&953,%: UNIVERSITA
S v 13'”’1 DEGLI STUDI
| “ A]]Lr l O %ﬁ?ﬁﬁ% DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

The geographical and environmental determinants of genetic diversity for four alpine conifers of
the European Alps

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/125329 since 2016-07-15T11:16:31Z

Published version:
DOI:10.1111/mec.12043
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

30 June 2024



UNIVERSITA DEGLI STUDI DI TORINO

Thisis an author version of the contribution published on:

De RogatisA., Ferrazzini D., Ducci F., Guerri S., Carnevale S., Belletti P.
Genetic variation in Italian wild cherry (Prunus avium L.) as characterised by
NSSR markers
FORESTRY (2013) 86
DOI: 10.1093/forestry/cpt009

The definitive version is available at:
http://forestry.oxfordjournals.org/cgi/doi/10.1093/forestry/cpt009


http://forestry.oxfordjournals.org/cgi/doi/10.1093/forestry/cpt009

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Genetic variation in Italian wild cherry (Prunus avium L.) as characterised by nSSR

markers
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! Research and Experimentation Council on AgricultResearch Centre for Forestry, Arezzo, Italy

ZUniversity of Turin, Department of Agriculture, Festry and Food Sciences, Grugliasco, Italy

Abstract

The main aim of our research was to describe t& kend distribution of genetic variability of wild
cherry Prunus aviunl.) in Italy, using eight nuclear microsatellitearkers. The sampled plants were
grouped in 11 internally homogeneous breeding zodefined according to their ecological and
vegetational conditions. The mean observed hetgostty (H) was 0.573, and the expectedg)(H
0.698. Significant departures from Hardy-Weinbegyilbrium at each locus were found for all
breeding zones (P<0.01). The mean fixation indalgutated taking into account the estimated null
allele frequencies, was 0.075, showing a slightesgof homozygotes.sf(departure of genotype
frequencies within populations from Hartleinberg expectations, commonly used as estimdtor o
genetic differentiation among populations), showednean value of 0.046, indicating a slight,
although significant, differentiation among breefzones. However, in general, it was not possible t
observe a structuring linked to the geographicahtion of the breeding zones. The results of the
study contribute to a better understanding of cwowedge of the wild cherry genetic variation in
Italy, thus making for more efficient programs adha the preservation of biodiversity and for more
rational planning of the management of reproducthagerial. Since our results do not show a clear
structuring of genetic variability within the Itah diffusion area of wild cherry, it is not possilib
draw any indications on Regions of Provenance diglion based only on genetic data, and the

identification of the latter should be based mamtyecological and vegetational features.
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I ntroduction

Wild cherry(Prunus aviuni.) is an important forest tree, usually chardstat by a scattered
distribution. It is used for high quality wood pration, and is of great ecological and naturalistic
importance, being an essential component of seeséind threatened ecosystems, such as mixed
deciduous forest. The species has hermaphrodawefls, usually pollinated by a range of insects,
mainly honeybees and bumblebees. Outcrossing iprtheipal mating system, with self-fertilisation
usually being prevented by gametophytic incompl#titbfVaughan et al. 2008). Seeds are dispersed
by gravity, and birds also play an important role¢heir dissemination. The species can also prapaga
through vegetative reproduction via root suckeriimgiolving up to 65% of individuals in the
population (Vaughan et al. 2007).

The species has a widespread distribution, extgridom the Black Sea to Ireland and Spain,
and from southern Scandinavia to northern Africaltdly it is mainly present in the Po Valley, et
bottom of Alpine valleys and along the Apennines.vfe move to the south the species becomes even
more and more scattered, and only a few isolatdididuals can be found (Ducci 2005). The effects
of the past civilisations, as well as the tradiibsilviculture coppice systems have played a inole
determining this situatiofibucci and Proietti 1997).

Forest trees are static long-lived organisms wigichw under environmental conditions that
are heterogeneous in time and space. Moreover, dreyexposed to many stress factors, most of
which are due to human activities: pollution, clim&hange and habitat fragmentation. In order to
survive these threats, and to persist over timgigh adaptive potential is needed, which is mainly
determined by the within-species genetic diverdyshier and Amaral, 2004). Programmes aimed at
the conservation of forest genetic resources shaddiless the issue of maintenance of this diversity
(Palmberg-Lerche 2001). To this end, knowledge @fagic variation, as well as information on
mating system and pollen and seed dispersal, amfeofutmost importance. These data provide

important insights for preservation and restoratmongrammes, indicating areas of high genetic
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diversity and geographic limits for seed collectitelping breeders to take decisions about crosses
and germplasm management (Marchese et al. 200d)d&imiting the scale at which conservation
actions should be planned (Escudero et al. 2008)th&more, genetic analysis can increase
understanding of the historical processes thattdethe present distribution of a species, while the
preservation of germplasm is extremely importanbrider to meet future climatic, abiotic and biotic
change (Marchese et al. 2007).

Molecular markers are now available which can mteuis with the relevant means to acquire
information on the genetic structure of populaticensd to study the pattern of distribution of withi
species variability. In particular, simple sequenepeats (SSRs, also known as microsatellites) are
commonly used in genetic studies of plant poputatiocSSRs are tandem repeats of short DNA
sequences (1 to 6 base pairs); they are highlynpmiyhic, widely distributed throughout the genome
and codominant. Allelic variation can be detecteitkly using the DNA-polymerase chain reaction
(PCR) technique (Beckmann and Soller 1990).

Microsatellites have been widely used for geneticlies of cherry, although most studies
involved the sweet cultivated forms. Research halided genetic diversity analysis (Dirlewanger et
al. 2002, Winsch and Hormaza 2002, Vaughan anceR2€94, Ohta et al 2005, Guarino et al. 2009,
Lacis et al. 2009, Ercisli et al. 2011), cultivdentification and fingerprinting (Cantini et al. @0
Schiler et al. 2003, Gisbert et al. 2008, Clarké &nbutt 2009, Winsch 2009, Xuan et al. 2009,
Avramidou et al. 2010, Ganopoulos et al. 2010, Geleal. 2010), self-incompatibility and population
genetic structure evaluation and recruitment (Steetsal. 2003, De Cuyper et al. 2005, Kacar et al.
2005, Schiiler et al. 2006, Stoeckel et al. 200@igifian et al. 2006, Marchese et al. 2007, Vaughan et
al. 2007), and mapping genetic linkage (Olmsteaal. 2008).

In ltaly the genetic diversity of wild cherry poptibns is also under threat due to destruction
and restriction of habitat, intercross with swekerey, pests and diseases, low natural regeneration
and competition with other species, deforestagmmtlution, and climate change. Genetic diversity in
wild cherries has been extensively studied becatigs role as a potential gene pool for improving
sweet cherry cultivars (Ducci 2005). Research s ltonducted to assess genetic diversity and the

level of adaptability of different clones (DuccidaRroietti 1997, Santi et al. 1998, Curnel et @D3).
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In this study we surveyed the genetic variabilitywdld cherry throughout the main area of
species distribution in northern and central Italsing eight highly informative nuclear microsatell
(nSSR) markers. Our main aim was to describe tedeand distribution of genetic variability of the
species in Italy, and to investigate the genetigcstire of plant groups growing at the southerrdbor
of the area where the species is naturally wideshreith particular emphasis on the conservation of
the species evolutionary processes and the vdionsaf the adaptive potential of its breeding
resources. In fact, it is well known that geography peripheral populations are often genetically
differentiated from central populations, due to Benssize, fragmentation and as response to difftere
biotic and abiotic conditions (Lesica and Allend@&95). We also discuss our results in the light of
the European Directive 105/1999, emphasising teeguwvation and restoration of wild cherry genetic

resources in ltaly.

Material and Methods

Plant materials

A total of 278 plants were sampled within the natwange of dispersion of the species in centrdl an
northern Italy. They were chosen at random, buirder to minimize the sampling of close relatives a
minimum distance among them of about 50 m was ado@@ince in case of wild cherry, due to the
low density and scattered distribution of plartsyas not considered valid to define populatisessu
stricto, and the sampled plants were therefore grouped Lt internally homogeneoudbreeding
zones§, defined according to their ecological and vegetal conditions (Figure 1). Each breeding
zone was intended to be a separate breeding pmpulatith genetic improvement being limited to
these zones to take advantage of naturally evadeghtation (Silen and Wheat 2003). The boundaries
of these breeding zones were based on physiograpimatic and economic factors. The number of
individuals per breeding zone varied from 14 to (3&ble 2) and no substantial differences in

individual density among them were present.

Molecular analysis
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Young leaves or buds (100 mg of tissue) were pogdiar liquid nitrogen, and genomic DNA
was extracted using the QIAGENDNeasy plant mini kit, according to the manufaetis protocol. A
total concentration of 20 ptj* was obtained for each sample, and DNA quality exasuated with an
Eppendorf biophotometer.

Ten simple sequence repeat markers (SSR) werdesteocording to the literature, and tested
on our plant material (Table 1). While most of gieners were specific for wild cherry (Vaughan and
Russell 2004), EMPaO04, EMPaO05 and EMPaO15 weiginally designed for sweet cherry
(Clarke and Tobutt 2003).

Polymerase Chain Reaction (PCR) amplifications weareed out using a DNA Engine (PTC-
200) Termal Cycler, according to the protocols dgwed by the authors (listed in Table 1). Each
amplification reaction contained 1x reaction buffas mM MgC}, 0.2 mM dNTPs, 6 pl Ready Mix
Tag, 0.2 uM of each primer, 4.9 pl bidistillatedteraand 2.5 ng™ of genomic DNA. Each forward
primer was labelled with 5'-fluorescence dye Cy5.

The PCR conditions varied for different primersg avere adjusted according to the literature
(Vaughan and Russell 2004, Clarke and Tobutt 20@GR amplification products were separated in
polyacrylamide gel using an ALFexpress Il Sequenédmersham) laser sequencer. The
electrophoresis was carried out, according to tiserument protocol, on 8-10 ul working solution (3
pl loading dye, 1-2 pl internal standard sizer$(1800), 1-2 pl external standard sizers 50-5@D3n
ul buffer) added to 2-3 pl PCR product, under tlofving conditions: voltage 1500 V, temperature
55°C, power 30W, running time 500 min. Fragmentesiwere estimated using the Allele Locator

software (Amersham Pharmacia Biotech 1999).

Data processing

At each locus alleles were characterised exclugitagl the length of the DNA fragments
generated by the amplification process. The peagenof polymorphic loci (P), mean number of
alleles per locus (i. e. present only in one bregdione, A), effective numbers of alleles.XMallele
frequencies, mean number of private alleles pendpoobserved heterozygosity JjHgene diversity

(expected heterozygosity JHand the inbreeding coefficientsfvere calculated using EXCEL and the
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GENALEX 6 software (Peakall and Smouse 2006). Tées software was used to compute the
population genetic structure of the overall sampdeseach locus with Wright's F-statistics (Wright
1946, 1951, 1965), and to compute a pairwisenfatrix among breeding zones. For the analyses of
departures from Hardy—Weinberg equilibrium (HWE)dao evaluate the significance of inbreeding
that occurred in each locus, in each populationiamderall loci, we used ARLEQUIN 3.5 (Excoffier
et al. 2005, Excoffier and Lisher 2010). The sammmmme was used to perform tests for genotypic
linkage disequilibrium (LD).

Where significant deficiencies of heterozygotesfildWE were observed the presence of null
alleles was suspected (Pemberton et al 1995).\uaticihigh frequencies of null alleles were idetfi
by estimating the presence of the latter usingstifavare MICRO-CHECKER (Van Oosterhout et al
2004). In subsequent analysis, loci with high allgle frequency were eliminated and only thosédawit
a frequency on null alleles lower than 0.19 weredud his value has been considered a threshold over
which underestimation of Hdue to null alleles becomes significant (Chapuigle 2008). Where
possible, analyses with robustness prerogativerésemce of null alleles were used (Chapuis and
Estoup 2007), including STRUCTURE (Pritchard et28l00). The inbreeding coefficientsi{Fwere
calculated taking into account the estimated maljdiencies using the programme INEST and running
the individual inbreeding model (1IM) with a Giblsampler of 105 iterations (Chybicki and Burczyk
2009).

Unbiased genetic distances among populations gaimated according to Nei (1978), using
GENALEX. This matrix constituted the base for inigating the relationships among groups, by an
unweighted pair group method using the arithmeteans (UPGMA) dendrogram developed by
SAHN software in the NTSYSpc package (Rohlf 200%)e cophenetic values matrix was calculated
from the tree matrix using the program COPH. Thehemetic matrix was used to evaluate goodness
of fit for the cluster analysis by comparing itgenetic distances matrix (MXCOMP of NTSYS).

In addition, the genetic structure was analysedigusi Bayesian clustering approach with
software STRUCTURE version 2.2.3 (Pritchard et 2000). The data was explored without
considering prior classification within the samgig,performing 10 replicates of each simulatiomfro

K =2to K =12, with a burn-in of 10,000 stepsldated by 10,000 Markov chain Monte Carlo
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(MCMC) iterations under the admixture model, and #ssumption of correlated allele frequencies
among populations. We used the program Structurgddeer (Earl and von Holdt 2012) that applies

the Evanno’s method to assess the optimal leviél (&vanno et al. 2005).

Results

All 10 primer pairs analysed produced polymorpaiaplification products, which could be
easily identified (Table 1). However, two markersrev excluded from the analysis due to the high
frequency of possible null alleles: respectivel30(EMPaS11) and 0.20 (EMPaO15). The presence
of null alleles was also suspected for 3 out of temaining 8 loci, with frequencies of 0.10
(EMPas06), 0.12 (EMPaS10) and 0.13 (EMPaS12). tal, té24 distinct alleles were scored in the
278 studied individuals. The number of alleleslpeus ranged from 4 (EMPaS14) to 25 (EMPaS10),
with an average value of 15.5. It was possible dtect 24 private alleles. The frequency of these
alleles was always low, ranging from 0.013 to 0.048e distribution of private alleles among
microsatellites was unbiased, ranging from one (BG4, EMPaS02 and EMPaS14) to six
(EMPa005). The breeding zone which displayed thghddgt number of such alleles was TSE (8
private alleles), while no private alleles wereedétd in EMR.

Sampling of individuals belonging to the same claoelld be excluded since plants with
identical genotypes were never detected. Statisticthe genetic diversity within breeding zones are
given in Table 2. A relatively high level of inttaeeding zones variability was found, since on
average more than 7 alleles per locus were obs€ived7.53). The probability that two randomly
sampled alleles in a given breeding zone werehosame was almost 70%.(¥0.698), whereas the
observed heterozygosity was lower than expectedarinté = 0.573). Since the difference, that
determines a significant positive value for medweeding coefficient, could be due to the presafce
null alleles the inbreeding coefficients were realdted. Taking into account the frequencies of nul
alleles, we found that deviations from the Hardyividerg equilibrium were low (k ranging from
0.031 in FON to 0.220 in HPD with a mean of 0.07&gnificant per locus departure from Hardy-

Weinberg equilibrium were however found in all ldieg) zones (P<0.01).
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The genetic divergence between breeding zones mstigated by computing a Nei's
genetic distance matrix (Nei 1978), and by a paiewsr matrix (Table 3). Most of the diversity was
found within breeding zones, with only a small amoamong breeding zones: the averaggevalue
was 0.046 (SE = 0.003) and ranged from 0.034 (ENMRpi® 0.059 (EMPaS12). Almost all pairwise
Fst values were significantly greater than zero. Tlegd\distances values varied between 0.053 (TSE
and TSW) and 0.223 (VNE and FVG). The UPGMA dendaog confirmed the presence of
differentiation between breeding zones, althougly @m rare cases it was possible to observe a
structuring linked to their geographical locatidine cophenetic correlation indicated a fair fittloé
cluster analysis to data (r = 0.605, P<0.01). Irtipaar, VNE and FVG, which are geographically
close, were identical; another group consisted ©ONFand LOM, which are located in the same
Region, while PDA showed the highest amount of genkfferentiation (Figure 2).

Following the method of Evanno et al. (2005), they@sian clustering results obtained with
STRUCTURE indicate that K=11 clusters represents riost likely representation of the overall
genetic structure that we analysed (Figure 3). @rngpzones showed a high level of admixture and no

general trends were detected.

Discussion

The main aim of our research was to describe t& knd distribution of genetic variability
of wild cherry in northern and central Italy, whjdogether with the southern part of the country
(where the presence of the specie is extremelyesed) represents the southern border of the specie
diffusion area.

In general, our values are higher than those fonredudies of sweet cherry: this most likely
reflects the fact that the wild cherry conservewider basis of genetic diversity compared to the
cultivated forms. The number of alleles in thisdstyrange 4-25 per locus) is high, when compared
with data reported for other wild cherry populasoWaughan et al. (2007) detected a range of 4-14
alleles (N = 7.77) in 551 plants, Stoeckel et al. (2006) cte 4—21 alleles in 350 plants (among
which, 247 were from the same population), whileafho et al. (2009) observed a number of alleles

ranging between 2 and 14 in 50 plants from thréferént countries. Our results are consistent with
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the fact that Italy was probably a centre of disjmer of wild cherry in Europe after the last glacia
period, where a higher number of alleles were ameskthan in other countries. The size ranges of
alleles overlapped with reported values, when caoegavith results of previous works (Clarke and
Tobutt 2003, Vaughan and Russell 2004, Guarind €089).

We found neither low differences betweepnand H, nor the excess of heterozygotes that was
reported in previous research (for sweet cherryBidewanger et al. 2002, Winsch and Hormaza
2002, Marchese et al. 2007, Ganopoulos et al. 2010yild and sweet cherry see Guarino et al.2009;
for wild cherry see Clarke and Tobutt 2003, Schateal. 2003, Vaughan and Russell 2004, Stoeckel
et al. 2006, Avramidou et al. 2010). On the comtraur Fsalways gave positive values, indicating an
excess of homozygotes. This could be due to theepoe of null alleles for some of SSRs markers
that increase the number of homozygotes. For instan analysis of a pool of 50 wild cherry trees,
compared with near 80 sweet cherry cultivars, Gueet al. (2009) found different frequencies of nul
alleles, ranging from 0.011 (EMPaSO01) to 0.327 (EM62). However, our & values remained
positive notwithstanding the correction applied BWCRO-CHECKER for null alleles and the
consequent exclusion from the analysis of two marihere the presence of null alleles exceeded the
threshold commonly adopted in literature.

To explain the positive value of inbreeding coeéfit, it is also possible to assume the
presence of a Wahlund effect, that is the struagunf the populations in subunits within which
mating is more probable. This does not seem tohbectise of our sampling, since we collected
material from plants not closer than 50 m from eatifer and sampling density was homogeneous
within each breeding zone.

Nevertheless, to limit the impact of the numberhafmozygotes on the interpretation of
inbreeding indices, it is important to notice that excess of homozygotes was also found for Italian
populations with isozymes (Ducci 2005), whergand H values were lower than those found in the
present study, but,&values were relatively similar in size. In our wothe higher values of &Fwere
found in HPD, LOM, TSW and VNW. Some of these araasproducers of sweet cherry in Northern
Italy, and it is possible that some of our samplassisted of individuals derived from seed produced

by cultivated trees widespread in the wild or asults of intercross between wild and sweet forms.
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This level of inbreeding contrasts with the fadttbherry is a species characterised by a well-know
self-incompatibility system that prevents selfifesation (Sonnenveld et al. 2003, Granger 2004,
Schiiler et al. 2006, Sonnenveld et al. 2006, Maelet al. 2007, Vaughan et al. 2008). The system is
based upon a single multiallelic locus with gamhbtdje action that controls the ribonucleases in the
style of flowers and arriving pollen grains. Whée tallele of the haploid genotype of the pollen is
identical to one of the diploid genotype of theestyertilisation does not occur, while crossessssn
individuals sharing only one S-allele can occuthalgh seed production is limited. Many studies
have paid attention to these kind of alleles, & particularly important in cultivation of sweet
cherry (Wiersma et al. 2001, Sonnenveld et al. 2006t also for the maintenance of wild cherry in
the wild (De Cuyper et al. 2005, Vaughan et al. @0@ince individual trees are often widely
scattered, the number and proximity of compatildllep donors have a large impact on seed set and
the genetic diversity of the progeny.

However, self-incompatibility can be overcome unparticular conditions, for instance when a
population goes through a bottleneck (Reinartzlaexd1994, Gigord et al. 1998).

Another explanation is suggested by the evidenatithnatural populations ¢frunus avium
individuals with a high suckering ability can predumore gametes, thereby having a higher
probability of undergoing somatic mutations at gaemetophytic incompatibility S-locus, as already
observed by Lewis and Crowe (1954).

Self-incompatibility could be bypassed by othercginstances. IrSorbus domesticd., a
predominantly self-incompatible species belongmgheRosaceadamily, Kamm et al. (2011) found
that self-fertilisation is probably due to a brefdwn of the incompatibility system occurring as
flowers grow old without being pollinated, or undewld weather conditions, while there was no
selfing occurred with controlled pollinations ofwlg opened flowers. Holderegger et al. (2008),
studying 15 populations in Switzerland of anothelf-sicompatible RosaceaePyrus pyraster
Burgsd.), with both S-alleles and nuclear SSRsndopositive values of & (0.021-0.164). They
explained this fact by the spatially restrictedlg@oldispersal that can cause the production ofsseed
from pollination by a limited number of compatiblieees in the neighbourhood. The genetically

related offspring could therefore produce a progsitly elevate [5 index. The questions posed by our

10
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samples can only be answered by S-allele analgsike future. Reduced heterozygosity at nuclear
microsatellite loci, representative of whole-gendmi@eeding, is likely to be associated with redlice
individual fitness and impaired potential of thepptation to adapt to a changing environment, and it
is therefore important to better identify the waynhich our populations share genetic variability.

Population structure in wild cherry has been chaeraed by relatively few studies: many
researches having focused on the cultivated sweety employing many different markers (Granger
et al. 1993, Gerlach and Stosser 1997, Struss. @0@ll, Winsch and Hormaza 2002, Xhou et al.
2002, Struss et al. 2003). Studies with chloroplA¥A (Mohanty et al. 2001a, 2001b) found a low
level of differentiation among populations spreaddifferent European regions, and Panda et al.
(2003) found a higher cpDNA diversity in wild cherwith respect to a group of common sweet
cultivars.

In Italy, genetic differentiation measured among teven zones was relatively high, and
only a small number of alleles per locus are in wmm among populations (only 1 allele for
EMPaS12; 2 alleles for EMPaS14; 3 alleles for EMMaSS06, S10, O04, O05; 4 alleles for
EMPaS02). We found asf= 0.046, comparable with other studies developderamce (Frascaria et
al. 1993, Mariette et al. 1997), whergr@alues among populations were 0.05 and 0.06 r&ésplg
or in Georgia (kr = 0.057) (Santi and Dufour 2010).

The value of differentiation is compatible with ttepproductive system. Wild cherry plants are
insect pollinated, especially by bees, which usentctar and pollen as an important nutrient source
Pollen can be transferred by various modes, reguiti largely variable dispersal distanceShort
pollen dispersdlis generally the most common, due to insect-ntedidtree-to-treé transfer, that
tends to cause a differentiation in plants popoiteti Larger distances of transfer could potentiadly
realised by other processes, such ias€tt-to-insecttransfer within the colonies of social insects.
When a colony uses different nutrient sources it @acumulate a vast number of pollen mixtures,
from wide surrounding areas, in its hive (Free ®&vitiams 1972, De Grandi-Hoffman et al. 1984,
1986). However, at lower frequencies, long distdocaging has also been observed (Zurbuchen et al.
2010). As a typical pioneer tree species wild ghewlonises early forest successional stages as a

result of forest disturbances, but it is generalplaced by climax tree species during subsequent

11
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succession of the local disturbance, so it is d@iffi to identify pure, extensive and continuous
populations, where insects could share pollen exghaln the Mediterranean environment we find
small groups, and their suckers, or isolated tre@pollen transfer among distant groups become mor
difficult, since it is known that smaller or lessre populations attract fewer pollinators.

From UPGMA we observe a general lack of geographitern. This could also be due to
different management strategies of wild cherry inithhe considered area. For instance, in the easter
regions wild cherry is traditionally cultivated fevood production, and populations are larger and
widespread in larger areas, but there is also d@ansive cultivation of sweet cherry for fruit
production. “Bosco Fontana”, in Lombardy, is a fmafar situation. It's a wood situated in a
biogenetic reserve of 235 ha, established durieg7@is of the 20th century on an ancient hunting
reserve, which preserves a relict of the anciemihgbrest in the Po Valley, rich in woody speces]
managed by the local “National Forest Service”, asgre coppicing has been avoided for 60 years.
In the Apennines there are small populations, isdl&n the valley bottoms, with few individualsrye
distant from each other. Furthermore, the silvimalk practices that privilege the vegetative
propagation contributes to shaping the geneticatiari in these zones, and generally wild cherry has
been managed as other species, with coppicing.

At the individual level, STRUCTURE analysis usingalBno’s method suggests that wild
cherry is constituted from such a high number afugs, that the entire studied gene pool can be
considered as an unstructured population. Thidtrissoot so far from that obtained by Marietteakt
(2010) in a collection of 211 wild cherry trees gdad in France, and also to those revealed irahali
populations of walnutJuglans regialL.) (Ferrazzini et al. 2007b), that share withdwvdherry the
anthropic effect due to cultivation for wood andifiproduction.

Jordano et al. (2007) found thatPnunus mahalel.. seed dispersal due to different types of
frugivores resulted in distinct contributions offdient distance classes and microhabitats, with an
few species responsible for long-distance dispergahts. Small-sized birds accounted for most short
distance dispersal, and larger frugivores (botdsband mammals) accounted for most long-distance
dispersal. They pointed out that three componengs particularly important when we want to

understand genetic distribution by seed dispetbal:frugivore abundance, their feeding and post-
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feeding behaviour and the structure of landscagslé/these factors could partially explain the lowe
genetic distance among VNE and FVG as well as arkr@?gd and LOM, that are relatively close from
the geographic point of view (with distances corifpatwith the animal impact on seed dispersal), the
human influence on wild cherry distribution seem®$¢ one of the most important causes of the lack
of a clear pattern in general distribution of thenetic diversity. As for most European forests, the
studied areas have experienced human activitiesnsarthgement for generations. The traditional
management method (coppice-with-standards) hasaplplfavoured the maintenance of clonal
lineages through time, and due to the edible flasfiuits, long distance seed dispersal by humans
appears as a source of gene flow among populations.

Foresters began to use wild cherry for reforestatind afforestation in the 1970s, usually
with material of unknown origin. Frequently, thisatarial originated not only from wild cherry, but
also from sweet cherry or even from sour cherry. this reason, it is not so unlikely that many
individuals originated from the introduction of desticated trees into the wild woods, or from the
intercross among wild and sweet forms. In Italpcei 1988, reproductive material for plantations has

been collected from physiographic seed areas (Daiali 1988).

Conclusions

The results of the study contribute to a bettereustanding of our knowledge of wild cherry
genetic variation in Italy, thus making for mordi@ént programs aimed at the preservation of the
biodiversity. Furthermore, our results give uséfalications on how to act for more rational plamnin
of the management of reproductive material. Inligite of the European Council Directive 105/1999,
forest reproductive material falling into thedurce-identifiedl and “selectetl categories should be
used only within the Region of Provenance whereriginated. The transfer of material from one
Region to another should be avoided, due to pasgibbblems associated with adaptability. The
identification of Regions of Provenance is therefar basic aspect for a rational management of
activities linked with forest tree propagation, luding afforestation andh situ genetic preservation.
In the case of wild cherry, in ltaly, we cannot d#se populationsensu strictpbut use breeding

zones, where trees grow with a scattered disperSimce our results do not show a clear structuring
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362 of genetic variability within the Italian diffusioarea of wild cherry, it is not possible to drawyan
363 indications on Regions of Provenance delimitatiasdal only on genetic data, contrary to the results
364  of similar studies carried on in Italy on differesgiecies (common ash and Scots pine), where genetic
365 data proved to be useful for Regions of Provenadestification (Ferrazzini et al. 2007a, Belletti e
366 al. 2012). Therefore, the identification of RegiafsProvenance for wild cherry in Italy should be
367 based mainly on ecological and vegetation featuResults similar to ours were obtained also in
368 France, where it has been suggested to considegle Region of Provenance (Anonymous 2003).
369 Furthermore, the development of seed orchards wihesieould be possible to collect clones from
370 different sites should be encouraged, since thayidwallow the preservation of as much as possible o
371 the scattered genetic diversity of wild cherry, dadsimplify the operation of finding reproductive
372 material for forest breeders.
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Figurelegends

Figure 1. Geographical location of the breedingezowhere individuals of wild cherry analysed
in this study were sampled.

Figure 2. Dendrogram constructed from UPGMA clustealysis of 11 breeding zones of wild

Prunus aviumin northern and central Italy, based on Nei's gergistance for SSRs produced by
eight primers.

Figure 3. Probability of assignment of 278 plantsvdd cherry from Italy to the three genetic

clusters identified by hierarchical STRUCTURE as#ly Each vertical bar corresponds with a

distinct genotype and different colours indicate plart of its genome assigned to each cluster.

Tabletitles

Table 1. Allelic diversity of the ten microsatedlitoci considered for the study.

Table 2. Statistics of genetic variation withinlika wild cherry at eight microsatellite loci. N,
sample size; A, mean number of alleles per locys;eMective number of alleles per locus; P
mean number of private alleles per locus, Blverage observed heterozygosity; &l/erage gene
diversity or expected heterozygosityis,Faverage inbreeding coefficient calculated takimigp
account the estimated null allele frequencies. ¥ain parenthesis are standard errors.

Table 3. Pairwise & (above the diagonal) and genetic distances (atmptd Nei (1978), below

the diagonal) among the 11 breeding zones considethe study.
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600 Table1l

Number Molecular

L ocus Reference of weight range
alleles (bp)

EMPaS01 Vaughan and Russell 2004 8 225-254
EMPaSs02 Vaughan and Russell 2004 16 133-148
EMPaS06 Vaughan and Russell 2004 24 200-230
EMPaS10  Vaughan and Russell 2004 25 151-185
EMPaS11* Vaughan and Russell 2004 11 81-109
EMPaS12 Vaughan and Russell 2004 23 121-152
EMPaS14  Vaughan and Russell 2004 4 197-213
EMPa0O04 Clarke and Tobutt, 2003 9 177-195
EMPaO05 Clarke and Tobutt, 2003 15 230-262
EMPaO15* Clarke and Tobutt, 2003 24 202-300

601

602 * markers excluded from the analysis due to the figfuency of possible null alleles.
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603

Table 2

Breeding zone Code N A Ne P, H, He Fis

Inner hills of Piedmont HPD 27 8.5 5.2 0.8 0.490 73@ 0.229
Western Alps of Piedmont PDA 22 7.1 4.6 0.4 0.523 .680 0.075
Fontana Forest FON 23 6.4 3.8 0.1 0.596 0.666 0.031
Prealps of Lombardy LOM 30 9.1 5.1 0.9 0.540 0.687M.111
Eastern Veneto VNE 22 7.1 4.4 0.1 0.585 0.730 0.033
Western Veneto VNW 37 8.4 4.7 0.3 0.560 0.718 0.085
Friuli Venetia Giulia FVG 14 6.3 3.9 0.4 0.644 (066 0.042
Emilia Romagna EMR 16 6.3 4.2 0.0 0.617 0.683 0.034
Western Tuscany TSW 39 8.8 4.7 0.8 0.583 0.731 30.10
Eastern Tuscany TSE 31 9.1 5.0 1.0 0.602 0.733 10.04
Marche MAR 15 5.9 3.8 0.3 0.558 0.648 0.041
Overall mean 249 (Jffm (35589) 044 (81813) (81323) (818471%
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605

Table 3

HPD
PDA
FON
LOM
VNE
VNW
FVG
EMR
TSW
TSE
MAR

HPD PDA FON LOM VNE VNW FVG EMR TSW TSE MAR
0.000 0.019 0.028 0.023 0.022 0.025 0.025 0.020 0.021 290.0 0.035
0.105 0.000 0.023 0.021 0.025 0.021 0.031 0.020 0.013 0.015 180.0
0.136 0.108 0.000 0.039 0.026 0.025 0.035 0.038 0.026 0.024 0.027
0.125 0.110 0.187 0000 0.032 0.023 0.035 0.019 0.024 0.028 0.030
0.136 0.132 0.127 0.174 0000 0.021 0.042 0.019 0.018 0.022 0.035
0.140 0.113 0.128 0.118 0.1200.000 0.036 0.020 0.020 0.016 0.024
0.126 0.166 0.170 0.176 0.223 0.1870.000 0.036 0.039 0.040 0.039
0.117 0.104 0.182 0.098 0.088 0.097 0.192.000 0.021 0.029 0.031
0.124 0.065 0.124 0.135 0.109 0.115 0.205 0.104000 0.010 0.020
0.162 0.067 0.113 0.148 0.129 0.092 0.202 0.136 530.00.000 0.022
0.180 0.084 0.126 0.151 0.168 0.116 0.194 0.142 880.0 0.094 0.000
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