
13 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Extending BCDM to cope with proposals and evaluations of updates

Published version:

DOI:10.1109/TKDE.2011.170

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/123544 since 2017-10-27T16:57:06Z

This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Luca Anselma; Alessio Bottrighi; Stefania Montani; Paolo Terenziani.
Extending BCDM to cope with proposals and evaluations of updates. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. 25 (3)
pp: 556-570.
DOI: 10.1109/TKDE.2011.170

The publisher's version is available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5963680

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/123544

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 1

	

Extending BCDM to cope with proposals and
evaluations of updates

Luca Anselma, Alessio Bottrighi, Stefania Montani, Paolo Terenziani

Abstract— The cooperative construction of data/knowledge bases has recently had a significant impulse (see, e.g., Wikipedia
[1]). In cases in which data/knowledge quality and reliability are crucial, proposals of update/insertion/deletion need to be
evaluated by experts. To the best of our knowledge, no theoretical framework has been devised to model the semantics of
update proposal/evaluation in the relational context. Since time is an intrinsic part of most domains (as well as of the
proposal/evaluation process itself), semantic approaches to temporal relational databases (specifically, Bitemporal Conceptual
Data Model (henceforth, BCDM) [2]) are the starting point of our approach. In this paper, we propose BCDMPV, a semantic
temporal relational model that extends BCDM to deal with multiple update/insertion/deletion proposals and with
acceptances/rejections of proposals themselves. We propose a theoretical framework, defining the new data structures,
manipulation operations and temporal relational algebra and proving some basic properties, namely that BCDMPV is a
consistent extension of BCDM and that it is reducible to BCDM. These properties ensure consistency with most relational
temporal database frameworks, facilitating implementations.

Index Terms— H.2.4.m Temporal databases, H.2.3.d Database semantics, H.2.0.b Database design, modeling and
management.

——————————  ——————————

1 INTRODUCTION
elational DBs are one of the main paradigms in data
management, with a wide applicative impact. Re-
cently, relational DBs have been adopted in order to

cope with an emerging phenomenon: the cooperative
construction of databases (see, e.g., Wikipedia [1]). In par-
ticular, in cases in which data/knowledge quality and re-
liability are crucial, proposals of up-
date/insertion/deletion of data need to be evaluated by
experts. Indeed such a phenomenon (called “proposal
vetting” in the paper) often involves relational data (con-
sider, e.g., the Citizendium encyclopedia [3], and the co-
operative management of clinical guidelines [4]). Despite
the generality and the spread of the phenomenon itself,
until now proposal vetting has been mostly coped with in
an ad-hoc way in the relational context (primarily at the
application level). On the other hand, a domain- and ap-
plication-independent and theoretically grounded solu-
tion should be provided once and for all, so that applica-
tion developers can safely adopt it, and just focus on the
application-dependent aspects of their problems1. Addi-
tionally, current relational ad-hoc solutions have specific
limitations, such as the fact that they do not support (in
data model, and in manipulation and query operations) a
sound treatment of temporal phenomena. The goal of our
work is to provide a general approach extending the rela-

1 Indeed, this is a widely used strategy in Computer Science. For in-

stance, temporal databases mainly are born to solve once and for all (and

tional DB theory to cope with proposal vetting, and over-
coming the above limitation of current solutions.

The starting point of our approach is the consideration
that, indeed, proposal vetting intrinsically involves the
notion of transaction time [5, pages 3162-3163] (the time
of proposal, of evaluation, of insertion/logical-deletion).
Additionally, proposal vetting might also be applied to
temporal data (as in [4] and in our running example). In
such cases, also the valid time [5, page 3253] of data
should be considered. 25 years of research in (relational)
Temporal Databases (TDBs henceforth; see, e.g., the cu-
mulative bibliography in [6]) have widely demonstrated
that, in order to correctly manage transaction-time data
(or transaction+valid-time data) in the relational context,
specialized techniques must be used2. Therefore, the
adoption of TDB techniques is necessary to cope (in data
model, manipulation operation, and query operations)
with proposal vetting on relational data (since at least
transaction time must be coped with). A possible solution
might be to extend one of the current temporal relational
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

in a theoretically sound way) many domain-independent issues related
to the treatment of time.

2 “Two decades of research into temporal databases have unequivo-
cally shown that a time-varying table, containing certain kinds of DATE
columns, is a completely different animal than its cousin, the table with-
out such columns. Effectively designing, querying, and modifying time-
varying tables requires a different set of approaches and techniques than
the traditional ones taught in database courses and training seminars.
Developers are naturally unaware of these research results (and re-
searchers are often clueless as to the realities of real-world application
development). As such, developers often reinvent concepts and tech-
niques with little knowledge of the elegant conceptual framework that
has evolved and recently consolidated…” in [7], Section “Preface”, Sub-
section: “A paradigm shift”, page XVIII. It is worth stressing that, in the
above quotation, no mention is made on whether DATE columns regard
transaction and/or valid time. For instance, all the problems exemplified
in Section 1 of TSQL2 book about valid time [8] arise exactly in the same
way if transaction time is considered.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

R

————————————————
• L. Anselma is with the Dipartimento di Informatica, Università di Torino,

Torino, Italy. E-mail: anselma@di.unito.it.
• A. Bottrighi, S. Montani and P. Terenziani are with the Dipartimento di

Informatica, Università del Piemonte Orientale “Amedeo Avogadro”, Ales-
sandria, Italy. E-mail: {alessio.bottrighi, stefania.montani,
paolo.terenziani}@mfn.unipmn.it

2 IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, MANUSCRIPT ID

	

approaches (e.g., the “consensus” TSQL2 approach [8]) to
cope with proposal vetting. However, to further enhance
the generality of our approach, we have chosen to extend
BCDM [2], a unifying formal semantic model which has
been proven to constitute the common “core” semantics
of many temporal relational approaches in the literature
(e.g., the approaches in [9-13], including TSQL2 [8]). In
our approach (as in BCDM) the semantics of data, ma-
nipulation and query operation is modeled in a formal
way, to provide a rigorous and non-ambiguous specifica-
tion to implementers, and to provide a solid theoretical
environment in which fundamental properties such as
reducibility and consistent extension [8] can be formally
proved. Thus, our work belongs to the temporal-database
research and, specifically, to the stream of approaches ex-
tending BCDM to cope with new phenomena, such as pe-
riodic data [14], telic events [15], and different forms of
temporal indeterminacy [16].

Coping with proposal vetting requires radical exten-
sions to the BCDM model. Some operations (e.g., up-
dates) must be “delayed”, waiting for an evaluation
which rejects them or makes them effective on the refer-
ence data model. Thus, two types of data need to be sup-
ported: the reference (accepted) data and the proposed
(to-be-evaluated) data. More importantly, different up-
date proposals concerning the same piece of data must be
interpreted as alternatives: at most one of the alternative
proposals can be accepted and becomes effective.

Thus, we propose a new semantic model, which we
call BCDMPV (where “PV” stands for “proposal vetting”)
in which alternative proposals are first-class entities, to be
explicitly and directly modeled into the data model3.
BCDMPV is an extension of BCDM consisting of:

 (1) a new data model to cope with both accepted
and proposed data, in which alternative proposals are
first-class entities (Section 3);

(2) new manipulation operations to propose inser-
tions, deletions and updates (for proposers) and to accept
or reject them (for evaluators) (Section 4);

(3) new algebraic operations on the extended data
model (Section 5).

In our approach, we follow the methodology proposed
in TSQL2 book [8]. We specify aspects (1), (2) and (3) in a
formal way, so that the necessary properties of reducibil-
ity and consistent extension can be proved ([8, 17]). Spe-
cifically, we have proven that:

 (i) BCDMPV data model is reducible to BCDM one;
(ii) BCDMPV manipulation operations are a “pro-

posal vetting” consistent extension of BCDM ones;
(iii) BCDMPV algebraic operations are reducible to

BCDM ones.
The fact that the above properties hold guarantees

three main advantages for our approach:

3 Of course, one could write some application software to simulate al-
ternatives on top of BCDM or of the standard relational model, interpret-
ing some sets of tuples as alternative. But this would be an ad-hoc im-
plementation, i.e., application software which super-imposes a different
interpretation onto a basic data model in which all data are interpreted in
a conjunctive way. This is not what we want in our semantic approach:
the basic semantic model must be extended in order to be directly able to
support alternative data by itself.

(a) generality, since BCDMPV extends the core seman-
tics of several TDB approaches;

(b) implementability, since, given (a), our approach can
be implemented as an additional layer on top of any TDB
approach based on the BCDM semantics (including
TSQL2; it is worth noticing here that OracleTM Database,
since version 10g, supports both transaction time and
valid time consistently with BCDM [18]);

(c) interoperability with TDB approaches based on
BCDM.

Reducibility guarantees that the semantics of simpler
operators are preserved in their more complex counter-
parts [8, page 233], and, together with the consistent exten-
sion property (elsewhere called “temporal upward compati-
bility” [17]) is needed to grant the compatibility with pre-
existent approaches [17], and, thus, interoperability.
Interoperability is a “sine qua non” feature for all tempo-
ral extensions to relational DBMS, to guarantee the possi-
bility of maintaining and operating on pre-existent data.
Observe that, in turn, BCDM-based approaches are re-
ducible to the standard relational model, so that interop-
erability with the relational model also will hold for the
implementations of our approach.

Finally, it is worth stressing that, as in BCDM, we op-
erate at the semantic level only, so that, consistently with
the explicit aims of BCDM itself4, in this paper we do not
address issues such as complexity, query optimization,
integrity constraint support, storage optimization and
data indexing; schema versioning is not considered, too.
However, in Section 6, we briefly mention a prototypical
implementation of our semantics on top of TIMEDB [19],
a TSQL2-like system based on BCDM semantics that we
have devised as a proof of concepts.

The paper is organized as follows. Preliminaries are
briefly introduced in Section 2. Our new data model is
presented in Section 3. Section 4 introduces the new ma-
nipulation operations to propose changes and to evaluate
them. Section 5 introduces a new temporal algebra to
query the new data model. Section 6 is devoted to de-
scribe our prototypical implementation and possible ex-
tensions. Finally, Section 7 presents related works and
Section 8 addresses conclusions.

2 PRELIMINARIES
In this section, we introduce some basic notions for our

work. At a high level of abstraction (henceforth: “process
level”), proposal vetting can be described as a set of inter-
actions between evaluators, proposers, and the database.
In Section 2.1 we provide a formal description of the
“process level”, using Petri Nets. However, the focus of
our approach is on the “data level” (e.g., what are the

4 “It is our contention that focusing on data presentation (how temporal
data is displayed to the user), on data storage with its requisite demands
of regular structure, and on efficient query evaluation, has complicated
the central task of capturing the time-varying semantics of data. […] We
therefore advocate a separation of concerns. Time-varying semantics is
obscured in the representational schemes by other considerations of
presentation and implementation. We feel that the conceptual data model
to be discussed shortly [i.e., BCDM] is the most appropriate basis for ex-
pressing this semantics.” [8, pages 185-186]

ANSELMA ET AL.: EXTENDING BCDM TO COPE WITH PROPOSALS AND EVALUATIONS OF UPDATES 3

possible evolutions of data, what are the possible ma-
nipulation operations and what are their admissibility
conditions). We aim at devising an extension of a tempo-
ral relational database theory to cope with proposal vet-
ting, considering the definition of a new data model, and
of manipulation and algebraic operations. The starting
point of our approach is the BCDM semantic model,
which is sketched in Section 2.2. Finally, Section 2.3 intro-
duces the running example we adopt in this paper.

2.1 The proposal vetting process
In the following, we clarify our notion of proposal vetting
by describing the workflow of processes it involves.
Many formalisms have been devised to model process in-
teractions, including workflow formalisms (see, e.g., [20])
and different variants of Petri Nets [21]. Petri Nets are bi-
partite directed graphs with two types of nodes: places
and transitions. Places, graphically represented by circles,
correspond to the state variables of the system; transi-
tions, graphically represented by boxes, correspond to the
events that can induce a state change. The arcs connect
the two kinds of nodes and express the relation between
states and events occurrence. In particular in our modeli-
zation we use the Well-Formed Net formalism [22] that
extends Petri Net formalism with “colour”, allowing one
to describe the system in a more compact way.

The Well-Formed Net model in Fig. 1 describes the
dataflow and the user behaviour in proposal vetting. The
transition T1 models the issue of a proposal. The inputs of
T1 are a token labeled <k> from PROPOSERS, a token la-
beled <x> from DB_EVALUATORS and a token labeled
<p> from DB_PROPOSERS, to model the proposal risen
by a proposer, who can take into account the current
status of the reference DB (i.e., DB_EVALUATORS) and
of the DB of proposals (i.e., DB_PROPOSERS) respec-
tively. The output of T1 is a token labeled <m> in the
place PROPOSALS (a new proposal is risen). Addition-
ally, tokens with the original values (represented by the
fact that the labels on the input and output arcs are the
same) are returned to the places PROPOSERS,
DB_EVALUATORS and DB_PROPOSERS. This means

that the content of the two databases and the set of pro-
posers are not changed by T1. The transition T2 similarly
models the storing of a proposal. Analogously, T3 models
the issue of an evaluation and T4 models the storing of
the effect of an evaluation.

While Fig.1 provides an abstract view of proposal vet-
ting at the “process level”, many issues, such as what are
the possible manipulation operations, under which condi-
tions they can be applied, and how data can evolve as a
result of such operations are left implicit in the above
formalization. Such a “data level” analysis is the goal of
our approach, which is grounded on the current temporal
database theory, and, specifically, on BCDM.

2.2 Bitemporal Conceptual Data Model
BCDM [2] is a unifying data model, isolating the “core”
semantics underlying many temporal relational ap-
proaches, including TSQL2 [8]. In BCDM, tuples are asso-
ciated with valid time and transaction time. For both do-
mains, a limited precision is assumed (the chronon is the
basic time unit). Both time domains are totally ordered
and isomorphic to the subsets of the domain of natural
numbers. The domain of valid times DVT is given as a set
DVT={t1,t2,…,tk} of chronons, and the domain of transaction
times DTT is given as DTT={t’1,t’2,…,t’j}∪{UC} (where UC –
Until Changed– is a distinguished value). In general, the
schema of a bitemporal conceptual relation
R=(A1,...,An|T) consists of an arbitrary number of non-
timestamp (explicit henceforth) attributes A1, …, An, en-
coding some fact, and of a timestamp attribute T, with
domain DTT×DVT. Thus, a tuple x=(a1,…,an|tb) in a bitem-
poral relation r(R) on the schema R consists of a number
of attribute values associated with a set of bitemporal
chronons tbi=(cti, cvi), with cti ∈ DTT and cvi ∈ DVT. Valid-
time, transaction-time and atemporal tuples are special
cases, in which either the transaction time, or the valid
time, or both of them are absent.

Notation. Given a tuple x defined on the schema
R=(A1,...,An, B1,...,Bl |T), we denote with A the set of at-
tributes A1,...,An. Then x[A] denotes the values in x of the
attributes in A, x[T] denotes the set of bitemporal chro-
nons constituting the timestamp of x, x[Tv] and x[Tt] de-
note the valid and transaction time of a valid-time and
transaction-time tuple respectively. ♦

Notation. A bitemporal BCDM tuple x is current if it is
present at the current time (“now”) in the database (i.e., it
has not been updated or deleted yet). ♦

BCDM is a semantic and formal approach, for which the
essential properties of uniqueness of representation and re-
ducibility to the standard non-temporal algebra have been
formally proved. This grants for the advantages discussed
in Section 1, and, in particular, for interoperability with
standard non-temporal relational databases.

2.3 A running example
 In the following, we introduce a running example re-
garding the history of some European countries. We con-
sider a session of work in which proposals are issued, and
evaluators accept or reject them. Such a session could be a
session with Citizendium [3], a collaborative encyclope-Fig. 1: the Well-Formed Net model which describes the pro-

posal vetting phenomena.	

	

4 IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, MANUSCRIPT ID

	

dia where an entry can be proposed and modified by
multiple authors. Citizendium improves Wikipedia in the
sense that it stresses reliability, so that each entry must be
approved by an editor.

We use two relations: INDEP, describing when a na-
tion is independent and its government type, and CAPI-
TAL, specifying the capital of a nation. All the relations
have a transaction time, to model the times when propos-
als are issued, accepted and/or rejected. Moreover both
relations have a valid time: in INDEP the valid time rep-
resents the time when a nation is independent and in
CAPITAL when a city is the capital of a nation.

In the following, we introduce a session of cooperative
work aimed at exemplifying the proposal vetting process.
The working session is introduced as a sequence of steps:

 Step 1. Proposer p1 proposes to update the relation
CAPITAL, to state that Cracow was the capital of Poland
between 1040 and 1595;

Step 2. Proposer p2 proposes the same proposal issued
by proposer p1 at step 1;

Step 3. Proposer p1 proposes to modify INDEP to state
that Poland has been a dictatorship until 1595;

Step 4. Proposer p3 proposes to further update the pro-
posal at step 3 to modify the form of government of Po-
land from dictatorship to republic;

Step 5. Evaluator e1 rejects the proposal at step 4;
Step 6. Proposer p2 proposes to update the proposal

issued by proposer p1 at step 3, by adding to such an up-
date also the update (from dictatorship to monarchy) of
the form of government;

Step 7. Proposer p1 proposes to update the original ver-
sion of the tuple about Poland in INDEP changing its
form of government from dictatorship to monarchy;

Step 8. Evaluator e1 queries the database to check all
the current proposals concerning the independence of Po-
land when its capital was Cracow;

Step 9. Evaluator e1 accepts the proposals issued by
proposer p1 at step 1 and by p2 at step 6.

In Fig. 2 we show the evolution of our data model at
different transaction times (to be explained in the rest of
the paper). In the figure, at transaction time i+1 we show
the effect of the execution of step i. The transaction time
starts when the tuples are entered into the database. The
value “UC” denotes the fact that the tuple is still present
(not logically deleted) in the database. For the sake of
brevity, the temporal attributes are shown in a compact
way. E.g., in Fig. 2(A), {e1}×[1,UC]×[1025,1039] stands for
the set of triplets {(e1,1,1025), (e1,1,1026), …, (e1,1,1039), …,
(e1,UC,1025), (e1,UC,1026), …, (e1,UC,1039)}, meaning that
the tuple has been inserted by evaluator e1 at transaction
time 1 and has not been deleted yet, and that its valid
time starts at 1025 and ends at 1039.

It is worth noticing that, in the example, bitemporal
data are involved. Indeed, while the treatment of transac-
tion time is an intrinsic part of coping with proposal vet-
ting, valid time is “orthogonal” to the proposal vetting
process. In fact, valid time – representing “when” the data
in the relational tuples hold – is completely independent
of proposal vetting. As a consequence, while transaction
time is mandatory in our approach, valid time is optional.

But, obviously, in case proposal vetting has to be applied
on valid-time data, both temporal dimensions have to be
taken into account. In the rest of the paper, for the sake of
generality we focus on the treatment of bitemporal
(transaction-time + valid-time) data. However, it is worth
stressing that (as in the case of the BCDM model), only
minor simplifications to the approach are possible in case
only transaction time has to be coped with.

3. EXTENDING THE DATA MODEL
To cope with the issues outlined in Sections 1 and 2, in
our data model we need to distinguish between accepted
data and proposals that still need to be evaluated. To this
end, we introduce a two-layered approach, in which: (1)
we define two categories of users: a set of proposers, who
issue proposals, and a set of evaluators, who can ac-
cept/reject them, and (2) we split the data in two levels:
evaluator data level and proposer data level. Namely, all
validated data, accepted by evaluators, are stored in the
evaluator data level. Current data in the evaluator data
level constitute the reference (accepted) version of data.
On the other hand, all the proposals, generated by any
proposer, are stored at the proposer data level.

Definition 3.0.1: Proposers and Evaluators. We term
Proposers={p1,…,py} and Evaluators={e1,…,ez} the sets of
proposers and evaluators respectively. ♦

Notice that our approach is independent of whether
Proposers and Evaluators are disjoint sets or not (so that
different policies can be implemented).

Definition 3.0.2: We define a database as a pair
<DB_Evaluators, DB_Proposers>. DB_Evaluators is a set
of relations {r1(R1),...,rk(Rk)} where ri (1≤i≤k) is an instance
of the schema Ri. DB_Proposers contains, for each relation
ri∈DB_Evaluators, three separate sets:

pi(ri), containing proposals of insertion into ri,
pd(ri), containing proposals of deletion of tuples in ri,
pu(ri), containing proposals of update (concerning tu-

ples in ri, pi(ri) and pu(ri)).♦
Both in DB_Evaluators and in DB_Proposers we deal

with different types of implicit attributes. First at all, we
consider the valid time of tuples and with their transaction
time. Moreover, every tuple in DB_Evaluators is associ-
ated with one (or more) elements in the Evaluators set,
corresponding to the evaluators who accepted the tuple
after a proposal-vetting session. Similarly, all proposals of
insertion/deletion/modification are associated with one
or more elements in the Proposers set. We denote as Te
the attribute with domain Evaluators×DTT×DVT and Tp the
attribute with domain Proposers×DTT×DVT, which extend
the bitemporal BCDM attribute in order to deal also with
evaluators and proposers information in DB_Evaluators
and DB_Proposers respectively. We also denote with T
the bitemporal attribute with domain DTT×DVT.

Terminology (value equivalence). We use the term
value equivalent as in BCDM, to denote tuples that have
equal values for the explicit attributes [8]. ♦

Temporal relational semantic data models, including
BCDM, usually do not admit value equivalent tuples in
the same relation to support the uniqueness property for

ANSELMA ET AL.: EXTENDING BCDM TO COPE WITH PROPOSALS AND EVALUATIONS OF UPDATES 5

their models, since “it is a major source of semantic clarity
that two instances have the same information content ex-
actly when they are identical” [8, page 221]. Since
uniqueness is one of our goals (see Section 3.3), we do not
admit value equivalent tuples in our data model, too.

3.1 DB_Evaluators
Definition 3.1.1: DB_Evaluators. We denote with
R=(A1,…,An|Te) the schema of a relation
r∈DB_Evaluators, with Te defined as above. (Condition
3.1.2): We do not admit value-equivalent tuples in the
same relation r∈DB_Evaluators. ♦

3.2 DB_Proposers
In this section, first we briefly introduce the definitions

concerning proposals of insertion and of deletion. Then
we move to one of the main contributions of our ap-
proach, namely the definition of proposals of update.

3.2.1 Proposals of insertion
Definition 3.2.1.1: pi(r). Given a relation
r∈DB_Evaluators with schema R=(A1,…,An|Te), we de-
fine pi(r) as the set containing the tuples x which are pro-
posed for insertion into r. The schema of pi(r) is
R’=(A1,…,An|Tp). (Condition 3.2.1.2): In pi(r) we do not
admit value-equivalent tuples. ♦

3.2.2 Proposals of deletion
Definition 3.2.2.1: pd(r). Given a relation
r∈DB_Evaluators with schema R=(A1,…,An|Te), we de-

	

Fig. 2: A representation of our running example before the session of work (A), after Step 1 (B), after Step 2 (C), after Step 3 (D), after Step
4 (E), after Step 5 (F), after Step 6 (G), after Step 7 (H) and after Step 9 (I). In each subfigure, the upper part represents the relations IN-
DEP and CAPITAL in DB_Evaluators (see Section 3.1) and the lower part represents the content of DB_Proposers (see Section 3.2). pu(r)
contains an Update-proposal, represented – for the sake of readability – as a two-level tree. The origin of the Update-proposal is the root
(on the left) (e.g., (Poland, dictatorship) is the origin of Update-proposal in pu(INDEP)) and the alternatives are its children (on the right).

6 IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, MANUSCRIPT ID

	

fine pd(r) as the set containing the tuples x which are
proposed for deletion from r. The schema of pd(r) is
R’=(A1,…,An| Tpt), where Tpt represents an attribute with
domain Proposers×DTT. (Condition 3.2.2.2): In pd(r) we
do not admit value-equivalent tuples. ♦

A tuple in pd(r) identifies the tuple in r to be deleted.
Therefore, the valid time is not needed (since the explicit
attributes univocally identify the evaluator tuples).

3.2.3 Proposals of update
Given a relation r∈DB_Evaluators, the set pu(r) of pro-
posals of update may concern tuples in r, or in pi(r), or in
pu(r). Proposals of update must explicitly state the tuple
which should be modified, and the specific changes that
should be made to it (i.e., it consists of a pair <old tuple,
new tuple>). In principle, each proposal of update could
be modeled independently of the others. However, the
underlying semantics is that all the proposals of modifica-
tion concerning the same tuple must be interpreted as al-
ternatives, since the acceptance of one proposal implicitly
involves the rejection of all the others. In other words, un-
like the standard relational model and the BCDM model,
the proposal vetting context involves coping with disjunc-
tions of pieces of information. We introduce a primitive
semantic notion – the Update-proposal – to explicitly cope
with such a new phenomenon. An Update-proposal
groups together all the alternative proposals concerning a
given tuple (thus resembling, e.g., the notion of Design
Object in [23]). Defining such a grouping of alternative
pieces of information as a primitive notion also provides
several advantages, simplifying the definition of manipu-
lation and algebraic operators.

 Definition 3.2.3.1: Update-proposal. An Update-
proposal may concern either (i) a tuple in an evaluator
level relation, or (ii) a tuple in a proposal of insertion5.

Given a relation schema R such that (i) R =
(A1,…,An|Te) or (ii) R = (A1,…,An|Tp), let r be an instance
of R and x∈r a tuple in r. An Update-proposal up∈pu(r)
concerning x can be defined as up = <o, Alt(alt1,…,altm)>,
where o=x[A1, …,An] and alti (1≤i≤m) are tuples defined
on the schema (A1,…,An|Tp). o is used in order to univo-
cally identify the tuple x to be updated and
Alt(alt1,…,altm) is a non-empty set of alternative tuples
referring to the tuple x, representing the different alterna-
tive proposals of update concerning x. (Condition 3.2.3.2):
In an Update-proposal we do not admit value-equivalent
alternatives. ♦

Terminology (type of an Update-proposal). Given the
Definition 3.2.3.1, we call the pair <(A1, …,An), (A1,
…,An|Tp)> the type of the Update-Proposal up. ♦

Terminology (origin, alternatives of an Update-
proposal). Given the Definition 3.2.3.1, we call x the origin
of the Update-proposal and {alt1,..,altm} its alternatives.
Since o is used in order to uniquely identify x, in the fol-
lowing, we call both x and o “origin”. ♦

5 Notice that, in our approach, proposals of update concerning a pre-

ceding Update-proposal up∈pu(ri) are directly referred to the origin of up
(which may be either a tuple in r or in pi(r)); see the discussions in Sec-
tion 4.

Definition 3.2.3.3: origin(up) and alternatives(up).
Given an Update-proposal up = <o,Alt(alt1,alt2,..,altm)>,
origin(up) = o, and alternatives(up) = {alt1,alt2,..,altm}.♦

Example. Considering our running example (see Sec-
tion 2.3), Fig. 2(E) shows the Update-proposals represent-
ing all the update proposals issued until step 4. The origin
“(Poland, dictatorship)” in pu(INDEP) identifies the ev-
aluator tuple to be updated. The first alternative repre-
sents the proposals issued by p1 at step 3, where 4 is the
transaction-time start and UC is the transaction-time end
(i.e., the proposal is current), 1025 is the valid-time start,
and 1595 is the valid-time end. ♦

We can finally define the set pu(r) of update proposals.
Definition 3.2.3.4: Set of Update-proposals pu(r).

Given a relation r∈DB_Evaluators with schema
R=(A1,…,An|Te), we define pu(r) (henceforth called set of
Update-proposals) as the set containing the Update-
proposals up=<o, Alt(alt1,…,altm)> whose origin o identi-
fies a tuple in r or in pi(r). The type of pu(r) is <(A1, …,An),
(A1, …,An|Tp)>. (Condition 3.2.3.5): Different Update-
proposals having the same origin are not admitted in the
same set of Update-proposals. ♦

3.3 PROPERTIES OF THE DATA MODEL
In this section, we analyze the properties of the new data
model. Two properties are essential: uniqueness of the
model and reducibility to BCDM.

In temporal relational databases, the notion of snapshot
equivalence has been used in order to formally characterize
bitemporal relations having the same information con-
tent. To this purpose, transaction- and valid-time
timeslice operators are introduced. For instance, in
BCDM, ρBT1(r) selects from a bitemporal relation r all the
tuples holding at the transaction time T1, and removes
the transaction time dimension [8]. We extend such no-
tions, to apply it also to sets of Update-proposals, and to
deal with slice on evaluators/proposers.

Definition 3.3.1: Slice operators. Given an Update-
proposal up = <o, Alt(alt1,…, altm)> and a proposer p, we
define the proposer-slice operator on an Update-proposal
as follows:
 πPV-­‐atvp(up)=<o,	
 Alt(πatvp(alt1),	
 …,	
 πatvp(altm))>

where
πatvp(x) ={z : z[A]=x[A]∧ z[T]={(t,v):(p,t,v)∈x[Tp]} ∧z[T]≠∅}.

“PV” stands for “Proposal Vetting” and “atv” stands
for the implicit attributes in the schema of x: proposer,
transaction time and valid time. The proposer-slice opera-
tor on sets of Proposal-tuples is defined as:

πPV-­‐atvp(s)={ πPV-­‐atvp(up)	
 :	
 up∈s}.
Transaction and valid timeslice operators ρPV-­‐atvT1(r)	
 and

τPV-­‐atvT2(r)	
 on sets of update-proposals are defined simi-
larly.	
 The slice operators can be straightforwardly
adapted to operate on proposals in which one or more
dimensions (proposer, transaction time, valid time) have
been removed by a slicing operator. For instance, τPV-tv

T2 is
the valid-timeslice operator on Proposal-tuples in which
only transaction and valid times are present. 	

Definition 3.3.2: Snapshot equivalence on sets of Up-
date-proposals. Two sets of Update-proposals r and s are

ANSELMA ET AL.: EXTENDING BCDM TO COPE WITH PROPOSALS AND EVALUATIONS OF UPDATES 7

snapshot equivalent if for all the transaction times T1 not
exceeding the current time, for all the valid times T2 and
for all proposers p:

τPV-t
T2(ρPV-tv

T1(πPV-­‐atvp(r))) = τPV-t
T2(ρPV-tv

T1(πPV-­‐atvp(s))). ♦
Given the above definitions, we can prove that Prop-

erty 3.3.3 holds. It is worth stressing that Conditions
3.2.3.2 and 3.2.3.5 are essential to obtain such a funda-
mental property, which “certifies” the semantic clarity of
the data model we use.

Property 3.3.3: Uniqueness of model on sets of Up-
date-proposals. Two sets of Update-proposals defined
over the same type are snapshot equivalent if and only if
they are identical. ♦

Analogously, slicing operators and snapshot equiva-
lence can be defined for evaluator relations, sets of pro-
posals of insertion, and sets of proposals of deletion. We
have proved that Property 3.3.4 holds as well:

Property 3.3.4: In our data model, identity and snap-
shot equivalence coincide, i.e., two databases over the
same evaluator schema in our model are identical if and
only if the corresponding evaluator relations and sets of
proposals of insertion, proposals of deletion and Update-
proposals are snapshot equivalent. ♦

Reducibility to BCDM is also a key result:
Property 3.3.5: Reducibility of BCDMPV data model to

BCDM data model. The BCDMPV data model reduces to
the BCDM data model in case no proposals are pro-
posed/evaluated. ♦

The property of reducibility to BCDM holds, since the
pair <DB_Evaluators, DB_Proposers> trivially reduces to
a BCDM database in case only one level of data (i.e.,
DB_Evaluators) is taken into account, and evaluators’ in-
formation is disregarded. This case models the “non-
proposal vetting” context in which users can directly op-
erate insert/delete/update operations on the data and no
evaluation is needed.

4 MANIPULATION OPERATIONS
In this section we define the manipulation operations of
BCDMPV. We introduce two levels of operations: proposer
operations and evaluator operations. As regards proposer
operations, we define proposal of insertion, proposal of dele-
tion and proposal of update. On the other hand, evaluators
can either accept or reject proposals. Our choice of defining
an independent operator for proposals of update is a de-
parture from the relational tradition, in which updates are
usually implemented by transactions containing a dele-
tion and an insertion. However, since one of the core fea-
tures of our approach is that of modeling proposals of
update as primitive concepts (see the discussion in Sec-
tion 3.2.3), defining primitive operations applied directly
on them was the most natural and effective choice. Actu-
ally, as we will see later on, in the proposal vetting con-
text, the acceptance of a proposal of update does not
trivially correspond to the acceptance of a deletion and of
an insertion. As a matter of fact, (i) a proposal of update
may concern a proposal of insertion, so that its acceptance
does not require the deletion of any tuple in the evaluat-
ors database; (ii) in all cases, the acceptance of an update

proposal involves the rejection of all its alternatives
(which would not be involved by the acceptance of a de-
letion followed by an insertion).

4.1 Proposer operations
 In the following we present the definition of the opera-
tion of propose_update, which is the most complex one.
Given a relation r∈DB_Evaluators, a proposal of update
can be used in order to modify (i) a tuple in r, or (ii) a tu-
ple in pi(r), or (iii) an alternative of an Update-proposal in
pu(r) (we thus allow chaining of update proposals, to
support incremental updates, i.e., further updates to an
already existing proposal of update). As explained in the
previous sections, proposal operations are stored in
DB_Proposals waiting for an acceptance or a rejection.
Specifically, in all cases (i)-(iii) above, the result of a pro-
posal of update is an Update-proposal which, depending
on the cases, may be a newly generated one or a modifica-
tion of an already existing Update-proposal. The defini-
tion of propose_update is quite complex, since it has to
cover the three cases, granting also that the operation is
admissible (e.g., that it refers to existing tuples) and that it
does not introduce incorrect Update-proposals (e.g.,
value-equivalent origins, or value-equivalent alternatives
to the same origin, see Conditions 3.2.3.2 and 3.2.3.5).

Given a relation r∈DB_Evaluators with schema
R=(A1,…,An|Te), the arguments of a propose_update opera-
tion regarding a tuple in r are: (a) r itself, (b) the old tuple
to be modified, and (c) the new tuple (i.e., (a1”,…,an”
|pnew,tvt_new)). While the tuple in (c) always has the schema
(A1,…,An|Proposers×DVT), we specify the old tuple in dif-
ferent ways, depending on the case (i)-(iii) we cope with.
Specifically, if we have to cope with an update to an al-
ternative of an Update-proposal in pu(r), the alternative is
uniquely identified by a pair <origin,alternative> (i.e.,
<(a1,…,an),(a1’,…,an’)>).6 On the other hand, if we cope
with an update to an evaluator tuple or to a proposal of
insertion, the old tuple is uniquely identified by its ex-
plicit values (i.e., (a1,…,an)). In order to deal with this case
within the above pattern, in such cases we assume that
the old tuple is specified by the pair <(a1,…,an),(a1,…,an)>.

The propose_update operation first checks the appli-
cability of the proposal operation, through the admissi-
ble_propose_update routine, which also checks the tem-
poral consistency of data.

Definition 4.1.1: admissible_propose_update. Given a
relation r∈DB_Evaluators with schema R=(A1,…,An|Te),
let A stand for (A1,…,An), and let <(A1, …,An), (A1, …,An|
Tp)> be the type of pu(r). We define admissi-
ble_propose_update, applied to an operation pro-
pose_update(r,<(a1,...,an),(a1’,...,an’)>,(a1”,...,an”|pnew,
tvt_new)), as follows:
admissible_propose_update(
 propose_update(r,<(a1,...,an),	

(a1',...,an')>,	
 (a1'',...,an''|pnew,tvt_new))	
):	

6 Since in our model we may have value-equivalent alternatives which

belong to different Update-proposals, a given alternative can be uniquely
identified only if also the Update-proposal it belongs to is specified. Since
each Update-proposal in a set of Update-proposals is uniquely identified
by its origin, we specify a given alternative through the pair <origin, al-
ternative>. Finally, notice that, since we disallow value-equivalent alter-
natives to the same origin (see Condition 3.2.3.2), the implicit attributes
are not needed to identify it.

8 IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, MANUSCRIPT ID

	

(1) (∃x∈r	
 :	
 (x[A]=(a1,...,an)	
 ∧ 	
 current(x))	
 ∨ ∃x∈pi(r)	
 :	

(x[A]=(a1,...,an)	
 ∧ 	
 current(x)))	
 ∧	

(2) (∃up∈pu(r)	
 :	
 (origin(up)=(a1,...,an) ∧
∃	
 y	
 ∈	
 alternatives(up)	
 :	
 (y[A] = (a1',…,an')	
 ∧	
 	

	
 	
 current(y)) ∨ (a1,...,an)=	
 (a1',…,an'))	
) ∧
(3) ∀k∈ r	
 	
 ((k[A]= (a1'',...,an'')	
 ∧	
 current(k)) ⇒

(a1'',...,an'')=(a1,...,an)) ∧
(4) 	
 pnew	
 ∈ Proposers♦	

A proposal of update is admissible if a conjunction of
four conditions (above tagged as (1)-(4)) holds:
(1) (a1,...,an) identifies a tuple x in the evaluator relation r

or in the proposal of insertion set pi(r) and such a tu-
ple is current;

(2) either (i) the input <(a1,...,an),(a1’,...,an’)> identifies a
current alternative of an Update-proposal up in pu(r),
or (ii) it identifies a tuple in r or (iii) in pi(r) (given the
convention on the input format we have discussed
above, the condition (a1,...,an)=(a1’,...,an’) holds exactly
in cases (ii) and (iii));

(3) there is no current tuple k∈r which is value equivalent
to the new proposal (a1’’,...,an’’), except (possibly) the
origin itself. In such a case, the proposal concerns an
update to the valid time of the origin. This condition is
used to disallow a new proposal (a1’’,...,an’’| pnew , tvt_new)
which is value equivalent to a current tuple t’ in the
evaluator level relation, which is not the origin of the
Update-proposal to be modified. In fact, if accepted,
the new proposal would be value equivalent to t’, and
value-equivalent tuples are not admitted in r;

(4) the proposer pnew belongs to the set of proposers.
In order to simplify the definition of propose_update,

we introduce a function to create Update-proposals.
Definition 4.1.2: create_up. Given a relation in

DB_Evaluators with schema R=(A1,…,An|Te), create_up
takes as an input an origin o defined on the schema
(A1,…,An) and a set {alt1,…,altm} of (non-value-equivalent)
alternatives on the schema (A1,…,An|Tp), and gives as an
output an Update-proposal of type <(A1, …,An), (A1,
…,An|Tp)> having o as an origin and {alt1,…,altm} as al-
ternatives, i.e.,

create_up(o,{alt1,…,altm})	
 =<o,Alt(alt1,…,altm)>. ♦
We can now define our operator to propose updates.
Note that the function current returns true if the tuple

has the UC value in its transaction time (i.e., it is present
at the current time).

In the formula, we assume the standard “nesting” pol-
icy for the scope of the variables in the conditions.

Definition 4.1.3: propose_update. Given a relation
r∈DB_Evaluators with schema R=(A1,…,An|Te), let A
stand for (A1,…,An), let <(A1, …,An), (A1, …,An|Tp)> be
the type of pu(r). We define propose_update as follows:
propose_update(r,	
 <(a1,...,an),	
 (a1’,...,an’)>,	
 (a1”,...,an”	
 |	
 pnew,	

tvt_new)):	

if(admissible_propose_update(propose_update(r,<(a1,...,an),	

(a1’,...,an’)>,(a1’’,...,an’’|	
 pnew,	
 tvt_new))))	
 then	

begin	

(1)	
 if	
 (¬∃ up	
 ∈	
 pu(r)	
 :	
 origin(up)=(a1,...,an)) then	
 	

	
 pu(r)pu(r)∪{create_up((a1,...,an),{(a''1,...,a''n	
 |	

{pnew}×{UC}×tvt_new)})}
(2)	
 else	
 if	
 (∃ up	
 ∈	
 pu(r)	
 :	
 (origin(up)=(a1,...,an) ∧ ∀y	

∈alternatives(up)	
 y[A]≠(a1'',...,an'')	
)) then	

	
 pu(r)pu(r)	
 −{up} ∪ {create_up((a1,...,an),	
 alterna-­‐

tives(up)	
 ∪ {(a1”,...,an”|	
 {pnew}×{UC}×tvt_new)})}	

(3)	
 else	
 if	
 (∃ up	
 ∈	
 pu(r)	
 :	
 (origin(up)=(a1,...,an) ∧ ∃	
 y	
 ∈	
 al-­‐
ternatives(up)	
 :	
 y[A] = (a1'',...,an'')	
 ∧ 	
 pnew	

∉y[Proposer])) then	
 	

	
 pu(r)pu(r)−{up}∪{create_up((a1,...,an),	

alternatives(up) − y	
 ∪ {(a1’’,…an’’|y[Tp]	
 ∪	

{pnew}×{UC}×tvt_new)})}

(4)	
 else	
 if	
 (∃ up	
 ∈	
 pu(r)	
 :	
 (origin(up)=(a1,...,an) ∧ ∃	
 y	
 ∈	
 al-­‐
ternatives(up)	
 :	
 y[A] = (a1'',...,an'')	
 ∧ 	
 pnew	
 ∈ y[Proposer]	

)) then	
 	

	
 pu(r)pu(r)−{up}∪{create_up((a1,...,an),	

alternatives(up) − y	
 	
 ∪ {(a1’’,…an’’|y[Tp]	
 –	
 	
 {pnew}×	

uc_ts(πatvpnew(y)[T])	
 ∪ 	
 {pnew}×{UC}×tvt_new)})}	

end♦	

First, the admissibility of the update proposal is

checked. If admissibility holds, four different cases must
be considered (otherwise the operation has no effect, and
an appropriate warning may be signaled):
(1) the input origin (a1,...,an) does not identify any already

existing Update-proposal up∈pu(r); in such a case a
new Update-proposal is inserted into pu(r), having as
an origin the input origin (a1,...,an) and having the in-
put proposal as the (only) alternative. Notice that the
new triple Tp of the alternative has the input pnew as a
proposer, UC as a transaction time, and the input tvt_new
as a valid time (i.e., it is obtained by performing the
Cartesian product {pnew}×{UC}×tvt_new);

(2) the input (a1,...,an) identifies an already existing Up-
date-proposal up∈pu(r), and there is not any alterna-
tive proposal in up which is value equivalent to the
current proposal (a1’’,...,an’’). In such a case the new al-
ternative (a1’’,...,an’’| {pnew}×{UC}×tvt_new) is added to the
already existing alternatives of up;

(3) the input (a1,...,an) identifies an already existing Up-
date-proposal up∈pu(r), the input (a1’’,...,an’’) identifies
an existing alternative proposal in up, but such an al-
ternative has not been proposed by the proposer pnew.
In such a case the alternative is updated with a new
triple, which contains the new temporal information
and the new proposer (i.e., {pnew}×{UC}×tvt_new). Notice
that adding (a1’’,...,an’’) as a new alternative is not pos-
sible, since value-equivalent alternatives are not ad-
mitted (see Condition 3.2.3.2);

(4) the input (a1,...,an) identifies an already existing Up-
date-proposal up∈pu(r) and the proposer pnew has al-
ready proposed an alternative of up value equivalent
to (a1’’,...,an’’). In such a case, pnew proposes to change
the valid time associated with the tuple. Thus, (1) the
old triples having pnew as a proposer must be made not
current (henceforth: must be “closed”), and (2) all the
triples containing the new bitemporals must be in-
serted – as in case (3). The closure is obtained by re-
moving all the old triples whose proposer is pnew and
whose transaction time is UC: πatv	
 selects all the tuples
whose proposer is pnew, and uc_ts is a function that
gives as an output the set of all bitemporal chronons
(UC, cv) (i.e., all chronons having UC as their transac-
tion time) from the bitemporal timestamp of the tuple,
defined as in BCDM [2,8].
Example. The proposal of update issued by proposer

p2 at step 6 is coped with in our approach as pro-
pose_update(INDEP, <(Poland, dictatorship), (Poland,
dictatorship)>, (Poland, monarchy | p2, [1025,1595])). In

ANSELMA ET AL.: EXTENDING BCDM TO COPE WITH PROPOSALS AND EVALUATIONS OF UPDATES 9

particular, proposer p2 issues a proposal of update to the
proposal issued by p1 at step 3, which refers to the tuple
(Poland, dictatorship) in the DB_Evaluators relation IN-
DEP. The proposal of update is admissible and branch (2)
in formula 4.1.3 is then taken. Fig. 2(G) shows the effect of
such an operation, at transaction time 7 (see the new al-
ternative of the origin (Poland, dictatorship)). ♦

It is worth noticing that, although we cope with chains
of proposals of update, we do not explicitly store the
whole chaining of updates, since we directly relate each
proposal to the original tuple to be modified (and not to
the alternative proposal it directly modifies). This is a de-
liberate choice we made to simplify both the data model
and the definition of the algebraic operations.

4.2 Evaluator operations
In our approach, evaluators can reject or accept proposals
in DB_Proposers. Since we want to retain the whole data-
base history, a rejected proposal is not physically deleted
from DB_Proposers; instead, it is made not current by
“closing” its implicit attributes: i.e., the triples with UC as
a transaction time have to be removed (compare the
transaction times [5,UC] and [5,5] of the second alterna-
tive of (Poland, dictatorship) in Fig. 2(E) and in Fig. 2(F),
representing the rejection of the alternative itself at step
5). On the other hand, the acceptance of a proposal is
used by evaluators to make a given current proposal ef-
fective, i.e., to execute it on the DB_Evaluators relation.
Notice that, besides causing a modification of
DB_Evaluators, the acceptance of a proposal could also
have some effects on DB_Proposers, since proposals that
are alternatives of the accepted one need to be “closed”.

Now we define the operation accept_update of accep-
tance of a proposal of update. Accept_update is used by
evaluators to update DB_Evaluators according to the
given proposal. Only proposals that are current may be
accepted by evaluators. As anticipated, the acceptance of
a proposal of update must “close” the alternative propos-
als. Moreover, the accepted tuple as well as the deletion
and/or insertion proposals concerning the tuple itself
must be “closed”. Such operations are performed through
the delete_alternatives routine.

The arguments of the accept_update operation are the
DB_Evaluators relation r to be modified, the explicit part
of the selected alternative <(a1,...,an),(a1’,...,an’)> of an Up-
date-proposal in pu(r), the selected valid time tvt (notice
that different proposers may have proposed different
valid times for the same explicit part of the proposal), and
the evaluator e.

As a first step, admissible_accept_update is invoked in
order to check the acceptability of the operation, consider-
ing also the temporal consistency of data. Notice that,
since the data stored in the database could change, it is
possible that a proposal is admissible (i.e., it is consistent
with the status of DB_Evaluators) when it is issued, but it
is no longer admissible at acceptance time. Thus some
checks have to be repeated at acceptance time.

Definition 4.2.1: admissible_accept_update. Given a
relation r∈DB_Evaluators with schema R=(A1,…,An|Te),
let <(A1, …,An), (A1, …,An|Tp)> be the type of pu(r); we

define admissible_accept_update as follows (let A stand
for A1,…,An):
admissible_accept_update(
 	
 accept_update(r,	
 <(a1,...,an),	

(a1',...,an')>,	
 e,	
 tvt)	
 	
):	

(1)	
 	
 ∃ up∈pu(r)	
 :	
 origin(up)=(a1,...,an) ∧
(2) ∃y	
 ∈	
 alternatives(up)	
 :	
 y[A] = (a1',...,an')	
 ∧ ∃	
 p	
 :	
 {UC}×tvt	

=	
 uc_ts(πatvp(y)[T])	
 ∧
(3) ∀ z∈r	
 	
 (z[A]=(a1',...,an')	
 ∧	
 current(z) ⇒

(a1',...,an')	
 =(a1,...,an)) ∧
(4) e∈Evaluators♦	

The operation is admissible if the conjunction of four
conditions holds:
(1) the input origin (a1,...,an) identifies an Update-proposal

up∈ pu(r);
(2) (a1’,…,an’) identifies a current alternative of up, having

tvt has its valid time;
(3) there is no current tuple z∈r which is value equivalent

to the chosen alternative (a1’,...,an’), except (possibly)
the origin itself (see the comments to Definition 4.1.1,
part (3));

(4) e is an evaluator.
We can finally define the accept_update operation.
Definition 4.2.2: accept_update. Given a relation

r∈DB_Evaluators with schema R=(A1,…,An|Te), let <(A1,
…,An), (A1, …,An |Tp)> be the type of pu(r); we define ac-
cept_update as follows (let A stand for A1,…,An):
accept_update(r,	
 <(a1,...,an),	
 (a1',...,an')>,	
 e,	
 tvt)
if	
 (admissible_accept_update(accept_update(r,	
 <(a1,...,an),	

(a1’,…,an’,)>,	
 e,	
 tvt)))	
 then	

begin	

(1)	
 	
 if	
 (¬∃x∈r	
 :	
 x[A]=(a1,...,an) ∧	
 current(x))	
 ∧ (∃y∈pi(r)	
 :	

y[A]	
 =	
 (a1,...,an)	
 ∧ 	
 current(y)) then	
 	
 	

	
 	
 	
 insertPV(r,(a1’,…,an’),	
 e,	
 tvt);	
 	

	
 	
 	
 	
 delete_alternatives(r,	
 (a1,...,an))	

(2)	
 else	
 if	
 (∃x∈r:	
 x[A]=(a1,...,an) ∧ current(x)	
) then	

deletePV(r,	
 (a1,...,an));	
 	

insertPV	
 (r,(a1’,…,an’),	
 e, tvt);	
 	

delete_alternatives(r,	
 (a1,...,an))	

end♦	

where deletePV and insertPV are straightforward adapta-
tions of the BCDM operations of insertion and deletion to
cope also with evaluators.

If the operation is admissible, two cases must be dis-
tinguished:
(1) the evaluator is accepting an update to a proposal of

insertion. In such a case, the accept_update operation
inserts into r the new tuple and “closes” the Update-
proposal up and (possibly) proposals of insertion and
deletion concerning (a1,...,an) (through de-
lete_alternatives). Since the update concerns a new tu-
ple proposed for insertion, in this case, no tuple needs
to be deleted from the evaluator relation r;

(2) the evaluator is accepting an update to a tuple in r. In
such a case, the accept_update operation first deletes
the tuple (a1,...,an) from r, and then performs the same
operations as in case 1 above.
Example. Referring to our running example, at step 9

e1 accepts the proposal of update issued by proposer p2 at
step 6 through an operation accept_update(INDEP, <(Po-
land, dictatorship), (Poland, monarchy)>, e1, [1025,1595]).
The accept operation is admissible and the branch (2) in
formula 4.2.2 is taken. The accept_update routine first logi-
cally deletes (using deletePV) the tuple (Poland, dictator-

10 IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, MANUSCRIPT ID

	

ship) from INDEP and then calls insertPV to insert into
INDEP the chosen proposal. Moreover, accept_update also
executes the delete_alternatives routine to “close” such an
Update-proposal. Fig. 2(I) reports the resulting Update-
proposal in pu(INDEP) and the updated content of the re-
lation INDEP after the acceptance at step 9. ♦

4.3 Properties of manipulation operations
In most cases (consider, e.g., TSQL2) temporal approaches
have been devised in such a way to be a consistent exten-
sion of conventional ones [8], in order to guarantee
interoperability with pre-existent approaches. Since our
approach extends BCDM, we might aim at providing a
consistent extension of BCDM manipulation operators.
Unfortunately, such a property cannot hold for our ap-
proach: since in the proposal vetting context direct inser-
tion/deletion/update operations are not supported7,
BCDMPV manipulations operations cannot be a consistent
extensions of BCDM.

 Nevertheless, we devised our approach in such a way
that the following (less strict) property holds:

Property 4.3.1: “Proposal vetting” consistent exten-
sion of BCDM. If all users are both evaluators and pro-
posers, our model is a “proposal vetting” consistent exten-
sion of the BCDM model (considering data in
DB_Evaluators, and neglecting the “Evaluator” implicit
attribute), since each manipulation operation OpB in
BCDM can be performed as a pair of operations <pro-
pose_Op; accept_Op> in our approach, leading to the
same results, for the data in DB_Evaluators only. ♦

5 RELATIONAL ALGEBRA
Besides manipulation operation, also query operators
must be provided, in order to support the possibility of
querying data, selecting and joining them. They can help
evaluators in taking their acceptance/rejection decisions,
as well as proposers in proposing updates to data. For in-
stance, in step 8 in the example, an evaluator requires
joining the INDEP and CAPITAL tables in order to “re-
construct” proposals concerning the independence of Po-
land when its capital was Cracow. Additionally, since the
evaluator requires that only current proposals are taken
into account, also a form of temporal selection on the
transaction time is involved in the query at step 8.

Since in this paper we operate at the semantic level,
the query language for our extended data model is pro-
vided at the algebraic level, as an extension of BCDM
temporal algebra8.

We have extended the BCDM model by including the
evaluator (or the proposer) as an implicit attribute. We
therefore extend the BCDM algebraic operators to cope

7 As a matter of fact, we could trivially extend our approach to let
evaluators directly insert and delete tuples in relations in DB_Evaluators.
With such an extension, our approach is trivially a consistent extension of
BCDM, as regards manipulation operations.

8	
 Notice that, in our approach, algebraic operators are used only to
query data, since the tuples in the relations resulting from the application
of algebraic operators cannot be directly accepted/rejected by evaluators.
In fact, such operations would be meaningless, since accepted proposals
must conform the schema of data at the evaluators’ level.

with the new implicit attribute. As an example, we pro-
pose the natural join operator on DB_Evaluators relations.
The other basic Codd’s operators (union, difference, selec-
tion and projection) can be defined in a similar way.

Definition 5.1: natural join ⋈E. Given two relations
r1∈DB_Evaluators and r2∈DB_Evaluators with schema
R1=(A1,…,An, B1,…,Bm | Te) and R2=(A1,…,An, C1,…,Ck |
Te) respectively, natural join ⋈E provides as an output a
relation over the schema (A1,…,An, B1,…,Bm, C1,…,Ck | Te)
defined as follows (let A stand for A1,…,An, B for B1,…,Bm
and C for C1,…,Ck):
r1	
 ⋈E	
 r2	
 =	
 {	
 z	
 :	
 ∃t1∈ r1,	
 ∃t2∈r2	
 :	
 z[A]=t1[A]=t2[A]	
 	
 ∧ 	

z[B]=t1[B]	
 ∧ 	
 z[C]=t2[C]	
 ∧ 	
 z[Te]=t1[Te]∩t2[Te] ∧ 	
 z[Te]≠∅ }.♦	

Reducibility is one of the most important properties in the
temporal database area, to grant that the semantics of ba-
sic algebraic operators is preserved by the temporal ex-
tended operators [8,17]. In order to prove that our ex-
tended algebraic operators are reducible to BCDM ones,
we used the evaluator-slice (and proposer-slice, which is
analogous, see Section 3) operator:

 πE-­‐atve(r)={z	
 :	
 ∃x∈r	
 :	
 z[A]=x[A]	
 ∧	
 z[T]={(t,v)	
 :	
 (e,t,v)∈x[Te]}	

∧	
 z[T]≠∅}.	

Property 5.2: Reducibility. Our algebra for
DB_Evaluators, proposals of insertion, and proposals of
deletion reduces to BCDM algebra, i.e., for each algebraic
unary operator OpE in our model, and indicating with
OpB the corresponding BCDM operator, for each relation
r in DB_Evaluators, and for any evaluator e, the following
holds (the analogous holds for binary operators):

πE-­‐atve(OpE(r)) = OpB(πE-­‐atve(r)). ♦
Additionally, the treatment of proposals of update

demands for the definition of new algebraic operators op-
erating on sets of Update-proposals.
We present here the natural join operator on sets of Up-
date-proposals. The other basic operators (union, differ-
ence, selection and projection) can be defined in a similar
way. We characterize the output of natural join as a set of
Update-proposals z of the general form <origin(z), alter-
natives(z)>, that can be defined by alternative cases. In
the formula, we assume the standard “nesting” policy for
the scope of the variables in the conditions.

Definition 5.3: natural join ⋈PV. Given the sets of Up-
date-proposals s1=pu(r1) and s2=pu(r2) corresponding to
relations r1∈DB_Evaluators and r2∈DB_Evaluators with
schema R1=(A1,…,An, B1,…,Bm | Te) and R2=(A1,…,An,
C1,…,Ck | Te) respectively, let the types of s1 and s2 be
<(A1,…,An,B1,…,Bm), (A1,…,An, B1,…,Bm| Tp)> and <(A1,…,
An, C1, …, Ck), (A1,…,An, C1,…,Ck| Tp)> respectively.
Natural join ⋈PV provides as an output a set of Update-
proposals defined as follows (let A stand for A1,…,An, B
for B1,…,Bm and C for C1,…,Ck):
s1	
 ⋈PV	
 s2	
 =	
 {	
 <origin(z),alternatives(z)>	
 :	

if	
 ∃up1∈s1,	
 ∃up2∈s2	
 :	
 origin(up1)[A]=origin(up2)[A]	
 ∧
∃alt1∈alternatives(up1),	
 ∃alt2∈alternatives(up2)	
 :	

alt1[A]=alt2[A]	
 ∧ alt1[Tp]∩alt2[Tp]≠∅	
 then
origin(z)[A]	
 origin(up1)[A];	
 origin(z)[B]	
 ori-­‐
gin(up1)[B]; origin(z)[C]	
 origin(up2)[C];	

alternatives(z)	
 =	
 {alt	
 :	
 	

	
 	
 alt[A]	
 alt1[A]; alt[B]	
 alt1[B]; alt[C]	
 alt2[C]; 	
 	

	
 	
 alt[Tp]	
 alt1[Tp]	
 ∩ alt2[Tp]}} ♦	

ANSELMA ET AL.: EXTENDING BCDM TO COPE WITH PROPOSALS AND EVALUATIONS OF UPDATES 11

The result of proposal-vetting natural join is a set of
Update-proposals built as follows. Two Update-proposals
up1 and up2 with origins value equivalent on the common
attributes A1,…,An are merged into one Update-proposal
having as origin the standard natural join of the origins.
The alternatives of the new tuple are built by performing
the standard natural join on the explicit attributes and the
intersection of the implicit attributes. Only if this intersec-
tion is not empty the alternative is stored as an output.

We have defined our algebraic operators on sets of
Update-proposals in such a way that they have the prop-
erty of reducibility [8] with respect to BCDM algebraic
operators. Proposals of update cannot be directly mod-
eled within BCDM, mainly due to the fact that (i) they
cope with alternative pieces of information (while in
BCDM only conjunctive information can be coped with),
and (ii) they also model proposers (as an implicit attrib-
ute). Thus, reduction to BCDM involves, for each Update-
proposal, the choice of at most one of its alternatives, and
the choice of a proposer. After these choices, each result-
ing Update-proposal (having just one alternative) can be
easily mapped onto BCDM, by converting it onto a tuple
of a relation with the proper schema. The alternative-slice
operator is introduced in order to select alternatives. Spe-
cifically, the reduction to at most one alternative for each
Update-proposal is obtained by fixing a specific value for
each one of the attributes. The proposer-slice operator πPV-­‐
atvp	
 is used for selecting the proposer.

Note. Here we follow the methodology usually
adopted in order to reduce BCDM (and temporal ap-
proaches in general) to the standard relational model. In
that case, a specific time is specified as a slicing criterion
and the temporal dimension is removed. In our approach,
a specific set of values for the attributes and one proposer
are chosen, so that the “alternative” and the “proposer”
dimensions are removed.

Definition 5.4: Alternative-slice operator on sets of
Update-proposals. Given a set of Update-proposals s de-
fined over the type <(A1,…,An), (A1,…,An|T)>, the result
of the alternative-slice operator µa1’,…,an’(s) is a BCDM rela-
tion defined over the schema (A1,…,An, A1’,…,An’|T)
(where attributes A1’,…,An’ are a renaming of A1,…,An
respectively) defined as follows:

µa1’,…,an’(s)={(a1,…,an,a1’,…,an’	
 |	
 t)	
 :	
 	

∃up∈s	
 :	
 (a1,…,an)=origin(up)	
 ∧	
 	

(a1’,…,an’	
 |t)∈alternatives(up)}♦	

Property 5.5: Reducibility of BCDMPV algebra on sets

of Update-proposals to BCDM algebra. BCDMPV alge-
braic operators on sets of Update-proposals are reducible
to BCDM algebraic operators, i.e., for each algebraic
unary operator OpPV in our model, and indicating with
OpB the corresponding BCDM operator, for each set of
Update-proposals s, the following holds (the analogous
holds for binary operators):

µa1’,…,an’(πPV-­‐atvp(OpPV(s))) = OpB(µa1’,…,an’(πPV-­‐atvp(s))),
where a1’,…,an’ are arbitrary values in the domains of the
respective attributes and p is a proposer.♦

Finally, given the fact BCDM algebraic operators re-
duce to relational algebra operators [8], also Corollary 5.6
trivially holds.

Corollary 5.6: Reducibility of BCDMPV algebra to re-
lational algebra. The BCDMPV algebraic operators are re-
ducible to relational algebra operators. ♦

For the sake of brevity, we do not report the exhaustive
listing of all our extended algebraic operators. However,
it is worth mentioning that in our extended algebra we
also provide: (i) extended versions of algebraic operators
to cope with “mixed” cases in which sets/relations have
different types (e.g., natural join between proposals of
update having different implicit attributes or between
proposal of updates and Evaluator relations); (ii) slicing
operators (e.g., πPV-­‐atvp); (iii) reduction operators, that re-
move one of the implicit attributes; (iv) temporal selection
operators (σT).

Example. The query at Step 8 in the Example can be
expressed as follows:
σT

TT=UC	
 (σNation=’Poland’ ∧City=’Cracow’(INDEP ⋈PV CAPITAL))

where ⋈PV is the natural join between two sets of pro-
posal tuples, σ is the standard selection on non-temporal
attributes, and σT is the temporal selection operator, used
to select only current tuples. ♦

6 IMPLEMENTATION AND EXTENSIONS
6.1 Implementation
As a proof of concept we have developed a prototypical
implementation [24] of our approach on top of TIMEDB
[19], a TSQL2-like system based on BCDM semantics. We
have implemented a simple version of the data model de-
scribed in this paper, in which only transaction time is
considered, and manipulation operations are provided.
(The realization of algebraic operators in such a tool is
one of the goals of our future work.) Our implementation
has been based on the general architecture for temporal
DBs described in [8, Chapter 24]. In particular, an addi-
tional layer has been added on top TIMEDB to support
proposal vetting. The parser has been extended to cope
with the extended syntax. Thanks to the reducibility and
consistent extension properties, in case no proposal vet-
ting facility is used, standard TIMEDB operations are
provided. On the other hand, proposal-vetting operations
are implemented by taking advantage as much as possi-
ble of the operations provided by TIMEDB. The interpre-
tation of DDL commands has been extended to associate
with each relation three additional relations, implement-
ing the set of proposals of insertion, deletions and up-
dates. Such additional relations are stored as TIMEDB
temporal relations, and are managed by the additional
layer. Proposal and evaluation operations are defined in
the additional layer, and operate on such relations (as
well as on the reference relations, in the case of accep-
tance). The additional computational complexity of our
implementation (with respect to TIMEDB) is quite lim-
ited. Besides an extension to the parsing, the additional
cost is due to the need to store and manipulate the addi-
tional relations for proposals (which is a necessary cost
for any approach to proposal vetting, which involves
storing proposals waiting for an evaluation). Manipula-
tion operations involve the admissibility checks, which
require a check of the proper relations. Notice, however,

12 IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, MANUSCRIPT ID

	

that admissibility checks are also required by TIMEDB
(e.g., to check for the existence of the tuple to be modi-
fied). On the other hand, the acceptance of a proposal in-
volves a significant extra-workload, since the “de-
lete_alternatives” function is required to check the three
proposal relations to “close” the alternatives of the ac-
cepted proposal. However, this cost is due to the intrinsic
semantics of the operation of acceptance, in the context of
mutually exclusive alternatives.

6.2 Granularity of operations
In this paper, we aim at proposing an approach which

is reducible to BCDM. Thus, we have defined the manipu-
lation and algebraic operations at the same granularity
used in BCDM, i.e., we consider tuples as the primitive
entities. However, the granularity at which proposals can
be issued and evaluated may be either finer or coarser.

As an example of a finer granularity, a proposal could
be accepted by evaluators only as concerns a part of its
temporal extent. From the technical point of view, this
possibility can be accomplished by simply modifying the
admissible_accept_update definition (Definition 4.2.1) in
this way: in line (2) ∃ p : {UC}×tvt = uc_ts(πatv

p(y)[T])
should be replaced by ∃ p : {UC}×tvt ⊆ uc_ts(πatv

p(y)[T])
(i.e., ⊆ instead of =) to state that a subset of the temporal
extent of a proposal can be accepted.

Our approach can also be extended to cope with opera-
tions at a coarser level (i.e., proposals and evaluations
taking into account sets of tuples) in at least two different
ways. The simplest way is to import in our approach the
standard notion of “transaction” of DBMS, so that pro-
posers can enclose a sequence of proposals in a transac-
tion, and, similarly, evaluators can enclose a sequence of
acceptances/rejections. This extension is trivial, since the
standard transaction mechanism can be used, and each
enclosed proposal/evaluation operation retains exactly
the semantics discussed in Section 4. Additionally, we
might also support proposers with the possibility of de-
claring a sequence of proposals as a unique “macro-
proposal”, to be evaluated (either accepted or rejected) as
an atomic piece of information by evaluators. The treat-
ment of macro-proposals can be achieved by extending
our data model with additional (system-managed) attrib-
utes to store, for each enclosed proposal, its “macro-
proposal” identifier and its order in the sequence. Evalua-
tion operations operate on “macro-proposals”. (For the
sake of generality, “atomic” proposals can be treated as
“macro-proposals” containing just a proposal). Notably, a
“macro-proposal” is simply interpreted as the sequential
execution of the proposals constituting it, where each
constituting proposal retains the basic semantics pre-
sented in Section 4. Transactions can also be used, to
grant that both “macro-proposals” and their evaluations
are treated as atomic operations by the DBMS.

6.3 Multiple levels of proposers/evaluators
Our model can be extended to deal with more than

two levels of users. For example, in CASE approaches
such as [25] three (and more) levels are supported: the
level of developers, the level of integrators of modules

and the level of supervisors for releasing a final version.
Of course, different policies can be supported, involving
different extensions to our basic approach. One possible
policy enforces a rigid ordering of levels, so that, to be-
come effective, a proposal issued at level i must be ap-
proved, in the ordering of levels, by all higher levels (e.g.,
developers’ proposals must be accepted by integrators
first, and then by supervisors). Such a policy can be
achieved as a generalization of our approach as discussed
below. n different levels of users have to be defined. Level-
1 users can only propose operations, while level-i users
can evaluate proposals from level i-1 (and possibly issue
new proposals). Rejections “close” proposals, while ac-
ceptances “propagate upward” proposals. Thus, the se-
mantics of an acceptance by a user u at level i of a pro-
posal p issued by users {u1,…,uk} involves the proposal of
p by users {u1,…,uk,u} at level i+1 (except in the case i=n,
for which the semantics of our evaluators operations is
maintained unchanged). From a semantic (abstract) point
of view, such an extension would require, for each rela-
tion, a set of proposals of insertion, deletion and update at
each level (reference relations correspond to the top
level). This strategy enables the realization of the exten-
sion without major qualitative changes to the data model.
However, the extension to multiple levels clearly implies
substantial changes to the “process-level” description
(i.e., the Petri Net, in which additional places and transi-
tions would be required to capture the behavior of the
additional user levels.)

7 RELATED WORKS
Computer Supported Cooperative Work (CSCW) is a
widely spread paradigm. In the CSCW time/space matrix
[26], proposal vetting would be classified in the class “dif-
ferent time / different place” of interactions, meaning
that users can interact asynchronously, being in different
physical locations. Such a type of interaction, finalized to
the cooperative modeling / update of shared
data/knowledge, is an important paradigm in Computer
Science, and becomes more and more important and
spread due to the large-scale availability of the Internet.

Some ad-hoc implementations have been built in order
to cope with the proposal vetting phenomenon (consider,
e.g., Citizendium). Additionally, mostly in the Object Ori-
ented DB context, several general approaches have been
developed in order to cope with data versioning and with
some of the issues related to proposal vetting (see, e.g.,
the survey in [27]). Recently, some object-oriented ap-
proaches also consider, besides data versioning, valid and
transaction times (see, e.g., [28-30]). A main difference be-
tween object-oriented approaches and relational ap-
proaches has been pointed-out by Sciore [31, page 425]:
“The relational model has a limited modeling capacity, and so
researchers in historical relations have all being forced to extend
the relational model in some way. On the other hand, object-
oriented models are able to encapsulate the notion of time in
classes. Thus there is no need to develop a new historical object-
oriented model; what we need is a methodology for using these
classes in our existing model”.

ANSELMA ET AL.: EXTENDING BCDM TO COPE WITH PROPOSALS AND EVALUATIONS OF UPDATES 13

A few works have taken into account some form of
support for alternatives within the relational context. For
instance, Sarda and Reddy’s work [32] allows one to rep-
resent events and actions in relational databases. It relies
on the notion of “branching chronons”, which represent
transaction and valid times, associated with a proposi-
tional formula representing the possible occurrence of
events. Although such an approach supports branching
time and the possible evolutions of events, it does not
provide direct support for proposal vetting.

The area of research on probabilistic databases [33] is
(loosely) related to our work. A probabilistic database is
an uncertain database in which possible, alternative
worlds are modeled, each one with an associated prob-
ability. However, neither alternative world evolution, nor
the conditions for selecting one specific alternative (as in
[33]) are directly captured in this framework.

The proposal-vetting process is a kind of workflow, as
shown in Section 2.1: in this direction, workflow ap-
proaches are related to our contribution. In this research
area, attention has been mostly devoted to control flow,
ignoring other perspectives, such as the data-related as-
pects of a workflow execution (while, as already dis-
cussed in Section 2.1, the treatment of data is indeed our
main focus). In fact, “data-centric workflow systems are cur-
rently a research area that deserves more efforts” [34]. A few
contributions to data-centric workflows can be cited. The
work in [35] clarifies the interactions between control
flow and data flow features in business process models,
showing that ignoring data flow features can limit the
flexibility of business process modeling languages. The
work in [36] deals with workflow verification. While most
analysis techniques typically abstract from data and check
for errors such as deadlocks, livelocks, etc., this work
looks for data-flow errors, such as accessing a data ele-
ment that is not yet available. Consistently with our
choice (see Section 2.1), in [36] data-flow representation
relies on Petri Nets and their extensions (see also [37]).
However, workflow verification is far from the scope of
our research. The work in [38], deals with the problem of
interaction between workflow instances, to support
communication and collaboration. It highlights the need
for smaller interconnected workflows starting from a data
model (based on Petri Nets). However this contribution
mainly concerns the composition of the functional part of
the workflow, while the data necessary to actually exe-
cute it are considered secondary. The system in [39] tries
to overcome this gap, and explicitly represents data
(needed for composition). The workflow is modeled as a
Petri Net, and a semantic description of data is provided
by means of ontologies.

The research area of temporal workflow management
systems is also (loosely) related to our work. In fact, tem-
poral workflows can deal with the execution of different
versions of a workflow schema (see e.g. [40], which deals
with the representation of temporal clinical workflows).
However, the contributions in this area typically do not
pay attention to how versions can be built through a pro-
posal vetting process.

To summarize, none of the above approaches provides
specific support to identify the admissibility conditions
for the manipulation operations, or to enforce the correct
(i.e., consistent with the TDB theory) data manipulation
semantics after proposal acceptance, or any support to a
correct treatment of algebraic queries on the stored rela-
tional data. Thus BCDMPV is the only approach in the lit-
erature which directly copes with the proposal vetting
phenomena at the semantic (in the sense of BCDM [8]; see
footnote 4) level, and in the purely relational context. In-
deed, since data-centric workflows are a rapidly evolving
research area, we envision the possibility that such ap-
proaches can be adopted for developing an implementa-
tion of our semantic framework, at least as regards the
proposal and evaluation operations. However, one of the
main focuses of our approach concerns the definition of a
temporal relational algebra for proposal vetting, which is,
to the best of our knowledge, out of the scope of current
research in data-centric workflows. For such a reason, the
implementation we sketched in Section 6.1 is a more tra-
ditional DBMS-based one.

8 CONCLUSIONS
Proposal vetting is an emerging phenomenon, which

often involves relational DBs (consider, e.g., Citizendium
[3]). We propose BCDMPV, a domain- and application-
independent and theoretically grounded solution to pro-
posal vetting in the relational context. In order to cope
with the time of proposals/evaluations (transaction time),
and, possibly, with the valid time of data, BCDMPV is
grounded on the TDB theory, and, specifically, on the
BCDM model. BCDMPV extends BCDM to support pro-
posal vetting. In particular, the treatment of alternative
proposals demands a major departure from the tradi-
tional relational model in general, and from BCDM in
particular. We extended BCDM in such a way that (i)
BCDMPV data model and (ii) BCDMPV algebra are reducible
to the BCDM ones, and that (iii) BCDMPV manipulation op-
erations are a proposal vetting consistent extension of BCDM
ones. In such a way, we grant for the generality of our
approach, for its implementability (on top of any TDB
approach based on the BCDM semantics), and for the
interoperability of such implementations with pre-
existent TDBs and standard relational approaches.

ACKNOWLEDGEMENTS
The authors are very indebted to R.T. Snodgrass, C.
Dyreson, C. Combi, and W.M.P. van der Aalst for many
useful comments and suggestions about a preliminary
version of the work discussed in this paper. They are also
very grateful to F. Grandi, S. Ram, and J. Roddick for
their suggestions concerning references to related works.

REFERENCES
[1] http://www.wikipedia.org, Wikipedia, the free encyclopedia (URL last

accessed on 12/07/2009).
[2] C.S. Jensen, R.T. Snodgrass, Semantics of Time-Varying Information,

Information Systems, 21(4), 311–352, 1996.

14 IEEE TRANSACTIONS ON DATA AND KNOWLEDGE ENGINEERING, MANUSCRIPT ID

	

[3] http://www.citizendium.org/, Citizendium, a citizens' compendium
of everything (URL last accessed on 12/07/2009).

[4] P. Terenziani, S. Montani, A. Bottrighi, G. Molino, M. Torchio, Clinical
guidelines adaptation: managing authoring and versioning issues,
LNAI 3581, Springer-Verlag, Berlin, 151-155, 2005.

[5] L. Liu, M. Tamer Özsu (Eds.), Encyclopedia of Database Systems.
Springer US, 2009.

[6] Y. Wu, S. Jajodia, X. Sean Wang: Temporal Database Bibliography Up-
date. Temporal Databases, Dagstuhl: 338-366, 1997.

[7] R.T. Snodgrass, Developing Time-Oriented Database Applications in
SQL, Morgan Kaufmann Publishers, Inc., San Francisco, July, 1999.

[8] R. T. Snodgrass (Ed.), The TSQL2 Temporal Query Language. Kluwer
1995.

[9] S.K. Gadia. A seamless generic extension of SQL for querying temporal
data. Technical Report TR-92-02. CS Dept, Iowa State University, 1992.

[10] J. Ben-Zvi. The Time Relational Model. Ph.D. Dissertation, Computer
Science Department, UCLA, 1982.

[11] L.E. McKenzie. An Algebraic Language for Query and Update of Tem-
poral Databases. Ph.D. Dissertation, Computer Science Department,
University of North Carolina at Chapel Hill, 1988.

[12] R.T. Snodgrass. The temporal query language TQuel. ACM Trans. on
Database Systems, 12(2): 247-298, 1987.

[13] C.S. Jensen, L. Mark, N. Roussopoulos. Incremental implementation
model for relational databases with transaction time. IEEE Trans.
Knowl. Data Eng., 3(4): 461-473, 1991.

[14] P. Terenziani. Symbolic User-Defined Periodicity in Temporal Relational
Databases. IEEE Trans. Knowl. Data Eng. 15(2), 489-509, 2003.

[15] P. Terenziani, R.T. Snodgrass. Reconciling Point-Based and Interval-
Based Semantics in Temporal Relational Databases: A Treatment of the
Telic/Atelic Distinction. IEEE Trans. Knowl. Data Eng. 16(5), 540-551
2004.

[16] L. Anselma, P. Terenziani, R.T. Snodgrass. Valid time indeterminacy in
Temporal Relational Databases: A Family of Data Models. Proc. Tempo-
ral Representation and Reasonong (TIME) 2010, 139-145, 2010.

[17] M.H. Böhlen, C..S. Jensen, R.T. Snodgrass. Temporal Compatibility.
pages 2936-2939 in [5].

[18] Oracle Database 10g Workspace Manager Overview. An Oracle White
Paper http://www.oracle.com/technology/products/database/
workspace_manager/pdf/twp_AppDev_Workspace_Manager_10gR2
.pdf (URL last accessed on 05/07/2008).

[19] http://www.timeconsult.com/Software/Software.html (URL last ac-
cessed on 12/09/2009).

[20] C. Combi, G. Pozzi: Architectures for a temporal workflow manage-
ment system. SAC 2004:659-666.

[21] J.L. Peterson. Petri Net Theory and the Modeling of Systems, Prentice
Hall, 1981.

[22] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad. Stochastic Well-
formed Coloured nets and symmetric modeling applications. IEEE
Transactions on Computers, 42(11), 1343 – 1360, 1993.

[23] K.R. Dittrich, R.A. Lorie, Version Support for Engineering Database
Systems. IEEE Trans. Software Eng. 14(4): 429-437, 1988.

[24] A. Vigo. Estensioni alle basi di dati temporali per il supporto alla pro-
posta ed alla valutazione di modifiche di dati, laura degree thesis in
computer science, Università del Piemonte Orientale, 2009.

[25] SUN MICROSYSTEMS, Introduction to the NSE. SUN Part No. 800-
2362-1300 (Mar. 7), 1988.

[26] R. Johansen. GroupWare: Computer Support for Business Teams. The
Free Press, New York, NY, USA, 1988.

[27] R.H. Katz, Towards a Unified Framework for Version Modeling in En-
gineering Databases. ACM Comput. Surv., 22(4), 375-408, 1990.

[28] S. Gançarski, Database Versions to Represent Bitemporal Databases. In.
LNCS, vol. 1677. Springer-Verlag, London, 832-841, 1999.

[29] M.M. Moro, N. Edelweiss, A.P. Zaupa and C.S. Santos, TVQL - Tempo-
ral Versioned Query Language. LNCS, vol. 2453. Springer-Verlag, Lon-
don, 618-627, 2002.

[30] R. Machado, Á. F. Moreira, R. de Matos Galante & M. M. Moro, Type-
safe Versioned Object Query Language; Journal of Universal Computer
Science JUcs, 12(7), 938-957, 2006.

[31] E. Sciore, Using Annotations to Support Multiple Kinds of Versioning in
an Object-Oriented Database System. ACM Trans. Database Syst. 16(3),
417-438, 1991.

[32] N.L. Sarda, P.V. Siva Prasada Reddy, Handling of Alternatives and
Events in Temporal Databases, International Journal of Knowledge and
Information Systems, Springer-Verlag 1(3), 193-227, 1999.

[33] N.N. Dalvi, D. Suciu: Efficient query evaluation on probabilistic data-
bases. VLDB J. 16(4): 523-544, 2007.

[34] C. Combi,	
 Department of Computer Science of the University of Ve-
rona, 2011. (Personal communication)

[35] C. Combi, M. Gambini: Flaws in the Flow: The Weakness of Unstruc-
tured Business Process Modeling Languages Dealing with Data. OTM
Conferences (1): 42-59, 2009.

[36] N. Trcka, W.M. P. van der Aalst, N. Sidorova: Data-Flow Anti-patterns:
Discovering Data-Flow Errors in Workflows. CAiSE, 425-439, 2009.

[37] K. M. van Hee, Information systems engineering: a formal approach,
Cambridge University Press New York, NY, USA, 1994.

[38] W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, J. Wainer: Proclets: A
Framework for Lightweight Interacting Workflow Processes. Int. J. Co-
operative Inf. Syst. (IJCIS) 10(4), 443-481, 2001.

[39] O. Habala, M. Paralic, V. Rozinajová, P. Bartalos, Semantically-Aided
Data-Aware Service Workflow Composition. SOFSEM 2009: 317-328.

[40] C. Combi, M. Gozzi, J.M. Juárez, B. Oliboni, G. Pozzi: Conceptual Mod-
eling of Temporal Clinical Workflows. TIME 2007, 70-81.

Luca Anselma received his PhD in Computer Science from Univer-
sità di Torino in 2006. He is an assistant professor in Computer Sci-
ence at the Università di Torino, Italy. His main research interests
are in the areas of Temporal Reasoning, Temporal Databases,
Model-based Diagnosis and Medical Informatics. He is the author of
more than 30 papers in international journals, books and interna-
tional refereed conferences.

Alessio Bottrighi took his Laurea degree in Computer Science at
the Università del Piemonte Orientale, Italy and his PhD in Computer
Science at the Università di Torino, Italy. He is an assistant professor
at the Computer Science Department of Università del Piemonte
Orientale. His main research interests include Medical informatics,
Decision Support Systems, Temporal Databases, Case-Based Rea-
soning. On these topics, he has published more than 40 peer-
reviewed papers in international journals, books and conference pro-
ceedings.

Stefania Montani received her PhD in Bioengineering from Univer-
sità di Pavia in 2001. She is an assistant professor in Computer Sci-
ence at the Università del Piemonte Orientale, in Alessandria, Italy.
Her main research interests are in the areas of Temporal Databases,
Case-Based Reasoning, Decision Support Systems and Temporal
Reasoning. She is the author of more than 120 papers in interna-
tional journals and international refereed conferences in Artificial In-
telligence and Medical Informatics.

Paolo Terenziani received his Laurea degree in 1987 and his PhD
in computer science in 1993 from Università di Torino, Italy. He is full
professor in computer science with Dipartimento di Informatica, Uni-
versità del Piemonte Orientale “Amedeo Avogadro”, Alessandria,
Italy. He is currently vice-Head of such Department. His research
interests include artificial intelligence (knowledge representation and
temporal reasoning), databases and computer science in medicine.
He has published more than 100 papers on these topics in refereed
journals and conference proceedings.

