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Introduction

A monoidal (or tensor) category consists of a category M which is endowed with a
distinguished object 1 (called unit) and with a functor ® : M x M — M (called
tensor product) obeying some axioms that guarantee its associativity (usually up to
an isomorphism) and the “compatibility” with 1 (see Definition 1.2.1). In this thesis
we are concerned with two main types of monoidal categories: abelian and coabelian
monoidal categories. An abelian (resp. coabelian) monoidal category consists of a
monoidal category (M, ®, 1) where the underline category M is abelian with right
(resp. left) exact and additive tensor functors. The first obvious example of abelian
monoidal category (this will be called the classical case) is the category of vector
spaces over a field K, where K plays the role of the unit and the tensor product
is the usual tensor product over K. There are many other examples of (co)abelian
monoidal categories, as the categories of left, right and two-sided (co)modules over
a Hopf algebra H, or the category of Yetter-Drinfeld modules over a Hopf algebra H
with bijective antipode (see also Section 5.5/ and Section [6.2)). We are also interested
in studying bialgebras in monoidal categories. In the classical case, when defining
the notion of bialgebra, the canonical flip of tensor factors Ve gW = W®gV is used
in the compatibility condition between multiplication and comultiplication. Such a
morphism does not exist in an arbitrary monoidal category. A braided monoidal
category, is a monoidal category such that, for every X,Y € M, there is a natural
isomorphism X ® Y =2 Y ® X, called braiding, satisfying suitable conditions and
which formalizes the flip of tensor factors. The category of Yetter-Drinfeld modules
over a Hopf algebra H with bijective antipode is an example of a braided monoidal
category. As we will explain in more details later, bialgebras in the braided monoidal
category of Yetter-Drinfeld modules play a fundamental role in the classification of
finite dimensional Hopf algebras. Monoidal Categories were introduced in 1963 by
Bénabou [Be| (see also [McL2]). Braided monoidal categories were introduced by
Joyal and Street in [JS|, motivated by the theory of braids and links in topology.

The aims. The purpose of this thesis is to present in an unifying manner some
recent results concerning the cohomological properties of algebras and coalgebras in-
side the framework of abelian monoidal categories and to exhibit some applications
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related to the classification of finite dimensional Hopf algebras problem. More pre-
cisely, we show how to introduce the Hochschild cohomology in an abelian monoidal
category and classify (co)algebras of Hochschild dimension less or equal to 1. As
an application we show how the notion of formally smooth (co)algebra in monoidal
categories is useful to prove that certain Hopf algebras can be described by means
of a bosonization type procedure. The quoted cohomological results can be also
applied to prove that, as in the classical case, the tensor algebra T4(M), where A
is a formally smooth algebra and M is a projective A-bimodule in a monoidal cate-
gory M, is itself formally smooth as an algebra in M. Furthermore Ty (M) can be
endowed with a braided bialgebra structure whenever H is a braided bialgebra in a
braided monoidal category M satisfying suitable assumptions and M is an object
in Z M. Similar results are obtained for the cotensor coalgebra T&(M), where C
is a coalgebra in M and M is a bicomodule over C'. The introduction of the coten-
sor coalgebra and the proof of its universal property in a monoidal category M is
not immediate because of the lack of the notion of coradical for coalgebras in M.
Therefore new ideas are often required. The cotensor coalgebra T (M) becomes a
braided bialgebra when H is a braided bialgebra in a braided monoidal category M
satisfying suitable assumptions and M is an object in # ME. We provide a univer-
sal property both for Ty (M) and T5;(M) and we use it to prove that there exists a
bialgebra homomorphism F' : Ty (M) — T5(M). In this way we can define a new
bialgebra, that is Im(F"), which is the braided analogue of the so called ”bialgebra
of type one” introduced by Nichols in [Ni] in the classical case. The H-coinvariant
part of this bialgebra is called ” Nichols algebra”. ”Nichols algebras”, first appeared
in |Ni], are an example of braided bialgebras of type one constructed in the braided
monoidal category of Yetter-Drinfeld modules.

In this thesis, we also present a proof of the Heyneman-Radford Theorem for
Monoidal Categories. The original Heyneman-Radford Theorem (see [HR) Proposi-
tion 2.4.2] or [Mo, Theorem 5.3.1, page 65]) is a very useful tool in classical Hopf
algebra theory. We also point out that our proof is pretty different from the classical
one and hence might be of some interest even in the classical case. An expected fu-
ture application of this result is the following characterization for a ”braided graded
bialgebra” B in a monoidal category M: B is a bialgebra of type one if and only
if the natural bialgebra homomorphism Tg)(B(1)) — B is surjective, i.e. B is
generated as an algebra by its components of degree 0 and 1.

Historical references. Let K be a field. Hochschild cohomology H*(A, M)
of a K-algebra A with coefficients in a A-bimodule M was introduced in [Ho] in
order to classify, up to equivalence, all extensions of A with kernel M. Many other
applications of this cohomology have been discovered since then. Let us mention
here a few of them.

An algebra A is called separable if A is projective as an A-bimodule. Separable
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algebras are characterized as those algebras A having Hochschild dimension zero,
that is H'(A, M) = 0, for every A-bimodule M (se e.g. [We| and [CQ] for other
properties of separable algebras).

The set of equivalence classes of Hochschild extensions of A with kernel M is in
one-to-one correspondence with H?(A, M). In particular, an algebra A has only triv-
ial extensions exactly when H*(A, M) = 0, for any bimodule M, i.e. its Hochschild
dimension is less than or equal to 1. These algebras, called formally smooth alge-
bras, were introduced by J. Cuntz and D. Quillen in [CQ], where they are called
quasi-free algebras and play the role of “functions algebras” of a “noncommutative
smooth affine variety”. Dually, in [JLMS] the notion of formally smooth coalgebra
was introduced and characterized by means of a suitable coextension property.

In [AMS3], the authors introduced the Hochschild cohomology in the frame of
monoidal categories, they investigated the properties of Hochschild cohomology of
(co)algebras in an abelian monoidal category, and they proved that all properties of
separable and formally smooth algebras and coalgebras, that we mentioned above,
hold true in this wider context. The main applications of this approach are included
in [AMS1] where, using the “categorical” version of Wedderburn-Malcev Theorem,
besides other results, bialgebras with (dual) Chevalley property are characterized
(see Theorem 6.8.6/and Theorem 6.8.7). In [Arl] further results in terms of formally
smooth (co)algebras instead of (co)separable (co)algebras are found (see Theorem
6.8.1 and Theorem 6.8.4). This results are used to prove that every connected Hopf
algebra E over a field K with char (K) = 0 has a weak projection 7 : £ — K [z],
for every non zero primitive element x of E.

For a classical proof of formal smoothness of the tensor algebra T4 (M), where
A is a formally smooth algebra and M is a projective bimodule over A, see [CQ),
Proposition 5.3(3)]. In [JLMS] a similar result is provided for the cotensor coalgebra
introduced by Nichols in [Ni]. Tt is then natural to wonder whether these two
facts still hold for monoidal categories. This led in [AMS3] to the study of the
cohomological properties of the tensor algebra. Moreover, in [AMS2] the notion
of cotensor coalgebra was introduced for a given bicomodule over a coalgebra in an
abelian monoidal category M. More precisely, if M is also cocomplete, complete and
AB5, such a cotensor coalgebra exists and satisfies a meaningful universal property
which resembles the classical one (where the notion of coradical take a fundamental
rule). Here the lack of the coradical filtration is filled by considering a direct limit
of a filtration consisting of wedge products. In [AMS2], it is also proved that this
coalgebra is formally smooth whenever the comodule is relative injective and the
coalgebra itself is formally smooth.

Let H be a Hopf algebra over a field K and let M be a Hopf bimodule. Then
the subalgebra H[M] of the cotensor coalgebra T§ (M) generated by H and M was
firstly studied by Nichols and called ”bialgebra of type one”. The canonical inclusion
o : H — H[M] has a retraction m : H[M] — H which is a bialgebra homomor-
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phism. Via 7 and o it is possible to define an isomorphism of vector spaces (see6.8.3)
H[M] =~ R®g H where R = HM]°W = {z € HM]| Y 2(1) @K 7(z) =z @K 1}
and ) x(1) @k x(2) is the Sweedler’s sigma notation for the comultiplication of the
bialgebra H[M]. R comes out to be a braided bialgebra in the monoidal category
of Yetter-Drinfeld modules and is usually called a ”Nichols algebra”. Through the
quoted isomorphism, R®x H inherits a bialgebra structure depending only on 7 and
0. This is an example of the so called bosonization and is denoted by R#H. Now,
given a Hopf algebra E whose coradical H is a Hopf subalgebra (i.e. E has the dual
Chevalley property), the associated graded coalgebra gr(FE) is a Hopf algebra whose
coradical is still H. If gr(E) is generated as an algebra by the components of degree
0 and 1, then it is a bialgebra of type one. This is the main point in the celebrated
”Lifting method” by Andruskiewitsch and Schneider: the general principle they pro-
pose is first to analyze R = gr(E)°*) then to transfer the information to gr(F)
by bosonization, and finally to lift it from gr(E) to E via the filtration (see, e.g.,
[AG] and [AS]). This approach turned out to be very fruitful in the classification of
finite dimensional pointed (i.e. all simple subcoalgebras are one-dimensional) Hopf
algebras process.

The structure. In chapter [1! we recall the notion of monoidal category and the
main tools we will use in the sequel. In particular we show how the notions of algebra,
module over an algebra, coalgebra and comodule over a coalgebra, relative tensor
and cotensor products, ideal and wedge product can be introduced in the general
setting of monoidal categories. We also prove the Heyneman-Radford Theorem for
Monoidal Categories.

In chapter 2/ we deal with some results concerning the theory of relative left
derived functors that will be necessary in defining and classifying the Hochschild
cohomology in the frame of monoidal categories. We also recall and study the
notion of relative projectivity and injectivity with a particular interest for those
projective classes that are defined by means of suitable adjunctions related to the
tensor functors.

In chapter 3, following [AMS3], we introduce and investigate the properties of
Hochschild cohomology of algebras in an abelian monoidal category, and we show
that many properties of separable and formally smooth algebras in the classical sense
still hold true in this wider context.

In chapter 4/we introduce and study the properties of the tensor algebra inside the
framework of monoidal categories. In particular, in section 4.3, the tensor algebra
is endowed with a braided bialgebra structure that will be involved in the definition
of a braided version of the notion of Bialgebra of type one.

In chapter 5, the concept of cotensor coalgebra for a given bicomodule M over
a coalgebra ' in an abelian monoidal category M is introduced and a universal
property is given. We prove that this coalgebra is formally smooth whenever M
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is relative injective and C' is formally smooth. If C' = H is a braided bialgebra
bialgebra inside a braided monoidal category M and M is an object in M the
cotensor coalgebra is endowed with a braided bialgebra structure which is used to
extend the notion of bialgebra of type one to the wider context of a braided monoidal
category (see Definition 5.6.10). A universal property for the cotensor bialgebra is
also given (see Theorem 5.6.8)

In chapter 6, following [Arl], we provide a functorial characterization of ad-
(co)invariant integrals and we show how the notion of formally smooth (co)algebra
in monoidal categories is useful to prove that certain Hopf algebras can be described
by means of a bosonizations type procedure. More precisely, we prove that given a
bialgebra surjection 7 : £ — H with nilpotent kernel such that H is a Hopf algebra
which is formally smooth as a K-algebra, then 7 has a section which is a right H-
colinear algebra homomorphism (Theorem [6.8.1). Moreover, if H is also endowed
with an ad-invariant integral, then the section can be chosen to be H-bicolinear
(Theorem 6.6.17). Dually, we prove that, if H is a Hopf subalgebra of a bialgebra
E which is formally smooth as a K-coalgebra and such that Corad(E) C H, then
E has a weak right projection onto H (Theorem 6.8.4). Furthermore, if H is also
endowed with an ad-coinvariant integral, then the retraction can be chosen to be
H-bilinear (Theorem 6.7.19).

Acknowledgements. Above all, I would like to thank my Supervisor, Prof. Clau-
dia Menini. I could not have imagined having a better advisor and mentor during
my PhD. My gratitude also goes to Prof. Dragos Stefan who was, with Prof. Clau-
dia Menini, a co-author of some of the papers containing the results presented in
this thesis. Finally, I am forever indebted to my parents and Stefania for their
understanding, endless patience and encouragement when it was most required.
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Chapter 1

Monoidal Categories

In this chapter we recall the notion of monoidal category and the main tools we will
use in the sequel. In fact, the notion of monoidal category codifies in categorical
terms the properties that allow to have an associative tensor product which is com-
patible with K in the category of vector spaces over a field K (this will be called the
classical case). When working in a monoidal category, new techniques are required
as objects need not to be sets. In this way the proofs are pretty different from the
classical ones and hence might be of some interest even in the classical case. The
number of different examples of monoidal categories is another reason for working
in this wider context. In this way one can recover, in an unifying manner, many
well known results. The notions of algebra, module over an algebra, coalgebra and
comodule over a coalgebra, relative tensor and cotensor products, ideal and wedge
product are introduced in the general setting of monoidal categories.

1.1 Preliminaries and notations.

A category will be denoted by M, 2, B, € while 9 = My will denote the category
of vector spaces over a field K. A will denote an algebra, R, S rings and H a Hopf
algebra.

In a category M the set of morphisms from X to Y will be denoted by M(X,Y). If
X is an object in M, then the functor M (X, —) from M to Gets associates to any
morphism u : U — V in M the map that will be denoted by M(X, u). We say that
a morphism f : X — Y in M splits (respectively cosplits) or has a section (resp.
retraction) in M whenever there is a morphism ¢ : Y — X such that f o g = Idy
(resp. go f =1Idx). In this case we also say that f is a splitting (resp. cosplitting)
morphism .

Throughout, K is a field and we write ® for tensor product over K. We use
Sweedler’s notation for comultiplications A(c) = ¢y ® ¢2) = ¢1 ® ¢z, and the ver-
sions “p(z) = 2o 1> @ Teps = 21 @ 19 and p°(T) = Tps @ Tos = T @ T for

1



1. Monoidal Categories

left and right comodules respectively (we omit the summation symbol for the sake

of brevity).
Let X,Y be objects and f : X — Y be a morphism in a monoidal category

(M, ®,1). Set

X®0 =1, X=X and Xor — x®=1) & X for every n > 1
0 =1dy, el =f and e = = & f for every n > 1.

Let [(X,ix)] be a subobject of an object F in an abelian category M, where ix =
i% : X — E is a monomorphism and [(X,ix)] is the associated equivalence class.
By abuse of language, we will say that (X, ix) is a subobject of £ and we will write
(X,ix) = (Y,iy) to mean that (Y,iy) € [(X,ix)]. The same convention applies to
cokernels. If (X, ix) is a subobject of E then we will write (E/X, px) = Coker(ix),
where pxy = p% 1 E — E/X.

Let (Xl,z'?l) be a subobject of Y; and let (Xg,i?é) be a subobject of Y;. Let
x:X; — Xy and y: Y] — Y5 be morphisms such that y o i?l = i?g oxz. Then there
exists a unique morphism, which we denote by y/z = £ : Y,/ X; — Y5/ X5, such that

Yy Y1 _ Y .
2 °Px, = Px,°U:

7
X1 Px, v,

R

px2 Y-
}/’2 2

1.2 Monoidal Categories

Definition 1.2.1. Recall that (see [Ka, Capitolo XI|) a monoidal category is a
category M endowed with an object 1 € M (called unit), a functor ® = ®; :
MxM—M (called tensor product), and functorial isomorphisms axy,z := 'akyz :
(X1 Y)01Z - X1 (Y1 2),lx =0:1 X > X, rx:=rk: X®1—- X
The functorial isomorphism a is called associativity constraint and it satisfies the
Pentagon Aziom, that is the following diagram is commutative, for every U, V, W, X
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in M:

(UeV)eWw)e X 2 Ue (Vew) e X

QU V,W@X UQoy,w,x

U (Ve (WeX))

The functorial isomorphisms [ and r are called respectively left and right unit con-
straint and they obey the Triangle Aziom, that is the following diagram is commu-
tative, for every U, W in M:

av,1,w

(Vel)eoW Vel W)

ry QW Vlw

VoW

A monoidal category is called strict whenever the associativity constraint and the
unit constraint are the respective identities.

It is well known that the Pentagon Axiom completely solves the consistency problem
arising out of the possibility of going from (U@ V)@W)®@X to U (Ve (W & X))
in two different ways (see [Mj1, page 420]). This allows the notation X; ® --- ® X,
forgetting the brackets for any object obtained from Xi,--- X, using ®. Also, as a
consequence of the coherence theorem, the constraints take care of themselves and
can then be omitted in any computation involving morphisms in M.

Some examples of monoidal categories are included in Section 5.5 and in Section
6.2.

1.2.2. A monoidal functor (F,¢o,¢2) : (M, ®,1,a,l,1) — (M',®,1,a,l,r) be-
tween two monoidal categories consists of a functor F' : M — M/’, an isomorphism
G (U, V): FU®RV) — F(U)® F(V), natural in U,V € M, and an isomorphism
¢o : 1 — F(1) such that the diagram

UV)QF(W UQV,W
(FU) o F(V)) @ Fv 222 b o vy e row) -2 | (e vy o W)
aF(U),FlV),F(W) F(auiv,w)

FU)® (F(V)® F(W)) FU@FVeW) FU®(VoW))
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is commutative, and the following conditions are satisfied:
F(ly) o ¢2(1,U) o (o @ F(U)) = lpw), F(rv)oga(U,1)0 (F(U) @ ¢o) = rrw).-

1.2.3. A braided monoidal category (M, c) is a monoidal category (M, ®, 1) equipped
with a braiding c, that is a natural isomorphism

CX7y1X®Y—>Y®X
satisfying
cxevz = (cxzQ@Y)(X ® cyz) and cxvez =Y ®@cxz)(exy ® Z).

For further details on these topics, we refer to [Ka, Chapter XIII].

1.2.4. Algebras and Coalgebras. [Mjl, Definition 9.2.11] An associative 1-
algebra or simply an algebra A in a monoidal category (M, ®,1,a,l,r) is a tern
(A,m,u) where A is an object in M endowed with morphisms m : A®@ A — A
(multiplication) and a v : 1 — A (unit) in M such that the diagrams

AQAR A" L An A 190A-A A< Ax1
m®Al lm uRA % AQu
AR A m m AR A

are commutative.

Let (A,m,u) and (A’,m',u') be algebras in M. A morphism f: A — A’ is called
an algebra homomorphism if m’ o (f ® f) = fom, and fou=u'.

A left A-module is an object M € M together with a morphism 4y, = uh, :
A® M — M such that: “py 0 (A® Aup) o AaAM = Aipr o (m®@ M) and Ay o
A morphism f : M — N between two left modules is called a homomorphism of
left A-modules if Apiy 0 (A® f) = f o Apupr. The category of left A-modules will be
denoted by s M. The category My of right A-modules is introduced in a similar
way.

An A-bimodule is a left and right A-module (M, *uyr, pus;) in M satisfying the
following compatibility condition: 4y o (A® pugy) © aana = pay o P @ A).
aM 4 will denote the category of A-bimodules.

Recall that, given V € M and (M, ?uy;) a left A-module, the object M ® V can be
regarded as a left A-module via 4upey =A@V OGZ}M,V' Any algebra (A, m, u)
can be considered as an A-bimodule by setting 44 := p4, == m.

An coassociative 1-coalgebra or simply a coalgebra C' in a monoidal category
(M, ®,1,a,l,r) is a tern (C,A,e) where C is an object in M endowed with a



1.3 The relative tensor and cotensor functors

comultiplication A : C® C' — C and a counit € : C' — 1 in M such that (C, A, ¢) is
an algebra in the dual monoidal category M? of M. Recall that M?° and M have
the same objects but M°(X,Y) = M(Y, X) for any X,Y in M. Given a coalgebra
C in M one can define the categories of C-comodules “ M, MY, ¢ M respectively
as the categories of C-modules ¢(M?), (M), c(M°)c.

1.2.5. Braided bialgebras. A braided bialgebra in a braided monoidal category
(M, c), is a sextuple (H,m, u, A, €) such that (H, m, u) is an algebra in M, (H, A ¢)
is a coalgebra in M and this two structure are compatible in the sense that the
following diagrams

HoHoHo HEYH o Heo Ho H B® B 191
A®/ mem ml J{ml
- B < 1

H®H H®H

\ /

are commutative.

Definition 1.2.6. Let H be a braided bialgebra in a braided monoidal category
(M, c). An object in EME is a 5-tuple (M, ph,, pby, poss £4y) such that

o (M, iy, 1) is an H-bimodule;
o (M, ph, phy) is an H-bicomodule;
e the following compatibility conditions are fulfilled:

Pty = (ma ® ) (H®can ® M) (Ag @ ply) ,
Putthy = (mu ® iy

)
Pty = (W @my) (H® g @ H) (Ap @ ply)
Pty = (Wy @mp) (M @cpg @ H) (pyy @ Ag) .

A,_\A/_\
S e O S
N N
N N N

1.3 The relative tensor and cotensor functors
Let (M,®,1,a,l,7) be a monoidal category. For sake of simplicity, from now on,
we will omit the associativity constraints.

Assume that M is abelian and let A be an algebra in M. It can be proved (see
[Ar2]) that 4M is an abelian category, whenever the functor A ® (=) : M — M
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is additive and right exact. In the case when both the functor A® (=) : M — M
and the functor (—) ® A : M — M are additive and right exact, then the category
4M 4 is abelian too.

Since, sometimes, we have to work with more than one algebra in M, and their
bimodules, it is convenient to assume that X ® (=) : M — M and (-)®@ X : M —
M are additive and right exact, for any X € M. Hence we are led to the following
definition.

Definition 1.3.1. Let M be a monoidal category.

We say that M is an abelian monoidal category if M is abelian and X ® (—) :
M — M and (—)® X : M — M are additive and right exact, for any X € M.
We say that M is an coabelian monoidal category if M? is an abelian monoidal
category.

1.3.2. Let A be an algebra in an abelian monoidal category M. The tensor product
over A in M of a right A-module V and a left A-module W is defined to be the
coequalizer:

Aaxv,w=xa(V,W

V@W—>)V®AW4>O

(VAW

Note that, since ® preserves coequalizers, then V ®4 W is also an A-bimodule,
whenever V' and W are A-bimodules. In fact there exists a functor

@4t aMy X qgMy — aMy

and morphisms “a?,[4,r4 that make the category (4M 4, ®4, A4, 4a?, 14, r4) an
abelian monoidal category (an algebra in this category will be called an A-algebra):
see [AMS3, Theorem 1.12].

Dually, let C' be a coalgebra in a coabelian monoidal category M. The cotensor
product over C' in M of a right C-bicomodule V' and a left C-comodule W is
defined to be the equalizer:

csv,w=sc(V,IW)

0—— VDOW

VeoWw Ve (CeW)

Note that, since ® preserves equalizers, then VoW is also a C-bicomodule, when-
ever V and W are C-bicomodules. In fact there exists of a functor

Oc: M x MY — M€
and morphisms “a®, 1€, r¢ that make the category (“M%, O¢, C,%a%,1¢,r%) a coa-
belian monoidal category (a coalgebra in this category will be called a C-coalgebra).

What follows is a list of the most important monoidal categories meeting ours re-
quirements.
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Definition 1.4.1. An ideal of an algebra (A, m, u) in a monoidal category (M, ®, 1)
is a pair
(1,ir)
where I is an A-bimodule and
ir:l— A
is a morphism of A-bimodules which is a monomorphism in M.
A morphism f: I — J in sM 4, where I,J are two ideals, is called a morphism of

1deals whenever
L—
N
A

f is a monomorphism in M as i; is. Moreover f is unique, as ¢, is a monomorphism.
In this way we get the category of ideals of A which is denoted by Z(A) and is a
subcategory of 4 M 4.

I

Remark 1.4.2. If M is an abelian monoidal category, then, for every f in 4 M4,
we have that f is a monomorphism in 4 M4 iff it is a monomorphism in M so that,
in this case, the ideals of A are exactly the subobjects of A in 4 M 4.

1.4.3. Next aim is to exhibit some examples of ideals and to prove that there exists
a functor, called ”"product of two ideals” (see Proposition 1.4.8):
7 T(A) X I(A) = I(A)
((Lyir), (Jyig)) = (L] irg)
(f,9) = f-g,

such that
(Z(A),- A)

is a monoidal category.
Example 1.4.4 (Kernel of an algebra homomorphism). Let f : A — B be an
algebra homomorphism in an abelian monoidal category M. Since M is abelian,
then (K, ix) = Ker (f) exists in M. The object B is a left A-bimodule via

ps @ =mpo(f®B):A®B — B

Py : =mpo(B®f):BRA—B
and f becomes a morphism in 4 M 4.
Moreover K can be endowed with a unique left A-bimodule structure such that the

canonical injection iy : K — A is a morphism in 4 M 4. Therefore (K, ix) is an

ideal of A.
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Proposition 1.4.5. Let M be an abelian monoidal category. Let f be a morphism
of A-bimodules. Let sJH 4 : aM 4 — M be the forgetful functor. Then

1) Ker(AHa(f)) carries a natural A-bimodule structure (compatible with the de-
finition map) that makes it the kernel of f in aMy.

2) Coker(4AHa(f)) carries a natural A-bimodule structure (compatible with the
definition map) that makes it the cokernel of f in aMa.

Proof. follows by |Ar2, proposition 3.3]. Note that here "abelian monoidal category”
has a different meaning. m

Proposition 1.4.6. Let (M, ®,1) be an abelian monoidal category. Let (A, m,u)
be an algebra in M and let M € s My, Let f: M — A be a morphism in 4 My,
where A is regarded as a bimodule via m. Then

(Q,m) := Coker(f)
carries a unique algebra structure such that w: A — Q is an algebra homomorphism.

Proof. In view of Proposition 1.4.5, () carries an A-bimodule structure

(Q, 1 1g)

such that 7 is a morphism of A-bimodules (see [Ar2, Proposition 4.3]).
By right exactness of the tensor functors, we have that

(Q®Q,Q @) = Coker(Q ® f).

Consider the following diagram:

QoM ¥ QoA Qe —0
Mgl mQ

=

Q

Since 7 is a morphism in M4 and f in 4 M, we have:

1y (Q® f) (r® M) = iy (n® A) (A® f) = Tm (A® f) = 7 fuy = 0.

Now 7 ® M is an epimorphism, as 7 is an epimorphism, so that

1o (Q@® f) =0

By the universal property of the cokernel, there exists a unique morphism

me:RQeQ—Q
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in M such that mq(Q ® ) = pug. Set
ug :=Tmus 1 — Q.
We have
ma (1 ® ) = Mg (Q® ) (1 ® A) = iy (1 ® A) = myi = mma.
Once proved that (@, mg,uq) is an algebra in M, the displayed relation implies
that 7 is an algebra homomorphism. We have
mg(me®@Q)(TRT@T) = mma(ma® A)
= mma (AQ@my) =mg(Q@mg)(TR®TR).

By right exactness of the tensor functors, (7 ® 7™ ® 7) is an epimorphism and hence

mq (mg ® Q) =mq (Q ® mg) .
Moreover

mq (Q®ug) (T®1) = mo(r®m)(AR®ua)
= mmy (AR u,s)
= Mra=ro(r®1l).
Since ™ ® 1 is an epimorphism, we deduce that mg (Q ® ug) = rg. Similarly one
proves that mg (ug ® Q) = lg so that (Q, mg,ug) is an algebra in M.
O
Example 1.4.7 (The product of two ideals). Let M be an abelian monoidal cate-
gory.
Let (I,ir) and (J,i,) be two ideals in (A, m,u). Set
mry=m(i;®iy): I®J—A
(Q[,Ja 7TI,J) = Coker (mI,J) ) Tyt A—Qry
(IJ,i[J):KGT(W[,J):Im(mLJ), i[JZ]J—>A
Since my ; € aMa, by Proposition [1.4.6, ()7 s is an algebra and 77 ; and algebra

homomorphism.
By the previous example, we have that

(1J,iry)

is an ideal of A which is called the product of I and J.
Moreover, we have the following exact sequence:

TI,J

(1.5) 0—1J 25 A% Q,, —0.
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Since (IJ,ir;) = Ker (77, ;) and 7 ym; ; = 0, by the universal property of the kernel,
there is a unique morphism my; ;: I ® J — IJ such that the following diagram

0 17 i A—" L Quy 0

VZ
m;y‘]"—_ mr.Jg

is commutative. Since I.J =Im(my ;) , it comes out that 7 s is an epimorphism.
Consider the case I = A.
Since ¢, is a morphism in 4 M, we have

may=mo (Idg ®iy) :z'Jo,uf].
Since i; is a monomorphism and p!; an epimorphism, we deduce that
(AJ,iay) =Im (may) = (J,is).
Analogously, in the case J = A, one has
(ITA,ir4) = (1,i5).
We need the following result.

Proposition 1.4.8. Let A be an algebra in an abelian monoidal category M and
let Z(A) C 4 M4 be the category of ideals of A. Then there exists a functor:

"L T(A) x T(A) — T(A)
((Lh), (J,ZJ)) = (IJ, Z'IJ)

that will be called the product of two ideals functor. Furthermore
(Z(A),-,A)
1s @ monotdal category.

Proof. Let

[ (yin) — (T2,01) and g:(Ji,i5) = (Jo,ip)

be morphism of ideals of A. We have to define a morphism of ideals of A :

f-g:(Liing) — (Iads,in,) .
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We have

mp,,J, © (f ® g) =myo0 (iIQ ®iJ2) © (f ® g) =Mma©° (ill ®iJ1) =mn,g = IdA omrn,n

so that, in the following diagram

mry,Jy Ty, Jq
[1®J1 A Qll,Jlﬂo
\
m12’J2 7T12,J2
I, ® Jy A Qr,0, —=0

the left square commutes. Since (Q1, s, 7y, s,) = Coker (my, j,) and
1y, 0 Idaomy, g, = 7py 3 0 My g, 0 (f ® g) =0,
by the universal property of the cokernel, there is a unique morphism

™ QII»JI - Q12,J2

such that the right square is also commutative. Furthermore, using the fact that
71,7, is an epimorphism, it is easy to check that 7 is an algebra homomorphism.
Since (I2J2,141,,5,) = Ker (7p,.,) and

Ty, J2 © Idso ing, = TOTL,p, Ol = 0
by the universal property of the kernel, there is a unique morphism

f'gZ[1J1 —>IQJ2

such that '
0—LJ; — e g Q0
0 IJ, o Tt QIZ,JQ —0

One can check that that f - ¢ is a morphism of ideals M. It remains to prove
that (Z(A),-, A) is a monoidal category. The unit constraints are, by definition, the
canonical morphisms

;A1 — 1T and rp:l-A—1,
for every ideal (1,77) of A. Furthermore, for every ideals I, J, K of A we have
Coker [mo (i;; ®ix)] = Coker[mo (i;; ®ix)o (m; ;& K)]

[
= Coker [ m® R)o (i;®@i; Qi)
Coker | R®m)o (i;Qiy Qik)]
[
[

o

(0]

Coker 17 ® Z'J,K) o (I & mJ,K)]
= Coker i] ® Z-JyK)] 5

o

Y~ N/~

m
m
m o
m
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where My ; : I ® J — I.J denotes the unique epimorphism defined by i; ; oMy ; =
m (i ®iy) (see Example [1.4.7), so that

((IJ) K,i([J)K) = IIIl [mo (i[’J®7:K)] = Im [mo (Z] ®7/J7K)] = (I(JK) ,i[(JK)) .

Therefore there is a (unique) homomorphism of ideals

(1.6) (1)) K, ignk) =25 (I(JK) i) -
Since a morphism of ideals is uniquely defined by its domain and codomain, it is

clear that the pentagon and triangle axioms are fulfilled so that (Z(A),-, A) is a
monoidal category. O

Example 1.4.9 (n-th power of ideals). Let M be an abelian monoidal category and
let (I,7r) be an ideal of an algebra A in M. Following the notations of Section [1.1
for "M” = (4Ma,®4, A), for every n € N, we can consider in view of Proposition
1.4.8

(I" i), (the n-th power of I)

where
I°:=A and 1"t =[], for every n > 0

The ideal I will be called nilpotent whenever
I" =0 for some n > 1.

1.4.10. If (7,i;) is an ideal then, by Proposition [1.4.6, there is a unique algebra
structure on

A
(7,171) = Coker (21) )

such that the canonical projection p; : A — ? is an algebra map.

Letdf : (I,ir) — (J,is) is a morphism of ideals. We know there is a unique morphism
iAJ : % — % such that

I

pr

0 LA

I
{
I
J

iy A

ng‘fb
~
(@]

Sl o

pJ

0

0

It comes out that ? is an algebra homomorphism which is an epimorphism in M.

By the Snake Lemma, there exists a morphism w : Ker(?) — < such that the
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zig-zag sequence in the back is commutative:

/0 /0 Ker(;7)
0 [ g A 0
if ﬁ
0
pi /
0 J 4 0

Thus w is an isomorphism. Furthermore w makes the oblique triangle commutative,
namely we have:
uow=1iy/1,

where u : ker(%) — 4 denotes the canonical morphism defining ker(f,). In par-
I I

ticular, since w is an isomorphism, we can identify (ker(%), u) with (%, z7") so that
I
we get the exact sequence

. A
Lz I
QHZAé_{)é_)()
I I J

1.4.11. Let (I,i;) and (J,4,) be ideals of an algebra A.
Then, by Proposition 1.4.8, we have two morphisms of ideals

ity IJ—1, and 4y, 1] —J
defined respectively by
it :=1d;-iy;, and i, =i;-1d;.

This notation does not cause confusion in the case I = J as, by uniqueness of
morphisms of ideals, we have

Id] “lp =17 - Id[

We have also

SN 5 S |
Ly Y1k = YNk

and the other analogue relations.
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1.4.12. Let (I,i;) be an ideal of an algebra A.
Let us define a morphism of ideals

(¥R It 1",

for every n € N, by setting
i =iy = 1dyn - iy

Note that, by uniqueness of morphisms of ideals, we have

it:=4; and i}t =i".1d;, for every n > 0.

Moreover, as observed in 1.4.10, there is a unique algebra homomorphism

A A A

T
I ZTIL Jn+1 JEL

which is an epimorphism in M and we have an exact sequence

m g A p A

0— - — —
[n+1 [n+1 In

— 0,

where j7 = 7547,

Lemma 1.4.13. [AMSS3, the proof of Lemma 3.4] Let M be an abelian monoidal
category.
Let (A,m,u) be an algebra in M, let (I,i) be an ideal in A and let n € N*. Then

m\?
(]n—l—l) = 0.

Proof. By construction we have the following diagram with exact lines and commu-
tative squares:

irn pIn A
0 " A T 0
qrm l lp1n+1
O mn ]? A Py A O
]n+1 In+1 n

where ¢ is the canonical projection.
We have to prove that (I"/I""1)? = 0 or, equivalently, that

N =1
m . =M ) =0
=m0 (7 @ 7) =0,

where m; denotes the multiplication of A/I*, for any natural number i.
Since ¢ is an epimorphism in M and (—) ® (—) is right exact in both variables,
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then g/» ® qr» is an epimorphism too.
Thus the required relation is equivalent to

My+1 0 (J7qm @ jiqrm) =0
Now, by uniqueness of morphisms of ideals, we get
i[n = i[ o Zgnfq.
Therfore, since j}qmm = pm+1im, we have

M1 © (7@ @ jiqm) = Mng1 0 (presripn @ prosiipn)
= Mps1 0 (Pret1 @ prat1) o (ign @ dign)
= pr+10mo (ipn @ i)
= pp+iomo (i ®ir) o (I" ®ifn 1)
= prarromp o (I"® it 1)

(*) = Pyn+1 O lmt1 OMyn [ O (I" ® #"*11) =0,

where (x) follows by
Myn = ign+1 O Mipn

which appeared in Example 1.4.7. O

1.5 Wedge product

In the classical case, the notion of wedge product (see [Mol, page 60]) plays a fun-
damental role in the study of coalgebras. In fact the coradical Cy of a coalgebra C'
gives rise to the so called coradical filtration:

Co CCoNcCy CCyNe CyNe Cy C---CC,

which is exhaustive in the sense that its direct limit is C' itself. The basic point
when dealing with coalgebras in monoidal categories is that there is no notion of
coradical. The idea then is to take a subcoalgebra D of a coalgebra C' and to consider
the coalgebra D which is the direct limit of the iterated wedge powers of D in C.
Then the coalgebra D acts, in a certain sense, as the coradical of D.

For this section we refer to [AMS2].

1.5.1. Let E be a coalgebra in a coabelian monoidal category M. As in the case
of vector spaces, we can introduce the wedge product of two subobjects X,Y of F
in M :

(X ApY,ix,y) = Ker[(px ® py) o Agl,
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where py : E — E/X and py : E — E/Y are the canonical quotient maps. In
particular we have the following exact sequence:

Ky (Px®py)olE

0—=XApY E E/X® E/Y.

Consider the following commutative diagrams in M

it il
X1<—1> E, ylc—l> E,

| I |
Xo————>F Vg E

iX22 iy22
where e is a coalgebra homomorphism. Then there is a unique morphism x A, y :
X1 Ng, Y1 — X5 Ap, Ys such that the following diagram

E

25
(2
X1nE 1

X1 Ag Y1 Ey

TN\eYy le

\

Xo A, Yo — Ey

'Xonp, Yo

commutes. In fact we have
Fo Fo -Eq
(pX2 ® pY2 ) ° AEZ ceo Z)(—1/\E1}/1
_ Eo Eo -y
- (pXQ ®pY2)O(€®€>OAE1 OZX1/\E1Y1
€ 1 Ey

e .
= (; & ;) © (p)E(l ®p}Efll> °© AEl © le/\Elyl =0

so that, since (X3 Ag, Ya, Z;Eé /\EQYz) is the kernel of (p]%2 ® pSE/;) o Ag,, we conclude.

Lemma 1.5.2. Consider the following commutative diagrams in M

it il
X1C—1> E, Y1C—1> E,

| - )
X By Vi B
xl X l y,i v l
Xy By Vi By

ZX3 ZYS

where e and €' are coalgebra homomorphisms. Then we have

(1.7) (@' Aeryf) o (x Aey) = (2'z Aere y'y)
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Proof. : straightforward. m

Lemma 1.5.3. [AMS2, Lemma 2.16] Let E be a coalgebra in a coabelian monoidal
category M. Let f: E — L and g: E — M be morphism in M. Then

Ker (f) Ag Ker (g) = Ker[(f ® g) o Ag].

Proof. Let (X,ix) = Ker(f) and let (Y,iy) = Ker(g). Let px : £ — E/X and
py : E — E/Y be the canonical quotient maps. Since fix = 0, by the universal
property of the cokernel, there exists a unique morphism

v :E/X — L
such that yxpx = [ :
i P
0 X——p—""—1% 0
fl X
L”

Moreover, we have (E/X,px) = coker(ix) = coker(Ker (f)) = coim(f). As M

is an abelian category, we have that (E/X,vx) = Im(f). In particular vyx is a

monomorphism. Analogously one gets a monomorphism ~y : E/Y — M such that

Yypy = g. Since M has left exact tensor functors, then vx ®~y is a monomorphism,

so that, by definition, we get:

X ApY = Ker[(px ® py)Ag] = Ker[(vx @ w)(px @ py)Ap| = Ker[(f ® g)Ag].
O

1.5.4. Let E be a coalgebra in a coabelian monoidal category M. Recall that a
subcoalgebra of FE is a subobject (C,4iZ) of E in M such that:

e (' is a coalgebra in M.

e iZ:C — FE is a coalgebra homomorphism in M.

Given two subcoalgebras (C,if) and (D,i%) of E, a morphism of subcoalgebras
f:(Ci&) — (D, i) is a coalgebra homomorphism f : C' — D in M such that

the following diagram
L ~»p
A %
C D
E
E

commutes. Note that, since ¢j} is a monomorphism, f is uniquely defined by its
domain and codomain.

Denote by C(F) the subcategory of M consisting in subcoalgebras of £ and mor-
phisms of subcoalgebras.

C
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Proposition 1.5.5. Let E be a coalgebra in an coabelian monoidal category M and
let C(E) C Coalg(M) be the category of subcoalgebras of E. Then there exists a
functor:

" A" : C(E) x C(E) — C(E)
((Cyig), (D,ip)) = (C Ag D,igp,k)

that will be called the wedge product of two subcoalgebras functor. Furthermore
(C(E)7 NE; O)
15 a monoidal category.

Proof. Let (C,iE) and (D, %) be subcoalgebras of E. By the foregoing, there exists
a subobject (C'Ag D, i, p) of E. This is Ker|(pc ® pp) o Ag| by definition. Now,
since (E/C,pc) = coker(iE) and iE is a morphism of coalgebras, by the dual of
Example 1.4.4, we get that F/C' is has a natural E-bicomodule structure such that
pc is a morphism of E-bicomodules. The same argument applies to pp, so that
(pc ® pp) o Ap comes out to be a morphism of E-bicomodules as a composition of
morphisms of E-bicomodules. By the dual of Proposition 1.4.6

(C Ag D, igAED) = Ker[(pc ® pp) o Ng]
carries a unique coalgebra structure such that iZ, , : C Agp D — E is a coalgebra
homomorphism. Furthermore, given f and ¢ morphisms in C(FE), it is straightfor-

ward to check that the f Agp g € C(F). It remains to prove that (C(E), Ag,0) is a
monoidal category. We have

(C A0, igAEO) = Ker[(pc ® po) o Ag]
= Ker[(pc ® E) o Ag]

Kerlpg/c o pc]
Ker (pc) = (C,i¢)

so that there exists a unique subcoalgebra homomorphism
rc:CAg0— C.

Analogously one constructs Ic : 0 Ap C — C. Let (F,i£) be a subcoalgebra of E.
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By Lemma [1.5.3, we have:

((C Ng D) Ng F, i(ECAED)AEF) = Ker[(pc ® pp) o Ag] Ax Ker (pr)
Ker {[[(pc ® pp)AE] ® pr] Ap}

= Ker[(pc @ pp @ pr) (Ap @ E) Ag]
Ker [(pc ® pp @ pr) (E ® Ag) Ag]
Ker {[pc ® [(pp ® pr)AE]) AR}
Ker (pc) Ap Ker[(pp @ pr) o Ag]
= (CAg (DA F) i, orpr))

so that there exists a unique subcoalgebra homomorphism
ac,D,F - (C/\ED) /\EF—>C/\E (D/\EF)

Since a homomorphism of subcoalgebras is uniquely defined by its domain and
codomain, it is clear that the pentagon and triangle axioms are fulfilled so that
(C(E), Ng,0) is a monoidal category. O

1.5.6. In view of Proposition [1.5.5, (C(E), Ag,0) is a monoidal category so that
we are led to use the notation of Section 1.1/ defining the n-th wedge power

(D"e,6,),
where 9,, := ig AL of a subcoalgebra (D, d) of a coalgebra E in a coabelian monoidal

category M. Note that, by definition, we have (D/\%, dp) = 0.

1.5.7. Let (E, Ag,eg) be a coalgebra in M and for every n € N, define the n-th
iterated comultiplication of F,

A E— E®"H,

AOE = Idg, A}E =Agp and A% = (A%n_l ® E) Apg, for every n > 1.

Proposition 1.5.8. [AMS?2, Proposition 2.17] Let § : D — E be a monomor-
phism which is a coalgebra homomorphism in a coabelian monoidal category M. Set
(L,p) = coker(a). Then, for every m,n > 1, we have:

(1.8) (DMt 68,) = Ker (p®" A% ™)
m—+n

(1.9) D& Np Db = De
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Proof. We prove (1.8)) by induction on n > 1.

For n = 1 there is nothing to prove.

Let n > 2 and assume that (D& §,_;) := Ker (p®" ' A""?). By Lemma [1.5.3, we
have:

D'e = DM ' ApD
= Ker (p®" A% ?) Ap Ker (p)
= Ker [(p®”_lA%_2 ® p)AE} = Ker (p®"A%L).

Finally, the two sides of (1.9) can be identified as (C(F), Ag, 0) is a monoidal category
(which was proved in Proposition [1.5.5). O

Lemma 1.5.9. [AMS2, Lemma 2.12] Let (C,A,¢) be a coalgebra in a cocomplete
coabelian monoidal category M and let (M, ph,, p4,) be a C-bicomodule. Let § : D —
E be a monomorphism which is a morphism of coalgebras such that the canonical
morphism 0 : D — E of Notation 1.6.4] is a monomorphism. Then we have

D"b = (D"E,¢,).

Proof. Since, by definition, (D%, 8, = 0¢,) := Ker(p®" A% ') where 4 is a monomor-
phism, the following relation holds true

(D%, &) = Ker(p®" A% 15)

so that it remain so prove that D"b = Ker(p®”A%_lg). Recall that there exists a

unique morphism % : % — % such that

J ~ ~
EOPBZPgO&

Since  is a monomorphism, so is g/ D. Therefore, we have
A D on n—1
D"p : =Ker (pD) A%

S\, en
(5) 68"

= Ker [(pg)(m g®”A%_1] = Ker(p*"A%L16).

= Ker
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1.6 Direct limits

In this section we deal with some properties of direct limits that will be useful in
the study of coalgebras in a monoidal category.

Proposition 1.6.1. Let (M, ®,1) be a coabelian monoidal category. Let (C, A, ¢)
be a coalgebra in M and let L be a C'-bicomodule. Let f: C — L be a morphism in
C MY, where C is regarded as a bicomodule via A. Then

(D,6) := Ker(f)
carries a natural coalgebra structure such that 6 is a morphism of coalgebras.

Proof. is dual to Proposition [1.4.6. O]

Proposition 1.6.2. Let M be a monoidal category with direct limits.

Let ((X)ien, (ff)meN) be a direct system in M, where, fori < j, & : X; — X;.
Assume that X; is a coalgebra and that 5{ s a homomorphism of coalgebras for any
i,j € N. Then limX; carries a natural coalgebra structure that makes it the direct

limit of ((Xi)ien, (€))ijen) as a direct system of coalgebras.

Proof. Let (X;, Ax,,ex;) be a coalgebra in (M, ®, 1) for any i € N. Set X := lim X;.

Let (& : X; — X)ien be the structural morphism of the direct limit, so that fjff =&
for any ¢ < 5. We put

Az‘ = (€z®€z>AX1 Xz —>X®X, for any 1 € N.

Since gg' is a homomorphism of coalgebras, one can prove that Ajéf = A, so that
there exists a unique morphism A : X — X ® X such that

It is easy to check that (X @ A)AE = (A® X)AE; for every i € N and hence, by the
universal property of the direct limit, we get (X ® A)A = (A ® X)A. Now, as {f is
a homomorphism of coalgebras, €x; ff = €x,. Hence, there exists a unique morphism
£ : X — 1 such that

(1.11) g€, = ex, for any i € N,

Then we have (X ® €)A& = ry5'&;, for any i € N and hence, by the universal
property of direct limits we deduce that (X ® €)A = ri'. Analogously one gets
(e® X)A =I". Thus (X, A, ¢) is a coalgebra in M. Note that relations (1.10) and
(L.11) mean that & : X; — X is a homomorphism of coalgebras.

Let now (C, A¢,ec) be a coalgebra in M and let (f; : X; — C);en be a compatible
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family of morphisms of coalgebras in M. Since (f; : X; — C);en is a compatible
family of morphisms in M, there exists a unique morphism f : X — C such that
f& = f; for any i € N. We prove that f is a homomorphism of coalgebras. We have
(f ® AL = Acf& and ecf& = €&, for any i € N, and hence, by the universal
property of the direct limit, we deduce that (f ® f)A = Acf and ecf = ¢. O

Proposition 1.6.3. Let 6 : D — C' be a monomorphism which is a homomorphism
of coalgebras in an coabelian monoidal category M. Then for any i < j in N there
is a (unique) morphism & : D"o — D’¢ such that

(1.12) 0,6 = 6;.
Moreover & is a coalgebra homomorphism and (D¢ )ien, (€])i jen) is a direct system
in M whose direct limit, if it exists, carries a natural coalgebra structure that makes

it the direct limit of ((D"0)ien, (€))ijen) as a direct system of coalgebras.

Proof. Set D' := D¢ for any i € N. Consider the following diagram:

p®i+1Ai

C > o

o 0;
gt

'Di

0— pitt =

Let ¢ > 0. Since ¢; = Ker(p@Aic_l) is a coalgebra homomorphism, we have:
pPTIALS = pP O @ ALY AGS;
= p¥THOC @ ALY (6 ®8;)Ap: = (pd; @ pP'AL6;)Api = 0.

Then, for any ¢ > 1, by the universal property of the kernel, there exists a unique
morphism £ : D' — D! such that &£ = &;. Set £ = 0 and for any j > i,
define:
, S .y . :

fi = 55715572 o ffi%é;“ : D' — D’
In such a way we obviously obtain a direct system in M. Let us prove that 5{ is a
homomorphism of coalgebras for any j > i. It is clearly sufficient to verify this for
j=i+1.
As 9,11 and ¢; are coalgebra homomorphisms, we have

(051104 1) Apin & = Apdi 1§ = Apd; = (6:®6)Api = (0i41®6i41)(§TRET) Api.

Since the tensor functors are left exact, ;11 ® d;+1 is a monomorphism so that we
get Apin &t = (€7 @ €7 Api. Moreover we have

i1 i1
5Di+1ff+ = €D5i+1ff+ = epd; = Epi.

The last assertion follows by Proposition [1.6.2. ]



1.6 Direct limits

23

Notation 1.6.4. Let 6 : D — C' be a homomorphism of coalgebras in a cocomplete
coabelian monoidal category M. By Proposition[1.6.3 (D" )sen, (€)); jen) is a direct
system in M whose direct limit carries a natural coalgebra structure that makes it
the direct limit of ((D"¢);en, (€))ijen) as a direct system of coalgebras.

From now on we set: (IN)C, (&)ien) = h_H>1(DA5)i€N, where & : D' — D¢ denotes
the structural morphism of the direct limit. We simply write D if there is no danger
of confusion. We note that, since D is a direct limit of coalgebras, the canonical
(coalgebra) homomorphisms (J; : D¢ — C);en, which are compatible by (1.12),
factorize to a unique coalgebra homomorphism 5 : D — C such that ng = ¢; for
any ¢ € N.

Proposition 1.6.5. Let M be a cocomplete abelian category. Let (V;)ien be a
family of objects in M and let (V,v;) = @;enVi be the direct sum of the family
(W)iEN- Then

(Vo V [(vi)izo]) = lim (@i, Vi),

where V [(v;)i_] : ®1_,Vi — V denotes the codiagonal morphism associated to the
family (v;);_, -

Proof. Set V" := @I Vi, for any n € N, and let w]}, : V™ — V" be the canonical
inclusion for m < n. Let (f, : V" — X), be a compatible family of morphisms in

M, ie. fow) = f,, for any m < n. Let v}, : V,,, — V" be the canonical inclusion for
every m < n and let v}, = 0 otherwise. Note that the morphism V [(v;);_] : V" — V
is uniquely defined by the following relation:

V [(v3)ig] vy, = U, for every m < n.

Observe that, for every m < n < t, we have

feom = frwyvy, = favy,

so that, by the universal property of the direct sum, there exists a unique morphism
f:V — X such that

(1.13) Fom = fvl
for any m € N, where n € N and m < n. Thus
TnU = fom = YV [(v5)i_g] vy, for every m < n.

By the universal property of V" := @} ,V;, f, is the unique morphism that composed
with v, gives f v for any m < n. We get that

Jn=fV[(v)i,], for every n € N.
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In order to conclude that V = li_n>1Vi, it remains to prove that f : V — X is the
unique morphism with this property. Let g : V' — X be a morphism such that
fn =9V [(v;)i,] for every n € N. Then

Jom = favy, = gV [(v:)i_o] vy, = gUy, for every m,n € N;m < n.

By uniqueness of f with respect to (1.13), we get g = f. ]

1.7 Cotensor product

1.7.1. Let e : 4 — E5 be a coalgebra homomorphism in a coabelian monoidal
category M. Let (Vl,pv ) be a right Ej-comodule, let (Wi, ®1py,) be a left -
comodule, let (V3, p 2) be a right Es-comodule and let (Wy, Z2py,) be a left Es-
comodule. Let v : Vi — V5 and w : W7 — W5 be Esy-comodule homomorphisms
(where V; and W; are regarded as Es-comodules via e). Then there is a unique
morphism ve.w : ViOg, Wy — Volg, W5 such that the following diagram

(V1,W1)
V1DE1W1 CEl S ‘/1®W1
vDewr lv®w
Y
Volg, Wo W Vo @ Wy

commutes. In fact we have

(P12 @ Wa) o (v ®@w) o gp, (Vi, Wh)
@@EQ ®w) o (p12 @ Wh) o gp, (Vi, Wh)
(v® Ey @ w) o [(Vy (X)e)pv1 ®@ Wil ogg, (Vi, W)
= (v@e®w)o (pir @ Wh)osg, (Vi, Wh)
= (W@e®w)o[Vi® " pw,]ocm (Vi, W)
(V@ Ey®w)o[Vi® (e®Wi) o py]osp (Vi, W)
(v® By @ w) o (Vi @ Ppw,) o, (Vi, Wh)
(Vo @ P2py,) o (v @ w) o g, (Vi, W)
so that, since (VoOg, Ws, g, (Va, W3)) is the equalizer of p% ® Wy and Vo @ P2pyy,
we conclude.

Note that if £y = F», = FE and e = Idg, one has

vOd.w = vOgw.
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Lemma 1.7.2. Let e : Ey — Ey and €' : E5 — FE3 be coalgebra homomorphisms in

M. Let

Vi, ppt) € M (Vg pi2) € M2 (Vg pi?) € M,
(WlaElpW1) S ElMa (W27E2 sz) S E2M> (W37E3 PW3) € EgM'

Let v : Vi — Vo and w : Wy — Wy be Ey-comodule homomorphisms (where Vi and
Wi are regarded as Fy-comodules via e) and let v' : Vo — V3 and w' : Wy — W3 be

Es-comodule homomorphisms (where Vo and Wy are regarded as Es-comodules via
e'). Then

(1.14) (V'Ogw') o (vOw) = (vV'o0g w'w).

Proof. : straightforward. m

1.8 The Heyneman-Radford theorem for monoidal
categories

This section is devoted to the proof of the Heyneman-Radford Theorem for Monoidal
Categories. The original Heyneman-Radford’s Theorem (see [HR) Proposition 2.4.2]
or [Mo) Theorem 5.3.1, page 65]) is a very useful tool in classical Hopf algebra theory.
We also point out that our proof is pretty different from the classical one and hence
might be of some interest even in the classical case. We refer to [Ar3].

Definition 1.8.1. Let E be a coalgebra and let 6 : X — E be a monomorphism in
a coabelian monoidal category M. Define the morphism

E E
L D) — R =
X Eo YOy

by setting
ay = (¥ @ p%) o Ap.
Observe that (X Ag X, i%,, x) = Ker(a}).
Lemma 1.8.2. Letd : D — E and let f : E — C be coalgebra homomorphisms in a

coabelian monoidal category M. Assume that both & and f o are monomorphism.
Then the following diagram

!
E C
agl Oég
EoBb5% ¢ c
p®p " 5%9p

15 commutative.
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Proof. Note that the notations £/D and C'/D make sense as both § and f o4 are
monomorphisms. We have

(Fog)oas = (Seg)othemons
= (pp@pp)o(f@f)oAp
= (p%@pg)oACof:agof.
O

Lemma 1.8.3. [Ar5, Lemma 2.3] Let D and E be coalgebras in a coabelian monoidal
category M. Let § : D — E be a monomorphism which is a morphism of coalgebras

in M. Then, for every n € N, there exists a unique morphism 7, : D' —
D"/D ® D"/ D such that the following diagram

Dn+1
" agn+1
D" o D" DL o) Dt
D D §n+1 n+1 D D

D ®§
18 commutative.
Proof. Consider the following exact sequence
entl pntl

n 0
pDn - D Dn+1 ‘51 Dn+1

By applying the functor D" /D @ (—) we get

pntl E;LLJrl DTIL;rl D;:rl
S pnt+l D D D pr+l pntl T D+l prtl
! R D 5 b @5 0
We have
pntl Dn+1
n+1 n+1 pn+1
o«
( D ) ( g ) D
On N pntl pntl . i
- < 51 +1) ( ® gn )O(pg+ ® g+1>OADn+1
1
571 n n n
= < D—H ® D-;l) ° <pg +1 ®pgn+1> o Apois
- (pg ®pg") ° (5n+1 ® 5n+1) o ADnJrl
= (pheph.)oAgod, 1 =0.



1.8 The Heyneman-Radford theorem for monoidal categories

In fact, by Proposition 1.5.8, D"t = DAgD™. Since 5"7“(8) 6]7521 is a monomorphism,

we obtain

Dn+1 Dn+1 i
(1.16) (D ® & )oag =0

so that, as the above sequence is exact, by the universal property of kernels, there
exists a unique morphism

Dn+l Dn
. Dl —
b ~ 0 9D
such that
Dn+1 n+1 N
(1.17) ( i) ®%) 0B, =al""

By applying the functor (=) ® D™/D to (1.15), we get

Dn+1 pn
e © -
1 Dl

D D’l’L
O*>7®f D ®7 Dn ®7 0.

entl

We have

Dn+l §n+1 Dn+l Dn
(T o) (o 5)on

Dn+1 Dn+1 Dn+1 n+1
- (o) (Fe)en

& D D D
1

where the last equality can be proved similarly to (1.16). Since %:1 ® 5’7;1 is a

mOIlOIIlOl"phiSHl we get
Dn+1 Dn)
X —]006,=0
( & D

so that, as the previous sequence is exact, by the universal property of kernels there
exists a unique morphism

such that
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Finally we have

n+1 n+1 Dn+1 n+1 n+1 Dn
(608 on = (B e8)o (80 2)on

D D D D D D
D’n/‘I»1 Z+1 n+1
= (o) em=ap

O

Theorem 1.8.4. [Ar3, Theorem 2.4] Let D and E be coalgebras in a cocomplete
coabelian monoidal category M satisfying ABS5. Let d : D — E be a monomorphism
which s a morphism of coalgebras in M and keep the notations introduced in No-
tation 1.0.4).

Let f: E — C be a coalgebra homomorphism and assume that

fod:DAg D —C
15 a monomorphism. Then the coalgebra homomorphism
fo §:Dp—C
s a monomorphism.

Proof. Since M satisfies ABb, it is enough to prove that f o 5o & = fod,isa
monomorphism for every n € N.

For n = 0, we have f oy = f o 0 = 0 which is a monomorphism as D° = 0.

For n =1, we have f o d; = f 0 d, 0 & which is a monomorphism.

Let n > 2 and let us assume that f o ¢, is a monomorphism. Let us prove that
f ©0py1 is a monomorphism. Let A : X — D" be a morphism such that

f05n+10)\:0

and consider the following diagram

D/\5n+1D
D Apnt1 D D Ng D
7
P .pn+1
- ZBADn-HD d2
by 6n+1 f
X D+l E C
T
n OLanLl ag ag
2®E—>Dn+l Dntl EgE C ot
D D entl _entl D D 6p41_ 0nt1 D D Lot D D
S Qo o © b DD
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where all the squares are commutative in view of Lemma [1.8.2] and the bottom
triangle commutes in view of Lemma [1.8.3. We have

£6, _ fo,
<7®3>OTN

n+1 n+1
<f5n+l‘l)£n Q f5n+11)5n ) 0T, o0 A

(ST Ont1 _ Ong1 Ett gt
_<D®D \o ® )\ p® )l

= agOfO(SnHO)\:O.

Since fod, is a monomorphism, we get that also fo,,/D® fd,/D is a monomorphism
so that we obtain
Th,oA=10

n+1 n+1
D"Jrl )\_(5 5 ) O)\—O

Thus, since (D Apnir D, D" ) -

pn+l1 D

and we have

D
er ( ), by the universal property of
the kernel, there exists a unique morphis, A : X — D Apns1 D such that

D7L+1 -
A= UDApsr D © o\

Now we have

foézo(D/\(;nHD)oX:fo nt1 0 A = 0.

Since f o dy and D As,., D are monomorphisms, we get that A = 0 and hence
A=0. [

Corollary 1.8.5. (Heyneman-Radford) ([HR, Proposition 2.4.2] or [Mo, Theorem
5.3.1, page 65]) Let K be a field. Let E and C' be K-coalgebras and let f : E — C
be a coalgebra homomorphism such that fipa,p is injective, where D is the coradical
of E. Then f is injective.

Proof. Since D is the coradical of E is well known that (E,Idg) = (Dg,d) (sec e.g.
[Sw, Corollary 9.0.4, page 185]). The conclusion follows by Theorem [1.8.4/ applied
in the case when M is the category of vector spaces over K. Observe that in this
case "monomorphism” is equivalent to ”injective”. Il
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Chapter 2

Relative projectivity and
injectivity

In this chapter we deal with some results concerning the theory of relative left
derived functors that will be used to define and classify the Hochschild cohomology
in the frame of monoidal categories. We also recall and study the notion of relative
projectivity and injectivity with a particular interest to those projective classes that
are defined by means of suitable adjunctions related to the tensor functors.

2.1 Relative projectivity and injectivity

A main tool for introducing the Hochschild cohomology in the frame of monoidal
categories is that of relative left derived functors. Most of the material introduced
below can be found in [HS] and [We, Cap.8, page 279-281].

Definitions 2.1.1. ([HS, Cap. IX, page 307-312]) Let € be a category and let H
be a class of morphisms in €.
An object P € € is called f-projective, where f : C| — (5 is a morphism in €, if

Home(P, f) : Home(P,C) — Home(P,Cs) :g+— fog

is surjective.
P is H-projective if it is f-projective for every f € H.
Define the closure of H by

H :={f € ¢| P is H-projective = P is f-projective, for every P € €} D H.

H is called closed if H = H.

A closed class ‘H is said to be projective if, for each object C' € €, there is a morphism
f P — Cin H where P is H-projective.

¢ is called H-semisimple, whenever every object in € is H-projective.

31
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Definitions 2.1.2. Assume now that € is an abelian category.
Let 'H be a closed class of morphisms in €.
A morphism f € € is called H-admissible if, in the canonical factorization

f=peg,

where p is a monomorphism and & is an epimorphism, we have £ € H.
An exact sequence in € is called H-ezact if all its morphisms are H-admissible.
Finally, an H-projective resolution of an object C' € € is an H-exact sequence

dn dn— d d d
-—>Pn—>Pn_1L1>-~-—2>P1—1>P0—O>C—>0

such that P, is H-projective, for every n € N.

The whole theory of relative injectivity and its applications can be obtained by
duality, i.e. by working in the opposite category of € (note that the abelianity of a
category is selfdual). Since this process is completely formal and does not require
new ideas, when working with relative injectivity, we will just state the main results.

Theorem 2.1.3. Let € be an abelian category and let 'H be a projective class of
epimorphism in €. Then every object in € admits an H-projective resolution.

Proof. The proof is similar to the classical one. Namely, let C' be an object in €.
Since H is a projective class of epimorphisms, there is an epimorphism fy : Py — C,
where Py is H-projective. Set dy = fy. Let (Ki,i;) = Ker(dp). Then there is an
epimorphism f; : P, — K;j in ‘H, where P; is H-projective. Set d; = i1 o f.
Proceeding in this way one gets a sequence

p—p, p—4 . p 1
fn fl
K, K,

Clearly d,, is H-admissible for every n > 0 and Im(d,,) ~ K,, = Ker(d,,_1), for every
n > 1. Therefore the above is an H-projective resolution of C'. m

dp+1 n—1 do 0

C —0.

2.1.4. The theory of derived functors can be adapted to the relative context with-
out difficulties. For details the reader is referred to [HS, page 308-309]. Let 9B, € be
abelian categories and let H be a projective class of epimorphism in 8. By Theorem
2.1.3, every object in 8 admits an H-projective resolution.

Given a contravariant additive functor T :B — € and given an H-projective reso-
lution
P,—B—0
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of B, the object H"(TP,) depends only on B and yields an additive functor
RyT B — ¢, 7T (B) :=H"(TP,).
The functor R}, T is called the n-th right H-derived functor of T.

Theorem 2.1.5. [HS, see Theorem 2.1, page 309] Let B, € be abelian categories,
let H be a projective class of epimorphisms in B and let

0— By — By — B3 —0

be a short H-exact sequence in $B.
Let T : B8 — € be a contravariant additive functor.
Then for every n > 0 there exists a connecting homomorphism

wy : RET(By) — R%“T (Bs3)
such that the sequence
0 — R} T (Bs) — RYT (By) — RYT (By) = Ry T (B3) — -+
- “SURET (B) — RYT (By) — RET (B) % Ry T (Bs) — -
18 exact.

Definition 2.1.6. Let B, € be abelian categories and let H be a projective class
of epimorphisms in 8. Recall that a contravariant functor T : B — € is called left
H-exact if, for every H-exact sequence

By — By — B3 — 0,
the sequence 0 — T (B;3) — T (By) — T (By) is exact.

Proposition 2.1.7. ([HS, pag. 311-312]) Let B, € be abelian categories and let H
be a projective class of epimorphisms in 8.
Let T : B — € be a contravariant left H-exact functor. Then:

1) T is additive.

2) There is a functorial isomorphism 7: T — R}, T.

3) RYT (P) =0, for every n > 0 and for every H-projective object P.

2.2 The Case of an Arbitrary Adjunction

Theorem 2.2.1. (see |[Arl, Theorem 2.2]) Let H : B — A be a covariant functor
and consider:

(2.1) Pu = {f € B | H(f) splits in A}.
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Let T : A — B be a left adjoint of H and let ¢ : TH — Idg be the counit of the
adjunction.
Then, for any object P € B, the following assertions are equivalent:
(a) P is Pg-projective.
(b) Every morphism f : B — P in Py has a section.
(¢) ep : THP — P has a section 3: P — THP , i.e. epo 3 =Idp.
(d) There 1s a split epimorphism m: TX — P for a suitable object X € 2.
In particular all objects of the form TX, X € A, are Py-projective.
Moreover Py is a closed projective class.

Proof. Let n: Idgy — HT be the unit of the adjunction.

(a) = (b). Assume that P € B is Py-projective i.e. that for every f: B — B’ in
Py and for every morphism « : P — B’, there exists a morphism 3 : P — B such
that v = f o 8. In particular, for B’ := P and v := Idp, there exists a morphism
B : P — B such that Idp = f o 3.

(b) = (c). Since H(ep) ongp = Idyp, we infer that H(ep) splits and hence the counit
ep : THB — B belongs to Py for any B € ‘B.

(¢) = (d). Obvious.

(d) = (a). Let f: By — By be in Py and denote by g : HBy — HB; the section of
H(f). Let v: P — By. Assume that 7 : TX — P is a split morphism for a suitable
object X € . Let 0 : P — TX be a section of m and 7 : P — B; be defined by

PoTx ) T T TP Y THRE, ™Y THB, ! B,.

We have
fr = fepT(g) TH(y) TH(m)T (nx) o
= e, TH(f) T (9) TH(y7) T (nx) o
= e, TH(f) (9)] TH(ym) T (nx) o
= e, TH (ym) T (nx) o
= amerxT (nx) o
= ~mwo =7

and hence P is Py-projective.
Since erxoT(nx) = Idrx, by (¢) = (d) = (a), we have that TX is Py-projective.
Let us prove that Py is closed. Let f € Pu, f : By — Bs. Since THB; is Py-
projective, it is also f-projective i.e. B(THDBsy, f) is surjective. In particular there
exists a morphism v : THBy; — B; such that f ov =¢p,, so that

H(f) o H (v) o nup, = H(f ov) o nup, = H(ep,) o nup, = Idus,

i.e. H(f) splits and hence f € Py.
The class Py is projective as, for every B in B, the morphism ¢ : THB — B is in
Pu and THP is Py-projective. H
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Remark 2.2.2. We point out that the the class Py, introduced in Theorem 2.2.1]
need not to be a class of epimorphisms in general. In fact this is true if we also
assume that the functor H is faithful (see 6.1.3). This will be the case in most of
the examples we will consider. Thus our definition of projective class will agree
with [HS, Cap. IX, page 307] where the class is always assumed to be a class of
epimorphisms.

For completeness we include the dual statement of Theorem 2.2.1.

Theorem 2.2.3. (see [Arl, Theorem 2.3]) Let T : A — B be a covariant functor
and consider:

(2.2) Iy :={g € A| T(g) cosplits in B}

Let H : B — A, be a right adjoint of T and let n : Idgy — HT be the unit of the
adjunction.
Then, for any object I € A, the following assertions are equivalent :
(a) I is Ip-injective.
(b) every morphism f: 1 — A in Iy has a retraction.
(¢) nr : I — HTI has a retraction o : HTI — I | i.e. avonr = 1d;.
(d) There is a cosplit morphism i : I — HY for a suitable object Y € 9B.
In particular all objects of the form HY , Y € B, are Lr-injective.
Moreover It is a closed injective class.

Theorem 2.2.4. Let A,*B be a abelian categories. Let H : B — A be a covariant
functor. Assume that H is faithful. Let T : A — B be a left adjoint of H.

Let P, % B bea complex in B, where P_y = B. Assume that, for every n € N,
there s a morphism
Spt H(P,) — H(Pyy1)

such that
H (do) oS 1= IdHB and H (dn+1) 0S8y + Sp—10 H (dn) = IdH(Pn)

i.e. an homotopy between the identity morphism of the complex
H(P,) ) (B) and the zero morphism. Then P, % B is a Pu-ezact sequence.

Proof. Let
(K, i,) = Ker (d,,) .

Since d, o d,,.1 = 0, for every n € N, by the universal property of kernels, there
exists a unique morphism p,, : P,,1 — K, such that

i O Pn = dn-‘rl-
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We have

H (i) = Idmp,)oH (i)
= [H(dn+1) 0 8n + Sp—1 0 H(dy)] o H (in)
= H(dpt1) 0 s, 0H (i) = H (i) o H(pn) o s, 0 H (i)

and hence
(2.3) H (i) = H(dps1) © 8 o H (2y,) = H (4,,) o H (py,) © s, 0 H (45,) .

In view of [St, Proposition 9.4], H preserves limits and in particular kernels. Since
in is a monomorphism, and hence a kernel in B, then H (i,) is a kernel and hence
a monomorphism in 2. From the relations above, we get that

H (pn) OS5, 0 H (Zn) = IdH(Kn)
i.e. p, € Py and hence d,,;; is admissible for every n € N. Note also that
H (do) oS 1= IdHB

means that dy € Py and hence dj is admissible as it is an epimorphism.

It remains to prove that the complex P, % B is an exact sequence in B.
Let
(Cp,m,) = Coker (dy41) -

We have to verify that
(Kpyin) =Im (d,41) = Ker (m,) .
By (2.3)), we have
H (7, 04,) = H(7,) o H (i,) = H(m,) o H(dpy1) 0 s, o H(7,) = 0.

Since H is faithful, we get that =, o4, = 0.
Let now (: P, — X be a morphism in 8 such that 5o, = 0. Then

Bodyy =80ino0p,=0.
Since (Cy,, m,) =Coker(d, 1), there is a unique morphism ~ : C,, — X such that
yom, = 0.
In this way we have proved that
(Cp,mn) = Coker (iy,) .

Since B is an abelian category and %, is a monomorphism, this is equivalent to
(K, i,) = Ker (m,) . O
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2.3 Some adjunctions associated to the tensor func-
tor

2.3.1. Let (A, m,u) be an algebra in (M, ®,1,a,l,r). We have the functors

AT : M — AM where sT(X) := A® X and 4T(f) = A® f,
Ta: M — My where Ty(X) =X ® Aand Ta(f) := f R A,
AT4 M — AMA where ATA(X) =AQ® (X@A) and ATA(f) =A® (f@A),

with their right adjoint (see [AMS3, Proposition 1.6]) 4H, Ha, 4H,, respectively,
that forget the module structures. Then the adjunctions (T4,Ha), (4T, sH) and
(aT4,4Hy), give rise to the following classes of epimorphisms:

Py :=Pu, = {g € M4 | g splits in M},
AP :=P,u={g € aM | g splits in M},

Proposition 2.3.2. [AMSS3, Proposition 1.6]
a) AT is a left adjoint of sU : aM — M, the functor that “forgets” the module
structure.

b) Ta is a left adjoint of Uy : Ma— M, the functor that “forgets” the module
structure.

c) aATa is a left adjoint of sUs : aMa — M, the functor that “forgets” the
bimodule structure.

Proof. a) To prove that 4T is a left adjoint of 4U : 4M — M we need morphisms:
ol (XvM)

AM(A® X, M) M(X, M)
’Llll(X,M)

which are mutual inverses that are natural in X and M. We define ¢;(X, M)(f) :=
flu® X)IE" and (X, M)(g) := n(A® g), where y is the module structure of M. It
is easy to prove that ¢;(X, M)(g) is a morphism of left modules, and that ;(X, M)
is the inverse of ¢;(X, M).

b) The isomorphisms

ér(X,M)
MA(X ® A, M) M(X, M)

¥r (X, M)
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are now given by ¢,.(X, M)(f) := f(X @ u)ry" and ¥,(X, M)(g) := u(g® A), where
1 is the module structure of M.
¢) The isomorphisms

#(X,M)
AMu (AR X)® A, M) M(X, M)
(X, M)

are obtained by combining the isomorphisms constructed above:
¢(X7 M) = ¢Z(Xa M)¢T(A ® Xa M)7
and similarly for (X, M). For future references, we explicitly write them down:

(2.4) (X, M)(f) = AR X @ u)rysy(u® X)IY,
WX, M)(g) = phy(phy @ A)(ARg® A),

where p, and p; give respectively the right and left A-module structures of M. [

Corollary 2.3.3. Let (M, ®,1) be an abelian monoidal category. The functors AT,
Ty and ATy are additive and preserve colimits. In particular they are right exact.

Proof. In view of the fact that the tensor product is an additive functor in both
variables, all the functors that appear in Proposition 2.3.2 are additive and the
adjunctions themselves are additive too. Il

By applying Theorem 2.2.1 in the case of the adjunction (4T 4,4 H4), we deduce
the following result.

Theorem 2.3.4. Let P be an object in 4 M 4, the following assertions are equivalent:

(a) P is P-projective.

(b) Every morphism f: M — P in P has a section.

(c)ep = ph(pb @A) : AQ P® A — P has a section 3: P — A® P® A in
aMuy, de. epf =1dp.

(d) There is a split epimorphism m: A® X @ A — P in s4My for a suitable
object X € M.
In particular all objects of the form AR X @ A, X € M, are P-projective.
Moreover P is a closed projective class of epimorphisms.



Chapter 3

Hochschild cohomology

In this chapter, we introduce and investigate the properties of Hochschild coho-
mology of algebras in an abelian monoidal category (see Definition [1.3.1), and we
will show that several properties of separable and formally smooth algebras in the
classical sense still hold true in this wider context. The multitude of interesting
examples is one of the explanations for our interest in defining Hochschild cohomol-
ogy of algebras in abelian monoidal categories. In this way we will recover, in an
unifying manner, many well known results regarding apparently different variants
of Hochschild cohomology. The main applications of our work on Hochschild co-
homology are included in [AMSI1]. In that paper, using the “categorical” version
of Wedderburn-Malcev Theorem, besides other results, we characterize bialgebras
with (dual) Chevalley property (see Theorem [6.8.6 and Theorem 6.8.7)).

3.1 Hochschild cohomology

3.1.1. Let A be an algebra in an abelian monoidal category (M, ®,1), and let T4
and H, be the functors defined in 2.3.1. For every (M, u},) € M4 let us consider
the complex (B.(A, M), d.), where we set

0, for n < —1;
Gu(A, M) =<¢ M, for n = —1;
M @ A®™L for n > —1;
and d,, : B,(A, M) — (,_1(A, M) is defined by
dy = Z<_1)iain>
i=0
where
n | M@ A" t@me A% for 0 <i < n;

39
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Observe that, for n > 0 we have

ﬁn(Av M) = 571—1(147 M) X A = TAHA(ﬁn—I(Aa M))?
82” = ’ugn—i—l(AaM) @ A¥ = ﬁi_l(A’ Mgn—i—l(AvM))'

Moroever, for n > 0 and ¢ > 1, we have

o =0 ® A

K3 1—

Theorem 3.1.2. Let M be an object in M. We have that:
i) If M € M4 then (B.(A, M),d.) is a Pa-projective resolution of M.
ii) If M € g4 My then (B.(A, M), d,) is a P-projective resolution of M.

Proof. Let us check that (8.(A, M),d,) is a complex, i.e. d, o d,,; = 0, for every
n € N.
If n =0, we have

dnodn+1 = dood1
= %o (oL -0
= py o (M @m)— o (uy ®A) =0

Let n > 0. Assume d; o d; 1 = 0 for every 0 < t < n — 1 and let us prove that
d, od,y1 = 0. First of all, we have

n

dp = Z(_l)iﬁf

=0

= B+ (-1
=1

= B+ (-1 (9 @A)
=1

= o+ (zn:(—niay_f) ® A

i=1

ol _
= o+ <Z(—1)u+1a;}1>®/1

u=0

S -
= O+ |- (Z(—mag—l) ® A
L u=0 i
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so that

dn © dn+1 = [an ( n—1 ® A)] [anJrl (dn ® A)}
= o™t =0 o(dy®A) — (dp1 @A) 0 O™ + (d-1 @ A) 0 (d, ® A)
= Oyodytt — oy o(d, ®A) (dpy ® A) 0 O3
= Oy ody™ =05 o(0) — (d1®A)) ® Al = (dy1 ® A) 0 G
= Oyodptt — ag (@A) + 050 (d1 ®ARA) — (dy1 ® A) 0 Ot}
= (M®A*" '@m)o (M ®A®" @m) +
— (M@ A" ' @m)o (M A*" ' @m®A) +
+(M@A*" ' @m)o(d1 @ A® A) — (dyo1 @ A) o (M @ A®" @ m)
=0
Thus (5.(A, M), d,) is a complex.
Since G, (A, M) = TAHA(B,-1(A, M)), for every n € N, by Theorem 2.3.4, one
has that 3,(A, M) is P4-projective.
For every n > —1, let s, : B.,(A, M) — [.11(A, M) be the morphism in M
defined by:
= (Bu(A, M) ® u) o 7’5 (A,M)>
where u : 1 — A is the unit of A.
We have

dyos1 = dyo(Ba(AM)@u)ory’
= o (M®@u)ory =Idy =1ds ,an
Moreover, for any n > 0, we have
dpy10 8y

= [0p" = (da®A)] o (Bu(A, M) @u) 0y s pp)

= gt o (Ba(A, M)@u)orﬂ(AM) (d, ® A) o (B,(A, M)®u)orﬂ(AM)

= (M ®A®" @m) o (B.(A,M)®u)o Tﬁn(A,M) — (Ba-1(A, M) ®u) o Tﬁnl_l(A,M) ° dy

= (Bua(A, M) @m) 0 (Bps (A, M) ® A@u) 074 ag) = Sn-1 0

= [Bic1i(A,M)® (mo (A®u)ory')] — sn_10d, =1dg, (a,m) — Sn—1 0 dy.
Then, we showed that:

doos_y=1Ids and dyy108,+ Su—10d, =1Idg,(a,m).

Observe now that (8.(A, M),d.) is a complex in My (resp. aM4) whenever M is
an object in M4 (resp. 4M4). Since Hy : My — M (resp. 4Hy : aMy — M)
is faithful, we can apply Theorem 2.2.4/ to conclude that (5.(A, M),d,) is a Pa-
projective (resp. P-projective) resolution of M. Il
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Definition 3.1.3. As in the classical case, the exact complex (5.(A, M),d,) will
be called the bar resolution of M.

3.1.4. By Theorem 2.3.4, P is a projective class of epimorphisms so that, in view of
Theorem 2.1.3, any object in 4 M 4 admits a P-projective resolution. Furthermore,
as in the non-relative case, one can prove that such a resolution is unique up to a
homotopy.

Following 2.1.4, we can now consider, for every M € 4M 4, the right P-derived
functors Ry Fyr of Fiyy := aMa(—, M).

Definition 3.1.5. For every M, N € ;M 4, we set:
(3.2) Extp (N, M) = Ry Fy(N).
The following well known result can be proved as in the non-relative case.

Proposition 3.1.6. Let (A,m,u) be an algebra in an abelian monoidal category
(M, ®,1) and let N €aMy. The following assertions are equivalent:

(a) N is P-projective.

(b) Extyp(N, M) =0, for all M € 4 M.

(¢) Extp(N, M) =0, for all M € aAMa4, and n > 0.

Definition 3.1.7. Let (A,m,u) be an algebra in an abelian monoidal category
(M, ®,1), and let M be an A-bimodule.
The Hochschild cohomology of A with coefficients in M is:

H*(A, M) = Exty, (A, M).
The Hochschild dimension of A is
Hdim(A) = min {n € N [H""'(A, M) = 0,YM € 1M}

if it exists. If such an n does not exist, we will say that the Hochschild dimension
of A is infinite.

3.1.8. In order to compute H*(A, M) we shall apply the functor 4Ma(—, M) to
the bar resolution (3,(A, A) which is, by Theorem [3.1.2, a P-projective resolution of
A:

C ABH2 A penti ey b pgae At A A2 40

For any morphism f in M let us denote s M (f, M) by f Thus we have the
following complex:

0 s Moa(A, M) 5 s Mu(A® A, M) 25 sMa(Ae Ao A, M) -2 ...
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Take the notations of Proposition 2.3.2. For every n > 1, we denote by b"~! the
unique map that makes the following diagram commutative:

P(A®", M)

AMA(A® A" © A, M) M(A®", M)

: -

AMA(A & A®n—1 & A, M) (MM(A@m—l’M)

and we set R
b’ = ¢(A, M) odyoFo(1, M),

where y: A® A:— A®1® A is the canonical isomorphism.
In this way, we obtain the so called standard complex:

0 — M1, M) 25 M(A, M) 25 MA® A M) 25 MA® A A, M) 2 .

By definition
Ker (")

HY(4,M) = 1o

For every f € M(1, M), set

b (f) =y (f@ A and b (f) = py(A® fHry'
while, for every n > 0 and f € M(A®", M), set:

Mko(f@A)? ZZO,
VHf) =14 fo(A®" T @m® A®Y), i=1,...,n;
phyo (A® f), i=n+1.

It can be easily proved that

—

b = (A", M) 0 G 0 (A%, M)

(2

and n+1
n _ _1)tpn >
b"(f) Zi:o (=1)'D7(f), for every n > 0.
In particular, for n € {0, 1,2} the differentials b" are given by:

O(f) = i (f @ A" — piy (A ® Flryhs

b (f) = uae(f ® A) — fm+ (A ® f);

b*(f) = wh(f ® A) = f(A@m) + f(m @ A) — (A f).
Definition 3.1.9. The abelian group Ker (b") is also denoted by Z"(A, M) and
its elements are called n-cocycles. The abelian group Im (b"!) is also denoted by

Z™(A, M) and its elements are called of n-coboundaries.
A 1-cocycle is also called a derivation of A with values in the A-bimodule M.
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3.2 Separable algebras

Remark 3.2.1. Let (A, m,u) be an algebra in a monoidal category M. The multi-
plication m always has a section in 4 M and in M 4, namely A ® v and respectively
u® A. In general, m has no section in 4 M 4. We are going to characterize those
algebras whose multiplication has an A-bilinear section.

Lemma 3.2.2. Let (A, m,u) be a separable algebra in a monoidal category (M, ®,1).
If (M, pibyy, i) € aMa, then pb, and iy, split in aM 4.

Proof. We will only prove that 4, splits in 4M., for p, we can proceed analo-
gously.
Let 0 : A — A® A be a section of m in 4M 4.

Let v, : M — M ® A be defined by

= (s ® A)YM © 0)(M & ujry/

Using the fact that M is an A-bimodule and the naturality of the right unit
constraint, it is easy to check that 7, is a section of u},; in M 4. Let us prove that
v, is also left A-linear. Since o is right A-linear, we have (A ® m) (o ® A) = om so
that

Mem)(®A) = (Meom) (i @A AMeoe A)Moue A) (ry @A)
= (W AMe(Aom) (coA) (ue A)] (Mel;)

(

(n

phy @A) [M @ om (u® A) 1]
QA (Mo).

On the other hand, since o is left A-linear, we have (m ® A) (A ® o) = om so that

iy = (i © A)(M @ o) (M @ u)ry} 1y
= (phy ® )M @ 0)(M @ u) (1 © 1) Ty
Wy (0 @A) @AM AR o) (MAQU) (Mr,')
= [y (Meam) @A M@ A®o)(A®u)r,']
Wy @A) Mo (meA) (Aeo) (A®u)ry']
= (py ®A) [M®0m(A®u)r;1]
(@A) (M @0)=(Mem)(r,®A).

]

Theorem 3.2.3. [AMS3, Theorem 1.30] Let (A, m,u) be an algebra in an abelian
monoidal category (M, ®,1). The following assertions are equivalent:
(a) m splits in M 4.
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(b) A is P-projective.

(c) HY(A, M) =0, for all M € 4 M 4.

(d) H*(A, M) =0, for alln > 0 and for all M €aM 4.

(e) Any morphism in 4Ma splits in 4 M 4 whenever it splits in M.
(f) The category 4 M 4 is P-semisimple.

Proof. (a) = (f) Let (M, ub,, ih;) € aMa. By the previous lemma there are s; :
M — A® M and s, : M — M ® A sections in 4 My of pb, and uh,, respectively.
Then (s; ® A)s, is a section of p%,(u4, ® A) in 4M 4. It follows that M is a direct
summand of (A ® M) ® A, which proves that M is P-projective.

The other implications follow as in the classical case. Il

Definition 3.2.4. Any algebra (A, m, u) in an abelian monoidal category (M, ®, 1),
satisfying one of the conditions of Theorem 3.2.3) is called separable.

Corollary 3.2.5. An algebra (A, m,u) in an abelian monoidal category (M, ®,1)
is separable iff Hdim(A) = 0.

3.3 Hochschild extensions of algebras in a
monoidal category

Our goal in this section is to classify Hochschild extensions of an algebra A (de-
fined in an appropriate way) by using the second Hochschild cohomology group
H?(A, —). This classification will be used in the next section to investigate algebras
of Hochschild dimension 1.

First some definitions and preliminary results.

Definition 3.3.1. Let A and B be two algebras in a monoidal category (M, ®,1).
A morphism o : B — A in M is called unital if cup = u,, where uy and ug are the
units of A and B, respectively. Moreover, if f : A — B is a morphism of algebras
in M we shall say that ¢ is an unital section of f if fo = Idg and o is an unital
morphism.

Let (E,mp,ug) be an algebra in M. If i : X — F is a monomorphism in M
then we will write X% = 0 in the case when mg(i ® i) = 0.

Lemma 3.3.2. [AMSS3, Lemma 2.3] Let (A, m,u) and (E,mg,ug) be algebras. Let
7w E — A be a morphism of algebras in (M, ®,1) that has a section 0 : A — E in
M. Let K = Ker(rt) and assume that K* = 0.

a) We have:

(3.3) mg (ou @ ou)ly' = 20u — ug.
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b) The morphism o' := 20 —mp (0 @ 0) (A@u)ry" is a unital section of 7.
c) Let by - A® K — K and i} : K @ A — K be the maps uniquely defined by:
(3.4) i = mp(o®i),
(3.5) i = mp(i® o),

where 1 : K — E 1is the canonical inclusion. Then (K, ulK,u}}) is an A-bimodule
and pke and i do not depend on the choice of the section o.

Proof. a) The relation 7 (ocu — ug) = 0 tells us that there exists a unique morphism
A:1 — K so that

(3.6) ou—ug = i\

On the other hand, K? = 0 so that mg(i ® 1) = 0. We get mg[(cu — ug) ® (ou —
up)|l;* = 0. Hence:

1 1

mp(ou® ou)ly' —mp(up @ ou)ly' — me(ou @ up)lyt + me(up @ up)lyt = 0.
For any morphism f : 1 — E, we have mg(f @ ug)l;' = f and mp(ug ® f)l;* = f
(note that ry = I3). It results mg (ou ® ou)ly* — ou — ou + ug = 0, so relation
(3.3)) is proved.

b) Straightforward computation. We have mo’ = Id4 as m4 (A ® u) 7‘;1 = Idy
and o is a section of w. One can prove easily that ¢’ is unital by using the definition
of ¢/, the fact that the right unit constraint is functorial, the equality r; = l; and
relation (3.3)).

¢) The relation m[mg (0 ® o) —om| = m (70 @ 7o) —mom = 0 tells us that there
exists a unique morphism w : A ® A — K such that

(3.7) iw=mpg(0c®aoc)—aom.

The relation 7mg (0 @ E) (A®1i) = ma (7o @ ) (A®1) = 0 tells us that there exists
a unique morphism uk : A® K — K such that il = mp(c ®1). Analogously one
gets that there exists a morphism p} : K ® A — K, uniquely defined by (3.5). By
definition of ut, and using (3.7), we have

i (A@ phe) = mplo @ mp(o 1)
= mgmplc ® o) @i = mg((iw +om) @1i) = iuk (m @ K).

Moreover, by (3.6), we obtain

ik (u® K) = mg(ou®i) = mp(id +ug @) = mp(up @ i)tk = ilg
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Analogously we get ipf (11 ® A) = ipl (K @ m) and ipl (K ® u) = irg. Since i is
a monomorphism we deduce that

p(u® K) =, 1y (K @u) =rg,
e (A® ) = ple(m ® K), (e ® A) = pie (K @ m).

Furthermore,

ing(A® k) = melo@mp(i®o)]=mp(E@mg) (0 ®i® o),
il (W © A) = mplmp(o ®i) @ o] =mp(mp®E) (0 ©i®0).

s0 ipb (A @ phe) = iphe (uhe @ A). We conclude that (K, pb;, ux) is an A-bimodule.

We now prove that ub does not depend on the choice of 0. Let 7: A — E be
another section of 7 in M and let v, : A ® K — K be the associated left module
structure. As 7 (0 — 7) = 0 there exists a unique morphism v : A — K such that
w =0 — 7. Then

iy —m) = ipy —im = mp(o @) —mp(r®@i) = mpl(c - 7) @] = mp(iv i) =0,
S0 ik = 7y, as i is a monomorphism. Analogously, % does not depend on o. O]

Definitions 3.3.3. 1) Let (A, m,u) be an algebra in an abelian monoidal category
(M, ®,1) and let (M, ub,, ph,) be an A-bimodule.
A Hochschild extension (E) of A with kernel M is an exact sequence in M:

(E) 0—M-“E-"A—0

that satisfies the following conditions:
a) m is has a section ¢ in M;
b) (E,mg,ug) is an algebra in M and 7 is an algebra homomorphism;
c) M? =0, that is mg (i ® i) = 0;
d) the morphisms pb and pf, fulfill relations (3.4) and (3.5), i.e.

i, = mp(o®1) and iy =me(i® o).
2) Two Hochschild extensions of A:

0— M-S E-"3A—50

0—>ML>E’/LA—>O

with kernel M are equivalent if there is a morphism of algebras f : £ — E’ such
that 7' f = 7 and fi =14’

3) An extension 7 : E — A is a trivial extension whenever it admits a section
that is an algebra homomorphism.
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Remarks 3.3.4. 1) Let (E) be a Hochschild extension of A with kernel M. Since
M? = 0, by the previous lemma, one can define another bicomodule structure on
M, by choosing an arbitrary section o of m in M. The third condition from the
definition of Hochschild extensions means that this new structure and (M, ub,, u4,)
coincide.

2) By the short 5-Lemma (see [McL1, Lemma 1, page 198]), f is always an
isomorphism of algebras.

3) Let m : E — A be a morphism of algebras in (M, ®,1) that has a section
o0:A— FEin M. Let (ker(m),i) be the kernel of 7 and assume that (ker(r))? = 0.
By Lemma 3.3.2,

0 — ker(n) — E " A —0
is a Hochschild extension.
Lemma 3.3.5. [AMSS5, Lemma 2.6] Let (A,m,u) be an algebra in an abelian
monoidal category M and let (M, u%,, pb,) € aMa. Suppose that w: AQ A — M is
a morphism in M. Definem, : (A® M)@ (A& M) - AdM andu, :1 — AdM
by setting:

My =iam (pa @ pa) +inr [y (v @ pa) + pthy (pa @ par) — w (pa @ pa)],
Uy = iqu + iyw(u@u)lt,

where 14, iy are the canonical injections in A @ M and pa, pa are the canonical

projections. Then my, is an associative multiplication if and only if w s a Hochschild
2-cocycle. Moreover, in this case, (A @ M, my,u,) is an algebra and

0— MM A M5 A—0

is a Hochschild extension of A with kernel (M,iy). This extension will be denoted
by (EL).

Proof. First we want to show that w is a 2-cocycle if and only if m,, is associative,
i.e. we have

(3.8) phy(A®w) —wm® A) +w(A®m) — phy(w® A) =0

if and only if m,, (E, ® m,) = m, (m, ® E,). In fact the last relation holds true if
and only if

pame, (Ew & mw) =pamy (mw X Ew) and Py, (Ew X mw) = Pmmy (mw X Ew) .
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A straightforward, but tedious, computation shows us that:

m(A®m) (pa ®pa®pa),

m(m ® A) (pa @ pa @ pa),

Py (By @my) = f— phy(A@w) (pa @ pa @ pa) —w(A@m) (pa ® pa @ pa),
pyumy (M @ Ey) =g — phy(w @ A)(pa ® pa @ pa) —w(m @ A)(pa ® pa @ pa),

pamey (Ew X mw)
pamy (mw ® Ew)

where:

f= ( 1 (M @ m) (par @ pa @ pa) + phy (A ® ) (P4 @ par @ pa) + )
+ (A ® phy) (P4 ® pa @ par) ’

= ( piar (i ® A)(par @ pa ® pa) + piy (Hy @ A) (pa @ par @ pa) + > .
fh(m @ M) (pa @ pa @ pur)

As M is an A-bimodule we get f = g.
Therefore pymy, (E, @ my,) = pym,, (m, @ E,) if and only if

(3.9) [ (ARW)+w(m@A)] (pa @ pa @ pa) = [y (WO A)+w(MBA)](PARPARPA).

Furthermore, this relation holds if and only if w is a 2-cocycle (the direct implication
follows by composing (3.9) with i4®i4®i4 to the right, and the converse is obvious).
In conclusion, the multiplication on FE,, is associative if and only if w is a 2-cocycle.

For proving that u,, is the unit of F,, we proceed similarly. We need the following
equalities:

(3.10) pamy(E, @ uy) = parg, and pymy, (B, @ uy,) = pure,,
(3.11) pamy, (u, @ E,) = palg, and pymy, (u, ® E,) = pule, .

We will prove only (3.10), the proof of (3.11)) being left to the reader. First we notice
that we have parg, = ra(pa ® 1) and pyrp, = ry(py ® 1), as the unit constraint
r is a natural morphism. Furthermore, by the definition of m,, and u,,, we get:

pAmw(Ew X uw) = m(pA X pAuw) = m<pA X u) = m(A ® u)(pA & 1) = TA(pA X 1)7

so we have the first equality of (3.10). We still have to prove the second relation of
(3.10). We have:

pumu (B, @uy) = why(par @ pave,) + plhy(pa @ partiy) — w(pa @ pau,)
= ph(par @ ) + pihy[pa @ wlu @ w)ly'] — wlpa @ ).

Obviously, iy, (py ® ) = ry(py ® 1).
Thus, to conclude it is enough to show that b, [pa ® w(u @ w)i;!] = w(ps @ u).
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Indeed,

wm®A)(AQuu) =wm(ARu) @u) =w(rsu),
w(Am)(A®u®u)=w(A®@m(u®u))
=w[Aam(u® A) (1® u)]
=wARIL)(A®1Ru).
On the other hand, by the triangle axiom we have A ® l4 = r4 ® A, so that:
WwAIM)(Au®u)=w(ra®@A)(AR1u) =w(rsu).
We deduce
wimA)(Aueu)=w(Adm)(AQudu).
Therefore, if we compose (3.8) with A ® u ® u to the right, we obtain:

pulA@w (W )] = iylw (A®u) @ u] =w(A@u)rg.
Hence:
plpa @ w(w@u) '] = py[A®w (@ w)(pa ® 1) = w (A@u) ras (pa @ 171
Finally,
W AU Ta1(pa® ) =w(A@ U Tae1 (AR ) (pa® 1) = w (pa @ u)
as rag1 = A ® [y, by the triangle axiom. O

Definitions 3.3.6. a) The Hochschild extension ps : E, — A, introduced in the
lemma above, is called the Hochschild extension associated to w.

b) If (A, ma,us) and (F,mp,up) are algebras and 0 : A — E is a morphism in
M, we define the curvature of o to be the morphism:

(3.12) 0, A A—E, 0, =0my—mg(c®o)

Proposition 3.3.7. [AMS3, Proposition 2.8] Let m : E — A be a Hochschild
extension of A with kernel (M,i), let 0 : A — E be a section of m and let 0, be
the curvature of o. Then there is a unique morphism w : A ® A — M, such that
iw = 0,. Moreover, w is a 2-cocycle whose class [w] € H* (A, M) does not depend
on the choice of o. If pa : E, — A is the Hochschild extension associated to w, the
morphism

fo=0opa+ipy B, — FE

defines an equivalence of Hochschild extensions.
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Proof. The morphism 7 is an algebra homomorphism, and hence 76, = 0. Thus
there exists a unique morphism w : A ® A — M such that iw = 6,. Let u!, and
ph; be the morphisms that define the module structure of M and let m4 and mpg
be the multiplications of A and FE respectively. By formulas (3.4), (3.5) and the
construction of w we have:

ib* (W) =mp (0, ®0) — 0, (A@my) +0,(ms @A) —mg (0 ®0,).

Thus, by the definition of curvature 6, we get ib*(w) = 0. Since 7 is a monomorphism,
we obtain b% (w) = 0, that is w is a cocycle.

Let ¢’ : A — E be another section of 7. Since m (0 —0’) = 0, there exists
a unique morphism 7 : A — M such that i7 = 0 — ¢’. Let &' be the 2-cocycle
associated to o’. Since p}, and p?, are independent of the choice of the section, the
relation (3.4) holds true if we replace o by ¢’. Hence by definition of b, equation
iw" = 0, and construction of 7 we get:

o [ dma—mg(c’ ®d') —mgloc’ ® (0 — )]+
z(w b (T)) n { +oma —o'ma —mgl(c — o) @ 0] '
We deduce i (w' — b (1)) = oma — mg (0 ® 0) = 0, = iw, so that o' = b (7) + w.
Thus [w] =[] .

It remains to show that f,, is an equivalence of extensions. First, f, is a morphism
of algebras. Indeed, we have:

fwmw = [UPA + ZPM] my,
=oma(pa®@pa) +ilphy (par @ pa) + by (pa @ par) — w (Pa @ pa)

(i®0)(pv ®@pa) + (0 ®1i) (pa @ pur) +
+(0®0)(pa®@pa)+ (1 ®1) (Par @ par)

=mMmg (fw®fw)7

:mE

as mp(i ® 1) = 0. Similarly, we have:

fwuw = [UPA+ZPM] U
=ou+tiwu®u)ly' =cu+omy(u@u)ly' —mp (cu® ou)ly?

=20u —mg (cu®ou)ly' = ug,

where for the last equality we used (3.3). Finally, one can check easily that 7f, = pa
and f iy =1, so f, is an equivalence of Hochschild extensions. O

Definitions 3.3.8. With the notations of the previous Proposition, w is called the
2-cocycle associated to o, while the class [w] is called the cohomology class associated
to the Hochschild extension w: E — A.
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Lemma 3.3.9. Let w : AQ A — M be a 2-cocycle and let py : E, — A be the
Hochschild extension associated to w. Then the cohomology class associated to the
Hochschild extension pa : E,, — A is exactly [w] .

Proof. Since i4 : A — E,, is a section of p4, we have:
91’,4 =daMm4 — My, (iA (9 iA) =AMy — Tama + Iyw = Tyw.

Thus, in view of Proposition 3.3.7, the cohomology class associated to this extension
is [w]. O

3.3.10. Let A be an algebra and let M be an A-bimodule. If 7 : E — A is a
Hochschild extension, we will denote by [E] the class of all Hochschild extensions
equivalent to it. We define:

Ext (A, M) :={[E] | E — A is a Hochschild extension of A with kernel M} .

Proposition 3.3.11. [AMSS, Proposition 2.12] Let A be an algebra and let M be
an A-bimodule. If w,w' : AQ A — M are 2-cocycles, then:

Moreover, if [w] = 0, i.e. there exists a morphism 7 : A — M such that w = b'(7),
then the morphism o =i +iy7 : A — E, is an algebra homomorphism which is
a section of pa 1 B, — A.

Proof. Suppose that [E,] = [E./] . Therefore, there exists an algebra homomorphism
g : E, — E, which is an equivalence of Hochschild extensions, that is pag = pa
and gip = 1.

As giy is a section of py @ B, — A, we have:

04, = giama — My (gia ® gia) = gliama —my, (ia ®ia)] = giyw = iyw,
so that, by definition, the cohomology class associated to (E,,) is [w]. On the other
hand, by Lemma 3.3.9, the cohomology class of (E,,) is [w]. Thus |[w] = [].

If [w] = @], there exists a morphism 7 : A — M such that w = '+ 0! (7). The

morphism o :=1i4 +iy7: A — E, is a section of p, : E, — A. Let ,ulM and py, be
the morphisms that define the module structure of M. Thus:

Oy =0ma—my, (0 Q®0) =iagma+iyTma —iasma — iy [,LﬂM(T@A) + b, (A®T) —w]
=iy [Tma — phy (T®A) — phy (AR T) +w]| =in (=" (1) + w) = igw'.
Applying Proposition 3.3.7 to the Hochschild extension pa : E, — A, we get that

there is an equivalence between (E,/) and (E, ), namely f. = opa + iypuy : B —
E,. Therefore [E,| and [E,/] are equal.
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If oo =0, then iy : A — E, is clearly an algebra homomorphism which is

a section of the projection py : E, — A. Now, 0 := i4 + iy7 is a section of

pa : E, — A so that the morphism f, = ops + ipy : E, — E, is an algebra

homomorphism. Since f_i4 = o, we conclude. O

Theorem 3.3.12. [AMSS3, Theorem 2.13] Let A be an algebra and let M be an
A-bimodule. The map:

® : H?(A, M) — Ext (A, M),
where @ ([w]) := [E,], is well—defined and is a bijection.

Proof. ® is well—defined and bijective by Proposition [3.3.11 and Proposition 3.3.7.
O

Lemma 3.3.13. Let A and B be algebras in a monoidal category (M, ®,1) and
let f : A — B be an algebra homomorphism. Let M be an B—bimodule. Let
wp € M(B® B,M) and ws := wp(f ® f) € M(A® A,M). Then, if we regard
M as an A-bimodule via f, then b*(wa) = b*(wp)(f @ f & f). In particular w, is a
2-cocycle whenever wg is.

Proof. Let ph,;: M @ B — M and ub,;: B® M — M be the morphisms defining
the module structure of M. Then the left A-module structure on M is given by

phy i=ph,(f ® M). The map [L?\//[, giving the right A-module structure of M, is
defined similarly. Hence the relation

b (wp)(f ® f @ f) = b*(wa).

follows by the definitions of %, wy, ,l;?]\:[, @ and the fact that f is an algebra
homomorphism. O]

Proposition 3.3.14. [AMSS3, Proposition 2.15] Let A and B be algebras in a
monoidal category (M, ®,1) and let f : A — B be an algebra homomorphism.
Let m: E — B be a Hochschild extension of B with kernel (M,i), let 0 : B — E be
a section of m and let wg : BQB — M the associated 2-cocycle. Let wa = wp(fRf).
Ifpa : E,, — A s the Hochschild extension associated to wy, then the morphism

Tf = ofpa+ipy: B,y — E

defines an algebra homomorphism such that the following diagram commutes:

0 M—M B, P 4 0

"\
: Y

—— M ——F ————B——(
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Proof. Denote the canonical injections (respectively projections) in E,,, by ia, in
(respectively pa, par). Let jg, jar (respectively gg,qar) be the canonical injections
(respectively projections) in E,,,. By Proposition [3.3.7, the morphism

fop =0a+iqy : B,, — E

defines an equivalence of Hochschild extensions. It is clear that the following diagram

0 M—" s By, s A 0
i fl
M Y 4B
0 M Eup B 0

commutes, where & := jpfpa + jubm B, — E,,. If £ is an algebra homomor-
phism, then f,.£ = (ogp + iqn )€ = 0 fpa + ipy is an algebra homomorphism, and
hence 7y satisfies the required properties. Thus, let us check that £ is an algebra
homomorphism. Let p%, : M ® B — M and ul,; : B® M — M be the morphisms
defining the B-module structures of M. If { = m,,({ ® &) we have:

C=mu,[(JfPpa® jpfra) + (1fPA ® jnpm) + (Gupm @ efpa) + (Grupm @ Jrpar)]
= jemp(fpa ® fpa) — juws(fpa @ fpa) + jaupdhy(Fpa @ par) + dartth (P @ fpa)
= jefma(pa @ pa) — juwa(pa @ pa) + japh,(pa @ pur) + jM,l;;]\;[(pM ® pa) = Emy,,.

Moreover, &u,,, = jpfua + juwa (ua @ ua)lyt = jpup + juws (fua @ fua)ly?
= Uy [l

Corollary 3.3.15. Let m : E — B be a Hochschild extension of B with kernel
(M,i), let 0 : B — E be a section of m. Let wp : B® B — M be the 2-cocycle
associated to o, let f : A — B be an algebra homomorphism and let wa = wp(f R f).
If there exists a morphism 7 : A — M such that wy = b'(7), i.e. [wa] =0, then the
morphism

f=o0f+itT: A= FE
defines a morphism of algebras such that nf = f.

Proof. Since [w4] = 0, by Proposition 3.3.11, the morphism o’ := iq +iy7: A —
E, , is an algebra homomorphism which is a section of p4 : E,,, — A. By Proposition
3.3.14, then the morphism

wfi=0fpa+ipy B, = F

defines an algebra homomorphism such that 77y = fpa. Then the morphism f=
nro’ is an algebra map such that 7 f =m0’ = fpao’ = f. O
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3.4 Formally smooth algebras

The starting point is the basic observation included in the following Lemma.

Lemma 3.4.1. Let M be an abelian monoidal category. Let (A, m,u) be an algebra
in M, let (I,i7) be an ideal in A and let n € N*. With the notations of section |1.}
and in particular of [1.4.12, if the canonical morphism p7 : A" — A/I" splits in
M then the sequence

m g A pp A

0— — —_— =
In+1 In+1 In

— 0,

defines a Hochschild extension of Iin with kernel %
Proof. follows in view of 1.4.12, Lemma 1.4.13 and 3) of Remarks [3.3.4. O

Definition 3.4.2. Let M be an abelian monoidal category.
Let (E,, pn)nen+ be a sequence of morphisms in M

Pn+1 P Pn—-1 P2 P1
(3.13) o5 B, —E,— - — Ey — FE.

We say that (E,, pn)nen+ is an inverse system of extensions if
e p, is an algebra homomorphism,
e (Ker(p,))? =0, for any n > 1.
We say that (E,, p)nen+ is an inverse system of Hochschild extensions if
o (E,,pn)nen+ is an inverse system of extensions,
e p, has a section in M, for any n > 1.

We say that an inverse system of Hochschild extensions (E,, p,)nen+ has an inverse
limit if limE, exists in the category Alg(M) of algebras in M.

Remark 3.4.3. 1) Let (E,, pn)nen+ be an inverse system of Hochschild extensions.
In view of Remarks 3.3.4/ each exact sequence

0— Ker(pn> # n+1 &) En — 0
defines a Hochschild extension of FE,, with kernel Ker(p,). This justifies the above
terminology.
2) We point out that, if M is an abelian monoidal category and the inverse limit
limE, exists in M, then it can be endowed with a natural algebra structure in such a
way that it is the inverse limit in the category lg(M) of algebras in M. Therefore,
in this case, (E,, pp)nen+ has an inverse limit.
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Example 3.4.4. Let I be an ideal of an algebra E in an abelian monoidal category

and let
. E FE

Pr- I+l Hﬁ

the morphism defined in [1.4.13. In view of Lemma [3.4.1, we have that

E
(F’p?)’HEN*y

defines an inverse system of extensions which is called the I—adic inverse system.
This is not an inverse system of Hochschild extensions unless each p} has a section

in M.

Definition 3.4.5. Let A, E, B be algebras and let 7 : £ — B be an algebra
homomorphism in a monoidal category M. We say that A has the lifting property
with respect to m whenever the canonical map

Hom, (A, 7) : Homg, (A, E) — Homye(A,B) : f — mo f

is surjective. This means that every algebra homomorphism g : A — B can be lifted
to an algebra homomorphism f : A — E that makes the following diagram

A
9

r
E?B

commutative.

Theorem 3.4.6. [AMSS3, Theorem 3.8] Let (M, ®,1) be an abelian monoidal cate-
gory. Let (A, m,u) be an algebra in M. Then the following conditions are equivalent:
(a) A has the lifting property with repect to every algebra homomorphism m :
E — B that splits in M and such that (Ker(r))* = 0.
(b) A has the lifting property with repect to the canonical morphism

—

for every inverse system of Hochschild extensions (E,,Dpn)nen+ which has inverse
limit Um £, .
(c) A has the lifting property with repect to the canonical morphism
I E E
— H —_—
=
for any algebra E in M and any ideal I of E such that (E/I"™, p})nen+ is an inverse
system of Hochschild extensions which has inverse limit @E/I”.
(d) Any Hochschild extension of A is trivial.
(e) H? (A, M) = 0, for every M € s M.
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Proof. (a) = (b) Let (E,,pn)nen+ be an inverse system of Hochschild extensions
that has an inverse limit imFE,. Let f : A — E; be an algebra homomorphism.
Since p, : E,+1 — FE, is by hypothesis a Hochschild extension, for every n > 1, we
can construct inductively a morphism of algebras f,, : A — F,, such that f := f; and
fn = pnfnt1. We deduce that there is an algebra homomorphism g : A — limE,
such that g9 = f, where ¢, : limF, — E, are the canonical morphisms coming
from the definition of the inverse limit in a category.

(b) = (c) Obvious.

(¢) = (d) Let M € 4M4 and let

0—>ML>EL>A—>O

be a Hochschild extension of A with kernel M. Let py : E— E/M be the canonical
projection and let f : E/M — A be the canonical isomorphism such that fpy = .
Now py @ E — E/M is a Hochschild extension of E/M with kernel M. Since
M? =0, it is clear that (E,py) = limE/M" so that there exists g € Hom,,(A, E)
such that py;g = f~!. Thus

g = fomg = ff ' =1da.

(d) = (e) Let M € 4 M4 and let

be a Hochschild extension of A with kernel M. By the definition of trivial extension,
there exists a section o : A — E of 7 that is an algebra homomorphism. If w is the
cocycle associated to o then

iw=0,=0msg—mg(c®ac)=0.

Thus w = 0 so, by Proposition 3.3.7, we have [E] = [Ep|. Therefore, Ext (A, M) =
{[Eo]} and hence, by Theorem [3.3.12, we get H? (A, M) = 0,VM € s M.

(e) = (a) Since (Ker(7))? = 0 it results that 7 : £ — B is a Hochschild extension
of B with kernel Ker(7). The conclusion follows by Corollary 13.3.15. O]

Definition 3.4.7. Any algebra (A, m, u) in an abelian monoidal category (M, ®, 1),
satisfying one of the conditions of Theorem 13.4.6, is called formally smooth.

Corollary 3.4.8. Any separable algebra in M is formally smooth.

Corollary 3.4.9. Let (A,m,u) be an algebra in an abelian monoidal category
(M, ®,1). Then the following assertions are equivalent:

(a) A is formally smooth.

(b) Ker(m) is P-projective.



58

3. Hochschild cohomology

Proof. Let (L, j) := Ker(m) and let us consider the exact sequence:

0— L25AQ A A — 0.

We know that m has a section in M so that m € P. Given any M € s My, we
apply the functor F' := s M4(—, M) to the sequence above and find:

Extp (A® A, M) — Exty (L, M) — Exty (A, M) — Ext5 (A® A, M).

Since A ® A is P-projective, we get that Exty, (L, M) ~ Ext} (A, M) = H2(A, M).
We conclude by applying Proposition 3.1.6 and Theorem 3.4.6. Il

Theorem 3.4.10. JAMSS3, Theorem 3.13] Let (A, m,u) be an algebra in an abelian
monoidal category (M, ®,1). Then the following conditions are equivalent:

(a) A is formally smooth.

(b) The canonical morphism imE/I" — A has an algebra homomorphism sec-
tion, where I is an ideal in an algebra E such that E/I ~ A (as algebras) and
(E/I™, p})nen- s an inverse system of Hochschild extensions which has inverse limit
imE/I".

(c) Let m: E — A be an epimorphism in M. If w is an algebra homomorphism,
the kernel I of m is nilpotent and (E/I", p})nen+ s an inverse system of Hochschild
extensions, then m has an algebra homomorphism section.

Proof. (a) = (b) Let f : E/I — A be an isomorphism of algebras. Let g, :
limE /I" — E/I"™ be the canonical map, coming from the definition of inverse limit.
Then the morphism lImFE /I" — A is the composition of f and ¢;. Since A is
formally smooth, condition (c¢) of Theorem [3.4.6/ holds true. Hence, there is an
algebra homomorphism g : A — lImFE /I such that ¢ig = f~'. Thus g is a section
of imE/I" — A.

(b) = (c) Let i; : I — E be the inclusion, let p; : E — E/I be the projection
and let N > 2 be a natural number such that IV = 0. Then p} : E/I"" — E/I"
is the identity morphism of E, for n > N. On the other hand, since (A, ) is the
cokernel of iy, there is an isomorphism of algebras f : E/I — A such that 7 = fp;.
As (E/I"™,p})nen+ is an inverse inverse system of Hochschild extensions then, by
assumption, linE/I " — A has an algebra homomorphism section. Obviously FE,
together the canonical morphisms py» : E'— E/I™ is the inverse limit of the [—adic
inverse system. Thus, in this case, ¢ = p; so the canonical map @E/ I" — Ais
fpr = m. Thus 7 splits.

(c) = (a) Let 7 : E — A be a Hochschild extension. Since (Ker(7))? = 0 then
I = Ker(r) is nilpotent and p} : E/I"" — E/I™ is the identity morphism of E, for
n > 2. In particular, p} = p;. Let f : E/I — A be the algebra isomorphism such
that fp; = 7. We deduce that p! splits as, by definition 7, does. Obviously, for any
n > 2, we have p} = Idg/m, so (E/I",p})nen- is an inverse system of Hochschild
extensions. Thus 7 has an algebra homomorphism section. O
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3.5 Coseparable and formally smooth coalgebras

The whole theory of Hochschild cohomology for coalgebras and its application to
coseparability and formal smoothness can be obtained from our general framework
by duality, i.e. by working in the dual category of (M, ®, 1, a,l,r). Since this process
is completely formal and does not require new ideas we will just state the main
results.

3.5.1. Let (C, A ¢) be a coalgebra in (M, ®,1,a,l,7). Like in the dual case, we
have the functors

“H: M — “M where “H(X) := C ® X and “H(f) = C® f,
HE : M — M where H°(X) := X ® C and H(f) := f ® C,
“HY : M — “M® where “HY(X) :== C® (X ® C) and “HE(f) == C® (f ® O),
with their left adjoint ©T, T, “T¢, respectively, that forget the comodule structures.

Then the adjunctions (°T, “H), (T, H®) and (°T¢, “H®) gives rise to the following
classes of monomorphisms:

T .= Topr = {g € “M | g cosplits in M},
7€ .= Ipe = {g € MY | g cosplits in M},
T :=Tcge = {g € “M | g cosplits in M}.

3.5.2. Now, for any C-bicomodule M € “M¢, we define the Hochschild cohomology
of C' with coefficients in M by:

H*(M, C) = Ext (M, C),

where Exts(M, —) are the relative left derived functors of “M¢ (M, —). Note that
H*(M, C') is the Hochschild cohomology of the algebra C' with the coefficients in M
(regarded as objects in M°).

Theorem 3.5.3 (dual to Theorem 3.2.3). Let (C, A, ¢) be a coalgebra in a coabelian
monoidal category M. The following assertions are equivalent:

(a) A cosplits in © MC.

(b) C is T—injective.

(¢c) HY(M,C) = 0, for all M € MC.

(d) H*(M,C) =0, for all M € “M® and n > 0.

(e) Any morphism in M cosplits in © MC whenever it cosplits in M.

(f) The category © MC is T-cosemisimple (i.e. every object in © M is T—injective).

Definition 3.5.4. Any coalgebra (C, A, €) in a coabelian monoidal category (M, ®, 1),

satisfying one of the conditions of Theorem 3.5.3] is called coseparable.



60

3. Hochschild cohomology

3.5.5. Let (C,A,e) be an coalgebra in (M,®,1) and let (L,p%,p}) be a C-
bicomodule. By the dual of Definition [3.1.9, we have that a morphism

(:L—-CxC
is a Hochschild 2-cocyle whenever
() =(®C)op, —(CO®A) o+ (A C)o¢—~(C®()opy
Is zero.

Definition 3.5.6 (dual to Definition 3.3.3). Let (C, A¢,e¢) be a coalgebra in a
coabelian monoidal category (M, ®,1) and let (L, p},p%) be a C-bicomodule. A
Hochschild coextension (E) of C' with cokernel L, is an exact sequence in M:

(E) 0—C-%E2%L—0

that satisfies the following conditions:
a) o has a retraction 7 in M;
b) (E,Ag,cg) is a coalgebra in M and o is a coalgebra homomorphism;
c) CAgC =E, that is (p®p)A =0;
d) the morphisms p! and p} fulfill the following relations

pip=(r@pAp and  pip=(pRT)Ap.

The following result will lead to the definition of a coalgebra structure for the
cotensor coalgebra.

Lemma 3.5.7. Let (C, A, €) be a coalgebra in a coabelian monoidal category M and
let (L,p},p%) € CMC. Suppose that ¢ : L — C ® C is a morphism in M. Define
Ac:COL— (CHL)R(CDL) and e, : Cd L — 1 by setting:

(3.14)  A¢ = (ic ®ic) Ape + [(iL ®@ic) pi, + (ic ®1ir) pi, — (ic ® ic) (] pr,
(3.15) ec=epc+h(e®e)(pL,

where i, i are the canonical injections in C'® L and pe, pr are the canonical pro-
jections. Then A¢ is a coassociative comultiplication if and only if ¢ is a Hochschild
2-cocycle. Moreover, in this case, (C' & L, A¢,e¢) is a coalgebra and

(E) 0—C-SCoL L —0

is a Hochschild coextension of C with cokernel (L,pr). This coextension will be
denoted by E.
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Proof. The dual of an abelian monoidal category is a coabelian monoidal category.
The conclusion follows by applying Lemma [3.3.5. O

Definition 3.5.8. Let M be a coabelian monoidal category.
Let <(Ei)ieN : (nf)ijeN> be a sequence of morphisms in M

2 3 n 1 n—+2
m U -1 nt M1
(3.16) Ef,—FE, — -+ "5 E,“>5FE, ;1 — -

We say that ((E,-)ieN, (ng)ij€N> is a direct system of coextensions if

e i, is a coalgebra homomorphism,

o K, Ng,., By = E,, for any n > 1.

We say that <(Ei)ieN, (nf)ijeN> is a direct system of Hochschild coextensions if

° ((Ei)ieN7 (n{)i,jeN> is a direct system of extensions,

e 7! has a retraction in M, for any n > 1.

We say that a direct system of Hochschild coextensions ((EZ) N > (nf )UGN) has
a direct limit if lim 2, exists in the category Coalg(M) of coalgebras in M.

Definition 3.5.9. Lat C, E, D be coalgebras and let 6 : D — E be a coalgebra
homomorphism in a monoidal category M. We say that C' has the extension property
with respect to & whenever the canonical map

Homoalg (0, C) : Homeoaig (E, C') — Homeoalg (D, C) = f — fod

is surjective. This means that every coalgebra homomorphism g : D — C can
be extended to a coalgebra homomorphism f : £ — C that makes the following
diagram
D *5> E
P

g =
yE

C

commutative.



62

3. Hochschild cohomology

Theorem 3.5.10 (dual to Theorem 3.4.6). [AMSS3, Theorem 4.16] Let (M, ®,1)
be a coabelian monoidal category. Let (C,A,e) be a coalgebra in M. Then the
following conditions are equivalent:

(a) C has has the extension property with respect to every coalgebra homomor-
phism 0 : D — E that cosplits in M and such that D N\g D = E.

(b) C has has the extension property with respect to the canonical morphism

E1 — ll_II)lEn

for every direct system of Hochschild coextensions ((Ei)ieN, (nf)i’j€N> which has
direct limit lm E,,.
(c) C has has the extension property with respect to the canonical morphism

D — limD"F
H
for any coalgebra E in M and any subcoalgebra (D,6: D — E) of E such that
((DNE) ) (ff ) . jGN) is a direct system of Hochschild coextensions which has direct
i€N b
limit lim D%

(d) Any Hochschild coextension of C' is trivial.
(e) H2(M,C) =0, for any M € “MC.

Definition 3.5.11. Any coalgebra (C, A, €) in a coabelian monoidal category (M, ®, 1),

satisfying one of the conditions of Theorem 13.5.10, is called formally smooth.
Corollary 3.5.12. Any coseparable coalgebra in M is formally smooth.

Corollary 3.5.13. Let (C,A,e) be a coalgebra in a coabelian monoidal category
(M, ®,1). Then the following assertions are equivalent:

(a) C is formally smooth.

(b) Coker A is Z-injective.

Definition 3.5.14. Let E be a coalgebra in M and let (C,¢), where 6 : C' — F,
be a subcoalgebra of E. We will say that C' is conilpotent in E if there is n such
that 4, : C"6 — E is an isomorphism.

Theorem 3.5.15. Let (C,A,e) be a coalgebra in a coabelian monoidal category
(M, ®,1). Then the following conditions are equivalent:

(a) C' is formally smooth.

(b) The canonical morphism C — @CA% has a coalgebra homomorphism retrac-
tion, where E is a coalgebra endowed with a coalgebra homomorphism ¢ : C' — E

which is a monomorphism in M and such that <<CNE) ,(§j) . > 15 a direct
jeN’ P/ ijeN

system of Hochschild coextensions which has direct limit llr_)nCWEL.
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(c) Let 6 : C — E be a monomorphism in M. If 0 is a coalgebra homomor-
phism, C' is conilpotent and ((C’A%> , (Sf) ) 1s a direct system of Hochschild
N

i i,jeN
coextensions, then 6 has a coalgebra homomorphism retraction.
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Chapter 4

The tensor algebra

In this chapter we introduce the tensor algebra inside the framework of monoidal
categories. As in the classical case, we prove that the tensor algebra T4(M), where
A is a formally smooth algebra and M is a projective A-bimodule in a monoidal
category M, is itself formally smooth as an algebra in M. Furthermore Ty (M) can
be endowed with a braided bialgebra structure whenever H is a braided bialgebra in
a braided monoidal category M satisfying suitable assumptions and M is an object
in T M. This structure will be used in chapter [5 in the definition of a braided
version of the notion of Bialgebra of type one (see Definition 5.6.10).

4.1 The algebra structure and the universal prop-
erty
Definition 4.1.1. Let (M, ®, 1) be a cocomplete (i.e. M has arbitrary coproducts)
abelian monoidal category.
We say that the tensor product commutes with direct sums whenever
Y ® (@ierXi) = @ier(Y ® X;)  and  (@ie1Xy) @Y = @ier(X; @Y),
for any Y € M and for any family (X;);c; in M.

4.1.2. Let (M,®,1) be a cocomplete abelian monoidal category such that the
tensor product commutes with direct sums. For any object X € M, we can define

T=T(X) (the tensor algebra of X).

Let
mpq s X @ X® — X+ for every p,q € N

65
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be the canonical isomorphism, which is unique by Coherence Theorem.
Still by Coherence Theorem one has

(4.1) mp+q,r[mp,q ® X®T] = Myp g+r [X®p ® mflﬂ"]‘

We now define
T(X):= GBPGNX@”

and
my = Gpen (V[(mi)irj=p]) : T(X) @ T(X) — T(X),

where V[(m;;)itj=p] @ @ipjep (X ® X)) — X®P denotes the codiagonal mor-
phism associated to the family (m;;)itj—p. Note that this makes sense. In fact,
since the tensor product commutes with direct sums, we have

T(X) @ T(X) = ®pen [Birjmp (X @ X))

If
ip: X — T(X)

is the canonical injection, then mq is uniquely defined by

(4.2) my o (ip ® 1q) = iprq © Myq, for every p,q € N.

By (4.1) it results immediately that my(x) is associative. Moreover,
(T'(X), mr, io)

is an algebra in M.

In analogy to the case of vector spaces, the tensor algebra has the following
universal property.

Theorem 4.1.3 (Universal property of the tensor algebra). Let (M, ®,1) be a
cocomplete abelian monoidal category such that the tensor product commutes with
direct sums.

Let X € M, let A be an algebra in M and let f : X — A be a morphism in M.
Then there is a unique algebra homomorphism f : T(X) — A such that

X L T(X)

x s

A
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4.1.4. Let (A,ma,ua) be an algebra in a cocomplete abelian monoidal category
(M, ®,1) such that the tensor product commutes with direct sums.
As explained in 1.3.2, we have that (4 M4, ®4, A) is an abelian monoidal category.
Furthermore one can see that 4 M4 has also arbitrary direct sums which commute
Wlth ® A-
Therefore we can consider, in the monoidal category (4Ma, ®4, A), the tensor al-
gebra of an arbitrary A-bimodule M. We will denote it by

(T = Tu(M), 7ir, @7) .

Note that
T = ®penM®4P
mr: T QT —T and ur: A—T.
Set
mr = Mmroaxrr: 1T T —T and
ur = urouy:1—T,

where sx77 : T®T — T ®4 T is the canonical morphism introduced in [1.3.2.
Then (T, mr,ur) is an algebra in (M, ®,1).

We are now able to state the Universal property of the relative tensor algebra.

Theorem 4.1.5 (Universal property of the relative tensor algebra). Let

(M, ®,1) be a cocomplete abelian monoidal category such that the tensor product
commutes with direct sums.

Let A, B be algebras in M and let fo : A — B be an algebra homomorphism.

Let M € aMy, and let frr : M — B be a morphism in ;M 4, where B € 4 M 4 via

Jo-
Then there is a unique algebra homomorphism f : Ta(M) — B such that

M D Tu(M)
fML of ' Tlo
P
B fA A

where ig : A — Ta(M) and iy : M — T4(M) are the canonical injections.

Proof. Using the fact that f4 is an algebra homomorphism, one can prove that the
multiplication of B factors to a unique morphism mp : B ® 4 B — B such that
Mp o aXpp = mp. Furthermore (B,Mmpg, f4) comes out to be an algebra in the
monoidal category (4May, ®4,A). Since (T4(M),mr,ur) is the tensor algebra in
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this category, by its universal property, there is a unique algebra homomorphism
[ (Ta(M), mp,ur) — (B, mp, fa) in 4 M such that

foin= fu.
Moreover, if T'= Ty(M), we have foig= four = fa. Finally
fomr = fomroaxrr
mpo(f®af)oaxrr

mpo axBB o (f®af)=mpo(f®af),

Jour = folurous= faous=usg,

so that f : (Ta(M), mp,ur) — (B, mp,up) is an algebra homomorphism in M.
[

4.2 Formal smoothness

In the classical case it is well known (see e.g. [CQ, Proposition 5.3]) that the tensor
algebra T4 (M), where A is a formally smooth (quasi-free in terminology of [CQ))
algebra and M is a projective A-bimodule, is itself formally smooth. The following
theorem states that this result still holds true in monoidal categories.

Theorem 4.2.1. |[AMSS3, Proposition 3.29] Let A be an algebra in a cocomplete
abelian monoidal category M such that the tensor product commutes with direct
sums. If

e A is a formally smooth algebra in M,

e M is a P-projective A-bimodule in the sense of section 2.5,

then the tensor algebra Tx(M) is also formally smooth as an algebra in M.

Proof. Let m : E — T4(M) be a Hochschild extension of T4(M) in M. Since A is
formally smooth, by the first condition from Theorem 3.4.6, there exists an algebra
homomorphism ¢y : A — E such that mgy = ip, where ig : A — T4 (M) is the
canonical inclusion. The objects F and T'4(M) have a natural A-bimodule structure
induced by gg and i, respectively. Thus 7w becomes a morphisms of A-bimodules
so that m € P. Let iy : M — T4 (M) be the canonical inclusion. Since M is P-
projective and m € P, there exists a morphism of A-bimodules ¢g; : M — FE such



69

4.3 Braided bialgebra Structure
that T™gr = il.
A
go . )
10
£ T
E - 7 Ty(M) 0

Y N
g1 7 "
M

By the universal property of T4 (M), there exists a unique algebra homomorphism
g : Ta(M) — E such that gip = go and gi; = ¢;. Then wgiy = mgo = ip and
wgly, = mg1 = 11, so mg = lIdp, ). This means that 7 is a trivial Hochschild
extension. [

Corollary 4.2.2. If (A,m,u) is a formally smooth algebra, the tensor algebra
T4 (Ker(m)) is also formally smooth. If A is separable, the tensor algebra Ta(M) is
formally smooth, for any M € 4 My.

Proof. Apply Corollary 3.4.9 and Theorem 3.2.3. O

Remark 4.2.3. Let A be an algebra in a cocomplete abelian monoidal category M
such that the tensor product commutes with direct sums. By the universal property
of the tensor algebra it results that 7'(X) is formally smooth, for any object X in
M. Thus T4(M) is always formally smooth as an algebra in (4 M4, ®4, A) for any
A-bimodule M, and even if A is not formally smooth in M.

4.3 Braided bialgebra Structure

Next aim is to provide a braided bialgebra structure (see1.2.5) for the tensor algebra
inside a braided monoidal category.

Theorem 4.3.1. Let H be a braided bialgebra in a cocomplete abelian braided
monoidal category (M, c). Assume that the tensor product commutes with direct
sums.

Let (M, iihy, pihvy, phgs Phy) be in EMIE Let T = Ty (M) be the tensor algebra. Then
there are unique coalgebra homomorphisms

Ar T —-T®T and er:T —1
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such that the diagrams

i1 1

(4.3) M T M e
(io@il)ﬁlj\/j‘f'(il@io)pyul Ar Tio Oi AT | Tig
2 2
TeT (i0®io)Am H 1 o "

are commutative, where i, : M®H" — T denotes the canonical injection. Moreover
(T, mrp,ur, Ar,er) is a braided bialgebra in M.

Proof. First of all recall that (T'® T, mrgr, urgr) is an algebra where

T®cr,rQT
—

mrer @ TOQTQT®T TRTRTRT ™" TRT,

ma)" ! ur@u
() 911 T T

UrerT - 1
Set

fH : :(Z()@’Lo)AHH—)T@TE,
fu o =Go®i)phy + (1 @) phy M —-T®T.

Then fy is a algebra homomorphism:

io ®i0) Agmp
io ®io) (myg @mpy) (H®@cyy ® H) (Ag @ Apy)

f HMH

.2)

= mT®mT)(i0®i0®i0®i0)(H®0H,H®H)(AH®AH)
mr @mr) (T @ crr @T) (g ® ig ® ig ® o) (Ax @ Ap)

= mrer (fa ® fu)

—~ —~

Moreover f); is a morphism of left H-modules

(io @ ix) Phyttny + (1 ® o) Phriths

(i ® i) (mg @ phy) (H @ e @ M) (Ag ® ply) +

+ (i ®do) (1t @ mpr) (H ® e @ H) (A & plyy)

(mr @ mr) (ip ® io ® ig @ i1) (H @ ey @ M) (Ap ® py) +

+ (mr @ my) (lo @11 @io @1io) (H @ ey @ H) (A @ py)

= (mr @myp) (T ®@crr @T) (g @ ip @ iy @ 1) (AH®le) +
+(mr @mp) (T @ crr @ T) (ig ® iy ® 41 ®ig) (Au ® piy)

= mrer [fu ® (io ® 1) piy] + mrer [fr @ (i1 @ o) phy]

= mrgr [fa ® fu] -

Frtdhg
(L1

~

(1.3)
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Analogously fauh, = mrer (fu ® fu), i.e. fuy is a morphism of right H-modules
and hence a morphism of H-bicomodules. By applying Theorem 4.1.5 to the case
B =T ®T we get an algebra homomorphism

AT = f . T — T ® T
such that the left side of 4.3 is commutative. We have

(Ar®T) fu
(Ar @ T) (ig ®1ig) Ay
= (fu®io)Ag
(1o ® 1o ® 1) (Ag @ H) Ay

(AT ® T) ATiO -

Analogously (T'® Ar) Arig = (ip ® ig ® 19) (H ® Ap) Ay and hence
(AT ® T) ATiO - (T ® AT) AT’io.
Moreover

(Ar @ T) Ariy
= (Ar®T) fu
= (Ar®@T) (ig®@ir) phy + (Ar @ T) (i1 ©io) piy
= (fu @) Py + (fur ® o) Py
= (io®io® 1) (Ag ® M) phy + (io © i @ o) (phyy © H) piyy +
+ (i1 ® i ® o) (pPhy @ H) ply
Analogously

(T ® Ar) Ariy
= (o ®io @) (H ® ply) pyr + (io @ i @ o) (H @ piyr) ply
+ (i1 ® ig ® o) (M @ Ag) piy

so that
(AT X T) ATil = (T X AT) ATZ.L

Since T®T ® T is an algebra and (T'® Ar) Ar is an algebra homomorphism, then
by uniqueness in the universal property of tensor algebra (Theorem 4.1.5), we have

(Ar @ T)Ar = (T ® Ar) Ar.
Set

fg : =emg:H—1,
fu @ =0:M—1.
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Then f}; is an algebra homomorphism and f}, is a morphism of H-bimodules. By
applying Theorem 4.1.5/to the case B = 1 we get an algebra homomorphism

ET = f/ T —1
such that the right side of 4.3/ is commutative.We have

(er ® T) Argig (er®T) fu
(er®@T) (ip ®1ip) Ay
= (fu®io)An
(em ® o) An
(1 ®1g) I
-

llo

and

(er®@T)Ariy = (er®T) fu
er ®T) (io @ i) phy + (e7 © T) (in @ i) piy

(
(
(fir ® 1) phs + (far @ o) Py
(
(

en ® 1) ply
1®i)ly =17

Since 1 ® T is an algebra and (e ® T') Ar is an algebra homomorphism, then by
uniqueness in the universal property of tensor algebra (Theorem [4.1.5), we have

(ST (%9 T) AT = l;l

Analogously (T ® er) Ar = r3*. Thus (T, mp, ur, Ay, er) is a braided bialgebra in
M. O

We are now able to state the universal property of the tensor bialgebra.

Theorem 4.3.2. Let H be a braided bialgebra in a cocomplete abelian braided
monoidal category (M,c). Assume that the tensor product commutes with direct
sums.

Let (M, iy, (i, Pors Phy) be in BME Let T = Ty (M) be the tensor algebra.

Let E be a braided bialgebra in M.

Let fip - H — E be a bialgebra homomorphism and let fyr : M — E be a morphism
of H-bimodules, where E is a bimodule via fy. Assume that

Apfu = (fu ® fu) Py + (far ® fu) Py
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(i.e. fu is a coderivation of E with domain the E-bicomodule M, where M is
regarded as a bicomodule via fy). Then there is a unique algebra homomorphism
f:Tu(M) — E such that figc = fg and fiy = fy, where i, : M®H" — Ty (M)
denotes the canonical injection.

M ———Ty(M)
fMJ = f Tio
L
FE > H

Moreover f is a bialgebra homomorphism.

Proof. By Theorem 4.1.5] there is a unique algebra homomorphismf : T" — E such
that fio = fg and fi; = fi;. By Theorem 4.3.1, we have

(f @ f)Ario=(f® ) (lo ®i0) Aw = (fu ® fu) Ax = Apfu = Apfio

and

(f® ) Ariv = (f&f)[(io@ir) oy + (i1 @ o) Pl ]
= (fio ® fir) phr + (fir @ fio) piy
= (fu® far) Por + (s © fur) P
= Apfu =Arfi
From Agfar = (fo © far) oy + (far @ fir) Py, we get
epfu = mi(ep®er)Apfu
= mi(ep®ep) (fu © fu) P +ma (e ® ) (fur @ fir) P
= ma (e ®epfu) phy +ma (eufu ®en) Piy
efu +epfu
so that
EEfM =0.
Hence, by Theorem 4.1.5, we have
epfio = €pfu =¢en = erip,
epfit = epfu =0=c¢ri.
Since (f @ f)Ap,Apf:T — E® F and egf,er : T — 1 are algebra homomor-
phisms,; as a composition of algebra homomorphisms, and since
(f & f) ATZn = AEon and EEfin = ETin

for n = 0,1, by uniqueness in Theorem 4.1.5, we get that (f ® f) A7 = Agf and
epf =er ie. that f is a coalgebra homomorphism. O
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Chapter 5

Cotensor coalgebras

5.1 Preliminaries and notations

Let C be a coalgebra over a field K and let M be a C-bicomodule. The cotensor
coalgebra T& (M) was introduced by Nichols in [Ni] as a main tool to construct some
new Hopf algebras that he called ”bialgebras of type one”. These bialgebras can
be reconstructed, via a bosonization procedure, from the so called Nichols algebras,
which are essentially the H-coinvariant parts of the bialgebras of type one, in the
case when C' = H is a Hopf algebra and M is a Hopf bimodule. Nichols algebras,
also named quantum symmetric algebras in [Ro], have been deeply investigated and
appear as a main step in the classification of finite dimensional Hopf algebras prob-
lem (see, e.g., [AG] and [AS]). In fact, in the case that C' = H is a Hopf algebra
and M is a Hopf H-bimodule, the cotensor coalgebra T&(M) is a bialgebra that is
called ”quantum shuffle Hopf algebra” by Rosso in [Ro] where some fundamental
properties of this bialgebra and of its coinvariant Hopf algebra are investigated. The
coalgebra of paths of a quiver ) is an instance of a cotensor coalgebra. Namely let
Qo be the set of vertices and let ) be the set of arrows of (). Then M = K@) is
a C-bicomodule where C' = K (@) is equipped with its natural coalgebra structure.
The cotensor coalgebra TE (M) is the path coalgebra of the quiver Q. In [CR], Cibils
and Rosso provide the classification of path coalgebras which admit a graded Hopf
algebra structure, allowing the quiver to be infinite. On the other hand, in [JLMS],
hereditary coalgebras with coseparable coradical are characterized by means of a
suitable cotensor coalgebra. Moreover it is proved that if C' is a formally smooth
coalgebra and M is Z-injective then T4 (M) is formally smooth.

In this chapter the notion of cotensor coalgebra in an abelian monoidal category is
introduced. We would like to outline that this fact is not immediate. In fact the
notion of coradical plays a fundamental role in the usual definition for coalgebras
over a field (see [Ni]) while we have no coradical substitution here. Also, having
developed in [AMS3] the notion of formally smooth coalgebras for abelian monoidal
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categories, we wanted to obtain the second quoted result of [JLMS] in this more gen-
eral setting, namely we prove Theorem 5.4.8 which states that, in a cocomplete and
complete abelian monoidal category M satisfying AB5, with left and right exact
tensor functors and such that denumerable coproducts commute with ®, the coten-
sor coalgebra T&(M) is formally smooth whenever C' is a formally smooth coalgebra
in M and M is an Z-injective C-bicomodule in M. We point out that in [Ar4] the
other quoted result of [JLMS| was investigated in the frame of coabelian monoidal
categories. In fact hereditary coalgebras that are the direct limit D of a filtration
consisting of wedge products of a subcoalgebra D, where D is a coseparable coalge-
bra in M, are characterized by means of a cotensor coalgebra: more precisely, under
suitable assumptions, D is hereditary if and only if it is formally smooth if and only
if it is the cotensor coalgebra T7,(D A D/D) if and only if it is a cotensor coalgebra
T5(N), where N is a certain D-bicomodule in M.
In this chapter, we also provide a braided bialgebra structure for the cotensor coalge-
bra inside a braided monoidal category. This structure is used to extend the notion
of bialgebra of type one, introduced in the classical case by Nichols in [Ni], to the
wider context of a braided monoidal category (see Definition [5.6.10). A universal
property for the cotensor bialgebra is also proven (see Theorem [5.6.8)

We will write [ instead of Ug, whenever there is no danger of misunderstanding.

Notations 5.1.1. Let (C, A, ¢) be a coalgebra in a coabelian monoidal category M
and let (M, p,, ph;) be a C—bicomodule. As observed in1.3.2, (“M¢ 0, C) defines
a monoidal category. In view of Notation [1.6.4, we will write

MP =, M =M and MP" = MP'OM for any n > 1.
Define (C™(M))nen by
CO(M)=0,CY(M)=C and C"(M)=C"(M)& M for any n > 1.
Let o't : C'(M) — C*™"1(M) be the canonical inclusion and for any j > i, define:
J

_ 01_10]::% . "UZI%U;H : C«z<M> — Cj(M).

4 J J

Then ((C*(M))ien, (07)i jen) is a direct system in M.
When the category M is also cocomplete, we define

TeM) =M =CoMeaMPeMPg. ..
neN
Throughout let
o C" (M) — C™(M) (m <n), o TE(M) — C™ (M),
P CY(M) — MP™ (m < n), pn s TE(M) — MP?,
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be the canonical projections and let

C™(M) — C"(M) (m <n), on: C" (M) — TL(M),
MP™ — C™(M) (m <n), iy : MP™ — TE(M),

n
JTI’L

n
Zm

be the canonical injection for any m,n € N. For technical reasons we set 7' = 0,

ol =0 forany n < m and p)' = 0, 7', = 0 for any n < m. Then, we have the

following relations:
PnOr = pz, pnzk = 5n’kIdMDk, Wnik = ZZ

Moreover, we have:

oy =o', if Kk <m <n, and mrop =m, ifm <k <n,
ppmy =pit, ifm<n <Kk, and oy =1, itk <n <m,
prtoy =pit, ifm <k <n, and Ty =4, itk <m <n,
P = D,y i M <, and Only, = lm, if m <n,

oy = o, if k< n, and Taop = 7, if n <k,
p;nZ;LI - IdMDnL, lf m < n.

In the other cases, these compositions are zero.

Corollary 5.1.2. Let (C,A,e) be a coalgebra in a cocomplete abelian monoidal
category M and let (M, ph,, p',) be a C-bicomodule. Then

(T&(M), (04)nen) = HmC" (M).
Proof. Tt follows by Proposition [1.6.5, once observed that C"(M) = @&"_ M”™ and
on =V [(im)iZo] - O
5.2 The coalgebra structure
5.2.1. Note that M is a C-bicomodule via

ph=phOMPand  p = MU Oph,.

Our next aim is to define, for any n € N\ {0}, a Hochschild 2-cocycle

" M — CM(M) ® CM(M).

Then we will apply Lemma 3.5.7 to obtain that, for any n > 0, C"™{(M) =
C™(M)@® M"" can be endowed with a coalgebra structure (C"+1(M), A, een) in M
such that the canonical inclusion ¢ : C"(M) — C™™'(M) is a Hochschild coex-
tension of (M) with cokernel M. Then, by Proposition 1.6.2, T&(M) will carry
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a natural coalgebra structure that makes it the direct limit of ((C*(M))ien, (o7 )ijen)
as a direct system of coalgebras.

Let sy = so(M, M) : MOM — M ® M be the canonical inclusion and define
n—1

(5.1) ¢"'=0 and ¢"=-) (@i )(MPDoOM> 1), vn > 1.

t=1
where we identify CJX and XUOC with X, for any C-bicomodule X.

Proposition 5.2.2. [AMS2, Proposition 2.8] Let (C,A,€) be a coalgebra in a co-
complete coabelian monoidal category M and let (M, py;, phy) be a C-bicomodule.
Let

A(l) = A, and (1) =¢,
pr=py,  and Py = ply,
and for every n > 2 set
A(n) = A1, and  e(n) =¢een-1,
as defined in (3.14), (3.15), and let
P = (07 @ M7)(ph,OM™ 1), and P, = (M @ o7)(M™""'Opjy).
Then, for any n > 1, we have
a) (C"(M),A(n),e(n)) is a coalgebra.

b) (MP, 5L, pr) is a bicomodule over the coalgebra C™(M) such that the mor-
phism (" : MY — C™"(M) ® C™(M), given by (5.1), defines a Hochschild
2-cocycle.

c) e(n) =ecml.
d) For every 1 <t <n—1 we have
(5.2) An)ip = (if @ o) py + (0] @) py — (o7 @ a7') ¢".
e) A(n) fulfils the following relations:
A(n)ig = (ig ®15) A
Aln)it = (& ®@ig) phy + (i @ 1) ply
and for 2 t<n-—1
At = (@ @) (M 20phy) + (g @ 7)) (P OME) +

IN

+Z ® iy, ) (MO OM™ 1),
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Proof. Set C™ = C™(M) for any n > 1. Recall that M is a C-bicomodule via
pl = ph,0MEt and Pl = M0,

Let us prove all the statements of the theorem by induction on n>1.

If n = 1, then C' = C is a coalgebra and M5 = M is a C'-bicomodule by
hypothesis. Obviously ¢! = 0 fulfills (5.5). We have £(1) = ¢ = ec7i and, since
ig = Ide and if = 0, we get

AN =A=(bei)d,  AQR=0= (@ od) ki + (o) oy

Let n > 2. Assume all the assertions hold true for any 1 <t < n.

Thus (C" ', A(n—1),e(n—1)) is a coalgebra in M, (ME"=1 5L | 77 |)isa C" -
bicomodule and ("~ ! is a 2-cocycle. By Lemma [3.5.7 applied to "C” = C™! and
"M” = M1 then (C™, A(n),e(n)) is a coalgebra. Moreover o!_, : C*~! — C* is
a Hochschild coextension of C*~! with cokernel M= for any 1 < ¢ < n.

Since (M7, pl, o) is a C-bicomodule and o} : C — C™ is a coalgebra homo-
morphism (as a composition of coalgebra homomorphism), then (M5 7l 77) is a
C™-bicomodule, where

ph = (o} @ M) (ph,OM™ 1), and 7, = (M7 @ o7)(MT"'Op}).
Recall that, by definition, we have:

A(n) - Acn—l

(iZ—l ® 02—1) Pr_1t
= (02—1 ® 02—1) A(n — 1)72_1 + |+ (‘7371 ® @'271) ﬁil*l—i_ p?fl,
- (02—1 ® 02—1) ¢t

For any 0 <t <n — 1, we have that

71) Pp1 T (0271 ® 2271) ﬁqul - (0271 ® 0271) Cn_l} pZ‘li?
—1) Pr—1 T (02—1 ® iZ—l) ﬁfl—l - (02—1 ® 02—1) qu} Otn—1

(5.3) A(n)iy = (Un_l ® o, 1) Aln — D1 +
(iny @opy) Boy + (07 @ in_1) Pl
" (o o) ¢ G-



80

5. Cotensor coalgebras

so that, inductively we get:
An)iy = (on1®op_y) (7 ®ig ') Ac = (i5 ®1p) Ac.

Let us prove that for every ¢ € N, such that 0 < ¢ <n — 1 we have (5.2).
Now, we apply (5.3). If t =n — 1, we get

A(n)iy = (i2—1 ® 02—1) Pr1 + (02—1 ® iZ—l) ﬁiz—l - (02—1 ® 02—1) Cn_l-
f0<t<n—1, we get

An)iy = (on1 ®0,_1) Aln—1)if ™

. . Z‘n—l ®0_n—1 —7~_|_ ®Zn 1 +
- (Unfl ® Unfl) ( ' t— (g?ptl ®(U? 1) Ct t ) pt

= (iy®@op)pi + (o) @ i) p, — (o] @ 07) (.

Thus we have obtained (5.2). Note that, for ¢ = 1, by definition of 7!, 7} and since
¢t =0, one gets

A(n)iy = (if @ o7) 71 + (07 @ i) 7y = (i @ i) ply + (i @ 47) ply-

For 2 <t <n — 1, by definition of 7, p". and of ¢!, from (5.2), we get:

An)iy = (7 @ o7) (M~ @ o})(M'0p}y) +
+ (o7 @) (o1 @ M) (ph DM 1) +

+ (o @07 (i @ 4;_,) (M7 Doy OM ™),

so that we obtain:
Aln)iy = (i? @ ) (M0, + (i @ i) (ph, MDY +

+Z ® i) (M Doy DM 1),

Moreover, by definition, we have:
(5.4) e(n)=cm-1=cn—D)m ' +hle(n—1)®@e(n—1))¢C" 'pi .
Since n > 2 and e(n — 1) = ecm}_,, by (5.4), we have

e(n) = eeml 7" 4 li(eomt | ®@eoml )¢ pt !
ecmy +li(ec ®@ec)(my_y @y )"l 1'
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By definition of ("7, if n = 2 we have ¢! = 0 so that (7} , @x} )" ! =0.1If
n > 3, we have

n—2

(Tp1 @ My )C" ™ = Z(W}@—l ® M) (i} ® Z'Zj—t)(MDt_lD§MDMDn_2_t) = 0.

We conclude that (7} @ 71)("~! = 0 for any n > 2 and hence €(n) = e

Recall that (" is a 2-cocycle means that it verifies the following relation:

(5.5) 0=0%(¢") = (¢"®C")p, = [C" @ A(n)]C" + [A(n) @ C"I¢" = (C" @ ¢")p,.

Now, since o] = i§ and n > 2, we have

-("®C")p,
n—1

_ Z[(Z? Qi )(MthllngDManlft) ® Cm]<M|:In ® U?)(ManlmprM)

n—t
t=1

(P @i, @ o) (M0, OM 1t @ C)(MP ~10ph,)

I
~ 3
M1

A

= (Z? ® Z'th ® Zg) (MDt ® ManlftDp}“w)(MthllngDM[lnflft)

t=1
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and
—[C"® An)|¢"
n—1
= [C" @ Am)] S (i @ if_ ) (M Do O 1Y)
t=1
n—1

(it @ A(n)in_o) (M Doy OM 1)

#
Il
—_

n—1 (ig_t ® ig) (Mantqu}nw)_i_
=Y (e + (i @) (phyOMO ) (MO0 OO -1

=1 +Z?:f71(i? ®ig_t_r)(MDr—llngDMDn—t—l—r)

n—1

(Z? ® Z.Z_t ® 261) (MDt ® MDn_t_lmpTM)(MDt_llngDMDn_l_t)‘i‘

I
(]

Blu-
= =

(Z? ® Zg ® Z'Z_t) (MDt ® pl]WDMDn_t_l)(MDt_1D§MDMDn_1_t)+

+
(]

t=1
n—1n—t—1
+ Z (Z? ® ’L,,T} Q ig_t_r)(MDt Q MDT—IDgMDMDn—t—l—r)(MDt—IDgMDMDn—l—t)
t=1 r=1
=-("®C")p,+
n—1
+ (Z? ® ZBL ® iZ—t) (MDt ® pl]WDMDn_t_l)(MDt_lmCMDMDn_l_t)+
t=1
n—1n—t—1
+ (7]? ® ,L;L ® ig_t_r)(MDt ® MDT—IDgMDMDn—t—l—T)(MDt—IDgMDMDn—l—t)

-
Il
—
<
Il
N

Analogously one has

—

(O @ A, = S @ i © in_) (ph, DM M) (MO Dy DM

t=1

and

[A(n) ® C7]¢"
= —(C" oM+

n—1

+> (ip@ig@in_,) (MP ' Ophy @ M=) (MP 106y, OM =171 +
t=1
n—1t—1

+ Z Z(Z:} & i?—T‘ X iz_t)(MDT—llngDMDt—l—T ® MDn_t)(MDt_1D§MDMDn_1_t).
t=1 r=1
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Now, for any 1 <t < n — 1, by definition of ¢;; we have

t )(MElt 0 M®MDn t)(MDt 1|:|§ DMDn 1- t)

) (MO0 © Moy MO
iy ®20 ® i t)([MDt 'OWM @ phy)p M1 ]
@il ®i,) (M@ ph,OMP 1) (MP-10e, MO 1-t)

an also

n—1 t—1
Z Z(Z:«L ® Z'?_r ® iz_t)(MDT—llngDMDt—l—r ® MDn_t)(MDt_1D§MDMDn_1_t)
t=1 r=1
n—1 t—1

— in ® inf ® Z—ni MDr ® MthlfngMDManlft MDrfllngDManlfr
T t—r n—t

t=1 r=1

— Z Z ®Z ®Zn t)(MDT®MD] 1|:|§ DMDTL 1— t)(M‘:l’l‘ 1|:|§ DMDTL 1— 7’)

t=1 r4j=t
r,7>0

= Y @eqeq)MY e MY Og,0M™ ) (M7 0,08 ™)

r+j+k=n
k,r,5>0

n—1
- Z Z (i ®ir ® iZ)(MDt ® MDT*ngMDMDk’l)(MDt”DgMDMD”*Pt)

t=1 r4+-k=t
r,k>0

n—1n—t—1
= > > (reiaei, )MV e M Og,OM™ 1) (M7 O, DM 1)

t=1 r=1
Then (™ satisfies (5.5). O

Theorem 5.2.3. [AMS2, Theorem 2.9] Let (C, A, ) be a coalgebra in a cocomplete
coabelian monoidal category M and let (M, ph,, p;) be a C-bicomodule.

(TE(M), (0)ien) carries a natural coalgebra structure that makes it the direct limit
of ((CH(M))sen, (0))ijen) as a direct system of coalgebras.

Proof. By Proposition 5.2.2, for any n € N\ {0}, the canonical inclusion o?_; :
C"Y(M) — C™(M) is a Hochschild coextension of C"~'(M) with cokernel M=r—1,
In particular o)'_; is a coalgebra homomorphism for any n € N. Then, by 5.1.1, o,
is a coalgebra homomorphism for any m,n € N. Now, in view of Corollary [5.1.2
and Proposition 1.6.2, T&(M) carries a natural coalgebra structure that makes it
the direct limit of ((C*(M))ien, (07)ijen) as a direct system of coalgebras. O
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Lemma 5.2.4. Let (C,A,e) be a coalgebra in a cocomplete coabelian monoidal
category M and let (M, phy, p'y) be a C-bicomodule. Let T¢ := T&(M). Then,

Epely = 51&,0507

for every t € N, and Arc fulfils the following relations:

Argeig (ip ®1p) A
Ageiy = (iy ® o) phy + (io @ i1) ply
and for 2 < t
Ageiy = (iy @io) (MP™'Tply) + (o @ i) (phOMTY) +

t—1
+ Z(lr ® it_r)(MDr_1D§M|:|MDt_1_T).

r=1

Proof. By construction, the counit Are of T is uniquely defined by the following
relation

ereoy = € (t), for every t € N.
By Proposition 5.2.2, for every t € N, we have
ETcit = ATCO-t-i—lii = (t + 1) il — Ecﬂt1+1l'§+1 = 6757050@'% = 5t,050'

By construction, the comultiplication Ape of T is uniquely defined by the following
relation

Arcoy = (0y @ o) A(t), for every t € N.
For every t € N, we have
Areiy = Apeop1it™ = (0101 @ opp1) A (¢ + 1) it
From this equality and by Proposition 5.2.2, we get
Areig = (01 @ 01) A (1) ig = (01 @ 01) (ig ® ig) A = (i ® ig) A,
and also

ATcil = (0'2 X 0'2) A( ) 2
= (02®09) (i1 ®15) phy + (z% ®i7) phy
= (i1 ®1o) phy + (i0 ®i1) ply
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and, for every 2 < t, we get

Achit = (Ut+l (%9 Jt—i—l) A (t + 1) Zi+1
(,L'?rl ® Z'6+1) (MDt—lmp}"w)_i_
= (Ut+1 ® Ut+1) + (igﬂ & ii“) (PfMDMDt*l)JF
+ 30N @ i) (M O, DM
= (i; ®ip) (ME0ph,) + (ip @ iy) (ph,OMPY) +

t—1

+ Z(zr ® Z't,T)(MljrilleMDMDtilir).

r=1

5.3 The universal property

Next aim is to prove the universal property of the cotensor coalgebra.

Lemma 5.3.1. [AMS2, Lemma 2.10] Let (C,A,¢e) be a coalgebra in a cocomplete
coabelian monoidal category M and let (M, ph;, ;) be a C-bicomodule. Let T¢ :=
T&E(M). Then, for any m,n > 1 the following relations hold true:
) (M7 0oy OM " pyngn, for any myn > 1;
(Pm @ po)Are = (MZ"'0ply)pm, for any m > 1;
)
)

=
3
&
ks
S
>
r

I

Ape = (P, OMYp,, for anyn > 1;
(Po @ po)Are = Acpo.
Proof. By Lemma 5.2.4Then, for £ = 0,1 we have respectively

(Pm @ pn)Arcio = (Pm ® pp) (i0 @ ig) A
0, form >1and n > 1;
= Om00n oA =< oA, for n =0;
On 04, for m = 0;
(P @ Pp)Areis = (P @ pa) [(i1 @ do) piy + (i0 @ 11) phy]
0, form >1 and n > 1;
= Om10n00y + 5m,06n,1p§\4 = Om,1P4, for n = 0;
On1ply, for m = 0;

while, for ¢ > 2,we have:

Areiy, = (z’t X z’o) (MDt_IDPTZ"M) + (io ® @'t) (pﬂVIDMDt_l) +

t—1

+ Z(Zr ® ’L't,T>(MDr71D§MDMDt717T).

r=1
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(it ® o) (M S0 )+
(pm ®pn)ATCit = (pm ®pn) (20 ® Z ) ( DMDt 1)+
3T ® i) (MDD OMO1r)

= OmOno (M 00N, + o (04 OMEY) +
t—1
+ Z 6m,r5n,t—r<MDr_1 DgMDMDt—I—T)
r=1
5n,t_m(MDm_1D§MDMD"_1), form >1and n > 1;
= S0t—m(MEE10p,), for n = 0;
Snt (P4 OMEEY) for m = 0;

so that, for any ¢ > 0, we get:

(Pm @ pn)Arpeiy = 5n+m,t(MDm_1D§MDMD"_1)

= (MDm_IDqMDMD”_l)pm+nz’t, for any m,n > 1;
(Pm @ po)Areiy = Oy (MPT10ph,) = (MP™ 0%, ) pmiy, for any m > 1;
(po ® pu)Apeiy = Gp4(ph, M) = (4, O0MPYp,iy, for any n > 1;
(Po ® po)Areiy = 60:A(1) = Acpois.

Therefore, we conclude. L

Proposition 5.3.2. [AMS2, Proposition 2.11] Let (C,A,e) be a coalgebra in a
cocomplete coabelian monoidal category M and let (M, ph,, o) be a C-bicomodule.
Let T := T&(M). Let E be a coalgebra and let o« : E — T¢ and  : E — T be
coalgebra homomorphisms. If pra = p1 3, then pp,a = p, 0 for any n > 1.

Proof. Let us prove it by induction on n > 1, the case n = 1 being true by assump-
tion. Thus let n > 2 be such that p,a = p,3. Then

_ 5.6
(o OMT p, a0 2 (9 @ po)Aea
= (pla ® pna)ATC
= (108 ® ppf)Are

(5)(

= (p1 @ pn)Areff = OM™""Yp,18.

Since ¢y is a monomorphism, then, by left exactness of the tensor functors, ¢, M =—1
is a monomorphism too, so that p, 1o = p,10. Il

Our next aim is to prove the universal property of T&(M).

Theorem 5.3.3. [AMS2, Theorem 2.13] Let (C, A, €) be a coalgebra in a cocomplete
coabelian monoidal category M and let (M, phy, phy) be a C-bicomodule. Let § :
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D — E be a monomorphism which is a homomorphism of coalgebras such that
the canonical morphism 6 : D — FE of Notation |1.6.4 is a monomorphism. Let
fo: D —C bea coalgebra homomorphism and let fyr D — M bea morphism of
C-bicomodules such that fy§1 = 0, where D is a C-bicomodule via fc. Then there
is a unique morphism f: D — T&(M) such that

DS
fnl ¥
on c v
C"(M) —=T5(M)
is commutative for any n € N, where
U Oet-1
(5.10) fo= ) it il Ap &
t=0

and A~ D — DL s the ntt-iteration ofA (A7 D = fc,Af) = [df),Z% = Zﬁ
D — DOD).
Moreover:

1) f is a coalgebra homomorphism;

2) the following diagram is commutative

Te(M) — M

C fe D

where py, : TS(M) — MP" denotes the canonical projection.

Furthermore, any coalgebra homomorphism f : D — TE(M) that fulfils 2) satisfies
the following relation:

(5.11) prf = fﬁkzgl for any k € N,

Proof. Set T := T&(M). By Proposition [1.5.8), if we denote by (L, p) the cokernel
of § : D — F in M, we have

(D"t 68,) := Ker (p®"A%L™)

for any n € N\ {0}, where A" : E — E®"! is the n'! iterated comultiplication of E
(A = Idg, Al := Ag). Since fc& : D — C'is a coalgebra homomorphism, then D
becomes a C-bicomodule and &; a morphism of C-bicomodules. Set C™ = C"(M)
and D" = D& for any n € N\ {0}. Define f, : D® — C™, for every n € N, as in
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(5.10).
Note that, for every n > 1, i’ = 0 so that we have
n—1 L
o pOtt—
fn - th A‘jjAﬁ gn
t=0

Let us prove that f, &7 = o1 f, for any n € N. We have that

n
1 2 : 1 O At 1
fn+1€3+ = Z?+ M AE 5n+1€2+

t=0
n

_ E 41 pOt At
- 2 fM AD gn
t=0
n—1
_ n+l:n O at=1 1 pOn A1
= E oy i I Ap St iy [ A &
t=0

. n+1 -n+1 0n ’~L_1
= 0O, fn+Zn MAD 571

Let (L,p) be the cokernel of & : D — D in M. Let i LOL — L ® L be the
canonical injection. Define S LPr — L®" for every n € N, by setting g% = Id¢,
g% = Id;, g% = ¢z and ¢f = (Z®"*2 ® gz)(gg—lmi) for any n > 2. Since the tensor

functors are left exact, i is a monomorphism. By Lemma 1.5.9, we have

(D%, &,) = D" = Ker (p*"A%")

Thus, for any n > 1, we have
n—1

n A n— n n AL nA
Ker (p® A% ') = Ker (¢} o pMAL ) = Ker (pPAE ).

so that we get

(5.12) AL e, = 0.

Now, since fj;& = 0, there is a unique morphism of C-bicomodules A : L — M such
that A\p = fy;. Thus:

(5.13) FrRE g = AT A e P20 0, for any k < n.

We conclude that f, &7 = o1 f, for any n € N so that (o, f, : D" — T¢), is a
compatible family of morphisms in M. Thus there is a unique morphism f : D — T

such that
f&. = onfr, for any k € N.
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We have that
k
(5.14) pzZ RS & = AL

for any 0 < n < k. Note that, for £ < n, p} = 0 and the right side of (5.14) is zero
by (5.13). Thus, the relation above holds true for any k,n € N. Then we get:

k
n n n AL
Pnf &k = Puokfi = P fe = Dy Z FIEAG & = fAG '€, for any kyn € N.

We conclude that p, f = fAE}”K;;_I, for any n € N. In particular, for n = 0,1, we get
pof =Ap = foand pif = fulp = fur.

We have now to prove that f is a coalgebra homomorphism. Let us check that
fn: D™ — C™ is a coalgebra homomorphism for every n € N.

For n =0, f, = 0 and there is nothing to prove.

Assume n > 1. By Proposition 5.2.2, we get:

An) f,
= Y Am)i fIAG €,
t=0

— AW fPAG &+ Aln >"fE,1ADsn+ZA AN

= An)if fo&n + A(n) fon+ZA it i Ap €,

= (ig ®ig)Acfcén + [( 1 @ ZO)PM + (ip ® Z?)Pé\/[] Juén +
n (i @ig) (M7='0ph, )+
+> + (i @47 (phOMT 1)+ fFAG €,
= | S i @ i) (MO, M)

= (igfe @igfo)Apén + [(iF @ i5)phy + (i @ 7)oy ] frrln +

+ 3 [ @) (MP'0ph) + (i @ i7) (ph, DM )] fiF A5 6 +
t=2
n t—1

+ZZ ®2t r Ml:lr 1D§ DMDt 1— r)f]\[l/[tA gn

t=2 r=1
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= (igfo®igfo)Apén +

+ 3 [ @ig) (MP0ph,) + (i @ i) (o, OMT )] fFAE &0 +
t=1
n t—1

ZZ ®Zt r MD?” 1|:|§ DMDt 1— r)f]\l:l/[tA gn

=2 r=1

Now:

n

Z (i ®ig) (M ID/OM)fj\DthD &n
t=1
= S @) (5 0o fan) B e
t=1
= Y G ei) [0 @ C)ps]As &
t=1

= ;(ii‘@ia‘)(fmt 'Ofy @ C)(DX 'O )A% e,
= i(ﬁ”‘@%) (7 ® O)DP'0(D ® fo)AplAG €,
= Z (if @ 33) (fif @ fo) DV ' DABAG &,

= ; (i @ i) (fF ® fo)A5 ' ® DIAsE,

= i (52 385 @it fe) Apén

t=1
Analogously one gets

S @) (AOMI ) HAG ¢ = S (ifo 2 i RS ") Mgk,

t=1 t=1
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Moreover we have:
n t—1

SN G @i ) (T 06, OMP ) VAT e,
t=2 r=1
n t—1 _ ~
— ZZ ®Zt r ®f|:|t T)(DDT_1D§EDDDt_1_T)Zglfn
t=2 r=1
n t—1 L
= S S @y ea, i@ 98y AR,
t=2 r=1
n t—1 . e
= Y Y (A @i A ARG
t=2 r=1
So we get
An)fn = (igfo®igfe)Apén +
Z( WAp @itfo) Apt +
n n Dt—tfl
+3° (e 0 @ IYES") Mgt +
t=1
n t—1 e
+D ) (i fi A fed SRS AR,
t=2 r=1
On the other hand we have
(fn®fn)AD”

Ot N ek
= (thfJ\DfAf) fn®zlk W AS &) Apn
1=0 k=0

S |
= Qi fd Ay @) ip i AL )Apés
k=0

t=0

— (GBS @R AR +

Z RS @i RS ) Ak +

00— Dk 1
+Z(ZofE°A5 Qipfir A )Apén
k=1

Ot N Ok
+O i A @Y i i A AR
k=1

t=1
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= (ifo @i fe)Aptn + Y (@ fFAG @i fo) Aptn +
t=1

. o Clek—1
+Z(Zof0®lkfz\91kA5 JApE +

k=1
e R
"’ZZ(th]\;l[tAﬁ @ 2 J\S,[kAﬁ )Af)fn
t=1 k=1
n t—1 e
= AWM= YD A @i St TR ) ARt +
t=2 r=1
+> ORS @ ir fFAS YA L.

tlkl

Now

o Ot o sk k1
(i AG @i fiF A AR,

(i f Qi fiF) B ©Ap )AxE,

= (it ®z;z D 00D AR e,
= (i @i)(fif ® i) (DU Dss0DF 1 AE e,
— Z ®Z MDt 1|:|§ DMDk 1 th-HcAt'HC lgn
t k
By (5.13), the last term is zero whenever ¢ + k > n, so that:
-~ o oCct=1 o pCek—1
DY A @i fif Ay )AL,
t=1 k=1
o et=1 o Okck—1
= Y (iPfA5 @i AL AR,
1<t,k<n
t+k<n
n t—1 1 -
-n r AT n rAat=1-r
= Z ]\I;JfA ® t rf1\|:|4t A ) 55717
t=2 r=1

and hence
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Furthermore €(0) fo = 0 = £po, while, for every n > 1, we have

n

en)fa = > )il fiiA5 ',

=0
- 1
. —t—

= Y eemiy il Ap &

=0

.n 00 A 01

5C7T71LngMOA5 gn

= ecipfobn = eofobn = epn.

We conclude that f, is a coalgebra homomorphism. Now, by construction, f is
the unique morphism such that f&, = oy fi, for any & € N. By Proposition 1.6.3,
((D"e)ien, (€))i jen) is a direct system in M whose direct limit D carries a natural
coalgebra structure that makes it the direct limit of (D¢ )ien, (€))ijen) as a direct
system of coalgebras. Since oy is a coalgebra homomorphism so is oy fi, and hence
f is a coalgebra homomorphism.

Assume now that g : £ — T° is another coalgebra homomorphism such that pgg =
fo and prg = fur. Then, by Proposition 5.3.2, we have p,g = p,, f forany n € N. [

Lemma 5.3.4. Let (X;)ien be a family of objects in a cocomplete and complete
abelian category M satisfying AB5. Let Y be an object in M and f:Y — @®ienX;
be a morphism such that

pef =0 for any k € N,

where pi - ®X; — Xy denotes the canonical projection. Then f = 0.

Proof. By [Pol, Corollary 8.10, page 61|, M is a Cy-category so that the conclusion
follows by [Pol, Proposition, page 54]. O

Corollary 5.3.5. Let (C,A,e) be a coalgebra in a cocomplete complete coabelian
monoidal category M satisfying AB5 and let (M, ph,, p4,) be a C-bicomodule. Let
T¢:=T&(M). Let E be a coalgebra and let o : E — T° and  : E — T¢ be coalgebra
homomorphisms.

Then o = 8 whenever p,a = p, 0, forn =0,1.

Proof. follows by Theorem 15.3.2 and Lemma 5.3.4. ]

Theorem 5.3.6 (The universal property of cotensor coalgebra). [AMS2, Theorem
2.15] Let (C,A,€) be a coalgebra in a cocomplete and complete abelian monoidal
category M satisfying AB5. Let (M, ph,, p,) be a C-bicomodule. Let § : D — E
be a monomorphism which is a homomorphism of coalgebras. Let fc : D—Cbea
coalgebra homomorphism and let fyr : D — M be a morphism of C-bicomodules such
that fypé1 = 0, where D is a bicomodule via fo. Then there is a unique coalgebra
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homomorphism f : D — T&E(M) such that pof = fo and pif = fu, where p, :
TE(M) — MP" denotes the canonical projection.

Te(M) ——— M
o 0
poJ/ o Tﬁ\
¢ fe D &1 D

Proof. Since M satisfies AB5, the morphism 5 : D — E of Notation 1.6.4] is a
monomorphism, so that, by applying Theorem ©5.3.3, there is a coalgebra homomor-
phism f : D — T&(M) such that pof = fo and p1f = fu. The uniqueness follows
by Corollary 5.3.5. m

The following result describes completely the wedge powers of C' as a subcoalge-
bra of the cotensor coalgebra T¢& (M), where M is a C-bicomodule.

Theorem 5.3.7. [AMS2, Theorem 2.18] Let (C, A, €) be a coalgebra in a cocomplete
and complete coabelian monoidal category M satisfying AB5. Let (M, ph,, ph;) be a
C-bicomodule. Let T := T&(M). Then

(C™ (M), o) = CMie,
for every n € N.
Proof. Let n € N. Let
A M @y, M
be defined by
A\ —

{ the canonical injection if a > n,
a

0 otherwise.

Define
Up EBaZnMD“ — T°

as the codiagonal map of the family (i,),-. so that we have

a>n

o\ 1, for every a>n
"T7%a ] 0 otherwise.

Define
T T¢ — @aZnMD“

as the codiagonal map of the family (A) that is

aeN>

Tnla = Ay, for every a € N.
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Thus, we have
TalVnXy = Tpla = A\, for a > n,

so that
Toln = Idg__ pyoa for every n € N.

Let C™ = C™ (M) for every n € N. Let us prove the following sequence
0—C" 25T T @y MPY — 0

is exact. We check that (@aanD“, Tn) = Coker (o).
Since 7,1, = Id, it is clear that 7, is an epimorphism and that v, is a monomorphism.
From

TnOnly = Tpiq = A, = 0, for every 0 <a <n—1,

we deduce that
Tnon = 0 for every n € N.

Let f:T° — X be a morphism such that fo, = 0 for every n € N. Thus, for every
0<a<n-—1, we have

fia = fUniZ =0
Set

f - f VUn
and let us prove that f = f7,. From

fiq forevery a >n

fTnte = fUpA] = { 0 otherwise.

we deduce that fr,i, = fia, for every a € N, and hence f7, = f.

Let us prove that C" = Cr<, for every n € N.
The case n = 0 is trivial. Let us prove the equality above for every n > 1 by
induction on n.
If n = 1, by definition, we have C* = C' = Cr.
Let n > 2 and assume that C7< = O™ 1. By Proposition [1.5.8 and Lemma [1.5.3,
we have

C/\%C = C(/\;zl/\TcCY/\%C = Cnfl/\chl = Ker (Tn,l)/\TcKer (T1> = Ker [(Tn,1 (%9 Tl) ATC]

so that

(Tn,1 ®XT1 )ATC
—

0— C’/\?c s T¢ @azn_lMDa) (%9} <@a21MDa)

is an exact sequence. In order to conclude, it is enough to check that the following

sequence

(Tn_1®Tl)ATc
—

0 — Cm 7 e Bazn-1 M) ® (@az1 M)



5. Cotensor coalgebras

is exact. For every 0 < a <n — 1, we have
(Tho1 @ T1) Aqeopnin = (Th—1 @ 11) (0 @ 7)) A (n) )

By Proposition 5.2.2/ we can write

a

An)it = (7 @ir,) frar

r=0

where f; ; : M Co MY @ MY/ are suitable morphisms. Thus we get

a

(Tn—l ® 7-1) ATCUniZ = Z (Tn—l ® 7-1) (Un ® Un) (Z? ® iZ—r) T,a—"T

r=0
- Z (Tnflir ® Tll-afr) fr,a—r - Z ()\:}71 ® >\Lllfr) f,,,,air = O
r=0 r=0

Therefore (7,_1 ® 71) Areo,, = 0, for every n € N.
Let g : Y — T° be a morphism such that

(Tnfl ® 7'1) ATcg =0.
Now, for every ¢ € N and for every a > b, we have

Dale for every ¢ > b

DalbTole = payb)‘lc) - { 0 = pai. otherwise
alc ’

so that
DPalsTy = Pa, for every a > b.

Thus, for every a >n — 1 and b > 1, by Lemma 5.3.1, we have
0 = (Patn—1Tn—1 @ Po171) Areg = (Po ® pp) Areg= (M Ty OM™) poisg.

By left exactness of the tensor functors, M™*~10¢,,OM™ is a monomorphism so
that

Pa+bg = 0.
We conclude that

peg = 0, for every ¢ > n.
Set
g = Tng.
and let us prove that g = 0,g. By Lemma 5.3.4 this is the case if and only if
DPag = PaOng, for every a € N.

We have
Pag for every a < n

PaOng = PpTng = { 0= Dag otherwise.
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5.4 Formal smoothness

The main aim of this section is to prove Theorem 5.4.8 which is the ”cotensor”
analogue of Theorem 14.2.1.

Proposition 5.4.1. [AMS2, Proposition 3.4] Let i € {1,2}. Let f; : X; — Y]
be morphisms in an abelian monoidal category M. Let o; : Y; — X, such that

in'i = IdyZ Then
Ker(f1 ® f2) = [Ker (f1) @ X5] + [ X1 ® Ker (f2)].

Proof. Let (K;, k;) = Ker (f;) fori =1,2. Let 1y : K10 Xs — (K1 ®X5)® (X1 ®Ky)
and 15 1 X7 ® Ky — (K1 ® X5) @ (X7 ® K3) be the canonical inclusions. Then, by
the universal property of coproducts, there is a unique morphism 7 : (K; ® X5) &
(Xl X Kz) — X1 &® X2 such that

(515) TV = ]{71 X X2 and TVy = X1 X ]{72.

By definition, one has (K; ® X5) + (X1 ® K3) = Im(7) = Ker (1), where (C,7) =
coker (7).

Thus, in order to prove our statement, we will show that (C,7) = (Y1 ® Y, f1 ® fa).
By (5.15)), we have

(fi® fa)trn = (f1® fo)(k1 ® X3) =0,
(i® fa)trs = (f1® fo) (X1 ® k) =0,

so that (f; ® fo)7 = 0. By the universal property of cokernels, we obtain a unique
morphism « : C' — Y] ® Y5 such that ar = f1 ® fs.

Define 5 : Y1 ®Y, — C by 8 := m(01 ®03). Let us prove that /3 is a two-sided inverse
of a. Clearly one has

af =an(og ®o2) = (f1 ® f2)(o1 ® 02) = Idx,gx,-

Now, since f;0; = Idy;, there is a unique morphism p; : X; — K; such that p;k; =
IdKi and

(5.16) kip; + oifi = IdXi, for any 7 € {1, 2}.



98

5. Cotensor coalgebras

Then we have:

par = B(fi® f2)
=  7(o1f1 ® 02f2)
[o1f1 ® (Idx, — k2p2)]
= 7o fi ®ldx,) — m(o1f1 @ kapa)
[(Idx, — k1p1) ® ldx, | — 7(X1 @ k2)(01f1 @ p2)
T —m(kipr ® ldx,) — 7Ta(01 fi1 @ po)
= T 7T<k1 ® IdX2)<:01 ® IdX2)

)

= s

= 7T—7T7'1/1(p1®IdX2)

== s

Since 7 is an epimorphism we conclude that Sa = Ide and hence that a is an
isomorphism. Thus (C,7) = (Y1 ® Y2, f1 ® fa). O

Proposition 5.4.2. Let § : D — C be a morphism that cosplits in M. If 6 is a
coalgebra homomorphism, then we have

(5.17) D¢ =DAeD=AN(D®C+C®D).
Proof. Set (L, p) = coker(c). Let
(D", 5,) = Ker (p™" AL ™).
We have
D = Ker[(p®p)Ac]
= AG'[Ker(p@p)]
" AGH{[Ker (p) ® C] + [C @ Ker (p)]} = A (D@ C) + (C @ D).

—
*
~

(

Il ¥

where in (*) we have applied ([St, Proposition 5.1, page 90]) and in (**) Proposition
0.4.1. L

Proof. Since

/ N
pioo; = p;ogo; = 0,

by the universal property of cokernels, there is a unique morphism 7; : L; — L, such
that 7,p; = plo. Then we have:

(P @ py)Aaodis = (p) @) (0 @ 0)Asli2 = (11 & T2)(p1 @ p2)Asdiz = 0.

By the universal property of kernels, there is a unique morphism A : X7 Agq Xy —
Xj Aar Xj such that A )\ = o)y 5. Clearly, as o and A; o are monomorphisms, A is
a monomorphism too. Il
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Lemma 5.4.3. Let (Xi)ien, (&))ijen) and let ((Y:)iew, (! )ijen) be direct systems
in a monoidal category M, where, for i < j, éf : X, — X and Cij Y, = Y. Let
o:A— B be a coalgebra homomorphism and let (o; : X; — A)jen and (5; : Y —
B)ien be compatible families of morphisms in M. Let \; : X; — Y; be a morphism
such that B;\; = oay, for any v € N. If 3; is a monomorphism, for any i € N, we
have that (N\; : X; — Yi)ien is a direct system of morphisms in M.

Proof. For any 7 < j, we have that:

BiN€l = o€l = ooy = Bidi = B¢\
Since f; is a monomorphism for any j € N, we conclude that )\]ff = Cij A; i.e. that
(N : X; — Y))ien is a direct system of morphisms in M. O

Lemma 5.4.4. Let M be a cocomplete monoidal category with left exact direct
limits. Let ((X;)ien, (€] )ijen) be a direct system in M, where, fori < j, & X; —
X;. Let v : N — N be an injection. Then ((X,a))ien, ( »Z((g)))ivjeN) is a direct system
in M. Let (X,(N)ien) = ImX, ), where A; + Xy4) — X for any i € N. Then
(X, (&)ien) = limX;, where &« Xi — X is defined by &; := NEY X — X, where
J € N is such that y(j) > i.

Proof. Clearly ((X,))ien, (fz((f)))i,jeN) is a direct system. Let us prove the last as-
sertion. Let 7,7 € N such that v(j") > v(j) > 4. Then

(4" ") ¢v(5) (9)
M =280 = 2,
so that &; is well defined. Note that
_ () _
(5.15) E = N = A
Moreover, for any ¢ < j, and for any ¢ € N such that v(¢) > j we have:

&l =00 =289 = ¢,

so that (& : X; — X)en is a direct system of morphisms. Let now (f; : X; —
Y )ien be a compatible family of morphisms in M. Then (fyu) @ Xy — Y)ien is
a compatible family of morphisms in M so that there exists a unique morphism
f X — Y such that fA\; = f, for any 7 € N. For any 7 € N and for any j € N is
such that v(j) > i,we obtain

16 = NGV = L&Y = fi
Let g : X — Y be another morphism such that ¢g&; = f;. Then we have

G.19)
gNi =" 9% ) = f0)-

By uniqueness of f we get g = f, so that (X, (§)ien) = im X O
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Lemma 5.4.5. Let (M, ®,1) be a cocomplete abelian monoidal category satisfying
ABb, with left exact direct limits and left and right exact tensor functors. Let (I, <)
be a directed partially ordered set. Let ((Xi)ier, (€))ije1) e a direct system in M,
where, for i < j, §f : X — Xj. Let (w; : Xi — W)ier be a compatible family of
monomorphisms in M. Let (X, (&)ier) = imX;. Let w: X — W be the unique
morphism such that w&; = w; for everyi. Let & : ®X; — X be the unique morphism
such that £e; = & for any i € 1 and let w : ®X; — W be the unique morphism such
that we; = w; for any i € 1, where €; : X; — ®X; is the canonical inclusion. Then:

wé = w.
Moreover w is a monomorphism and & is an epimorphism.

Proof. Since w¢; = w;, the &’s are monomorphisms. Clearly we have
wée; = w& = w; = we; for any 7 € 1
and hence
wé =w
Moreover, regarding (w; : X; — W);er as a direct system of monomorphism, in view

of AB5, we have that w is a monomorphism and £ is an epimorphism. m

Lemma 5.4.6. Let (M, ®,1) be a cocomplete abelian monoidal category satisfying
AB5 and with left and right exact tensor functors. Let (I, <) be a directed partially
ordered set. Let ((Xi)ier, (&§)ijer) be a direct system in M, where, for i < j, & :
X, — X;. If ®X; commutes with ®, then li_r)nXi does.

Proof. Let ((Xi)ier, (€))ije1) be a direct system in M, where, fori < j, & : X; — X;.
Let (X, (&)ier) = limX; and let Y be an object in M. By [St, Lemma 1.2, page
115], the &;’s are monomorphisms. Also, by the universal property of the coproduct,
there is a unique morphism & : X; — X such that

(5.19) ey, =¢ forany i €1

where ¢; : X; — @X; is the canonical inclusion. Moreover, £ is an epimorphism.
Assume that

(5.20) (X)) ®Y,e0Y)=0(X;®Y),

Let v : X;®Y — li_r)n(X,-@Y) be the canonical morphism. By the universal property
of coproduct and by (5.20), there is a unique morphism v : (&X;)®Y — lim(X;®Y)
such that

(5.21) Y(ei ®Y) =, for any i € 1.
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In an analogous way, by the universal property of direct limits, there is a unique
morphism A : lim(X; ® V) — X ® Y such that

(5.22) Ay, =& ®Y for any i € 1.
It is easy to see that we can apply Lemma 5.4.5/ to the present situation and get:
Ay =¢(®Y.

where A is a monomorphism and ~ is an epimorphism. Moreover, since the tensor
functor is left exact and & is an epimorphism, we get that £ ® Y is an epimorphism.
Hence A is an epimorphism too. O

Theorem 5.4.7. [AMS2, Theorem 3.11] Let (C,A,€) be a coalgebra in a cocom-
plete abelian monoidal category M satisfying AB5, with left and right exact tensor
functors. Assume that denumerable coproducts commute with ®. Let a : C — A
and 0 : A — B be monomorphisms which are coalgebra homomorphisms and let
B = oa. Assume that o cosplits in M. Let p, = coker(a) in M, let (C"a, ) :=
Ker (p2"A"™Y) and assume that o, cosplits in M, for every n € N. If Cu=A and
B = A2 then Cp = B.

Proof. For any morphism 7 we set (L,,p,) = coker(n) in M. By Proposition 5.4.2,
we get

B = Are? OL0 A (A® B+ B® A).
Let

(C"4, o) i= Ker (p§"A%™")  and  (C"E, 3,) := Ker (p§"AL™).
By assumption (A, (ap)nen) = Ca = lii>nC/\fl. Then, by Lemma [5.4.6, we obtain:
A® B = (limC™) ® B = lim(C™ @ B).
We have:

B = AR'[lim(C" @ B) + lim(B @ C"4)]

—

= AF'lm[(C™ @ B) + (B® C"4)]

= limAR'[(C™ ® B) + (B ® C"4)]
= h_n}(cﬂ Ap CN4)

!

where in the second equality we have used that in an ABb5-category direct limits
of direct systems of subobjects are just sums of their respective families; in the
third we have used a well known property of AB5-categories (see [St, Proposition
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1.1, page 114]); in the last equality we have used Proposition 5.4.2/ in the case
§ = oa, : C"a — B. Following [1.5.1, one defines inductivelly the morphism

Che . O™ — OB
which is uniquely defined by
(5.23) B,0" = aa,.

By Lemmal5.4.3, (C"s : C"a — C"B),ey is a direct system of monomorphisms in M.
Let m < n. Note that, if we denote by &%, : C"4 — C™4 and by £, : C"5 — C"'B
the canonical morphisms, this means that C/\gff"m = 5%77”0/\3”.

Let (L, p,) = coker(o,ay,) and (L], pl,) = coker(f3,). Let also

(C™ Ap CMaN,) = Ker[(p, ® pn)As] and
(C"5 Ap C"B,N,) = Ker[(p), ®p,)Ap].

Then

A, o (Che A CMo) = A,
By Lemma 5.4.3, (C" Ap C"s : CMa Ap CMa — C™B A CB) ey is a direct system
of monomorphisms in M. Since, by the foregoing, B = @(CAZ ApC"4), by Lemma

5.6.1, applied in the case ; = C"> A C"> for any i € N, we obtain that
(Bv (/\/n)neN) - h_H}(O/\% AB CA%).

As
L.9)

(C™ A CE X)) (CF )
we obtain

(Ba (ﬁQn)nEN) = h_H}C/\%n.

Now, apply Lemma[5.4.4 in the case when 7 : N — N is defined by setting vy(n) = 2n
for every n € N. Then we get

(B7 (ﬁn)neN) = @CAB?Z = 63.
O

Theorem 5.4.8. [AMS2, Theorem 4.15] Let (C, A, €) be a formally smooth coalge-
bra in a cocomplete and complete coabelian monoidal category M satisfying ABb5,
with left and right exact tensor functors. Assume that denumerable coproducts com-
mute with @. Let (M, phy, phy) be an Z-injective C-bicomodule. Then the cotensor
coalgebra TE(M) is formally smooth.
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Proof. We will prove that any Hochschild coextension of 7¢ := T&(M) is trivial. Let
o : T — B be a Hochschild coextension of 7. Since the canonical projection py :
T — C'is a coalgebra homomorphism and C' is formally smooth, by a) of Theorem
3.5.10, there exists a coalgebra homomorphism gy : B — C' such that gyo = pg. Then
B is a C-bicomodule via gy. Moreover o becomes a morphism of C-bicomodules.
Since M is Z-injective and the canonical projection p; : T — M is a morphism of
C-bicomodules, then there is a morphism of C-bicomodules g; : B — M such that
g10 = P1.
M

R
p1

T5(M)

Do
g0

C
Since, by Proposition [5.3.7, we have
Cre = limCM* = limC™(M) = T°
— —

We are going to apply the universal property of cotensor coalgebra. In order to
do it we have to check that the ”coradical condition” is fulfilled. Since o,, : C" —
T cosplits and since, by definition of Hochschild coextension, B = (TC)A2B and o
cosplits, then by Theorem 5.4.7 applied to the case "a” = 1o : C' — T the canonical
inclusion and "¢” = o, we have Cg = B. Now we have

91019 = p1ip = 0.

Therefore we can apply Theorem 5.3.6 in the case when "C” =7D” = C,”M” = M,
"E” = B and 70" = 0ig in order to obtain a unique coalgebra homomorphism
f B — T° such that pof = go and p; f = g;. Then we have

Pofo = goo = po, and pfo=gioc=p:.

By Corollary 5.3.5, we conclude that fo = Idpe. [

5.5 Examples

We now provide a number of examples of abelian monoidal categories for which our
results apply. These categories are all Grothendieck categories and hence cocomplete
and complete abelian categories satisfying AB5.
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Let B be a bialgebra over a field K.

o The category pM = (pIM, Rk, K), of all left modules over B. The tensor
V @ W of two left B-modules is an object in g via the diagonal action; the unit
is K regarded as a left B-module via ¢5.

e The category pgMp = (gMp, Rk, K), of all two-sided modules over B. The
tensor V ® W of two B-bimodules carries, on both sides, the diagonal action; the
unit is A regarded as a B-bimodule via €p.

o The category BM = (BM, @k, K), of all left comodules over B. The tensor
product V@W of two left B-comodules is an object in 9 via the diagonal coaction;
the unit is K regarded as a left B-comodule via the map k +— 1p ® k.

o The category PP = (PMB, @k, K) of all two-sided comodules over B. The
tensor V ® W of two B-bicomodules carries, on both sides, the diagonal coaction;
the unit is K regarded as a B-bicomodule via the maps k — 1p®k and k — k®15p.

e Let H be a Hopf algebra over a field K with bijective antipode.
The category 2D = (YD, @y, K) of left Yetter-Drinfeld modules over H. Recall
that an object V in YD is a left H-module and a left H-comodule satisfying, for
any h € H,v € V', the compatibility condition:

Z(h(l)v)<—1>h(2) ® (hayv)<os> = Z hyve—1> ® hoyvos

where Ay (h) = > ha) ® hy and p(v) = Y v< 1> ® v<o> denote the comultipli-
cation of H and the left H-comodule structure of V' respectively (we used Sweedler
notation).

The tensor product V & W of two Yetter-Drinfeld modules is an object in Z£YD
via the diagonal action and the codiagonal coaction; the unit in YD is K regarded
as a left H-comodule via the map z — 1y ® x and as a left H-module via the counit
EH-

The category 2YVD is a braided monoidal category where, for every V,W € EYD,
the braiding cyw : V@ W — W ® V is defined by setting:

cyw(v@w) = Z Ve 15W Q@ Vo>,

for every v € V and w € W.

o The category oM = (oM, @k, K), of all left modules over a quasi-bialgebra Q
over a field K (see [Kal, Definition XV.1.1, page 368]).

e The category gyD of Yetter-Drinfeld modules over a finite dimensional quasi-
Hopf algebra Q (see [Mj2]). In fact, since H is finite dimensional, this category is
isomorphic to the category of left modules over the quantum double D(H).
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5.6 Braided bialgebra structure

The main aim of this section is to provide a braided bialgebra structure for the
cotensor coalgebra inside a braided monoidal category. This structure is used to
extend the notion of bialgebra of type one, introduced in the classical case by Nichols
in [Ni], to the wider context of a braided monoidal category (see Definition 5.6.10).
A universal property for the cotensor bialgebra is also proven (see Theorem 5.6.8).

Lemma 5.6.1. Let M be a monoidal category with left exact direct limits. Let
((Ap)ien, (a))ijen) and ((Bi)ien, (B))ijen be direct systems in M, where, for i < j,
a{ A — A and ﬁf : Bi — Bj. Let (v + A; — Bj)ien be a direct system of
monomorphisms. Let (A, (a;)ien) = li_r)nAi and let (B; : B; — A)ien be a compatible
family of monomorphisms such that B;v; = oy for any i € N. Then (A, (5;)ien) =

Proof. Since direct limits are left exact in M, the canonical morphism limf; :

limB; — A is a monomorphism. Moreover, since limg; o limvy; = lima; = Idga,
we have that lim/; is also an epimorphism and hence an isomorphism. O]

5.6.2. Let (M, ®,1) be a cocomplete coabelian monoidal category. Recall that a
graded coalgebra in M is a coalgebra (B, A, ¢) endowed with a family (B;, ;) of
subobjects of B, such that

B = ®ienB;

and there exists a family (4;), = of morphisms
Ai . B’L — (B ® B)z == @a+b=i (Ba ® Bb)?

such that
ABi =V [(Ba ® Bb) gpi] A
and
eB; =0, for every ¢ > 1.

Here V [(ﬁa ® Bb)g +b:J denotes the codiagonal morphism associated to the family

(ﬁa ® ﬁb)a—f—b:i :
It follows that (Bg, Ag, &) is a coalgebra in M, where ¢y : By — 1 is defined by
setting

g9 = 0.
Moreover (3, is a coalgebra homomorphism.
Proposition 5.6.3. [AMS2, Proposition 3.3 Let (M,®,1) be a cocomplete coa-

belian monoidal category. Let B = @;enB; be a graded coalgebra. Denote by (L, p)
the cokernel of By in M. Then

(5.24) PP ALB, =0, for every 0 < b < n.
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Moreover .
. NS
B =1lim(B,*)ien-

Proof. Denote by 3; : B; — B the canonical inclusion and denote by 7; : B — B;
the canonical projection, for every i € N. Since 3y is a coalgebra homomorphism
and [y is a monomorphism, we can consider

(B)E,6,) := Ker(p=" A% ™).

. i J
Denote by & : B(/)\ 5 — B(/)\ 5 the canonical inclusion, for every j > i. Hence we have

0,6 = 6;.

In order to prove (5.24), we proceed by induction on n > 0. For n = 0, then b = 0
and we have

PP AL B, = pAY By = pBy = 0.

Let n > 1 and assume p® 1AL B, = 0, for every 0 < j < i < n — 1. For every
0 < ¢ <n, we have

p®n+1A%ﬁc — (p®n71 ®p®2> (A%fQ ® AB) ABﬁc
= (p®n—1A’fé—2 ®p®2AB> \% [(ﬁa ® ﬁb)a—&-bzc} Ac
-V |:<p®n—1A%—25a ® p®2ABﬁb)a+b:c:| Ac =0.

By definition of (BOA %, 0n), there exists a unique morphism

n+1
/\B

Yot BizgBi — By

such that
5n+17n =V [(5@)?:0] .

Since each f3; cosplits, then V[(3;)!_,] is a monomorphism. Thus also 7, is a
monomorphism. Denote by 3 : @¢ (B; — @&?_(B; the canonical injection when
a < b. Then we have

n n+1 n n n
5n+27n+15n+1 =V [(B’L)zjo} ﬁn—H =V [(51>z:0] = Ont1Vn = 5n+2§nif'yn
Since 0,192 is a monomorphism, we get that
’Vn—l-lﬁs—i_l = ggjr_%’Yn

n+1
for every n € N. Thus (v, : & (B; — BOA B ) ,en defines a direct system of monomor-
phisms in M. Now, as, by Proposition [1.6.5, (B, (V [(8i);_¢])nen) = lim (©7,B;),

by Lemma 5.6.1l we have that (B, (6,)nen) = llr_)n(Bé\lB)ieN. O
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Proposition 5.6.4. Let (M, ¢) be a cocomplete coabelian braided monoidal category
and let B = @penBy be a graded coalgebra in M. Assume that the tensor product
commutes with direct sums. Then (B ® B, Apgp,cpep) i a graded coalgebra where

Apgp B®BA&A>BB®B®B®BB®CL’B®BB®B®B®B,
EBoB B®BE&>B]_®1£1.
and with graduation given by (B ® B), = @, ,_, Ba ® By.

Proof. 1t is well known that (B ® B, Apgp,cpep) is a coalgebra (it is dual to [Mj1,
Lemma 9.2.12, page 438]). Let us check the part of the statement concerning the
graduation. Since B is a graded coalgebra, there exists a family (A,), .y of mor-

phism, A, : B, — (B ® B),, such that

ABﬁn =V [(ﬁa & Bb)aer:n] An:

where 3, : B, = Band V [(8, ® B)atb=n] : (B ® B),, — B® B denote the canonical
injection. Let

Aij = (P ®pj) Aiyj: Biyj — B; ® By,
for every 7,7 € N. We have

ApBa =V [(5: ® B)ivjmal Dn = > (B ® B;) Ay

i+j=n
Since the tensor product commutes with direct sums, we can write freely

(BeB)&(BeB), = Guumnl(BEB), o (Bo B),
Bitjtutv=n (Bi ® Bj ® B, ® By)

Via this identification we have
VAV ® Bj)iti=al ® V [(Bu @ Bo)urvms]} = V[(B: @ B; ® Bu ® Bo)itjrusv=n] -
Denote by
Bijuw : Bi @ Bj @ By ® By — @4 jr4wiv—n (By @ By @ By @ By)

the canonical injection and define AZ®? . (B® B), — [(B® B) ® (B® B)], by

APEP =¥ Z Biguw (Bi ® ¢, B, ® By) (Aij @ Ayy)

i+j=a
u+v=b a+b=n
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We have

v {V [(ﬁ’ ® ﬁj)z}j:a] ®V [(ﬁu ® ﬁv)u+v:b]} o A5®B
= VI[(B: ® B ® Bu ® Bv)itjt+utv=n] ©

oV Z 6i,j,u,v (Bz X CBj,Bu ® Bv) (Ai,j X Au,v)
;—:’]”::% a+b=n

[ S iti=a V(8 ® B ® By ® Bo)itjrurvmn) ©
= V u+v=b

Oﬁi7j7u7v (B'L ® ch,Bu ® BU) (AZ,] ® AU,U) a+b=n

= V> (3:®B.®B®B) (B ®cp 5, ®By) (A @ Ayy)
L .

= V| Bocps®@B) (58 ®B®B) (Ay @ Auy)
L

= (B®CB,B®B)V Z (ﬁl®ﬁ]) Az,]®(ﬁu®ﬁv) Au,v
Z‘i]v::% a+b=n

= (B X cpB® B) \Y [ABﬂa ® ABﬁb]a-‘y—b:n
= (B®CB,B®B) (AB ®AB)V[(ﬁa®ﬁb)a+b=n]
= AoV (82 ® Bb)arsen) -

Moreover we have

€8eB ° V [(Ba ® Bp)atb=n] = mi(ep®@ep)V [(Ba ® Bb)atb=n]
- TnlV [(EBﬁa 0y 5Bﬁb)a+b:n] = 07

for every n > 1. Since the tensor product commutes with direct sums, we can write
B ® B = (@aeNBa) ® (@beNBb) = G9nEN (B ® B)n
so that B ® B is a graded coalgebra. Il

Proposition 5.6.5. Let (C, A¢,e¢) be a coalgebra in a cocomplete coabelian monoidal
category M and let (M, p;, o) be a C-bicomodule. Let T¢ = T (M) be the cotensor
coalgebra. Then T¢ = ®,enTC is a graded coalgebra where TS = MHm,
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Proof. By Proposition 5.2.2/ we can write

A (n)iy = Z (i} ®17) fij, forevery n > 1and 0 <t <mn,
i+j=t

where f; ; : M Duiti _, NOrt @ MB#I are suitable morphisms. Denote by

ﬁi7j:ﬂc®7}?_><Tc®TC itj @ T, o1y

a+b=i+j

the canonical injection. Define

A=Y Bijfiy Ts = (T°®T°),

i+j=n
Then
V(7 @ ip)asb=n) An = V(i3 @i} )asben] > Bijfis
i+j=n
= Z V [(ig ® iy )avb=n] Bijfij = Z (i ® i) fij-
i+j=n i+j=n

By construction, Are is uniquely defined by Arco; = (0; ® 0;) A (i), for every i € N,
so that

ATCin = ATCO'n+1'Z.n+1

(Un+1 & Un-‘rl) (
_ (Un+1 ® 0_“+1 Z n+1 ® Zn+1 fz,j

) -n+1

i+j=n
= Z (O-nnLlZ ® On+ 17' )f’L,_]
i+j=n
= D ((®i)fij = V(i @ )atb=n] An.
i+j=n

By construction ere is uniquely defined by ezeo; = (0; ® 0;) € (i) , for every i € N,
so that

ercin = e7cOpi1in " = (Opi1 ® Opy1) e (N4 1) il = (0741 ® 0py1) ecTpaqinh =0

for every n > 1. O]

Theorem 5.6.6. Let H be a braided bialgebra in a cocomplete and complete coa-
belian braided monoidal category (M, c) satisfying AB5. Assume that the tensor
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product commutes with direct sums.
Let (M, iy, pby, gy P4y) be in ML Let T¢ = T (M) be the cotensor coalgebra.
Then there are unique coalgebra homomorphisms

mpe : TCRTC — T¢ and upe : 1 — T°¢

such that the diagrams

c p1 c p1
(5.25) T — M T M
PO\L mTC 7 THZM (Po®p1)+ph, (P1®po) poi h ure TO
H my (po®po) I*erT H vH 1

are commutative, where p, : T¢ — MPH™ denotes the canonical projection. Moreover
(T, mre, uge, Age, e7c) is a braided bialgebra in M.
Proof. First of all recall that (E' = T°® T Ag,cg) is a coalgebra where
Ap @ T°@T ™ T e T @ T T°
ep : TCOT T 191 I 1,

TC®CTC ,TC ®TC
e

T°QT QT ® T,

By Proposition 5.6.5, T = @,enTy is a graded coalgebra where T = MBH" Then,
by Proposition 5.6.4, F = @®,enFE, is a graded coalgebra where

E, = é%T,ﬁ ® T,

By Proposition 5.6.3, we have

AL

(5.26) E = lim(Ey® )ien = im((T§ @ T5) ¥ )jen = lim((H @ H)"¥)en
Set

fo : =myg(Po®po): E— H,

fur o = by (po@p1) + iy (p1 @po) : E — M.

Then fg is a coalgebra homomorphism:

Apfu = Aumu (po ® po)
= mp@mpy)(HQcypy@H)(Ay @A) (po ® po)

@ (mu @my) (H®can @ H) (po®po® po® po) (Are @ Age)
= (mg@mpu) (Po®po®po @ po) (T X crepe @TC) (Ape @ Arpe)
= (fu® fu)Ag.
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Moreover fj; is a morphism of left H-comodules

Phriths (Do @ p1) + ity (p1 @ po)
(my @ why) (H® cpp ® M) (A @ plhy) (po @ p1) +
+(mp @ phy) (H @ eyy @ H) (Péw ® AH) (p1 ® po)

(mH ® ,Ulgw) (H® cag @ M) (po® po® po®p1) (Ape @ Ape) +
+ (my @ phy) (H @ cpm @ H) (po @ p1 @ po @ po) (Age @ Age)
= (ma @ piy) (po @ po @ po @ p1) (T° @ crepe @ T) (Age @ Age) +
+ (ma @ ) (Po ® po @ p1 @ po) (T° ® eyere @ T€) (Age @ Are)
= [fH®,ul]\4 (o ®p1)] Ap + [fu ® wy (p1 @ po)] A
= (fr ® fu) Ag.
Analogously ph, fv = (fu ® fu) Ag, i.e. fyr is a morphism of right H-comodules
and hence a morphism of H-bicomodules. Moreover fy (ig ® i9) = 0. By applying

Theorem 5.3.3/ to the case "C” = H,”D” = H® H and "0” =iy ®io: HOH — F,
using the maps fy and f); above, since, by (5.26), we have

(f), 5) = (B,1dp),

we get a coalgebra homomorphism

P [
(L1

~

(1.2)

(5.9),(5.8)

mpe =f: E—TC
such that the left side of [5.25 is commutative. We have

PoMmipe (mTc & TC) == fH (mTc & TC)
= mu (po ® po) (mre ® T°)
= mg (fu ®po)
= mg (myg ® H) (po ® po @ po) -
Analogously pomre (T ® mpe) = mpy (H @ myg) (po ® po @ po) and hence
Pome (mTC ® TC) = PoMm e (TC & mTc) .

Moreover

pimpe (mpe @ T°)
= fu (mpe @ T°)
= pthr (Do @ p1) (mre @ T) + iy (p1 @ po) (mre @ T°)
= iy (fr @ p1) + by (far © po)
= pthy (ma © M) (po © po @ p1) +
+ 1 (M5\4®H) (po @ p1 ® po) + phy (hy @ H) (p1 @ po @ po) -
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Analogously
P1Mpe (TC & mTC)
=ty (H @ pthy) (Po © po @ p1) + iy (H @ 41y) (o ® pr © po)
i (M @ mp) (p1 @ po @ po)
so that

P1Mpe (mTc (29 TC) = p1Mpe (TC X mTC) .

Since T° ® T° ® T° is a coalgebra and mge (mgpe ® T¢) and mpe (T° @ mye) are
coalgebra homomorphisms, then by Corollary 5.3.5, we have

moe (mTc & TC) = Me (Tc X mTc) .
Set

fg @ =ug:1— H,
fu  =0:1— M.

Then f}; is a coalgebra homomorphism and f), is a morphism of H-bicomodules.
By applying Theorem [5.3.3 to the case D =1 and 6 = 1Id; : 1 — 1, since

(E,S) — (1,1d,)
we get a coalgebra homomorphism
upe = f:1 = T°¢
such that the right side of 5.25 is commutative.We have

pomre (ure @ T¢) = fur (ure @ T°)
= muy (po ® po) (ure @ T°)
= my (uy @ H) (1 ® po)
= g (1 ® po) = polre

and

fM (UTc ®TC)
! c r c
piar (Po @ p1) (ure @ T) + piyy (P11 @ po) (uge @ T°)
= iy (ug @ M) (1@ py)
= Iy (1 ®@p1) = pilre.

DP1Mipe (UTc & Tc)
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Since 1 ® T° is a coalgebra and mype (ure ® T¢) and rpe are coalgebra homomor-
phisms, then by Corollary 5.3.5, we have

Mre (’LLTc X TC) = ch.

Analogously mqe (T° ® ure) = rre. Thus (T¢, mye, uge, Ape, epc) is a braided bial-
gebra in M. O

Remark 5.6.7. Let M be an object in a cocomplete and complete coabelian braided
monoidal category (M, c) satisfying AB5. Assume that the tensor product commutes
with direct sums.

By applying Theorem 5.6.6 to the case H = 1 we endow the cotensor coalgebra
T¢ = T5(M) with an algebra structure such that 7 becomes a braided bialgebra.
This algebra structure is the braided analogue of the so called ”Shuffle Algebra” in
the category of vector spaces.

Theorem 5.6.8. Let H be a braided bialgebra in a cocomplete and complete coa-
belian braided monoidal category (M, c) satisfying AB5. Assume that the tensor
product commutes with direct sums.

Let (M, pihs, pihvg, Pogs Phy) be in EMI. Let T¢ = T&(M) be the cotensor coalgebra.
Letd : D — E be a monomorphism which is a homomorphism of coalgebras. Assume
that there exist morphisms

m5:15®15—>l~) and u5:1—>15

such that (5,m5,u5, A5,55,> is a braided bialgebra in M.

Let fy - D— H bea bialgebra homomorphism and let fu; : D — M bea morphism
of H-bicomodules such that fy ;& = 0, where D is a bicomodule via fy. Assume that

fump = phy (fr ® far) + w1y (fr © fur)

(i.e. far is a derivation 0fl~) with values in the D-bimodule M, where M is regarded

as a bimodule via fg). Then there is a unique coalgebra homomorphism f : D —
T& (M) such that pof = fu and pif = fur, where p, : T&(M) — M denotes the
canonical projection.

T (M) —= M
T 0
pOJ/ e f]\
H fu D &1 D

Moreover f is a bialgebra homomorphism.
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Proof. By Theorem 5.3.6, there is a unique coalgebra homomorphism f : D —
T5 (M) such that pof = fi and p1f = fur. By Theorem 5.6.6, we have

pomre (f ® f) =mu (po®@po) (f @ f) = mu (fu ® fu) = famp = pofmp,

and

pimre (f @ f) = [phy (po @ p1) + pihy (1 @ po)] (f @ f)
=ty (pof © prf) + phs (p1f @ pof)
= by (fr ® far) + phy (far @ fr)

= fump=pifmp.

From fymp = pby (fu @ fur) + iy (far @ fr), we get

fuug = fumg (up @ up)my?

phy (frup @ fuup) mi' + pwhy (fuup © faup) my'!
= piar (umr ® farup) mit + pihy (faup @ ug) my?

= fuup + fuup

so that

Hence, by Theorem 15.3.6, we have
pofup = fuup=upg = poure
plf“f) = fMUf) =0 = pruge

Since mye (f @ f), fmp : D® D — T°¢ and fup,upe : 1 — T° are coalgebra
homomorphisms, as a composition of coalgebra homomorphisms, and since

pimre (f ® f) = pifmp and pifup = piure

for i = 0, 1, then, by Corollary 5.3.5, we get that mye (f ® f) = fmp and fupy = upe
i.e. that f is an algebra homomorphism. O

Theorem 5.6.9. Let H be a braided bialgebra in a cocomplete and complete abelian
coabelian braided monoidal category (M, c) satisfying AB5. Assume that the tensor
product commutes with direct sums.

Let (M, i, ars Pars Par) be in T M.

Then there is a unique algebra homomorphism F : Ty(M) — T§(M) such that
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Fiy = i and Fi, = i, where i, : M®#" — Ty(M) and i¢ : M — T¢ (M)
denote the canonical injections.

M e T (M)
1§ P ig
T (M) - H

Moreover F' is a bialgebra homomorphism.

Proof. Let T'=Ty(M) and T°¢ = T§(M). In view of Lemma 5.2.4, i§ : H — T¢ is a
coalgebra homomorphism. Moreover we have

pomre (ig ®1ig) = mpg (po @ po) (ig ® iy) = my = poigmmy,

pimre (i§ @145) = [phy (po @ p1) + why (p1 @ po)] (i§ @ i) = 0 = prigmpy

so that, by Corollary 5.3.5, we get mre (i§ ® i) = i5my. Analogously, from

-C
PoUrT = UH = PolgUH,

-C
piur = 0= piigupy,

we get that up = iGuy. Then 3§ is also an algebra homomorphism and hence a
bialgebra homomorphism. We have

pomnre (if ®ig) = my (po @ po) (15 @ d5) = 0 = poiiuy,
pimre (i5 ®14§) = [phy (po @ p1) + why (p1 @ po)] (6 ®i5) = phy = pri§ply

and hence mye (1§ ® i) = i{u}, which means that i is a morphism of right H-
bimodules. Similarly one gets that ¢{ is a morphism of left H-bimodules. The
conclusion follows by Theorem 4.3.2, once proved that i{ is a coderivation. But this
holds true in view of Lemma 5.2.4. O]

Definition 5.6.10. Take the notations and assumptions of Theorem 5.6.9. Follow-
ing [Ni, page 1533], let

(H[M], igpn) = Im(F),
where g @ H{M| — Tg(M). Since F' is a morphism of braided bialgebras and M
is an abelian category, then H[M] can be endowed with unique braided bialgebra

structure such that iy is a bialgebra homomorphism. This will be called the
braided bialgebra of type one associated to H and M.
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Chapter 6

Applications to the theory of Hopft
algebras

A bialgebra with a projection is a bialgebra E over a field K endowed with a Hopf al-
gebras H and two bialgebra maps ¢ : H — F and 7 : E — H such that mroo = Idg.
In [Rad2], M. D. Radford describes the structure of bialgebras with a projection:
E can be decomposed as the smash product of H by the (right) H-coinvariant part
of E which comes out to be a braided bialgebra in the monoidal category YD of
Yetter-Drinfeld modules over H. This construction appeared as an important tool
in the classification of finite dimensional Hopf algebras. It is meaningful that, even
relaxing some assumption on 7 (as was done by P. Schauenburg in [Schl]) or on
o (see 6.8.3 which is from [AMSI1]), it is possible to reconstruct £ by means of a
suitable bosonization type procedure. An occurrence of this situation appeared in
[AMS1], where it is shown that if F is a bialgebra such that H = E/.J is a quotient
Hopf algebra of E which is semisimple, J denoting the Jacobson radical of F, then
the canonical Hopf projection 7 : ' — H admits a left H-colinear algebra section
o : H — E. Furthermore (see Theorem 6.8.6) this section can be chosen to be H-
bicolinear, whenever H is also cosemisimple. In [AMSI1] also the dual situation of a
bialgebra E whose coradical, say H, is a Hopf subalgebra is described. In this case
there is a retraction 7 of the canonical injection o which is a left H-linear (bilinear if
H is also semisimple as in Theorem [6.8.7) coalgebra map. These results are achieved
by means of the characterization of (co)separable (co)algebras in the framework of
monoidal categories that was developed in [AMS3] and is here included in Chapter
3.
In [SVO], D. Stefan and F. Van Oystaeyen provided a generalization of Wedderburn-
Malcev theorem for finite dimensional H-comodule algebras where H is endowed
with an ad-invariant integral (see Definition 6.6.1).

In this chapter, following [Arl], we provide a functorial characterization of ad-
(co)invariant integrals and we show how the notion of formally smooth (co)algebra is

117
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useful to prove that certain Hopf algebras can be described by means of a bosoniza-
tions type procedure. More precisely, we prove that given a bialgebra surjection
m : F — H with nilpotent kernel such that H is a Hopf algebra which is formally
smooth as a K-algebra, then 7 has a section which is a right H-colinear algebra ho-
momorphism (Theorem [6.8.1). Moreover, if H is also endowed with an ad-invariant
integral, then the section can be chosen to be H-bicolinear (Theorem 6.6.17). Du-
ally, we prove that, if H is a Hopf subalgebra of a bialgebra E which is formally
smooth as a K-coalgebra and such that Corad(E) C H, then E has a weak right
projection onto H (Theorem [6.8.4). Furthermore, if H is also endowed with an ad-

coinvariant integral, then the retraction can be chosen to be H-bilinear (Theorem
6.7.19).

6.1 Separable functors and relative projectivity

Separable functors were introduced by C. Nastasescu, M. Van den Bergh and F.
Van Oystaeyen in [NVdB]. As we will see in Theorem [6.6.7 and Theorem 6.7.7, the
existence of ad-(co)invariant integrals is characterized by means of the separability
of suitable functors.

6.1.1. Let U : B — A be a covariant functor. We have functors
Homg(e, ), Homg(U(e),U(e)) : B? x B — Gets
and a natural transformation

U : Homp(e,e) — Homgy(U(e), U(e)),
Up, B,(f) :=U(f) for all objects By, By € B.

We say that U is faithful (full) whenever the map Up, p, is injective (surjective)
for all objects By, B, € 8. The functor U is called separable if U splits, that is
there is a natural transformation P : Homg(U(e),U(e)) — Homy(e,e) such that
P oU = LHomg (e,0), the identity natural transformation on Homg(e, e).
It is proved in [Raf, page 1446] that this definition is consistent with the one given
in [NVdB] in the following more explicit form.
For all objects By, By € B thereis amap Pg, B, : Homg(UB1,UBs) — Homg(B1, Bs)
such that:

S1) Py o (U(f)) = /. for any f € Homs(By, By):

S2) Pp,.B,(l) o f = go Pg, p,(h) for every commutative diagram in 2 of type:

U(B1) —"—=U(B,)
u) e
U(B;) ——U(By)
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Remark 6.1.2. Let o : X — Y be a morphism in 8. If U is a faithful functor,
then, a is an epimorphism (resp. monomorphism) whenever U(a) is.

Let us recall some well known property on separable functors.

Lemma 6.1.3. [NVdB, Proposition 1.2] Let U : B8 — A be a covariant separable
functor and let oo : X —'Y be a morphism in B. If U(a) has a section h (resp. a
retraction ) in A, then o has a section (retraction) in B.

Lemma 6.1.4. Let F' : A — B and G : B — & be covariant functors. Then
Pr C Pagr and Ir C Lgr. Moreover the equalities hold whenever G is separable.

Theorem 6.1.5. Consider functors T : A — B and H : B — €. Then, we have
that:

1) If T and H are separable, then Ho T is also separable.

2) If Ho T is separable, then T is separable.

3) If € =A and (T, H) is a category equivalence, then T and H are both separable.

Proof. See [CMZ, Proposition 46 and Corollary 9]. O
We quote from [Raf] the so called Rafael Theorem:

Theorem 6.1.6. (see [Raf, Theorem 1.2]) Let (T,H) be an adjunction, where T :
A — B and H : B — A. Then we have:

1) T is separable iff the unit n : Idy — HT of the adjunction cosplits, i.e. there
exists a natural transformation p : HT — Idy such that ppon = Idu,, the identity
natural transformation on Idg.

2) H is separable iff the counit ¢ : TH — Idwy of the adjunction splits, i.e. there
exists a natural transformation o : Idgs — TH such that € o 0 = Idya,,, the identity
natural transformation on Idgy.

Corollary 6.1.7. Let (T,H) be an adjunction, where T : A — B and H : B — 2.
Then we have:

1) H separable = any object in B is Py-projective.

2) T separable = any object in A is Ir-injective.

Proof. 1) Let B be an object in 9B. Since H(ep) o nyp = Idgp and H is separable,
by Lemma 6.1.3, e has a section in B. By Theorem 2.2.1, B is Py-projective.

2) follows analogously by Lemma [6.1.3] and Theorem 2.2.3 once we observe that
ETA O T(T]A) = Idy4 for any A e ]

We are now ready to prove the main theorem of this section, that investigates
whether a functor F' (resp. F”) preserves and reflects relative projective (resp.
injective) objects.
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Theorem 6.1.8. [Arl, Theorem 3.8] Let (T,H) and (T',H') be adjunctions and
assume that, in the following diagrams, T' o F' and F o T (respectively F' o H and
H' o F') are naturally equivalent:

A— gy A — gy
7 | i '
B—— B B—— B

Let P be an object in B and let I be an object in A. We have:

a) P is Py-projective = F'(P) is Pw -projective; the converse is true whenever
F' is separable.

a’?) I is Ir-injective => F'(I) is I -injective; the converse is true whenever F'
18 separable.

Proof. a) Let € : TH — Idg be the counit of the adjunction (T, H).

Assume that P is Pg-projective. Then, by Theorem 2.2.1, ep : THP — P has
a section § : P — THP, i.e. epo 3 = Idp. Since F(B) is a section of F(ep) :
THFP ~ FTHP — FP, by applying Theorem 2.2.1] to the adjunction (T',H') in
the case when X = H'FP and to the split morphism F(ep), we conclude that F'P
is Pgr-projective.

Conversely, assume F'P Py-projective and F' separable. Let n : Idgg — HT be the
unit of the adjunction (T,H). Thus H(ep) o ngp = Idgp and hence F'(nyp) is a
section of F'H(ep). Then also H'F'(ep) has a section, so that F(ep) : FTHP — FP
belongs to Py.. As F'P is Py-projective, by Theorem 2.2.1, we get a section in B’
of F(ep). Since F' is separable, by Lemma [6.1.3, we conclude that ep splits in B:
hence P is Py-projective.

a’?) follows dually. O

6.2 Examples of ”good” monoidal categories

For the reader sake we recall the special features of the following examples where H
is a Hopf algebra. Some of them are already included in Section /5.5 but in a more
general form.

e The category (Mg, Rk, K) of all modules over a field K.

Let (H,mpy,uy, Ag,en,S) be a Hopf algebra over field K. Then we have the fol-
lowing categories (see [Sch2| for more details).

e The category g9 = (M, @k, K), of all left modules over H: the unit K is a
left H-module via ey and the tensor V @ W of two left H-modules can be regarded
as an object in g9 via the diagonal action. Analogously the category 9ty can be
introduced.
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e The category yMy = (gMy, Rk, K), of all two-sided modules over H: the unit
K is a H-bimodule via ey and the tensor V ® W of two H-bimodules carries, on
both sides, the diagonal action.

We can dualize all the structures given for modules in order to obtain categories of
comodules.

e The category #9M = (40M, @, K), of all left comodules over H: the unit K is
a left H-comodule via the map k& — 1y ® k and the tensor product V @ W of two
left H-comodules can be regarded as an object in 901 via the codiagonal coaction.
Analogously the category 9M# can be introduced.

e The category #OMH = (M @y, K) of all two-sided comodules over H: the unit
K is a H-bicomodule via the maps k — 1y ® k and k +— k ® 1p; the tensor V@ W
of two H-bicomodules carries, on both sides, the codiagonal coaction.

We provide a list of the monoidal categories we need in the sequel. They are ”good”
in the sense that they are abelian or coabelian monoidal categories.

As observed in1.3.2, given an algebra A in an abelian monoidal category (M, ®, 1),
we can construct the monoidal category of A-bimodules (4 M4, ®24, A).

Applying this (in particular for A := H) to the categories (M, @k, K), (M @k, K),
(AM @, K) and (M7 @, K), we obtain respectively:

o My = (4M4,®4,A4), A = (Af)ﬁH,@A,A), IZQﬁA = (EWA,@)A,A), gﬂﬁg =
(Aol ®.4, A).

Given a coalgebra C' in a coabelian monoidal category (M, ®, 1), we can construct
the monoidal category of C-bicomodules (° M¢, O¢, C).

Applying this (in particular for C' := H) to the categories (Mg, Rk, K), (My,Qk, K),
(#M,@f, K) and (g9Mpy, @, K), we obtain respectively:

o CMC = (CMC, O¢, ), MG = (CMG, O, C), GME = (GME, O, ), GMG, =
(GG, Oc, C).

It is well known that (B9 ®,, H) and (397 0, H) are equivalent monoidal
categories (see [Sch2, Theorem 5.7]).

We now consider the categories of Yetter-Drinfeld modules over H. Recall that a
twisted antipode for H is an antipode S for H° (and hence also for H®?). One can
check that S™! is a twisted antipode whenever S is bijective. If H is commutative
or cocommutative then S? = S o S = Idy and consequently S = S.

e The category gyD = (gyD, R, K), of all left-left Yetter-Drinfeld modules over
H: the unit K is a left H-comodule via the map k +— 1y ® k and a left H-module
via eg; the tensor product V @ W of two left-left Yetter-Drinfeld modules can be
regarded as an object in YD via the diagonal action and the codiagonal coaction.
Recall that an object V in #YD is a left H-module and a left H-comodule satisfying,
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for any h € H,v € V, the compatibility condition:

(hlv)<—1>h2 X (h1U)<0> = hiv<_1s @ havcos or
(hv)c—1s> @ (W) <o> = hive_155(h3) ® havos.

Analogously the categories J}DZ, YD and HYDy can be defined. The compati-
bility conditions are respectively:

(vh2)<o> ® hi1(vha)<i> = V<o h1 @ vaisha,
(h2v)<o> ® (hav)<1>h1 = hiv<os @ havays,

ha(vhi)<—1> ® (Vh1)<o> = ve—15h1 ® v<osha,

or equivalently

(vh)<o> ® (vh)<1> = v<o>h2 @ S(h1)v<isha,
(hv)<0> o2y (h'U)<1> = hov<o> ® h3U<1>§(h1)7

(vh)<—1> ® (Vh)<o> = S(h3)v<_15h1 ® v<o>ha,

for all h € H,v € V and where in the last two cases the right conditions are avail-
able when H has a twisted antipode S.

The categories of Yetter-Drinfeld modules over a Hopf algebra with bijective an-
tipode are Grothendieck categories.

6.3 Further results on separable algebras

Let us recall the following result that holds true for unitary rings.

Proposition 6.3.1. [NVdB, Proposition 1.3] For any ring homomorphism i : S —
R, the following are equivalent:

(1) R is separable in (sMg, ®g,S), i.e. R/S is separable.

(2) The restriction of scalars functor g0t — 9N is separable.

(3) The restriction of scalars functor Mg — Mg is separable.

As we will explain in Remark 6.3.4, the previous result, in general, can not be
extended to algebras in a monoidal category.

Lemma 6.3.2. Let A be a separable algebra in a monoidal category M. The fol-
lowing assertions hold true:

1) The forgetful functor s\H : aM — M is separable. In particular, any left
A-module (M ,*uyr) is 4P-projective. Moreover if M is an A-bimodule, the multi-
plication Apip - AQ M — M has a section Aoy which is A-bilinear and natural in

M.
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2) The forgetful functor Hy : Ma — M is separable. In particular, any right
A-module (M, u4,) is Pa-projective. Moreover if M is an A-bimodule, the multi-
plication py, : M ® A — M has a section o4, which is A-bilinear and natural in

M.

Proof. 1) By assumption, the multiplication m of A admits a sectionv: A — A® A
in .M. Let (M, ") be a left A-module and consider the morphism 4oy, : M —
A® M defined by 4oy := (A®1fy) o (v®@a M) o (I4,)7", where Ify : A®a M — M
is the quotient of “yy,. Obviously 4oy € 4 M (note that Aoy € 4 M4 whenever
M € g4 My). Moreover, from 40 (AR14,) = 130 (m®4 M), we get: Aupotoy =
I o(m®aM)o(v®@aM)o (I3)~! =Idy,.

Thus “pp : A® M — M admits a section in 4 M. Since 4y is the counit of the
adjunction (4T, 4 H), and 2oy, defines a natural transformation 4o : Id , oy — ATAH,
we get, by Theorem 6.1.6, that 4H is separable. Note that, by Corollary 6.1.7, if
the forgetful functor 4H : 4 M — M is separable, then any left A-module is 4 P-
projective.

2) follows analogously. O

Proposition 6.3.3. Let H be a Hopf algebra with antipode S over a field K. The
forgetful functors ML — MH and HMIEL — M are separable.

Proof. Composing the functor (=) : 9 — 9 with the forgetful functor
M — M one gets the Sweedler’s equivalence of categories (—)“ : ML — M.
Since, by Theorem 6.1.6, this functor is separable, by Theorem 16.1.5, the forgetful
functor MY — M is separable too.

Composing the functor (=) : #9MH — H9 with the forgetful functor #9MH —
HontH one gets the Sweedler’s equivalence of categories (—)COH AL — B Asin
the first part, we conclude that the forgetful functor 79 — HOMH is separable. [

Remark 6.3.4. By Lemma 6.3.2), the forgetful functor Hy, : M4 — M is separable
for any separable algebra A in a monoidal category M. The converse does not hold
true. In fact, when M = MY and A = H, the functor H, is always separable
(Proposition 6.3.3), but A is separable in M if and only if H is a semisimple algebra
( [JAMSI, Proposition 2.11}).

Proposition 6.3.5. Let A be an algebra in a monoidal category M. The following
assertions are equivalent:

(a) A is separable in M.

(b) The forgetful functor sJH, : aAM4 — M is separable.

(¢) Any A-bimodule is P-projective.

(d) The A-bimodule A is P-projective.
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Proof. (a) = (b) If (M, par, piiy) is an A-bimodule, by Lemma 6.3.2, there are A-
bilinear natural sections Aoy and ofy, respectively of Ay, and p4y. The morphism
oy = (AO'M ®A)ooy, - M — A® M ® A is a section in 4 M, of the counit
ey = pay o My @A) A9 M ® A — M of the adjunction (4T 4,4 Hy). Since
oy is natural in M, we get a natural transformation o : Idy; — 4T 4H 4 such that
g oo = Idyq,,. We conclude by Theorem 6.1.6.

(b) = (c) follows by Corollary [6.1.7.

(¢) = (d) Obvious.

(d) = (a) Since A is P-projective, the multiplication m : A ® A — A, that is a
morphism in P, admits a section 0 : A - A® A in s M. O

Corollary 6.3.6. Let A be a separable algebra in My. Then any left A-module
is projective in A-9M00. Hence any left A-module is also injective in A-9No0 and
A is semisimple. Moreover any A-bimodule is projective in sOM4 and hence any
A-bimodule is injective in sMy.

Proof. Since M = M, any epimorphism in M splits. So a left A-module is 4&-
projective iff it is projective in A-9100 in the usual sense. The right and two-sided
cases follow analogously. O

6.3.7. Let (F', ¢o, p2) : (M, ®,1,a,l,r) — (M',®,1,a,l,7) be a monoidal functor
between two monoidal categories, where ¢o(U,V) : F/(U ®@ V) — F'(U) ® F'(V),
for any U,V € M and ¢o : 1 — F'(1). Let (A, m,u) be an algebra in M. It is well
known that (A", mar, ua) = (F'(A), mp(a), upr(a)) is an algebra in M’, where

me = F'(A) @ F'(A) 22 Friae 4) 7% Fra)
upy =1 2% (1) 2 pra).
Consider the functor F': oMy — 4 M/, defined by

F((M, *ar, 1) = (F'(M), ™ wpriany i)
where
¢2( F’(A@ M) ( Har) FI(M)
F'(M®A) - Pl F'(M).

Al/,LF/(M) = F/(A) (24 F,(M)
/ @ (M A)
iy = F'O1) © F/(4) *
Let us study a particular case of Theorem 16.1.8.

Proposition 6.3.8. Let M and M’ be abelian monoidal categories. Let A, A’, F’
and F as in|6.3.7. Then, in the following diagrams, T' o F' and F o T are naturally
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equivalent and F' oH =H' o F:

F’ F’

M M M M
1 v uf b
AM —F A’M;y AMy -5 A/./\/l;l/

where (T, H) is the adjunction (AT a, sHA) defined in 2.3.1, and (T',H') is analo-
gously defined.
We have that:

P € sMy is Py-projective = F(P) € aM' 4 is P -projective; the converse
15 true whenever F is separable.
In particular we obtain that:

i) A is separable in M = A’ is separable in M’ (i.e. H is separable = H' is
separable); the converse is true whenever F is separable.

ii) If F" preserves kernels, then: A is formally smooth in M = A’ is formally
smooth in M'; the converse is true whenever F is separable.

Proof. Define apy : F'(A) @ F'(M) @ F'(A) — FI(AQ M ® A) by ay = ¢2(A®
M, A)[p2(A, M) @ F'(A)], for any M € M. Then (an)mem defines a natural
equivalence « : T'F" — FT.

The first assertion holds by Theorem 6.1.8.

ii) By Proposition 6.3.5, A is separable in M iff A € 4 M4 is Py-projective iff the
functor H is separable. Analogously A’ is separable in M’ iff A’ € 4 M’ 4 is Puy-
projective iff the functor H' is separable. Since A’ = F(A), we conclude by the first
part.

iii) Let (Q'(A), ) = ker(m4) in M. Since F’ preserves kernels, we get that

(QH(A),j') = Ker(ma) = (F'(Q'(A), 2(A, A)F'(j))

in M’. Observe that, Q'(A4’) = ker(ma:) = ker[F'(m)g2(A, A)]. Now, if we regard
regard Q'(A) as an A-bimodule via the structures induced by m 4 and Q!(A’) as an
A’-bimodule via the structures induced by m 4/, we obtain that Q'(A’) = F(Q!(A)).
By definition, A is formally smooth in M iff Q'A € 4 M4 is Py-projective. Anal-
ogously A’ is formally smooth in M’ iff Q*(A") € 4 M’ 4 is Pw-projective. Since
QYA = F(Q'(A)), we conclude by the first part. O

Examples 6.3.9. Let H be a Hopf algebra over a field K. With hypotheses and
notations of Proposition 6.3.8, let M’ := M. We want to apply the previous result
in the particular case when M := (19" @, K), (" @, K) or (FM, ®, K). Let A
be an algebra in M.

1) M :=HMH. The forgetful functor Fy : TIMMT — 494 has a right adjoint G| :
Ay — A G (M) = HoM® H, where G1(M) is a bicomodule via Ay @M & H
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and H ® M ® Ay, and it is a bimodule with diagonal actions. For any M € {on#
the unit of the adjunction is the map gy : M — HQ M @ H,nyr = (Fppr @ H) 0 pil.
2) M = M. The forgetful functor F, : ,MY — 494 has a right adjoint
G, aMy — M G (M) = M ® H, where G,.(M) is a comodule via M ®@ Ay,
and it is a bimodule with diagonal actions. For any M € 49 the unit of the
adjunction is the map ny : M — M ® H,ny = pih.

3) M := 9. As in example 2), one can introduce the forgetful functor Fj :
A9 ,— 494 and its right adjoint G;.

In the case A = H we set (Fy, Gy) := (F1,Gy).

The forgetful functor F, : 29I — M has a right adjoint Gy : g2 — i
Gy(M) = H® M, where G,(M) is a bicomodule via Ay @ M and M ® pl}, and it
is a bimodule with diagonal action.

The forgetful functor F, : gIMIE — g9y, is nothing but F, in the case A = H.
Then it has a right adjoint G, : p9My — gIME, which is G, for A = H.

Note that the forgetful functor F; : gfmg — Iy can be decomposed as Fy =
F, o Iy.

In view of Examples 6.3.9, we obtain the following crucial result:

Theorem 6.3.10. Let H be a Hopf algebra over a field K and let M denote one of
the categories TN M H9N. Let A be an algebra in M and consider the forgetful
functors H: AMy — M, H : ;04 — My and F: aAMy — 4 Ma.
We have that:

P € sMy is Py-projective = P is Pgr-projective as an object in o9 4; the
converse is true whenever F is separable.
In particular we obtain that:

i) A is separable as an algebra in M = A is separable as an algebra in My ;
the converse is true whenever F' 1is separable.

ii) A is formally smooth as an algebra in M = A is formally smooth as an
algebra in My ; the converse is true whenever F is separable.

Proof. Apply Proposition 6.3.8 in the case when M’ = My, and F' : M — My is
the forgetful functor. m

Remark 6.3.11. The separability of the functor F' in Theorem 6.3.10/ has a relevant
interest. Conditions for this separability to hold can be found in Lemma 6.6.6/ and
Theorem 6.6.7.

6.4 Further results on coseparable coalgebras

The whole theory of Hochschild cohomology for coalgebras and its application to
coseparability and formal smoothness can be obtained from our general framework
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by duality, i.e. by working in the dual category of (M, ®, 1, a,l,r). Since this process
is completely formal and does not require new ideas we will just state the main
results.

Proposition 6.4.1. Let H be a Hopf algebra with antipode S over a field K. The
forgetful functors MIE — My and yNE — My are separable.

Proof. is dual to Proposition 6.3.3. Il

Proposition 6.4.2. Let C' be a coalgebra in a monoidal category M. The following
assertions are equivalent:

(a) C is coseparable in M.

(b) The forgetful functor °T¢ : M — M is separable.

(¢) Any C-bicomodule is “I€ -injective.

(d) The C-bicomodule C is I -injective.

Corollary 6.4.3. Any coseparable coalgebra in a monoidal category M is formally
smooth.

Corollary 6.4.4. Let C' be a coseparable coalgebra in My. Then any left C-
comodule is injective in C'-Comod. Hence any left C-comodule is also projective
in C-Comod and C' is cosemisimple. Moreover any C-bicomodule is injective in
CMC and hence any C-bicomodule is projective in “IMC.

6.4.5. Let (F', ¢o, o) : (M, ®,1,a,l,r) — (M',®,1,a,l,7) be a monoidal functor
between two monoidal categories, where ¢o(U,V) : F/(U ®@ V) — F'(U) ® F'(V),
for any U,V € M and ¢y : 1 — F'(1). Let (C,A,¢) is a coalgebra in M. It is well
known that (F'(C), Ay, €r(c)) is a coalgebra in M’, where

/ R (eXe) . ,
Apiey = F'(0) 2 proe ) ” 59 ey e Fo)
F'(e) ¢y

epey = F'(C) — F'(1) — 1.
Consider the functor F' : M — ¢ M'®" defined by

F((M,par, 050)) = (F' (M), proianys 050 any)-
where

1(C —1
® prany = FI(€) T F(C o ) S Pe) e F(M)

1 C —1
P = FI(C) = P e €) 5 P 0 FI(O).
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Proposition 6.4.6. Let M and M’ be abelian monoidal categories. Let C, C', F’
and F as in Example|6.4.5. Then, in the following diagrams, H' o G' and G o H are
naturally equivalent and G' o T =T o G:

G G

(JMC C’M/C’ CMC —>C'M/C’
Ti iqr/ IHIT ’FH’
M————= M M————— M

where (T,H) is the adjunction (T, “HC) defined in (3.5.1, and (T’,H') is analo-
gously defined.
We have that:

I € O M is Ip-injective => G(I) € M’ is Ty-injective; the converse is true
whenever G is separable.
In particular we obtain that:

i) C is coseparable in M —> C" is coseparable in M’ (i.e. T is separable —>
T’ is separable); the converse is true whenever G is separable.

i) If G’ preserves cokernels, then: C' is formally smooth in M —> C" is formally
smooth in M'; the converse is true whenever G is separable.

Proof. Dual to Proposition 6.3.8. ]

Examples 6.4.7. Let H be a Hopf algebra over a field K. With hypotheses and
notations of Proposition 6.4.6, let M’ := 9. We want to apply the previous result
in the particular case when M := (z9My, ®, K), My, ®, K) or (zM, ®, K). Let C
be a coalgebra in M.

1) M = ygMy. The forgetful functor G* : MG — MY has a left adjoint
F' O — ¢mG, FY (M) = H® M ® H, where F'(M) is a bimodule via
myg ® M ® H and H® M ® mpy, and it is a bicomodule with codiagonal coactions.
For any M € §IM% the counit of the adjunction is the map ey : H®@ M ® H —
M, ey = pll o (P puy @ H).

2) M = My. The forgetful functor G" : “MEG — “MC has a left adjoint F" :
“MmC — MG, F'(M) = M ® H, where F"(M) is a module via M ® mpy, and it
is a bicomodule with codiagonal coactions. For any M € “OM% the counit of the
adjunction is the map ey : M @ H — M, ey = plh.

3) M = g9 As in example 2), one can introduce the forgetful functor G' :
EME — MY and its left adjoint F'.

In the case C' = H we set (F?, G?) := (F',G").

The forgetful functor G* : #9MIE — HIMH is nothing but G” in the case C = H.
Then it has a left adjoint F¢ : #97 — AN which is F" for C = H.

The forgetful functor G® : Z9MI — HONI has a left adjoint F° : A9 — Hopll
F*(M) = H ® M, where F*(M) is a bimodule via my ® M and H ® uf,, and it is
a bicomodule with codiagonal coactions.
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Note that the forgetful functor G? : ZIME — H9MH can be decomposed as G? =
G o GY.

In view of Examples 6.4.7, we obtain the following crucial result:

Theorem 6.4.8. Let H be a Hopf algebra over a field K and let M denote one of
the categories g My, My, gIM. Let C' be a coalgebra in M and consider the forgetful
functors T : M — M, T : “MC — My and G : MY — M.
We have that:

I € “MC is Ip-injective = I is Iy -injective as an object in “OMC ; the converse
is true whenever G is separable.
In particular we obtain that:

i) C is coseparable as a coalgebra in M —> C' is coseparable as a coalgebra in
My ; the converse is true whenever G is separable.

ii) C is formally smooth as a coalgebra in M = C' is formally smooth as a
coalgebra in My ; the converse is true whenever G is separable.

Remark 6.4.9. The separability of the functor F' in Theorem 6.4.8 has a relevant
interest. Conditions for this separability to hold can be found in Lemma 6.7.6/ and
Theorem 6.7.7.

6.5 Some adjunctions and integrals

6.5.1. Let H be a Hopf algebra with antipode S over a field K and set:
h >z := hixS(hs) and  x < h:=S(hy)zhs
To(h) :== h1S(h3) @ hy and 0" (h) == hy ® S(h1)hs
for all h,x € H. It is easy to check that &> defines a left module action of H on itself
called left adjoint action and that 7 defines a left comodule coaction of H on itself
called left adjoint coaction. Analogously <1 gives rise to the right adjoint action and

o™ to the right adjoint coaction.
If S is bijective, we can consider the following actions and coactions of H on itself:

hw x = hoyxS ' (hy) and z 4 h:=S""(hy)zh
0" (h) = hy ® h3S™' (ha) and 1o(h) := 57 (hg)hn @ ho.
The structures above provide two different ways of looking at H as an object in
the categories of Yetter-Drinfeld modules. In fact, if Ay is the comultiplication and
my is the multiplication of H, then H can be regarded as an object in 2yD, YD
HyDH, HYDy respectively via:
([>,AH)7(Q,AH),(P,AH),<<,AH) or

(mm, ™ o), (mmu, o), (mu, 2"), (mu, " 0).
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6.5.2. The adjunctions.

The actions recalled in 6.5.1 are closely linked to the categories of Yetter-Drinfeld
modules. We now consider some adjunctions involving these modules that will be
very useful in finding equivalent conditions to the existence of an ad-invariant inte-
gral.

1) The forgetful functor Fj : gyD — pIN has a right adjoint Gz : g —
BYD,G(M) = H ® M, where G(M) is a comodule via Ay ® M and a module
via the action: h - (I ® m) = hilS(h3) ® hem. For any M € YD the unit of the
adjunction is the map ny : M — H @ M,ny = p,,.

2) The forgetful functor Fj : yDI; — My has a right adjoint G4 : My —
YD Gy M) = M ® H, where G4(M) is a comodule via M ® Ay and a mod-
ule via the action: (m ®1)-h = mhy ® S(hy)lhs. For any M € YD% the unit of the
adjunction is the map ny : M — M @ H,ny = pll.

3) Assume H has bijective antipode. The forgetful functor Fs : y YD — 59t has
a right adjoint G5 : g9 — YD G5(M) = M ® H, where G5(M) is a comodule
via M ® Ag and a module via the action: h- (I ® m) = hol @ hgmS~—'(hy). For any
M € g YD the unit of the adjunction is the map nay : M — M ®@ H,ny = plh.

4) Assume H has bijective antipode. The forgetful functor Fy : #YDy — 9y has
a right adjoint Gg : My — TYDy, Gg(M) = H ® M, where Gg(M) is a comodule
via Ay ® M and a module via the action: (I ® m)-h = S~'(h3)lh; ® mhy. For any
M € #YDy the unit of the adjunction is the map ny - M — H @ M,y = Hp,,.

Counsider now the dual version of this functors.

1°?) The forgetful functor G® : YD — HIN has a left adjoint F? : 790 —
BYD,F3(M) = H® M, where F3(M) is a module via my ® M and a comod-
ule via the coaction: p(h @ m) = hym_1S(h3) ® ha ® mg. For any M € EYD the
counit of the adjunction is the map ey, : H ®@ M — M, ey = 2y,
2°°) The forgetful functor G* : YDE — M has a left adjoint F* : MA —
YDE FYM) = M ® H, where F*(M) is a module via M ® my and a comod-
ule via the coaction: p(m ® h) = my @ hy ® S(hy)myhs. For any M € YD% the
counit of the adjunction is the map €%, : M @ H — M, e}, = pll.
3°7) Assume H has bijective antipode. The forgetful functor G® : zFY D — 9 has
a left adjoint F®° : M7 — z YD F5(M) = H® M, where F°(M) is a module via
mpy® M and a comodule via the coaction: pff(h@m) = hy ®@mo®@hsm;S~t(hy). For
any M € YD the counit of the adjunction is the map ey : H @ M — M, ey =
H

M-
4°P) Assume H has bijective antipode. The forgetful functor G6 : #YDy — H9N has
a left adjoint FO : 190 — HYDy FS(M) = M ® H, where FS(M) is a module via
M ®my and a comodule via the coaction: # p(m@h) = S~1(hs)m_1h1@mo@h,. For
any M € YDy the counit of the adjunction is the map ej; : MQH — M, ey = u]\H4.

6.5.3. Integrals. Let K be any field. An augmented K-algebra (A, m,u,p) is
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a K-algebra (A, m,u) endowed with an algebra homomorphism p : A — K called
augmentation of A. An element x € Ais a left integral in A, whenever a-qz = p (a) z,
for every a € A. The definition of a right integral in A is analogous. A is called
unimodular, whenever the space of left and right integrals in A coincide. A left
(resp. right) integral = in A is called a left (resp. right) total integral in A, whenever
p(x) =1k.

Let (H,mpy,uy, Ay, en) be a bialgebra.

1) (H,mpg,uy,cy) is an augmented algebra. Then a left integral in H is an
element ¢t € H such that h -yt = ey (h)t, for every h € H. Moreover ¢t is total
whenever e (t) = 1k. It can be proved that Sg(t) is a right integral in H when
t is a left integral in H and that ¢ = Sg(¢) under the further hypothesis that ¢ is
total. In particular a left total integral is a right total integral. The converse also
holds true so that one can speak of total integral in H without specifying ”left” or
"right”.

2) (H*, mpy+,uy~,cy+) is an augmented algebra. Then a left integral in H* is an
element A € H*, that is a K-linear map fA = f (1g) A, for every f € H*. Moreover
A is total, whenever A (1ly) = 1g. It is clear that A € H* is a left (resp. right)
integral in H* if and only if hyA(he) = 1gA(h) (resp. A(h1)ha = A(h)1g) for every
h € H. By arguments similar to the ones used in 1), one can speak of total integral
in H* without specifying ”left” or "right”.

If H is finite dimensional, H* becomes a Hopf algebra: in particular one can
consider the notion of left integral in (H*)* in the sense of 2). By means of the
isomorphism

. H*— K
one can check that a left integral in H** is nothing but a left integral in H in the
sense of 1): thus there is no danger of confusion.

For the reader’s sake, we outline the following facts.

Theorem 6.5.4. Let H be a Hopf algebra with antipode S over any field K. Then
we have:

1) There exists a total integral t € H (i.e. H is semisimple) if and only if H is
separable.

2) There ezists a total integral N € H* (i.e. H is cosemisimple) if and only if H
1s coseparable.

Proof. 1) 7 <=7 Let 0 : H — H ® H an H-bilinear section of the multiplication m
and set t, := (H ® ey)o(1ly) € H. Then ¢, is a total integral.

" = 7 Let t € H be a total integral. Since t is a left integral and Apy is an
homomorphism of algebras, we have:

(61) ]’Ltl & S(tg) = hltl X S(hgtg)h:g = €H(h1)t1 & S(tg)hg = tl & S(tg)h,\V/h S H,
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so that the map o, : H — H® H : h — ht; ® S(ty) is H-bilinear. Moreover
mpgoy(h) = ht1S(ty) = heg(t) = h, so that oy is an H-bilinear section of my and H
is separable by definition.
2)" <7 Let 0 : H® H — H an H-bicolinear retraction of the comultiplication A
and set \g :=eyf(— @ 1y) € H*. Then )y is a total integral.
7 =7 Let integral A € H* be a left integral such that A(1y) = 1. Since A is a left
integral and m is an homomorphism of coalgebras, we have:
(6.2)

1A (225 (y)) = 215 (Y2) M (225 (y1))ys = (S (Y)W A (@S (y1))2)y2 = A(@S (1)) y2,

for every z,y € H, so that the map 0\, : H® H — H : z @y — x1 A (225(y)) is
H-bicolinear. Moreover 0 A(h) = hiA(haS(h3)) = hA(1g) = h, so that 6, is an H-
bicolinear retraction of the comultiplication A and H is coseparable by definition.

0

6.6 Ad-invariant integrals

Next aim is to characterize the existence of a so called ad-invariant integral.
A remarkable fact is that any semisimple and cosemisimple Hopf algebra H over a
field K admits such an integral (see Theorem 6.8.5)).

Definition 6.6.1. [SVO, Definition 1.11] Let H be a Hopf algebra with antipode
S over any field K and let A € H*.
A will be called an ad-invariant integral whenever:

a) hiA(he) = 1gA(h) for all h € H (i.e. \is a left integral in H*);

b) AM(h1xS(hy)) = e(h)A(x), for all h,x € H (i.e. A is left linear with respect to
>);

C) )\<1H) = 1K-

Lemma 6.6.2. An clement A\ € H* is an ad-invariant integral if and only if it is a
retraction of the unit uy : K — H of H in BYD, where H is regarded as an object
in the category via the left adjoint action > and the comultiplication Ag.

Examples 6.6.3. 1) Let G be an arbitrary group an let K'G be the group algebra
associated. Let A : KG — K be defined by A(g) = 6., (the Kronecker symbol),
where e denotes the neutral element of G. Then A is an ad-invariant integral for KG
(see [SVO, Corollary 2.8]).

2) Every commutative cosemisimple Hopf algebra has an ad-invariant integral.

3) As we will see in Lemma 6.8.5, any semisimple and cosemisimple Hopf algebra
has an ad-invariant integral.

Remark 6.6.4. It is known (see [DNR) Theorem 5.3.2 and Proposition 5.5.3]) that,
for any Hopf algebra H with a total integral A € H*, the K-linear space of left and
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right integrals in H* are both one dimensional and hence both generated by .
Hence there can be only one ad-invariant integral, namely the unique total integral.

The following lemma shows that in the definition of ad-invariant integral we
can choose <I,» or « instead of > . Since A\ is in particular a total integral, it is
both a left and a right integral. Thus it is the same to have a retraction of uy in
2yD, YDE, y YD or YDy

Lemma 6.6.5. Let H be a Hopf algebra with antipode S over any field K and let
A € H* be a total integral. Then the following are equivalent:

(1) X is left linear with respect to ©>.

(2) A is right linear with respect to <.

(3) A is left linear with respect to ».

(4) X is right linear with respect to <.

1
2
3

Proof. We have that A is both a left integral and a right integral for H*.

Since A is a total integral S is bijective (see [DNR, Corollary 5.4.6]) and hence it
makes since to consider S—1.

(1) = (2) Observe that: S(x < h) = S(S(hy)zhy) = S(h)1S(x)S[S(h)2] = S(h) >
S(z).

Thus, since A = A\S and A is left linear with respect to >, we get A(x < h) = A\S(z <
h) = A(S(h) > S(z)) = eS(h)A(S(z)) = e(h)AS(x) = e(h)A(x) that is A is right
linear with respect to < .

(2) = (1) follows analogously once proved the relation S(h > z) = S(z) < S(h).
(1) = (3) We have: S[h» S7(z)] = S[haS™H2)S™(hy)] = hzS(hy) = h > z.
Then, since A = A\S and X is left linear with respect to >, we have A\(h » z) =
AS(h» S71S(x)) = AMh > S(z)) = e(h)AS(z) = e(h)A(z) i.e. X is left linear with
respect to ».

(3) = (1) Since A is left linear with respect to » one has A(h > z) = AS[h »
ST (@) = Ah » S7H2)] = e(h)ASS™Hz) = e(h)A(x) ie. X is left linear with
respect to > .

(1) & (4) Analogous to (1) < (3) by means of S~S(z) < h] = x < h. O

The following result improves [AMSI, Theorem 2.29].

Lemma 6.6.6. Let H be a Hopf algebra with antipode S over a field K. Assume
there exists an ad-invariant integral A € H*. Then we have that:
i) The forgetful functor AOMH — s9M 4 is separable for any algebra A in M.
it) The forgetful functor TOM 4 — A9, is separable for any algebra A in T9MN.
iii) The forgetful functor HIMT — 494 is separable for any algebra A in M.

Proof. i) By Examples 6.3.9, the forgetful functor F, : 494 — 4914 has a right ad-
joint Gy : ANy — AMY, Go(M) = M ® H. Thus by Theorem [6.1.6, F, is separable
if and only if the unit n* : IdAgmg — G, F,. of the adjunction cosplits, i.e. there
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exists a natural transformation pf : G, F, — Id 4ot such that phl o il =1d,, for
any M in 4. Let us define:

pil o M@ H — M, pf(m®h) =meA(miS(h)).

Obviously (ufh) e aomif 1 a functorial morphism.

Let us check that pff is a morphism in 4% i.e. a morphism of A-bimodules and of
H-bicomodules. Since p4, € M7, we have: pl((m®h)a) = moagA(mia,S(az)S(h)) =
par(m ® h)a.

Since Ay € M and as X satisfies relation b) of Definition 6.6.1, we get that uf,
is also left A-linear: pfl(a(m @ h)) = agmoA(a; > myS(h)) = apll(m @ h).

By (6.2), we have: A(xS(v1))y2 = z1A(22S5(y)),Va,y € H. Thus we get also the
right H-collinearity of pfl: (1, @ H)p"(m @ h) = mo @ A(m1S(hi))hy = my ®
mA(maS(h)) = p it (m @ B).

It remains to prove that pl} is a retraction of il plinth(m) = meA(m,S(my)) =
ii) Analogous to i) by setting &y (h @ m) = A(hS(m_1))my.

ii1) We have to construct a functorial retract of (nar)ysemons,where ny = (fin
H) o nf. By the previous part, there are a functorial retraction (ufl),/c aoi of
(Uﬁ)MeAmg and a functorial retract (HuM)MeggmA of (HUM)MGQIWA. Let us define
the morphism gy : H® M @ H — M by py = pll o (puy ® H). Obviously it is
a retraction of oy in A9MH. Tt is easy to prove that py =y o (H @ ptl): hence
one gets that y; is a morphism in §907. O

Theorem 6.6.7. [Arl, Theorem 5.11] Let H be a Hopf algebra with antipode S
over a field K. The following assertions are equivalent:

(1) There is an ad-invariant integral A\ € H*.

(2) The forgetful functor TOMH — M 4 is separable for any algebra A in TINH

(3) The forgetful functor ML — My is separable.

(3b) H is coseparable in (gMy,®, K).

(4) The forgetful functor BYD — M is separable.

(4b) K is Tp-injective where F' is the forgetful functor of (4).

1) = (2) follows by Lemma 6.6.6.

(2) = (3). Obvious.

(3) & (3b). Tt is just Proposition 6.4.2 applied to M = (gMy, R, K).

(3) = (4). Take the notations of Examples6.3.9 and 6.5.2. Since Fy : B9 — gy
is separable and Iy, = F, o Fy, where Fj, : gﬂﬁg — Hfmg and F: Hﬂﬁg — g My,
then, by Theorem 6.1.5, Fj is separable. Consider the inverses (F')~' and F~!
respectively of the functors F/ = (=) : L9 — BYD and F = (—)°H : yomi —
g9 (these are category equivalences; see [Sch2, Theorem 5.7]). One can easily check
that F~'o F3 = F,o (F")~!. By Theorem 6.1.5, (F")~! is separable so that F'~! o F3,
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and hence F3, is a separable functor.

(4) = (4b). By Corollary 6.1.7 the separability of F3 : £YD — 59 (that has G3 as
aright adjoint) implies that any object in #YD, in particular K, is Zp,-injective.
(4b) = (1). Observe that uy can be regarded as a morphism in 2YD, once H is
regarded as an object in ZYD via the action > (defined in [6.5.1) and the coaction
given by the comultiplication A. In particular, uy belongs to Zp,: in fact the counit
ey of H is a left linear retraction of F3(uy). Hence, since K is Zg,-injective, there
is A\ : H — K in #YD such that Aouy = Idg, i.e., by Lemma 6.6.2, an ad-invariant
integral. O]

Remark 6.6.8. The following assertions are all equivalent to the existence of an
ad-invariant integral A € H*.

(5) The forgetful functor YD? — My is separable.

(6) The forgetful functor F YD — 9N is separable and S is bijective.

(7) The forgetful functor 7Y Dy — My is separable and S is bijective.

(8) K is Zp-injective where F' is the forgetful functor of (5),(6) or (7).
In fact, note that 97 ~ YDI. Since A is in particular a total integral, the antipode
S is bijective and hence, by [Sch2, Corollary 6.4], we can also assume # YDy ~
Aot ~ HyDH. Now, by means of Lemma 6.6.5, one can proceed like in the proof
of Theorem 16.6.7.

6.6.9. Let H be a Hopf algebra with bijective antipode (e.g. H f.d.). For every
h,h € H and f, f' € H*, define

(h—=f) (W)= f(h'h) and (f+h) (h’):f(hh’)
hﬁf:zh(l)éfj_s_l(h@)) and f < h= ZS ) = f = he.

The Drinfeld Double D(H) = H**? x1 H (see [Mo, Definition 10.3.5, page 188]) is a
Hopf algebra that has H*“P? ® H as its underlying vector space. The multiplication
is given by

(Foa)(f oall) =) flhay — fia)) > (hey — fin)f
for all h,h' € H and f, f' € H* with identity
Ipy = e > 1g.
The comultiplication is given by
m (Fah) =3 (fayahw) @ (fi = he) .-

The counit is
ep) (fxh) = f(1u)en (h).
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The antipode is defined by

Span (feah) = > [Su (he) = Sue (fu)] © [fo) = Su (hw))]
= > [Su (fo) = hy] @ [Su (hez)) = S+ (fwy)] -

Theorem 6.6.10. [Arl, Theorem 5.13] Let H be a finite dimensional Hopf algebra
with antipode S over a field K and let D(H) be the Drinfeld Double. The following
assertions are equivalent:

(1) There is an ad-invariant integral X € H*.

(it) The forgetful functor pmyM — g9 is separable.

(13i) D(H) is separable in (#Mpy, @y, H), i.e. D(H)/H is separable.

Proof. (i) < (ii). Since H is finite dimensional, it has bijective antipode. Hence we
have HYD ~ YD ~ ppIM. By Theorem 6.6.7, (i) holds iff the forgetful functor
gyD — N is separable iff px) MM — zIN is separable.

(7i) < (iii). follows by Proposition 6.3.1 applied to the ring homomorphism H —
D(H) = H*P s H : h s 5 54 h. O

Proposition 6.6.11. Let H be a Hopf algebra with an ad-invariant integral A € H*
and let M =T Aot EMHE . For any algebra A in M, we have:

i) A is separable as an algebra in M iff it is separable as an algebra in M.

ii) A is formally smooth as an algebra in M iff it is formally smooth as an
algebra in My .

Proof. Since H has an ad-invariant integral A, by Lemma 6.6.6) the forgetful functor
F: My — 49, is separable. By Theorem 6.3.10/ we conclude. O

Proposition 6.6.12. Let H be a Hopf algebra and let A and E be algebras in
M = ME 2. Let m : E — A be an algebra homomorphism in M which is
surjective. Assume that A is formally smooth as an algebra in M and that the
kernel of m is a nilpotent ideal. Given an algebra homomorphism f : H — A in M,
then m has a section which is an algebra homomorphism in M.

Proof. M = 9H") Let I denote the kernel of 7 and assume there is an n € N such
that /™ = 0. First of all let us observe that, since 7 is a morphism in 9%, I is a
subobject of E in M . Hence, for every r > 0, I” is a subobject of E and the
canonical maps E/I" — E/I" are morphisms in 9.

Now, the object I"/I"*! has a natural module structure over E/I ~ A, and hence,
via f, a module structure over H. With respect to this structure I"/I"! is an
object in ME. Via the category equivalences I ~ M we get that I"/I"H! is a
cofree right comodule i.e. I"/I"™™ ~ V ® H in M for a suitable V € 9. In
particular I"/I"™! is an injective comodule, so any canonical map E/I"*1 — E/I"
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has a section in 9.
By Theorem 13.4.10, we conclude.
M = H9) follows analogously. O

Example 6.6.13. Let H be a Hopf algebra and assume that H is formally smooth
in 9. Then, by Corollary 13.4.9 and Theorem 4.2.1, the tensor algebra T :=
Tr(Ker(myg)) is formally smooth as an algebra in the monoidal category 9. As-
sume that 7 : F — T is an epimorphism that is also a morphism of algebras in 97
such that I := Ker(7) is a nilpotent coideal. By Proposition 6.6.12, applied in the
case when f: H — T is the canonical injection, 7 has a section which is an algebra
homomorphism in 9M#. (In particular also the projection E — T' — H has a section
which is an algebra homomorphism in 9t¥). Observe that T is not semisimple in
general because its dimension needs not to be finite.

Theorem 6.6.14. [Arl, Theorem 5.18] Let H be a Hopf algebra and let E be an
algebra in M = ML Ho HMHA . Let 7+ E — H be an algebra homomorphism in
M which is surjective. Assume that H is formally smooth as an algebra in M and
that the kernel I of m is a nilpotent ideal. Then m has a section which is an algebra
homomorphism in M for

a) M =M1 or HON.

b) M =HMA if any canonical map E/T™™ — E/I" splits in M.

Proof. Since 7 is a morphism in M, the kernel I of 7 is a subobject of £ in M.
Hence, for every r > 0, I" is a subobject of F and the canonical maps E/I"™ —
E/I" are morphisms in M.

a) Apply Proposition 6.6.12/in the case when E := H and f := Idy.

b) follows easily by Theorem [3.4.6. O

Proposition 6.6.12) studies the existence in M = MY 79 of algebra sections
of morphisms of algebras 7 : £ — A where A is a formally smooth algebra in M
endowed with a morphism of algebras f : H — A in M. The following results
show that the existence of ad-invariant integrals provides such a section in M =
omH Hom, oM (without f).

Lemma 6.6.15. Let H be a Hopf algebra with a total integral X € H*. Then any
epimorphism in M = 9T AN TN has a section in M.

Proof. Since ) is a total integral in H*, then, by Theorem 6.5.4, H is coseparable
in Mg. Therefore any right (resp. left, two-sided) H-comodule is projective (see
Corollary [6.4.4). In particular any epimorphism in M has a section in M. O

Theorem 6.6.16. [Arl, Theorem 5.20] Let H be a Hopf algebra with an ad-
invariant integral N € H*. Let A and E be algebras in M = IMH "o HonH
Let m: E — A be an algebra homomorphism in M which is surjective. Assume that
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A is formally smooth as an algebra in Mg and that the kernel of © is a nilpotent
ideal. Then m has a section which is an algebra homomorphism in M.

Proof. By Proposition 6.6.11, A is formally smooth as an algebra in M. Let n > 1
such that I™ = 0, where I = Ker(m). Since, in particular, A is a total integral, by
Lemma 6.6.15, any epimorphism in the category M splits in M. Thus, for every

r=1,---,n — 1 the canonical morphism 7, : E/I" — E/I"™! has a section in the
category M. We can now conclude by applying Theorem 3.4.6 to the homomorphism
of algebras 7 : £ — A. O

Theorem 6.6.17. [Arl, Theorem 5.21] Let H be a Hopf algebra with an ad-
mvariant integral and such that H is formally smooth as an algebra in M. Let
E be an algebra in M = I H9M HMHA | Let 7 : E — H be a algebra homomor-
phism in M which s surjective and with nilpotent kernel. Then m has a section
which 1s an algebra homomorphism in M.

Remark 6.6.18. By Proposition 6.6.11, if H is a Hopf algebra with an ad-invariant
integral and H is formally smooth as an algebra in (x9N, ®, K), then it is formally
smooth as an algebra in (9 ®, K). Then the case M = M (analogously M =
H9) of the above corollary can be also deduced by Theorem 6.6.14.

6.7 Ad-coinvariant integrals

We want now to treat the dual of all the results of the previous section. We just
state the main results that can be proved analogously.

First of all we characterize the existence of a so called ad-coinvariant integral.
A remarkable fact is that any semisimple and cosemisimple Hopf algebra H over a
field K admits such an integral (see Theorem 6.8.5).

Definition 6.7.1. Let H be a Hopf algebra with antipode S over any field K and
let t € H.
t will be called an ad-coinvariant integral whenever:
a) ht = eg(h)t for all h € H (i.e. t is a left integral in H);
b) t1S(t3) @ty = 1y @ t, (i.e. tis left coinvariant with respect to #p);
C) &TH(t) = 1K
Therefore we have:

Lemma 6.7.2. An element t € H is an ad-coinvariant integral if and only if the
map 7 : K — H : k — kt is a section of the counit ey : H — K of H in YD,
where H is regarded as an object in the category via the left adjoint coaction ¥ o and
the multiplication my.
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Example 6.7.3. 1) Let G be a finite group an let K¢ be the algebra of functions
from G to K. Then K% becomes a Hopf algebra which is dual to the group algebra
KG. From Example 6.6.3, we infer that K¢ has an ad-coivariant integral, namely
the map G — K : g — d., (the Kronecker symbol), where e denotes the neutral
element of G.

2) Every cocommutative semisimple Hopf algebra has an ad-coinvariant integral.
3) As we will see in Lemma 6.8.5, any semisimple and cosemisimple Hopf algebra
has an ad-coinvariant integral .

Remark 6.7.4. It is known that, for any Hopf algebra H with a total integral
t € H, the K-linear spaces of left and right integrals in H are both one dimensional
and so both generated by ¢. Hence there can be only one ad-coinvariant integral,
namely the unique total integral.

The following lemma shows that in the definition of ad-coinvariant integral we
can choose o, 9 or 5 instead of ¥ p. Since t is in particular a total integral, it is
both a left integral and a right integral. Thus it is the same to have a retraction of
ey in YD, YDE ;YD or HYDy.

Lemma 6.7.5. Let H be a Hopf algebra with antipode S over any field K and let
t € H be a total integral. Then the following are equivalent:

(1) t is left coinvariant with respect to % .

(2) t is right coinvariant with respect to o™

(3) t is right coinvariant with respect to g™

(4) t is left coinvariant with respect to g.

Proof. Analogous to 6.6.5. n

Lemma 6.7.6. Let H be a Hopf algebra with antipode S over a field K. Assume
there exists an ad-coinvariant integral t € H. Then we have that:
i) The forgetful functor MG — “MC is separable for any coalgebra C in My
ii) The forgetful functor GIMC — “IMMC is separable for any coalgebra C in yIN.
iii) The forgetful functor GIMG — “MC is separable for any coalgebra C in
aIMy.

Proof. We proceed as in the proof of Lemma 6.6.6.

i) By Examples 6.4.7, the forgetful functor G" : “IMMEG — M has a right adjoint
Fr:omC — °mG, F'(M) = M ® H. Thus by Theorem [6.1.6, G" is separable
if and only if the counit £ : F*G" — Idcsmg of the adjunction splits, i.e. there
exists a natural transformation o : Idegyo — F"G" such that ej o o) = Idy; for
any M in “IN%. Using (6.1), one can easily check that the following map works:
ot M — M ® H, ol (m) =mt; @ S(ty).

ii) Analogous to i) by setting #oy(m) = t; @ S(ta)m.

ii1) Define oy := (Hopy @ H)ooll : M — H® M ® H. O
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We can now consider the main result concerning ad-coinvariant integrals. The
equivalence (1) < (3b) was proved in a different way in [AMSI1, Proposition 2.11].

Theorem 6.7.7. [Arl, Theorem 7.7] Let H be a Hopf algebra with antipode S over
a field K. The following assertions are equivalent:

(1) There is an ad-coinvariant integral t € H.

(2) The forgetful functor GIMG — “MC is separable for any coalgebra C in
gIMy.

(3) The forgetful functor ZOMIL — HOMH s separable.

(3b) H is separable in (M7 @, K).

(4) The forgetful functor TYD — "M is separable.

(4b) K is Eg-projective where G is the forgetful functor of (4).

Proof. Analogous to that of Theorem 6.6.7. m

Remark 6.7.8. The following assertions are all equivalent to the existence of an
ad-coinvariant integral t € H:

(5) The forgetful functor YD¥ — M is separable.

(6) The forgetful functor FYDY — M is separable and S is bijective.

(7) The forgetful functor 7Y Dy — HIM is separable and S is bijective.

(8) K is Eg-projective where G is the forgetful functor of (5),(6) or (7).
In fact, note that 9 ~ YDA Since ¢ is in particular a total integral, the antipode
S is bijective and hence, by [Sch2, Corollary 6.4], we can also assume YDy ~

Boml ~ HyDH. Now, by means of Lemma 6.7.5. one prove the above equivalences.

Theorem 6.7.9. |Aril, Theorem 7.9] Let H be a finite dimensional Hopf algebra
with antipode S over a field K and let D(H) be the Drinfeld Double. The following
assertions are equivalent:

(1) There is an ad-coinvariant integral t € H.

(ii) The forgetful functor MPUD" — I (equiv. pnIN — M) is separable.

(iit) D(H)* is coseparable in (FOMH Oy, H) (equiv. D(H)/H* is separable).

Proof. dual to Theorem 16.6.10. O]

Proposition 6.7.10. Let H be a Hopf algebra with an ad-coinvariant integral t and
let M =My, g, gMNyg. For any coalgebra C' in M, we have:

i) C is coseparable as a coalgebra in M iff it is coseparable as a coalgebra in
EIRK.

ii) C is formally smooth as a coalgebra in M iff it is formally smooth in M.

Proof. Since H has an ad-coinvariant integral ¢, by Lemma 6.7.6, the forgetful func-
tor G : “MY — “MC is separable. By Theorem 6.4.8 we conclude. O
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Remark 6.7.11. Let M be one of the monoidal categories My, My, g9 or g M y.
Let C' be a subcoalgebra of a coalgebra E in M. Then C"k C --. C O C CNE C
...CE.

Moreover, by [Sw, Remark and Proposition, page 226], one has that U,enC"e = E

if and only if Corad(E) C C. Note that U,eyC"E = lii>nC'Al;E.

Theorem 6.7.12. [Arl, Theorem 7.15] Let H be a Hopf algebra. Let C' be a
subcoalgebra of a coalgebra E in M = Mg, My, gM or gMy. Assume that C
is formally smooth as a coalgebra in M and that Corad(E) C C. If any inclusion

map i, : C"e — CNE cosplits in M, then there exists a coalgebra homomorphism
m: B — Cin M such that mc = Idc.

Proof. As observed in Remark 6.7.11, we have E = U,enC e = li_n;C’/\iE. The
conclusion follows by applying Theorem 3.5.15. O]

Proposition 6.7.13. Let H be a Hopf algebra. Let C' be a subcoalgebra of a coal-
gebra E in M =My, gM. Assume that C is formally smooth as a coalgebra in M
and that Corad(E) C C. Given a coalgebra homomorphism g : C — H in M, then
there exists a coalgebra homomorphism m: E — C' in M such that mc = Idc.

Proof. M = 9My) In order to apply Theorem 6.7.12, we have only to prove that
any inclusion map C < C 5" cosplits in M. Since

n+1

Che =CMAgC=CApCNe = A E®C+C'E®E),

the quotient C5' /C"E becomes a right C-comodule in My via the map p¢, given
by £ +C"E + (21,+C"E)®xy. Since g : C — H is a morphism of coalgebras in 9y,
then (Id®g)opC is a right H-comodule structure map for C*%' /C"E that is right H-
linear. Thus C/5" /C"E becomes an object in MH: by the fundamental theorem for
Hopf modules (MM ~ x9M), we get that CE /Ce ~ V @ H in MY, for a suitable
V e kM, ie. CME JCME is a free right H-module. In particular C"8' /CE is
a projective right H-module, so that the inclusion map i : C"F — C e has a
retraction in M.

M = ) follows analogously. O

Example 6.7.14. Let H be a Hopf algebra and assume that H is formally smooth
as a coalgebra in 9ty. Then, by Corollary [3.5.13 and Theorem 5.4.8, the cotensor
coalgebra T := T5;(Coker(Ag)) is formally smooth as a coalgebra in the monoidal
category My. Assume that o : T'— E is an monomorphism that is also a morphism
of coalgebras in 9My. By Proposition 6.7.13, applied in the case when g : T" — H
is the canonical projection, ¢ has a retraction which is a coalgebra homomorphism
in My. (In particular also the injection H — T" — E has a retraction which is a
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coalgebra homomorphism in My ). Observe that T is not cosemisimple in general,
because its coradical is included in H (see Theorem 5.3.7 and [Sw, Proposition
11.1.1, page 226]).

Theorem 6.7.15. [Aril, Theorem 7.17] Let H be a Hopf algebra which is a sub-
coalgebra of a coalgebra E in M = My, g2 N or gMy. Assume that H is formally
smooth as a coalgebra in M and that Corad(E) C H. Then there ezists a coalgebra
homomorphism « : E — H in M such that mg = Idy for

a) M =My or yM.

b) M = g0y if any inclusion map H"e — HME™ cosplits in M.

Proof. H"E is a subcoalgebra of E in M and the inclusion map H"s — H N s

obviously a morphism in M.
a) Apply Proposition 6.7.13 in the case when C' := H and g := Idy.
b) Apply Theorem [6.7.12 in the case when C' = H. [

Examples 6.7.16. Let E be a coalgebra in the category of vector spaces. Let
C = Corad(FE). In this case, the sequence (C"E),cy is simply denoted by (E,)nen
and it is the so called coradical filtration of E.

Let H be a Hopf algebra. Assume that F is a coalgebra in M = MMy, gMy and
that H = C' = Corad(E). We have two cases.

M = yIMy) If any inclusion E,, — E,, ;1 cosplits in zMy and H is formally smooth
as a coalgebra in gy, then, by Theorem 6.7.15, there is an homomorphisms of
coalgebras m: £ — H in g9y such that my = Idg.

M = My) By [AMSI1, Theorem 2.11], since H is cosemisimple in Mg, then H
is coseparable in 9My. In particular H is formally smooth as a coalgebra in 9.

Again, by Theorem [6.7.15, there is an homomorphisms of coalgebras 7 : F — H in
My such that my = Idg (see also [AMSI, Theorem 2.17]).

Proposition 6.7.13| studies the existence in M = My, x9N of coalgebra retrac-
tions of coalgebras inclusion C' — FE where C' is a formally smooth coalgebras in
M endowed with a morphism of coalgebras g : ' — H in M. The following re-
sults show that the existence of ad-coinvariant integrals provide such a section in

M = ?)JTH, Hm, H?)J?H (WithOUt g)

Lemma 6.7.17. Let H be a Hopf algebra with a total integral t € H. Then any
monomorphism in M = My, g, yMNy has a retraction in M.

Proof. Since t is a total integral in H, then H is separable by Theorem 16.5.4-2).
Therefore any right (resp. left, two-sided) H-module is injective (see Corollary
6.3.6). In particular any monomorphism in M has a retraction in M. [

Theorem 6.7.18. [Arl, Theorem 7.20] Let H be a Hopf algebra with an ad-
coinvariant integral t € H. Let C be a subcoalgebra of a coalgebra E in M =
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My, g, g My. Assume that C is formally smooth as a coalgebra in Mg and that
Corad(E) C C. Then there exists a coalgebra homomorphism © : E — C in M
such that mc = Idc.

Proof. By Proposition 6.7.10, C' is formally smooth as a coalgebra in M. Since t is
in particular a total integral in H, by Lemma [6.7.17, any monomorphism in M, in
particular the inclusion map C"\e «—s O for any n € N, has a retraction in M.
Now apply Theorem 6.7.12. ]

Theorem 6.7.19. [Arl, Theorem 7.21] Let H be a Hopf algebra with an ad-
coinvariant integral and such that H is formally smooth as a coalgebra in My . If
H is a subcoalgebra of a coalgebra E in M = My, yM, yMy and Corad(E) C H,

then there exists a coalgebra homomorphism w: E — H in M such that mjg = Idg.

Remark 6.7.20. By Proposition 6.7.10, if H is a Hopf algebra with an ad-coinvariant
integral and H is formally smooth as a coalgebra in (Mg, ®, K), then it is for-
mally smooth as a coalgebra in (Mg, ®, K). Then the case M = My (analogously
M = g9 of the above corollary can be also deduced by Theorem 6.7.15.

The following result provides a significant example of Hopf algebra endowed with
both an ad-invariant and ad-coinvariant integral.

6.8 Splitting morphism of bialgebras

We now give some application of the previous results.

Theorem 6.8.1. |Arl, Theorem 5.32] Let H be a Hopf algebra and let E be a
bialgebra. Let m: E — H be a bialgebra homomorphism which is surjective. Assume
that H s formally smooth as an algebra in My and that the kernel I of 7 is a
nilpotent ideal. Then m has a section which is an algebra homomorphism in MY

(resp. M)

Proof. In view of [Arll Proposition 5.27], H is formally smooth as an algebra in
My if and only if it is formally smooth as an algebra in 9 (resp. #M). Since H
as a coalgebra is a quotient of F, then E carries a unique H-bicomodule structure
that makes of 7 a coalgebra homomorphism in “9t. By Theorem 6.6.14, we
conclude. O

Definition 6.8.2. [Schl, Definition 5.1] Let E be a bialgebra and let H be a Hopf
subalgebra of E. Recall that a weak right (resp. left) projection (onto H) is a
retraction m : £ — H for the inclusion map which is a right (resp. left) H-linear
coalgebra map. We call m a weak two-sided projection, whenever 7 is also right
H-linear.
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6.8.3. A bialgebra with a projection is a bialgebra E over a field K endowed with
a Hopf algebras H and two bialgebra maps ¢ : H — E and 7 : F — H such that
moo = Idy. In [Rad2], M. D. Radford describes the structure of bialgebras with
a projection: E can be decomposed as the smash product of H with the (right)
H-coinvariant part of £/ which comes out to be a braided bialgebra in the monoidal
category 2D of Yetter-Drinfeld modules over H. This construction appeared as an
important tool in the classification of finite dimensional Hopf algebras. It is mean-
ingful that, even relaxing some assumption on 7 (as was done by P. Schauenburg in
[Sch1]) or on o (see [AMSI1]), it is possible to reconstruct E by means of a suitable
bosonization type procedure.

More precisely, let E be a bialgebra and let H be a Hopf subalgebra of E. Denote
by o0 : H — FE the inclusion. Assume there exists a weak right projection 7 : £ — H
of E onto H (the dual situation can be treated analogously). Consider the space of
right H-coinvariant elements of E:

R= ECO(H) — {6 =) | 26(1) ®7T<6(2)) =e® 1H}

Set

T:E— R T(e) = Ze(l)aSﬂ (e@)

which is a well defined map as

(E & 7T) AET (6) = Ze(l)(UUS?T (6(2))(1) ®m [6(1)(2>US7T (6(2))(2)]

®
®7T()()
®

and hence 7 (e) € R, for every e € E. The map
c:R®H — E, e(r®h)=ro(h)

is an isomorphism of K-vector spaces, the inverse being defined by

R I R® H, 671(6) = ZT (6(1)) X (6(2)).
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In fact we have

Tlac (b)) = Y amo h(l aus[ 20 (h)]

= T(a)gH(h)
and hence
e(r@h) = e llro(h)]
= Y 7[rwolhw)] @7 [reo(he)]
= > 7 (rw)enlhpy) @7 (re) he)
= D 7(rw) ®m(re)h
= 7(r)®@n(ly)h
= reh
and

e le) = Y elr(ew) @7 (ew)]
= ZT 6(1) o 6(2)>

e O'Sﬂ' 6(2) om (6(3))

— Ze { [ (2))(1)] T (6(2))(2)}

eyo {en (e) 1}

MM

Clearly E defines, via €, a bialgebra structure on R ® H that will depend on the
chosen o and 7. This bialgebra structure has been described in [Schl, Section 5] and
in [Sch3, Section 5]. If 7 is also left H-linear (i.e. it is a week two-sided projection)
then (see [AMSI1, Theorem 3.64]) to such an (E,m, o) one associates a quadruple
(R,u,m,¢&) (called dual Yetter-Drinfeld quadruple), where R, as defined above, is a
coalgebra in the monoidal category (YD, @, K) andu: K — R, m: R® R — R,
and £ : R® R — H are K-linear maps satisfying ten equalities. Then E can be
reconstructed by these data. In fact the bialgebra £ is isomorphic to R#¢H which
is R ® H endowed with a suitable bialgebra structure that depends on the dual
Yetter-Drinfeld quadruple: this structure on R ® H can be somehow regarded as a
deformation of the usual bosonization structure recalled above via &.

Theorem 6.8.4. [Arl, Theorem 7.56] Let H be a Hopf subalgebra of a bialgebra E.
Assume that H is formally smooth as a coalgebra in My and that Corad(E) C H.
Then E has a weak right (resp. left) projection onto H.
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Proof. In view of |[Arl, Proposition 7.27], H is formally smooth as a coalgebra in
My if and only if it is formally smooth as a coalgebra in My (resp. xMN). Since H
is a subalgebra of E, then E carries a unique H-bimodule structure that makes of
H a subcoalgebra of E in yy. By Theorem [6.7.15, we conclude. [

Theorem 6.8.5. [AMS1, Theorem 2.27] Let H be a semisimple and cosemisimple
Hopf algebra over a field K. Then there are:

1) an ad-invariant integral X € H*;

2) an ad-coinvariant integral t € H.

Proof. First let us note that any semisimple Hopf algebra is finite dimensional (see
[Mo).

Since H is semisimple and cosemisimple, by [Radl, Proposition 7], the Drinfeld dou-
ble D(H) is semisimple. By a result essentially due to Majid (see [Mo, Proposition
10.6.16]), and by [RT, Proposition 6], we get that the category FYD =~ pyy9 is
semisimple. Then the counit ¢ : H — K has a section in YD so that, by Lemma
6.7.2, there is an ad-coinvariant integral. Analogously the unit v : K — H has a
retraction in £YD so that, by Lemma [6.6.2, there is an ad-invariant integral. Il

Theorem 6.8.6. [AMS1, Theorem 2.28] Let E be a Hopf algebra such that J, the
Jacobson radical of E, is a nilpotent coideal in E. Assume that H := E/J is both
semisimple and cosemisimple (e.g. H is semisimple over a field of characteristic 0).
Then there is an algebra homomorphism o : H — E in BT such that 7o = Idy,
where m: E — H denotes the canonical projection.

Proof. Since H is semisimple and cosemisimple, in view of Theorem 6.8.5, there is
an ad-invariant integral. Since H as a coalgebra is a quotient of E, then E carries
a unique H-bicomodule structure that makes of m a coalgebra homomorphism in
HontHl By Theorem 6.5.4, H is separable as an algebra in 9 so that, in view of
Corollary 13.4.8, it is formally smooth as an algebra in x91. By Theorem 6.6.17, we
conclude. O

Theorem 6.8.7. [AMS1, Theorem 2.35] Let E be a Hopf algebra such that H, the
coradical of E, is a Hopf subalgebra. Assume that H is semisimple as an algebra
(e.g. H is f.d. over a field of characteristic 0). Then E has a weak two-sided
projection onto H.

Proof. Since H is semisimple and cosemisimple, in view of Theorem 6.8.5, there is
an ad-coinvariant integral. Since H is a subalgebra of E, then E carries a unique
H-bimodule structure that makes of H a subcoalgebra of £ in y91y. By Theorem
6.5.4, H is coseparable as a coalgebra in 91 so that, in view of Corollary 3.5.12, it
is formally smooth as a coalgebra in 9. By Theorem 6.7.19, we conclude. O
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