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Abstract 
Polymorphisms in regulatory DNA regions are believed to 

play an important role in determining phenotype, including 

disease, and in providing raw material for evolution. 

We devised a new pipeline for the systematic 

identification of functional variation in human regulatory 

sequences. The algorithm is based on the identification of 

SNPs leading to significant changes in both the affinity of a 

regulatory region for transcription factors and the 

expression in vivo of the regulated gene. We tested the 

algorithm by identifying SNPs leading to altered regulation 

by STAT3 in human promoters and introns, and 

experimentally validated the top-scoring ones, showing that 

most of the SNPs identified by the algorithm indeed 

correspond to differential binding of STAT3 and differential 

induction of the target gene upon stimulation with IL6. 

Using the same computational approach we compiled a 

database of thousands of predicted functional regulatory 

SNPs for hundreds of human transcription factors which we 

provide as a public resource. We discuss possible 

applications to the interpretation of non-coding SNPs 

associated to human diseases. 

The method we propose and the database of predicted 

functional cis-regulatory polymorphisms will be useful in 

future studies of regulatory variation and in particular to 

interpret the results of past and future genome-wide 

association studies.  

Background 
Genetic variation is responsible for phenotypic differences, including susceptibility to 

disease. Genome-wide association studies (GWAS) can identify statistical 

correlations between polymorphisms and phenotypes. Once such an association has 

been determined, one is usually faced with the daunting problem of understanding the 

functional mechanism by which the polymorphism influences the phenotype. This 

task is particularly difficult when the polymorphism might not affect any gene 

product, as in the case of polymorphisms located in intergenic regions or introns.  

It is thus reasonable to assume that some polymorphisms exert their effect by 

affecting the expression level of a neighboring gene, or possibly several genes (see 

e.g. Lappalainen and Dermitzakis (2010) for a review of regulatory variation in 

human populations). This can happen if the polymorphism modifies regulatory 

information such as the binding affinity of a trans-acting regulatory element. Indeed 

several cases have been documented in which the simplest kind of polymorphism, a 

single nucleotide polymorphism (SNP), can alter the ability of a transcription factor 

(TF) to bind the regulatory region and thus correctly regulate the expression of a gene 

(see e.g. Epstein (2009) for a review). 

In this work we present a method for the systematic identification of functional 

regulatory SNPs based on the integration of SNPs and gene expression data. We 

define as functional a SNP able to influence the expression level of a neighboring 

gene by altering the binding in vivo of a TF. This should be contrasted with other 
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approaches in which the functionality of a SNP is defined, and experimentally tested, 

based solely on its ability to affect the binding of a TF, irrespective to any effect on 

gene expression, or, vice versa, on its effect on gene expression irrespective of the 

binding of any TF. 

The method is based on the availability of genetic variation information and gene 

expression profiling of the same individuals, and identifies SNPs in regulatory 

regions that have, on one hand, the potential to alter the affinity of a TF and, on the 

other, a significant correlation with gene expression. 

We then tested the top-scoring SNPs for the STAT3 TF by stimulating human 

cells with IL6 and determining whether different alleles corresponded to both 

differential gene expression and differential binding of STAT3. STAT3 is a member of 

the Signal transducers and activators of transcription (STAT) family of TFs, and is 

known to be involved in a wide variety of physiological and pathological processes 

including inflammation, regeneration, proliferation, energy homeostasis and many 

forms of cancer Poli and Alonzi (2003). This validation was done in two ways: by 

comparing individuals homozygous for different alleles, and different alleles within 

heterozygous individuals. 

Since the rate of experimental confirmation of our predictions for STAT3 turned 

out to be satisfactory, we extended the analysis to a large collection of human TFs, 

thus generating a publicly available database of thousands of predicted functional 

regulatory SNPs, each associated to one or more TFs and target genes. We believe 

this resource will be useful in interpreting the results of past and future GWAS. 

Previous studies such as Andersen et al. (2008); Lapidot et al. (2008); Ameur et al. 

(2009); Wang et al. (2011) have employed some of the same techniques, but we 

believe that the integration of TF binding site prediction and gene expression analysis 

with functional validation in vivo makes our approach especially reliable. 

Results and Discussion 

Genome-wide prediction of functional 

regulatory SNPs 
We considered a SNP to significantly change the affinity of a binding site for STAT3 

if (a) only one of the two alleles corresponds to a score above the score cutoff c=9.6, 

previously determined in Vallania et al. (2009) by optimizing the predictivity on 

known binding sites; and (b) the difference in score between the two alleles is at least 

0.5. A total of 4,166 SNPs in the human genome met these criteria. We retained for 

further analysis the ones located within 10kbp of an annotated transcription start site 

(TSS) and outside of annotated exons (250 SNPs), since we expect these regions to be 

enriched in regulatory elements. 

For each of the SNPs selected above we asked whether the expression of nearby 

transcripts in lymphoblastoid cell lines Stranger et al. (2007) showed significant 

correlation with the number of copies of the high-affinity allele. For each SNP we 

analyzed the expression of the gene(s) with a TSS within 10kbp, and we identified 12 

SNPs significantly correlated with gene expression at 0.05 significance level (Pearson 

correlation test with Bonferroni correction for multiple testing). 
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Experimental validation 
The computational analysis described above produced a list of SNPs associated to a 

significant change in the affinity for STAT3 and correlated to change in expression of 

the neighboring gene. However we do not expect in all cases that the differential 

binding of STAT3 to the locus involved will be the causal factor leading to 

differences in gene expression. Indeed, we cannot exclude the possibility that the 

effect is due, for example, to other SNPs in linkage disequilibrium with the one 

analyzed, possibly altering the binding of other TFs or other cis-regulatory 

information. 

Therefore we performed a systematic experimental validation of the top-ranking 

SNPs identified by our pipeline, on the same cell lines collected by the Hapmap 

project, stimulated with IL6, a well-established activator of STAT3. For each SNP we 

tested both the differential binding of STAT3 to the two alleles and the differential 

regulation of the target gene. We tested differential binding and inducibility of the 

target gene in individuals homozygous for the two variants. Then we repeated the test 

on heterozygous individuals, testing the differential binding and inducibility of the 

two alleles. 

Differential induction 

We took the inducibility by the IL6 stimulus as a measure of functionality of the 

STAT3 binding sites in regulating gene expression. With the strategy described in the 

Materials and Methods section we chose a team of individuals containing at least 2 

homozygotes for each allele of 11 candidate SNPs selected above (one SNP had to be 

excluded since only one individual homozygous for one of the alleles is represented 

in Hapmap). For each target gene and each individual, we evaluated the fold change 

in expression (induction) with respect to the unstimulated sample at 1.5, 6 and 24 

hours after stimulation. We then compared the induction levels of individuals with 

high-affinity and low-affinity alleles. 

Comparing the induction levels of the high- and low-affinity alleles for the 11 

genes tested we found, as expected, that high-affinity alleles corresponded to higher 

induction. A Wilcoxon signed-rank test revealed a significant overall difference in 

induction between high- and low-affinity alleles at 6 and 24 hours after induction 

(respectively P=0.0068 and P=0.0098), while at 1.5 hours the result was not 

significant (P=0.067). We concluded that, overall, the SNPs identified by our method 

are indeed functional as they give rise to significantly different levels of induction by 

IL6.  

To analyze individual SNPs, we compared the induction of each homozygote 

carrying one allele to each homozygote with the other, using an unpaired two–tailed 

t–test on the three replicate expression values obtained by qRT-PCR. The results of 

these 66 comparisons at 6 hours after treatment with IL6 are shown in Figure 1. In 32 

cases the difference in induction was statistically significant, corresponding to a 

10% false discovery rate. In all of these 32 cases the induction was higher for the 

individual carrying the high-affinity variant. PCR expression data for individual 

genes are shown in Supplementary Figures 1 and 2. 

For the 7 intronic SNPs we also tested the differential induction of the two alleles 

after induction with IL6, in heterozygous individuals. The results are in general 

agreement with what found comparing homozygous individuals: for example, at 6 

hours after stimulation, in 4 out of 7 cases the induction was significantly higher for 
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the high-affinity allele (Fig. 2). Results at all timepoints are shown in Supplementary 

Figure 2. 

Differential binding 

To confirm that the differential induction of the genes considered above is indeed due 

to differential binding of STAT3 to the site including the SNP we performed 

chromatin immunoprecipitation experiments comparing the binding of STAT3 

between homozygous individuals carrying different alleles and, for intronic SNPs, 

between the two alleles of heterozygous individuals, after induction with IL6. 

For each of the 11 SNPs tested we performed a ChIP experiment on one 

homozygous individual carrying the high-affinity allele and one carrying the low-

affinity one. The experiment was performed after 1.5 hours or 6 hours after IL6 

stimulation, depending on the location of the induction peak for the high-affinity 

individual.  

Evidence for STAT3 binding (defined as STAT3 ChIP signal significantly higher 

than the IgG negative control signal) was found for 6 of the high-affinity alleles 

(ARHGEF1, DHX36, GTF3C6, LCP1, NCF4, SKA1) and only one of the low-affinity 

ones (NCF4). For these 6 genes STAT3 binding (defined as STAT3 ChIP signal after 

subtraction of the IgG signal) was significantly higher for the high-affinity allele than 

for the low-affinity one. 

Remarkably, the genes showing differential binding coincide almost exactly with 

the ones shown to undergo differential induction (see Tab. Errore. L'origine 

riferimento non è stata trovata.). These results strongly suggest that the difference in 

induction that we observed is indeed due to differential STAT3 binding. The results of 

individual ChIP experiments are shown in Supplementary Figures 1 and 2. 

For the 7 intronic SNPs we performed allele-specific ChIP experiments as 

described in the Methods, finding similar results: in all of them we obtained a 

significant binding signal (difference between STAT3 and IgG ChIP signal) for the 

high-affinity allele, and only in two cases for the low-affinity allele. In 6 out of 7 

cases the binding of the high-affinity allele was significantly higher than the low-

affinity one. Moreover, in all the 4 SNPs in which differential induction of the two 

alleles was observed also a significant difference in binding was detected 

(Table Errore. L'origine riferimento non è stata trovata.). 
Figure 3 shows, as an example, all the experimental results for the intronic SNPs 

rs9400435 in gene GTF3C6. Results for all the genes tested are shown in 

Supplementary Figure 2.  

A database of putative functional SNPs 
Since the experimental validation carried out for STAT3 showed that most of the top-

predicted SNPs are indeed functional, we derived similar predictions for all the 

PWMs included in the JASPAR “Core Vertebrate” collection. For each PWM we used 

the same definition of regulatory regions used above for STAT3. The score cutoff 

used for each PWM is a quadratic function of the maximum possible score of the 

PWM. Such function was determined by an optimization procedure based on publicly 

available ChIP/seq data and described in the Methods.  

We thus obtained 6,682 SNPs located in the regulatory regions and such that (a) 

only one of the two alleles corresponds to a score above the cutoff; (b) the difference 

in score between the two alleles is at least 0.5 for one or more PWMs; and (c) 
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correlation with expression is significant (nominal P-value <0.05). The complete list 

can be found in Supplementary Table 5. 

Association with disease 
Genetic variation in regulatory regions is thought to be relevant to genetic 

predisposition to diseases Epstein (2009). Therefore we asked whether any of the 

SNPs identified with our approach were significantly associated with the diseases 

examined in a large scale GWA studyConsortium (2007). About 2,800 of the 6,682 

SNPs identified above were included in this study and passed quality controls for 

each of the seven complex diseases considered. We therefore used a trend test 

Armitage (1955) on these SNPs for the 7 diseases included in the study to test for 

significant associations. With a Benjamini-Hochberg FDR of 10%, we found 50 

significant associations for 42 unique SNPs and 6 of the 7 diseases (no significant 

association was found for type-2 diabetes). The complete list is shown as 

Supplementary Table 6. 

Of course association does not imply causation, and we cannot exclude linkage 

disequilibrium with other SNPs as an alternative explanation for the associations 

found. However, at least in some cases, both the TF whose binding site is altered by 

the SNP and the target gene involved were previously associated to the disease or to 

relevant biological processes, naturally leading to functional hypotheses. 

For example we found a significant association between SNP rs9393708 and type 

1 diabetes (P=1.5410\s\up5(8), trend test). The SNP is located 2700 bases 

upstream of BTN3A2, a gene whose association with type 1 diabetes was previously 

established Viken et al. (2009). Expression of BTN3A2 is very strongly correlated 

with the allele (correlation P=8.010\s\up5(32)) in the Hapmap gene expression data. 

This SNP is on the other hand predicted to alter the binding of PDX1, known to be 

involved in the early development of the pancreas and in the regulation of insulin 

gene expression Kaneto et al. (2008). Therefore a possible mechanistic explanation of 

the association of this SNP with type 1 diabetes is that the SNP influences the 

regulation of BTN3A2 by PDX1. 

Similarly, rs12610384 is significantly associated with bipolar disorder 

(P=1.9110\s\up5(4)), and is located  100 bp upstream of POLRMT, a 

mitochondrial DNA-directed RNA polymerase involved in the expression of 

mitochondrial genes. The SNP alters a putative GATA2 binding site: given the known 

role of mitochondrial dysfunction in bipolar and other psychiatric disorders (see e.g. 

Ref.Clay et al. (2011)), and of GATA2 in the transcriptional network responsible for 

the differentiation of serotonergic neurons Alenina et al. (2006), also in this case a 

possible mechanistic explanation of the association between SNP and disorder 

emerges. 

Conclusions 
We have shown that the integration of genetic variation and gene expression data can 

be exploited to predict functional regulatory SNPs with high specificity. The use of 

correlation with gene expression to select our candidate SNPs helps ensure that they 

are located in regions of open chromatin, accessible in vivo to TFs. 

This procedure, however, makes our predictions context-dependent, since, strictly 

speaking, they apply only to the cellular context in which the gene expression data 

were obtained. Indeed our experimental validation was carried out in the same cells. 
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However the concept itself of functional regulatory SNP as we defined is intrinsically 

context-dependent, and it is in principle impossible to develop a context-independent 

prediction unless one is willing to settle for a less biologically relevant definition of 

“functional” (e.g. by requiring only differential binding in vitro).  

On the other hand, we do expect our predicted SNPs to be functional also in other 

contexts, since chromatin states in proximal regulatory regions are much more 

conserved across cell types than those in distal enhancers, as shown for example in a 

recent genome-wide mapping of chromatin state in human cellsErnst et al. (2011). 

Therefore we believe our database can be profitably used independently of the 

cellular context we used to derive it.  

An important limit of the present work is that we only analyzed single nucleotide 

polymorphisms, when it is natural to expect that an important portion of regulatory 

variation is due to insertion, deletions and copy number variation (CNV). For 

example CNV was shown Stranger et al. (2007) to explain 20% of genetic variation 

in gene expression in individuals analyzed within the HapMap project. Massive 

resequencing projects such as the 1000 Genomes Project 1000 Genomes Project 

Consortium (2010) will enable genome-wide investigations of altered TF binding 

patterns due to this type of polymorphisms. 

Methods 

Identification of affinity-changing SNPs 
We considered all SNPs in the Affymetrix GenomeWideSNP 6 platform (annotation 

version na30). Each SNP has two alleles: A and B. We reconstructed two genomic 

sequences for each SNP, S\s\do5(A) and S\s\do5(B), that differ only in the SNP 

position, while the sequences flanking the SNP nucleotide were reconstructed from 

the reference genome (UCSC hg18) based on chromosomal coordinates of the SNPs 

as reported in the Affymetrix annotation file. 

For STAT3 we used the position weight matrix (PWM) determined in Vallania 

et al. (2009). For other TFs we considered the 130 PWMs included in the JASPAR 

Core Vertebrate collection (2009 release). For each PWM we computed the log-

likelihood ratios (LLR) of the PWM for the two sequences: L(S\s\do5(A)) and 

L(S\s\do5(B)). The LLR is the log\s\do5(2) of the ratio of the probability of obtaining 

the sequence from the PWM and the probability of obtaining it from the background 

model. The latter is given by the nucleotide frequencies in the whole intergenic part 

of the human genome. 

A SNP is called affinity-changing for a given PWM if one of the two LLRs is 

greater than a cutoff c, the other one is not and |L(S\s\do5(A))L(S\s\do5(B))|>0.5. The 

threshold score c was chosen equal to 9.6. This value was obtained in Vallania et al. 

(2009) by requiring the highest statistical significance of the enrichment of positive 

hits in a set of confirmed STAT3 promoters Vallania et al. (2009). For other PWMs in 

the Jaspar Core database we determined the cutoff c with an optimization procedure 

described below. 

Correlation with expression 
We downloaded the normalized gene expression data of 210 unrelated HapMap 

individuals Stranger et al. (2007) from GEO (series identifier: GSE6536). For each 
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gene g and each affinity-changing SNP s located within 10Kbp from the 

transcription start site of g, we computed the correlation r\s\do5(gs) as follows: Given 

an affinity-changing SNP s, let s\s\do5() be the allele with greater affinity and 

s\s\do5(⊖) the other allele, so that L(S\s\do5())>L(S\s\do5(⊖)). r\s\do5(gs) is the 

Pearson’s product moment correlation of the number of s\s\do5() alleles in an 

individual (0, 1 or 2) and the expression level of g. Positive (negative) correlation 

suggest that s changes the affinity of the sequence for an activator (repressor) of g. 

The significance of the correlation was assessed with a standard correlation test. 

Experimental validation: choice of 

individuals 
Given a set of affinity-changing SNPs, to check if they are functional we needed to 

choose a team of individuals with different genotypes for the given SNPs. The ideal 

team is the one that allows the functional characterization of the greatest number of 

SNPs using the smallest possible set of individuals, to minimize experimental costs. 

We selected 12 SNPs that change the affinity for STAT3 and significantly 

correlated with gene expression (Bonferroni corrected P<0.05). We then selected 88 

individuals for which cell lines were already available in our lab from the 210 present 

in the gene expression dataset used. 

We define “satisfactory” a team of individuals containing at least n individuals for 

each SNP and each genotype (we used n=2 in the present study). SNPs with less than 

n individuals per each genotype in the set of 88 individuals are discarded a priori.  

The number of selected SNP and individuals in our case allow modern 

workstation hardware to solve the combinatorial problem of finding the smallest 

satisfactory team trough exhaustive search for small team size. So we adopted an 

iterative approach:  

1. we obtained the best team for size 1, 2, 3, 4 and 5. If at a certain size a 

satisfactory team is obtained the procedure ends and the individuals in the 

current team are marked,  

2. if there is no satisfactory team of size 5 we mark the individuals found in the 

best team of size 5 and discard the SNP that have at least n individuals for 

genotype in the team of marked individuals,  

3. repeat from 1 using the new (smaller) set of SNP until the goal is reached.  

The marked individuals at the end of the procedure are those selected for the 

experimental validation.  

Cell lines and treatments 
Human lymphoblastoid cell lines were obtained from the Coriell Cell Repository 

(Coriell Institute, New Jersey, USA) and grown in RPMI 1640 (Gibco-BRL) 

supplemented with 15% (v/v) heat-inactivated FCS (foetal calf serum; Gibco-BRL) at 

37\s\up5()C under 5% carbon dioxide. All genotypes were confirmed by direct 

sequencing after PCR amplification of the region containing the SNP of interest. 

Primer sequences used for PCR amplification are reported in Supplementary Table 1. 

Forward primers were used as sequencing primers. Cells were treated with 

recombinant IL6 (500 ng/ml) plus soluble receptor (250 ng/ml) for 1.5, 3 or 6 hours. 
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Total RNA extraction, retro-transcription 

and qRT-PCR (quantitative real-time 

PCR) 
Total RNA extraction and retro-transcription were performed as previously 

described Vallania et al. (2009). qRT-PCRs were performed using the Universal Probe 

Library system (UPL; Roche). Primer sequences and probe numbers are reported in 

Supplementary Table 2. Results were analyzed with the 2\s\up5(C\s\do4(t)) method 

using the 18S rRNA pre-developed TaqMan assay (Applied Biosystems) as internal 

control. 

Nuclear RNA extraction 

10\s\up5(7) cells were precipitated by centrifugation (5 minutes at 1200 rpm) and 

resuspended in 200 l of LB Buffer (10 mM NaCl, 2 mM MgCl\s\do5(2), 10 mM 

Tris-HCl pH 7.8, 5 mM DTT, 0.5% Igepal CA630). After 10 minutes of incubation on 

ice, nuclei were collected by centrifugation (5 minutes at 8000 rpm at 4°C), washed 

twice with cold PBS and resuspended in 200l of LB Buffer. Nuclei were then treated 

with 200l of 2x ProtK Buffer (0.2 M Tris-HCl pH 7.5, 25 mM EDTA, 0.3 M NaCl, 

2% SDS), 20l of Proteinase K (Sigma-Aldrich, 10 mg/ml) and incubated at 

37\s\up5()C for 20 minutes. After incubation, nuclear RNA was purified with a 

classic Trizol (Invitrogen) – Chloroform (Merck Chemicals) protocol. Samples were 

treated with DNase I Amp Grade (Invitrogen) in order to remove genomic DNA 

contaminations. RNA integrity was checked on 1% denaturing agarose gel. 

Allele-specific gene expression 
A Real-Time Amplification Refractory Mutation System quantitative PCR (ARMS-

qPCR) approach was used to evaluate allele-specific gene expression. A common 

reverse primer was used to amplify both alleles, while were used two different 

3\s\up5(')-mismatched forward primers to discriminate the two different SNP-

containing alleles Newton et al. (1989). To increase the specificity of the ARMS 

reactions, two additional mismatches were introduced at the two nucleotides 

immediately 5\s\up5(') to the SNP as previously described by Bai and co-workers Bai 

and Wong (2004). The specificity of ARMS-qPCR reactions was tested using 

homozygous individuals as a control and only 100% allele-specific primers were 

chosen for subsequent analysis. Primers used in ARMS-qPCR reactions are reported 

in Supplementary Table 3, mismatched nucleotides are underlined. The RT ARMS-

qPCRs, were performed with the ABI Prism 7300 real-time PCR system (Applied 

Biosystems) using Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) and 

500 nM of each primer in a total volume of 20l. Real-time conditions were 2 min at 

50\s\up5()C and 10 min at 95\s\up5()C, followed by 45 cycles of denaturation for 

15 sec at 95\s\up5()C and annealing/extension for 1 min at 60\s\up5()C. 

Dissociation curves for the amplicons were generated after each run to confirm the 

specificity of the signal. Calibration curves were included in each run. The allelic 

expression ratio was calculated with the following formula:  

  \F(A,B)=2\s\up5(C\s\do4(t)(B)C\s\do4(t)(A)) 

Experiments were performed in triplicate with at least two independent samples. 
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Conventional and allele-specific chromatin 

immunoprecipitation (ChIP and 

HaploChIP) 
Lymphoblastoid cell were treated or not with IL6 plus soluble receptor as described 

above. ChIP assays were performed as previously described Vallania et al. (2009). 

Immunoprecipitations were performed by incubating overnight at 4\s\up5()C 1 ml of 

sheared chromatin with anti-Stat3 antibodies (Cell Signaling Technology; 1:50), or 

with negative control IgG (Sigma-Aldrich, 2g). Primer sequences used in qRT-PCRs 

for conventional ChIPs are reported in Supplementary Table 4. Allele-specific qRT-

PCRs were performed using the ARMS approach described above. Primer sequences 

are reported in Supplementary Table 3. 

Statistical significance of differential induction, STAT3 binding and differential 

binding was assessed with a two-sided t-test. For differential induction the t-test 

compared the induction (expression ratio treated/untreated) of the two alleles. 

Significance of STAT3 binding was assessed by a t-test comparing the ChIP signal of 

STAT3 to the IgG signal. For differential binding we compared the STAT3 binding 

signal of the high- and low-affinity alleles after subtracting the corresponding IgG 

signal. 

Extension to other transcription factors 
Putative regulatory SNPs altering the binding of other transcription factors were 

identified with the same method used for STAT3. We considered the PWMs included 

in the JASPAR core vertebrate collection, and performed a general LLR threshold 

optimization. We downloaded from ENCODE Myers et al. (2011) (UCSC genome 

browser version hg19) chip-seq peak data for 55 TF associated to known PWMs in 

JASPAR. 

Then we obtained computationally predicted binding sites (TFBS) for each PWM 

by applying different LLR thresholds. For each PWM and each threshold S (ranging 

from 5 to 20 at step 1) we counted true positive binding sites (TP: predicted TFBS 

with LLRS that overlap with a chip-seq peak of the TF), false positives (FP: 

predicted TFBS with LLRS that do not overlap with a chip-seq peak of the TF), and 

false negative (FN: chip-seq peak that have no TFBS with a score S. 

From TP, FP an FN we computed precision, recall and the harmonic mean of 

precision and recall, i.e. the balanced F-score. F is a function of the LLR threshold S, 

and we denoted as S\s\do5(best) of a given PWM the score that maximizes F(S) for the 

appropriate TF. This procedure gave us an optimal value of the LLR cutoff for each 

PWM that is associated to a TF for which ChIP/seq data are available. To estimate the 

optimal cutoff for all PWMs, we fitted the values of S\s\do5(best) to a quadratic model 

where the idependent variable is a measure of information content of the PWM. We 

considered three such measures: the entropyof the PWM, the IC as defined by 

JASPAR and the maximum possible LLR score S\s\do5(max) that the PWM can 

produce. 

The best fit was obtained using S\s\do5(max) as the indpendent variable 

(P=0.0001). This P-value was better than those obtained from linear models, while 

using polynomial model of higher order did not further improve the significance of 

the fit. The best fit was given by 

S\s\do5(best)=0.021S\s\up(2,max)+1.020S\s\do5(max)+0.032. This function was used 
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to determine the cutoff in LLR to define putative binding sites for each PWM 

(including the ones for which ChIP/seq data are available).  

Association with disease 
We evaluated disease associations of our predicted regulatory SNPs against the 

genome-wide datasets from the Wellcome Trust Case Control Consortium (WTCCC) 

Consortium (2007). The original study included 7 complex disease datasets (2000 

samples each) and a dataset of shared controls (3000 samples): bipolar disorder 

(BD), coronary artery disease (CAD), Crohn disease (CD), hypertension (HT), 

rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes (T2D). 

The original data were downloaded from the WTCCC repository and then filtered 

by removing samples and SNPs excluded by the WTCCC quality control, and SNPs 

with genotype quality score (CHIAMO) lower than 0.9. Minimum minor allele 

frequency and maximum genotype missingness among samples were both set at 0.05. 

Hardy-Weinberg equilibrium threshold was tested at a cutoff of 0.001. Different 

cutoff choices (10\s\up5(5) and 10\s\up5(7)) resulted in marginal changes on the 

final set of SNPs. 

Out of the 6,682 predicted regulatory SNPs about 1600 were retained for each 

disease after such filtering, and were analysed with the Cochran-Armitage test for 

trend Armitage (1955). This test is more conservative than allele-count test and does 

not rely on an assumption of Hardy-Weinberg equilibrium. It checks the hypothesis of 

zero slope for the straight line that best fits the risk estimates for the three genotypes. 

This choice is coherent with the linear-dependence hypothesis used in determining 

correlation with expression, and agrees with the widely held belief Balding (2006) 

that the contribution of single alleles to complex diseases is roughly additive. 

Population structure, due to the small genomic coverage of the resulting SNP set, 

was assessed examining results of the original GWA study (PCA and over-dispersion 

estimates). The authors concluded that, after excluding the non-European ancestry 

samples, the overall effect of population structure on association results seemed to be 

small. Therefore our analysis, as the one in the original reference Consortium (2007) 

does not correct for structure. 
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Figures 

Figure 1 - Differential induction in 

homozygous individuals 
The induction at 6 hours after treatment with IL6 of individuals homozygous for the 

high-affinity variant (rows) compared to low-affinity ones (columns). For each 

comparison we report the P-value of the two-tailed t-test. Red: higher induction for 

the high-affinity variant, statistically significant (P<0.05); Pink: higher induction for 

the high-affinity variant, not statistically significant; Green: lower induction for the 

high-affinity variant, not statistically significant 

Figure 2 - Differential induction in 

heterozygous individuals 
Relative induction of the high vs low-affinity allele in heterozygous individuals 6 

hours after stimulation with IL6. Error bars represent the SEM computed on two 

independent samples 

Figure 3 - Experimental validation for an 

intronic SNP in GTF3C6 
Experimental validation for the SNP rs9400435, located in the fifth intron of 

GTF3C6. (A) Induction of GTF3C6 upon stimulation with IL6 at various timepoints 

for homozygous individuals with the low-affinity allele (green) and high-affinity 

allele (red). (B) ChIP signal for STAT3, and IgG (negative control) at 1.5 hours after 

stimulation. Green and red bars correspond to two individuals with respectively low 

and high affinity alleles. The ChIP signal is measured in unit of the total input. (C) 
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Relative expression of the high- to low-affinity allele of a heterozygous individual at 

various time points. (D) ChIP signal for the two alleles of the same heterozygous 

individual at 6 hrs after stimulation. Green (red) bars correspond to the low (high) 

affinity allele. 

Additional Files 

Additional file 1 — Supplementary Table 1 
Primers used for SNP genotyping  

Additional file 2 — Supplementary Table 2 
Primer sequences and probe numbers (Universal Probe Library; UPL) used for 

quantitative Real-Time PCRs.  

Additional file 3 — Supplementary Table 3 
Primer sequences used for ARMS-qPCRs  

Additional file 4 — Supplementary Table 4 
Primer sequences used for conventional ChIP qPCR  

Additional file 5 — Supplementary Table 5 
Non-exonic SNPs located within 10Kbp form a TSS and significantly correlated with 

the expression of a neighboring gene.  

Additional file 6 — Supplementary Figure 

1 
PCR and ChIP results for the non-intronic SNPs. For each gene: (A) Induction upon 

stimulation with IL6 at various timepoints for homozygous individuals with the low-

affinity allele (green) and high-affinity allele (red). (B) ChIP signal for STAT3, and 

IgG (negative control) at 1.5 hours after stimulation. Green and red bars correspond 

to two individuals with respectively low and high affinity alleles. The ChIP signal is 

measured in units of the total input.  

Additional file 7 — Supplementary Figure 

2 
PCR and ChIP results for the intronic SNPs. For each gene: (A) Induction upon 

stimulation with IL6 at various timepoints for homozygous individuals with the low-

affinity allele (green) and high-affinity allele (red). (B) ChIP signal for STAT3, and 

IgG (negative control) at 1.5 hours after stimulation. Green and red bars correspond 

to two individuals with respectively low and high affinity alleles. The ChIP signal is 

measured in unit of the total input. (C) Relative expression of the high- to low-affinity 

allele of a heterozygous individual at various time points. (D) ChIP signal for the two 



14 

alleles of the same heterozygous individual at 6 hrs after stimulation. Green (red) bars 

correspond to the low (high) affinity allele.  

 

 


