect to
existing literature is that it allows for imperfect correlation of mortality intensity
across generations.

The model is implemented on UK data for the generations born between 1900 and
1950, using HMD data for the period 1900-2008. On these data, two factors are
deemed as a reasonable first choice. Calibration by means of stochastic search and
the Differential Evolution optimization algorithm proves to produce small errors
and to yield robust and stable parameters. Standard criteria desirable for a model
of the mortality surface are satisfied.

The calibration confirms that correlation across generations is very high but smaller
than one. Up to our knowledge, this is the first calibration of the correlation
among mortality intensities of different generations in the academic literature. The
calibrated correlations turn out to be sensible and intuitive. The possibility of
capturing these correlations, thanks to a generation-based model coupled with DE-
driven calibrations, is our major contribution.

The ex-post performance of in-sample stochastic forecasts is very satisfactory. Both
in-sample and out-of-sample deterministic forecasts have been examined. In-sample
errors up to age 59 are very small, whereas out-of-sample errors remain small at
least until age 65. The increase in the error at later ages could be probably amended
by the introduction of a third factor. We leave this extension for further research.
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Appendix: The Differential Evolution Algorithm

Algorithm 1: DE Algorithm Source: Gilli and Schumann (2010)

initialize parameters nP ,nI ,F and CR;

initialize population P
(1)
j,i , j = 1, ..., D, i = 1, ..., np;

for m = 1 to nI do
P (0) = P (1)

for i = 1 to np do
generate l1, l2, l3 ∈ {1, ..., np}, l1 6= l2 6= l3 6= i

compute P
(v)
.,i = P

(0)
.,l1

+ F × (P
(0)
.,l2
− P (0)

.,l3
)

for j = 1 to D do

if randb(j) < CR then P
(u)
j,i = P

(v)
j,i else P

(u)
j,i = P

(0)
j,i

end

if Cost(P
(u)
.,i ) < Cost(P

(0)
.,i ) then P

(1)
.,i = P

(u)
.,i else P

(1)
.,i = P

(0)
.,i

end

end

DE is a parallel direct search and optimization algorithm, using nP D-dimensional
vectors of parameters. In this setting, we refer to nP as the number of members of
the population, while D is the number of parameters to be estimated. In our case,
given the restrictions on parameters, we have D = 4 + 2 ∗ k to be the length of the
vector θ, while the size of the population remains constant throughout the entire
minimization, and is equal to nP = 10D, a number chosen based on a similarly
complex calibration, presented in Gilli and Schumann (2011). All of the parameters
were initially sampled uniformly from the predetermined parameter space.

In Storn and Price (1997), the algorithm is presented as follows. We denote the
number of iterations to be constructed by the algorithm by nI . In every iteration
m, where m ∈ {1, . . . , nI} we arrive to a new population P (m), the size of which is
always nP . DE generates new parameter vectors by adding the weighted difference
between two population vectors to a third vector. This operation is called mutation,
and is characterized by the empirically determined constant F ∈ [0, 2]. Mutated
vector’s parameters are mixed with the parameters of another predetermined vector,
the target vector, to create so-called trial vector u. This parameter mixing is
referred to as a crossover operation. This process is characterized by a constant
CR, and its value is also best determined empirically. In the figure reporting the
Algorithm 1 above, randb(j) is the jth evaluation of a uniform random number
generator with outcome ∈ [0, 1]. If the trial vector has the cost function value
Cost(.) lower than the target vector, the trial vector replaces the target vector in
the following iteration. This operation is called selection. Finally, each population
vector must once serve as the target vector. In our setting, the search ends after
the nI -th iteration has been reached.

There are many implementations of the Differential Evolution algorithm. We
have chosen to make use of the Matlab implementation which is freely available
at http://www.icsi.berkeley.edu/~storn/code.html, and have adjusted it for
the purposes of our problem and data structures. During our extensive unreported

http://www.icsi.berkeley.edu/~storn/code.html
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preliminary calibration experiments, we have found that it is best to choose the
parameters F = 0.5 and CR = 0.85, and, since this algorithm has many variations,
to use the DE/rand/1/bin strategy, which is in line with the findings of (Gilli and
Schumann, 2011). In addition, since the range of our parameters is constrained to
Θ, we have implemented a re-sampling approach when the parameters of the newly
constructed population vectors fall out of bounds.
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