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We embed Safe Recursion on Notation (SRN) into Light Affine Logic by Levels (LALL ), derived
from the logicML 4. LALL is an intuitionistic deductive system, with a polynomial time cut elimi-
nation strategy. The embedding allows to represent every term t of SRNas a family of nets〈⌈t⌉l 〉l∈N

in LALL . Every net⌈t⌉l in the family simulatest on arguments whose bit length is bounded by the
integerl . The embedding is based on two crucial features. One is the recursive type inLALL that
encodes Scott binary numerals,i.e. Scott words, as nets. Scott words represent the arguments oft
in place of the more standard Church binary numerals. Also, the embedding exploits the “fuzzy”
borders of paragraph boxes thatLALL inherits fromML 4 to “freely” duplicate the arguments, es-
pecially the safe ones, oft. Finally, the type of⌈t⌉l depends on the number of composition and
recursion schemes used to definet, namely the structural complexity oft. Moreover, the size of⌈t⌉l

is a polynomial inl , whose degree depends on the structural complexity oft. So, this work makes
closer both the predicative recursive theoretic principlesSRN relies on, and the proof theoretic one,
calledstratification, at the base of Light Linear Logic.

1 Introduction

Slightly rephrasing theincipit of [6], comparing implicit characterizations of computational complexity
classes may provide insights into their nature, while offering concepts and methods for generalizing
computational complexity to computing over arbitrary structures and to higher type functions. Here, we
relate two implicit characterizations of polynomial time functions (PTIME ). One is Safe Recursion on
Notation (SRN) [4], that we take as representative of the characterizations of PTIME that restrict the
primitive recursion. The other one is Light Affine Linear Logic by Levels (LALL ), a proof theoretical
system we derive from Light Linear Logic by Levels (ML 4) [3] and from Intuitionistic Light Affine
Logic (ILAL ) [2]. We recall,ML 4 andILAL are twoLight Logics, i.e. restrictions of Linear Logic that
characterize some complexity class, in this casePTIME , under the proofs-as-programs analogy. These
two logics control the complexity of the algorithms they canexpress by the technical notionStratification,
which expresses specific structural restrictions on the derivations ofML 4 andILAL . SRN, of which we
recall some more aspects in Section 4, provides apredicative analysisof primitive recursion. It is the least
set that contains thezero0 (considered as a 0-ary function), thesuccessorss0(;x) = 2x,s1(;x) = 2x+1,

the predecessorp(;2x+ i) = x, the projection πn;s
k (

→
x;

→
y) = xk if 1 ≤ k ≤ n, andyk if 1 ≤ k ≤ s, the

conditionalB(;y,y1,y2) = y1 if y is odd, andy2 otherwise, and which is closed undersafe composition
andpredicative recursion on notation((2) and (3) in Figure 1). The work [8] is the first one relatingthe
two different traditions: it defines a map from terms of a strict fragmentBC− of SRN into nets ofILAL .
The main obstacle to a full representation ofSRN into ILAL is that the duplication of nets inILAL ,
hence of the safe arguments, is far from being free, as required instead by (3). In fact, [8] also shows
that an extensionBC±, polynomial time complete, can be represented insideILAL . However, since the
primitives added toBC± are not inSRN, we cannot seeBC± as relevant to the goal of understanding the
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possible relation between fullSRNand the above stratification principle, basic toML 4 andILAL . Since
[8], no extension of the relation betweenSRN andILAL has been produced, to our knowledge. Here,
we show to which extent we can avoid that obstacle insideLALL . LALL , that will be formally defined
in Section 2, is an intuitionistic system of nets endowed with: (i) edges labelled by indices, or levels,
(ii) unconstrained weakening, to make programming with itsnets somewhat more comfortable, (iii) a
language of formulæ quotiented by the recursive equivalence S = ∀α .(α ⊸ (B ⊸ S ⊸ α) ⊸ α),
whereB is the type of booleans, andS the data type ofScott words[1], and (iv) a polynomial time
sound cut elimination procedure (Section 3) which does not depend on the types that label the edges of a
given net.

SRN embeds intoLALL by means of the map⌈·⌉· (Sections 5 and 6.) The map⌈·⌉· has the same
natural and inductivestructure as the one of the map in [8] fromSRN to ILAL . However,⌈·⌉· takes
two arguments: (i) any termt of SRNn;s, with normal arityn, the number of arguments to the left of the
semicolon, and safe aritys, the number of those ones to the right, and (ii) an integerl ≥ 0 that bounds
the size of every argument oft. Then,⌈t⌉l yields a net that simulatest(−→x ;−→y ) whenever every element
in −→x ,−→y is at most as long as l(Proposition 12). This suggests to summarize the situationwe move in
by:

LALL
SRN

=
PTIME -uniform Boolean Circuits

PTIME Problems
(1)

We remark, however, that such an analogy should be read as such, and not as a formal correspondence.
I.e., we are not at all assuming any classical complexity theoretic perspective like the one in [12], which
shows a proofs-as-programs correspondence between Boolean Circuits and nets of Multiplicative Linear
Logic.

Instead, what we do reads as follows.
Let t be a term ofSRNn;s. We write∂C(t) and∂R(t) for the number of composition and recursion

schemes, respectively, that are used to buildt. That way,cmplx(t) = ∂C(t)+ ∂R(t) is a naı̈ve measure
of thestaticcomplexity oft. Also, let pt be the characteristic polynomial oft, whose values bound the
length of the output oft. Let ∂ (pt) be its degree. Then,t is represented inLALL by a family〈⌈t⌉l 〉l∈N

of nets such that:

1. The size of every net⌈t⌉l is O(l∂ (pt)
cmplx(t)

), namely polynomial inl ;

2. If l is at least as great as every bit length|x1|, . . . , |xn|, |y1|, . . . , |ys| of the arguments, then the
application of⌈t⌉l to ⌈x1⌉

l , . . . ,⌈xn⌉l ,⌈y1⌉
l , . . . ,⌈ys⌉l equals⌈t(x1, . . . ,xn;y1, . . . ,ys)⌉l ;

3. Every⌈t⌉l is a map from(
⊗

n
S )⊗ (

⊗
s(§k

S )) to §k
S , wherek depends oncmplx(t).

The first two points suggest the analogy (1). Specifically, the first point expresses a uniformity condition
on the nets in the family, since it states that their dimension are bounded only by the length of the
inputs. The second point says that⌈t⌉l soundly simulatest on every input of lengthsmaller or equal
to l . Finally, the third point is a natural property we can expectas soon as we try to compositionally
and naturally represent first order algebraic terms, that operate on a given domain, into a higher order
language. It is a static description of the behavior oft in terms of types ofLALL , a kind of information
we cannot have by, for example, representingSRNas circuit families.

We see the use ofS as a first fundamental choice to write⌈·⌉·. The reason is twofold. One reason
is a kind of obvious, sinceS supports the representation of successors, predecessor, projection and
conditional as constant time operations, unlikeC = ∀α .!(α ⊸ α) ⊸ !(α ⊸ α) ⊸ §(α ⊸ α), which
is generally used to representChurch wordsin Light Logics. The other reason, instead, brings a certain
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◦[t ′u1 . . .un′ v1 . . .vs′ ](
→
x ;

→
y) = t ′(u1(

→
x ;), . . . ,u

n
′(
→
x ;);v1(

→
x ;

→
y), . . . ,v

s
′(
→
x ;

→
y)) (2)

r[uε ,u0,u1](0,
→
x ;

→
y) = uε(

→
x ;

→
y) (3)

r[uε ,u0,u1](2z+ i,
→
x ;

→
y) = ui(z,

→
x ;

→
y ,r[uε ,u0,u1](z,

→
x ;

→
y)) i ∈ {0,1}{

Figure 1:SRN: predicative recursion on notation and safe composition.
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Figure 2: The nodes in the proof nets ofLALL .

degree of novelty with it because we exploit a crucial property of LALL , and of Light Logics,which
had hardly been used so far. The crucial property is that the polynomial time cut elimination ofLALL
depends only on the structure of any given netΠ, while the logical complexity of the formulæ inΠ does
not affect it. So, we are free to add fixpoints formulæ, likeS is, which adds a huge expressivity to the
logic.

A second step to get⌈·⌉·, for everyl , we exploit what we like to call thefuzzyborders of paragraph
boxes ofLALL to write the net∇Sk

l . The net∇Sk
l duplicates a Scott word at most as long asl , starting

from a premise of type §kS and concluding with the type §kS ⊗ §kS , for anyk. We remark that in
ILAL , where the border of paragraph boxes is “rigid”, we could only write a net, analogous to∇Sk

l ,
concluding with type §k(S ⊗S ) which would generally impede to get the right type for⌈t⌉l . By the
way, this is why [8] shows how to embedBC− but notSRN into ILAL . Indeed, inBC−, composition and
safe recursion schemes allowlinear safe arguments only, i.e. the safe arguments are never duplicated.

To conclude, we recall whatstratificationmeans. It is a structural property underpinning thePTIME -
sound cut elimination of Girard’s Light Linear Logic (LLL ) [5], and its variantsILAL , ML 4, andLALL .
A netΠ is stratifiedif the number of boxes around every node keeps being constantin every net we reach
from Π by cut elimination. This work should be a step further towards studying how thestratification is
compatible with the predicative analysis ofPTIME -sound computations thatSRNembodies.

Acknowledgments. We want to thank the anonymous referees whose questions helped us to better
address the points subject of this work.
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Figure 3: Constraints on the indexing. The nodes we omit havethe same index on all of their incident
edges.

2 Light Affine Logic by Levels (LALL)

The language of formulæ.First, for any fixed countable setV of propositional variables, the setF of
formulæ is generated by the following grammar:

F : :=S | α | F ⊗F | F ⊸ F | ∀α .F | ! F | §F α ∈ V

whereS is a propositional constant. Second, we define the quotientFS of F by assuming:

S = ∀α.(α ⊸ (B⊸ S ⊸ α)⊸ α) (4)

among the elements ofF . Namely, (4) says thatS represents Scott words [1]. The formulæ we shall
effectively use are the equivalence classes inFS . Every time we label an edge of a net ofLALL by S ,
we can also label that edge by any “unfolding” ofS that obeys (4).A

[
B/α

]
is the substitution of every

free occurrence ofα in A with B.

Proof structures and nets. LALL is a language of nets. Nets will be defined as particular proof
structures. Given the nodes in Figure 2, we say thatan Axiom node and a Dæmon nodes are proof
structures. Moreover, given two proof structuresΠ andΣ:

Π
......A1 Ar

C

Σ
......B1 Bl

D

denoted asΠ⊲A1, . . . ,Ar ⊢C andΣ⊲B1, . . . ,Bl ⊢ D, respectively, withr, l ≥ 0, then all the graphs induc-
tively built from Π andΣ by the rule schemes in Figure 4 are proof structures.

If Π⊲Γ ⊢ A, we say thatΠ provesthe sequentΓ ⊢ A. The inputs(resp.outputs) of Π are the edges
labelledΓ (resp. A). The set of the nodes ofΠ is VΠ, andEΠ is the set of edges. Thesize|Π| of Π is
the cardinality ofVΠ. Thedepth∂ (x) of a node or edgex ∈ VΠ ∪EΠ is the number of nested !-boxes
containingx. Thedepth∂ (Π) of Π is the greatest depth among the nodes ofΠ.

Every !-box simultaneously introduces one Bang R node and atmost one Bang L node, recording
this by the box border as in Figure 4.

Definition 1 (Indexing and Nets, adapted from [3]) Let Π be a proof structure.

1. Anindexingfor Π is a function I from the edges ofΠ toZ that satisfies the constraints in Figure 3
and such that I(e) = I(e′), for every pair e,e′ of inputs and output ofΠ.

2. Anet is a proof structure that admits an indexing.

3. An indexing I ofΠ is canonicalif Π has an edge e such that I(e) = 0, and I(e′) ≥ 0 for all edges
e′ of Π.
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Figure 4: Inductive rule schemes to build proof structures of LALL . (*) α does not occur free in
A1, . . . ,Ar . (**) A !-box, which hasat mosta single assumption.

As in [3], we can state that every net ofLALL admits a unique canonical indexing.
The indexing tells that the nodes !L and §L are notderelictionnodes. Remember that the dereliction

rule of Linear Logic is inherently not stratified, because the cut-elimination is presence of a dereliction
node may also “open” boxes. Instead, these nodes can be considered as auxiliary ports of §-boxes whose
border is somewhatfuzzy. We mean that a §-box need not be contained in or disjoint fromanother box.
Instead, it can “overlap” a !-box, and it can have more than one conclusion §R. To distinguish §-boxes
from the ! ones we adopt a dotted border.

Let I0 be the canonical indexing ofΠ ande∈ EΠ. The level of eis l(e). It is defined asI0(e). The
level ofΠ is l(Π). It is defined as the greatest value assumed byI0 on the edges ofΠ. We denote asBΠ
the set of the !-boxes inΠ, and it is naturally in bijection with the set of the !R nodes inΠ. Finally, for
every netΠ, and for †∈ {!,§}, †nΠ denotesn nested †-boxes aroundΠ.

Cut elimination. We just recall its steps, which are standard. Thelinear cut elimination steps anni-
hilate in the natural way a pair of linear nodes (Identity/Cut, ⊸L /⊸R , ⊗L /⊗R , §L /§R , ∀L /∀R).
The exponentialcut elimination steps are of two kinds: !L / !R is reduced merging the two involved
boxes which can be !-boxes as well as §-boxes with fuzzy borders. Instead,contraction/!R duplicates
the whole !-box cut with the contraction, as inILAL . Thegarbage collectioncut elimination steps in-
volve the weakening or the dæmon nodes, cut with any other node. It is always possible to reduce such a
cut with the help of some more weakening and dæmon nodes, as done inILAL [2]. The set of cut nodes
of Π is cuts(Π).

Proposition 2 (Cut-elimination) EveryLALL net reduces to a cut-free net.

A direct proof would be very long; anyway, such a proof directly follows from the proof of the
namesake propositions inILAL andML 4. Please notice that the presence of fixpoints (i.e. the recursive
typeS ) does not affect the proof in any way, because the cut-elimination independently by the formulæ
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labelling the edges of a net. This is not true in full Linear Logic.

3 Polynomial time soundness of LALL

We adapt [3] to prove the cut eliminationPTIME -soundness in presence of unconstrained Weakening,
which we introduce for easy of programming since it is handy to erase nets structure. Let us fix a proof
netΠ to reduce. We define an ordering over cuts(Π) that determines which cuts to reduce first.

A graph theoretic path in any proof netΠ is exponentialif it contains a, possibly empty, sequence of
consecutive contractions and stops at a !L node.

Let B,C∈ BΠ. Let B≺L
1 C if the roots ofB andC lie at the same level, and the root ofB is in cut with

an exponential path that enters an auxiliary port ofC. �L is the reflexive and transitive closure of≺L
1.

One can show that�L is a partial order,upward arborescent: for everyC there is at most oneB such that
B≺L

1 C.
Let c,c′ ∈ cuts(Π). We write c ≤ c′ iff one of the following conditions holds. (i)c′ is connected

to a weakening or a dæmon, andc is not. (ii) The condition (i) is false butl(c) < l(c′) holds. (iii)
The conditions (i) and (ii) are false, sol(c) = l(c′). In this case,c ≤ c′ iff: (a) either c′ is connected
to a contraction, andc is not, or (b)c,c′ are connected to a contraction on one side, to the boxesB,B′,
respectively, on the other, andB�L B′.

Definition 3 (Canonical normalization) A sequence of normalization steps that starts from a given
proof netΠ is canonicalwhenever smaller cuts relatively to≤ are eliminated before higher ones.

Theorem 4 (Polynomial bound for LALL) LetΠ be anLALL proof net of size s, level l, and depth d.
Then, every canonical reduction is at most(l +1)s(d+2)l

steps long.

The proof strategy coincides with the one in [3], with the following adaptation: the reduction of the
garbage collection steps is always delayed till the end.

4 Preliminary notions about SRN

We recall from Section 1 thatSRNn;s is the subset ofSRN whose terms have normal arityn, and safe
arity s. If not otherwise stated,−→t m = t1, . . . , tm will always denote sequences ofm≥ 0 terms ofSRN.
Moreover, we write|−→t m| ≤ l , for somel > 0, meaning that the size of every termti is not greater thanl .
Now, from [4], we recall that, for everyt in SRNn;s, and−→x = x1, . . . ,xn,

−→y = y1, . . . ,ys:

|t(−→x ;−→y )| ≤ pt (|x1|, . . . , |xn|)+max{|y1|, . . . , |ys|} (5)

wherept is thecharacteristic polynomial of twhich is non-decreasing and depends ont. We notice that if
u is a subterm oft, then∂ (pu)≤ ∂ (pt). At last, we define thecomposition degree∂C(t) and therecursion
degree∂R(t) of t, as the functions that count resp. the number of safe composition and recursion schemes
insidet.

Definition 5 (The Term Bounding Function tb·(·)) Let t in SRNn;s and l ≥ 0. We define tb·(·), that
takes t and l as arguments, as tbt(l) = pt(l , . . . , l)+ l.

Fact 6 (tb·(·) Bounds the Output Length of t ∈ SRN) For every t in SRNn;s, l ≥ 0, and sequences
−→x ,−→y such that|−→x |, |−→y | ≤ l, we have|t(−→x ;−→y )| ≤ tbt(l).
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xA ∈V ⇒ x∈ ΛA
V

m≥ 1, M ∈ ΛA
V ,x1 ∈ ΛA1

V , . . . ,xm ∈ ΛAm
V ⇒ (λ ⊗m

i=1 xAi
i .M) ∈

∈ ΛA1⊗...⊗Am⊸A
V (6)

M ∈ ΛA′
⊸A

U ,N ∈ ΛA′

W,U ∪W ⊆V,U ∩W = /0 ⇒ (MN) ∈ ΛA
V

m≥ 2,
(
1≤ i 6= j ≤ m⇒ Ni ∈ ΛAi

Wi
,

Wi ∩Wj = /0,Wi ⊆V
)

⇒ (⊗m
i=1Ni) ∈ ΛA1⊗...⊗Am

V (7)

M ∈ ΛA
V ⇒ Λα.M ∈ Λ∀α .A

V (8)

M ∈ Λ∀α .A
V ⇒ M{A′} ∈ Λ

A
[

A′/α
]

V (9)

Figure 5: Typed II order affineλ -terms.

Definition 7 (The Net Bounding Functionnb·(·)) Let t in SRNn;s and l ≥ 0. We define nb·(·), that
takes t and l as arguments, as nbt(l) = tbt(tbt(. . . tbt(l) . . .)), with ∂R(t)+∂C(t) occurrences of tbt(·).

Fact 8 (nb·(·) is a Polynomial) For every fixed t inSRNn;s, nbt(l) is a polynomial in the free variable
l, whose degree is∂ (pt)

∂C(t)+∂R(t).

5 Preliminary useful nets in LALL

We introduce a first set of nets useful to define the embedding from SRN to LALL . However, whenever
neither boxes, nor contractions are used in a given netΠ, whose conclusion has typeA, to save space, we
representΠ by means of aλ -term. The term belongs to the setΛA

V of polymorphic typedaffineλ -terms
with variables inV, patterns, tuples, and typeA∈FS . Figure 5 definesΛA

V . (6) introducesλ -abstractions
on a tuple pattern, while (7) introduces tuples. The application is left-associative. We shall drop useless
parenthesis to avoid cluttering the terms. For anyA andV, the terms inΛA

V rewrite under the standard
β -reduction, extended with the following two rules: (i)(λ ⊗m

i=1 xi .M)(⊗m
i=1Ni) →β M

[
N1/x1 · · ·

Nm/xm

]
,

whereM
[

N1/x1 · · ·
Nm/xm

]
stands for the simultaneous substitution ofNi for xi , with 1≤ i ≤ m, and (ii)

(Λα .M){B} →β M
[

B/α
]
.

Booleans.The type of booleans isB= ∀γ .γ ⊸ γ ⊸ γ whose representative nets are:

F= Λγ.λxγyγ .x ⊲ ⊢ B (True)

T= Λγ.λxγyγ .y ⊲ ⊢ B (False)

∇B[b] = b{B⊗B}(T⊗T)(F⊗F) ⊲B ⊢ B⊗B (Duplication)

The net∇B[b] duplicates any boolean we may plug intob by a Cut node.

Church words or, simply, words. The type of words isC = ∀α .!(α ⊸ α)⊸ !(α ⊸ α)⊸ §(α ⊸

α). Figure 6(a) introduces the successorSuccC0[w], wherew identifies the lowermost dangling edge.
It should be trivial to recoverSuccC1[w] from SuccC0[w]. Figure 6(c) introducesεC. If w is a natural
number in binary notation,w is its usual representation by a net. Figures 6(b) and 6(d) introduce nets
that invert the bits inside anyw, plugged by Cut into the dangling input ofRevC[w].

Scott words. Intuitively, the typeS of Scott words describes a tuple of booleans. On Scott words
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Figure 6: (Church) Words.

we have the following nets:

εS= Λα.λxαyB⊸S⊸α .x ⊲ ⊢ S (Empty Scott word)

SuccS0[s] = Λα.λxαyB⊸S⊸α .yFs⊲S ⊢ S (Successor zero)

SuccS1[s] = Λα.λxαyB⊸S⊸α .yTs⊲S ⊢ S (Successor one)

PredS[s] = s{S }εS(λbBwS .w) ⊲S ⊢ S (Predecessor)

CondS[s,x,y] = PrepS[s]{S }εS(λbB.b{S }yx) ⊲S ,S ,S ⊢ S (Conditional)

PrepS[s] = s{S }SuccS0[εS]
(
λbBλwS .b{S ⊸ S }

(λxS .SuccS0[x])(λxS .SuccS1[x])w
)
⊲S ⊢ S (Preprocessing)

We remark thatSuccS0[s] adds tos the least significant bitT, which stands for the digit 0, andSuccS1[s]
addsF, instead, which stands for 1.PredS[s] shiftss to its right deleting theleast significantbit. So:

Remark 9 A Scott word is in fact a stack of bits, the least significant bit being on the top of the stack.

Moreover,CondS[s,x,y] branches a computation, depending on the value ofs. It yields x if the least
significant bit ofs is 0,or if s= εS, while it yieldsy if the least significant bit ofs is 1. The preprocessing
avoids to returnεS: if s= εS, thens becomesSuccS0[εS]. Also, the three assumptions of typeS in
S ,S ,S ⊢ S specify the type ofs,x, andy, respectively.
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Cut I I

∇Sl ⊗L

§k
L
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S )2= §k

S ⊗§k
S

§k
S §k

S

S S

S 2

S

§k
S

Figure 7: The generalized duplication∇Sk
l [s] of Scott words.

Fact 10 (Relation between naturals, Scott words, and words-as-terms) Every sequence(d1, . . . ,dl )with
d1, . . . ,dl ∈ {0,1} and l≥ 0, identifies uniquely a number n= 2l−1 ·dl + · · ·+20 ·d1 ∈ N. So, both the
term of SRNsdl (; . . .sd1(;0) . . .) and the Scott word[n] identify n, too. We say that the sequence, as well
as the Scott number and theSRN term,representn.

We underline that an infinite number of sequences, and of terms, represent the samen.
Scott words to words.For anyl ≥ 0, StoCl [s]⊲ S ⊢ C is inductively defined onl :

StoC0[s] = εC

StoCl [s] = s{C }εC(λxByS .x(λzC .SuccC0[z])(λzC .SuccC1[z])StoCl−1[s])

The netStoCl [s] normalizes to the wordw, for any Scott wordat most as long as l.
Duplicating Scott words. For anyl ≥ 0, the net∇Sl [s] is inductively defined onl :

∇S0[s] = εS⊗ εS

∇Sl [s] = s{S ⊗S }(εS⊗ εS)
(
λbBsS .b{S 2

⊸ S
2}(λxS ⊗ yS .SuccS0[x]⊗SuccS0[y])

(λxS ⊗ yS .SuccS1[x]⊗SuccS1[y])∇Sl−1[s]
)

such that∇Sl [s] ⊲ S ⊢ S 2, whereS 2 = S ⊗S . The net∇Sl [s] builds two copies of any Scott word
at most as long as l. The generalization∇Sk

l [s] ⊲ §kS ⊢ §kS ⊗§kS of ∇Sl [s] duplicates a given Scott
word at most as long as lwhich lies insidek≥ 0 paragraph boxes. Specifically,∇S0

l [s] is ∇Sl [s], while
∇Sk

l [s] is in Figure 7, withk> 0, which is the only net that exploits thefuzzy bordersof paragraph boxes.
By induction onk, |∇Sk

l [s]|= 19+89l +3k∈ O(l).

Coercing Scott words. For anyk, l ≥ 0, we defineCoerSk
l [s] ⊲ S ⊢ §kS by cases onk, and by

induction onl . If k= 0, thenCoerS0
l [s] is the node Axiom. Otherwise, the net is in Figure 8, where, for i ∈

{0,1}, λs.§k(SuccSi [s])⊲ ⊢ §kS ⊸ §kS denotesthe net that we build by: (i) enclosingSuccSi [s] into
k paragraph boxes to get §k(SuccSi[s]) ⊲ §kS ⊢ §kS , and (ii) adding an Implication R to §k(SuccSi [s])
so to close it and get its type §kS ⊸ §kS . The netCoerSk

l [s] reconstructs a given Scott wordat most
as long as linto an identical Scott word insidek paragraph boxes. We can show that|CoerSk

l [s]| =
43l +3kl ∈ O(l).

Lifting. Let Π ⊲
−→
S

n

,
−−→
§kS

s

⊢ §kS for somen,s,k ≥ 0. For everyk′ ≥ 0 we can buildLiftk′ [Π] ⊲
−→
S

n

,
−−−−→
§k+k′S

s

⊢ §k+k′S by: (i) enclosingΠ into k′ paragraph boxes, gettingΠ′, and (ii) plugging the
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Figure 8: The coerce netCoerSk
l [s] on Scott words.
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§k′
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L
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L
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l CoerSk′
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. . . . . .

§kS
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§k′S §k′S

S S

§k+k′S §k+k′S

Figure 9: TheLifting Liftk′ [Π] of a proof netΠ.

conclusion ofCoerSk′
l [s], using Cut, into every of then premises with type §k

′
S of Π′. The netLiftk′ [Π]

is Π deepened insidek′ paragraph boxes. The final net is in Figure 9.
Notice that|Liftk′ [Π]|= |Π|+k′(n+ s+1)+n|CoerSk′

l [s]| ∈ O(|Π|+ l).

Contracting the premises of a net.Let Π ⊲
−→
A ,§kS ,§kS ,

−→
A ′ ⊢ A for somel ,k≥ 0. We can build

∇k
l [Π] ⊲

−→
A ,§kS ,

−→
A ′ ⊢ A by: (i) writing Π′ which is Π with a new Tensor L between the two outlined

premises of type §kS , and (ii) plugging the conclusion of∇Sk
l [s] ⊲ §kS ⊢ §kS ⊗§kS , by a Cut, into

the premise of the new Tensor L inΠ′. Notice that|∇k
l [Π]|= |Π|+ |∇Sk

l [s]|+2∈ O(l).

6 The embedding⌈·⌉· from SRN to LALL

The goal is to compositionally embedSRN into LALL , with a map as much analogous as possible to the
natural, and inductively defined one fromBC− into ILAL [8]. For any fixedn ands, the map⌈·⌉· takes

a termt of SRNn;s as first andl ≥ 0 as second argument, and yields a net⌈t⌉l ⊲
−→
S

n

,
−−→
§kS

s

⊢ §kS , for
somek. We define the map inductively on the first argument.

The base cases of⌈·⌉·. Some of them are straightforward:

⌈0⌉l = εS ⊲ ⊢ S ⌈si⌉
l = SuccSi [s] ⊲ S ⊢ S (i ∈ {0,1})

⌈p⌉l = PredS[s] ⊲ S ⊢ S ⌈B⌉l = CondS[s,x,y] ⊲ S ,S ,S ⊢ S
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Lift(k−ku)[⌈u1⌉
l ] §k

L
§k
L

§k
L

§k
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CoerSk
l CoerSk
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§kS
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§kS

S §kS

§kS

S

§2kS

Figure 10: The (partial) translation of◦[t ′,u1,v1,v2] with missing contractions.

where,s,x,y denote the inputs of the nets they appear into. Concerning the projection,⌈πn;s
i ⌉l is an

Axiom that connects thei-th input to the conclusion, erasing all the other inputs by Weakening. An
example with 1≤ i ≤ n, and, notice,k= 0 is:

W . . . I . . . W W . . . W

S

SS S S S

The case of⌈·⌉· on the composition.We now focus ont = ◦[t ′,u1, . . . ,um,v1, . . . ,vr] such thatt ′ be
in SRNm;r. Without loss of generality, we show how to build⌈t⌉l by assumingm= n= s= 1, andr= 2.
By induction we have:

⌈t ′⌉tbt (l) ⊲ S ,§k′S ,§k′S ⊢ §k′S ⌈u1⌉
l ⊲ S ⊢ §kuS

⌈vi⌉
l ⊲ S ,§ki S ⊢ §ki S (i ∈ {1,2})

By letting k= max{k′,ku,k1,k2}, we get:

Lift(k−k′)[⌈t
′⌉tbt (l)]⊲ S ,§kS ,§kS ⊢ §kS Lift(k−ku)[⌈u1⌉

l ]⊲ S ⊢ §kS

Lift(k−ki)[⌈vi⌉
l ]⊲ S ,§kS ⊢ §kS (i ∈ {1,2})

Next, if we buildΠ′ in Figure 10, then⌈t⌉l is ∇2k
l [∇0

l [∇
0
l [Π

′]]]. The two occurrences of∇0
l contract

three “normal” inputs. One is from⌈u1⌉
l . The other two are from⌈v1⌉

l ,⌈v2⌉
l . The occurrence of∇2k

l
contracts the single “safe” input of⌈v1⌉

l and⌈v2⌉
l . We insist remarking the existence of⌈t⌉l for any

m,n, r,s. One can count:|⌈t⌉l | ≤ |Lift(k−k′)[⌈t
′⌉tbt(l)]|+∑m

i |Lift(k−ki )[⌈ui⌉
l ]|+∑r

j |Lift(k−kj )[⌈u j⌉
l ]|+

k(1+n+s
′
n+s

′
s)+s

′
n|CoerSk

l [s]|. So, it follows|⌈t⌉l | ∈O
(
|⌈t ′⌉tbt(l)|+∑m

i |⌈ui⌉
l |+∑r

j |⌈v j⌉
l |+ tbt(l)+ l

)
.

The case of⌈·⌉· on the recursion. Let t = r[uε ,u0,u1] with uε ∈ SRNn;s,u0,u1 ∈ SRNn+1;s+1. As
for composition, we setn = s = 1 which is general enough to show the key point of the embedding. In
the course of the iteration unfolding that⌈t⌉l carries out, the safe argument gets duplicated, so we must
contract it. By induction:

⌈uε⌉l ⊲ S ,§kε S ⊢ §kε S ⌈ui⌉tbt (l) ⊲ S ,S ,§ki S ,§ki S ⊢ §kiS (i ∈ {0,1})

By letting k = max{kε ,k0,k1}, and usingLift·[·] in analogy to the translation of the composition,
⌈t⌉l is in Figure 11. The Scott word that drives the recursion unfolding, becomes a word, and, then, it
is necessary to reverse it byRevC[w]. Otherwise we would unfold the iteration according to a wrong bit
order, as implied by Remark 9. Moreover, (i)Π projects the rightmostn+ s+1-th element of typeA it
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Figure 11: Safe recursion.

gets in input and which contains the result, and (ii) the two nets ⊗R , ⊗L are obvious trees of Tensor

R and L nodes. Finally, we can prove|⌈t⌉l | ∈ O
(
|⌈uε⌉

l |+ |⌈u0⌉
tbt(l)|+ |⌈u1⌉

tbt(l)|+ tbt(l)
)
.

Definition 11 (Representing a term by a net)Let t be inSRNn;s, l ∈ N, andΠ ⊲
−→
S n

−−−−→
(§kS )s ⊢ §kS ,

for some k∈N. Then,Π k-simulatest with l -bounded inputsif, for every pair of vectors of natural num-
bers−→x n,−→y s, such that|−→x n|, |−→y s| ≤ l, the net we get by plugging⌈x1⌉

l , . . . ,⌈xn⌉l ,§k⌈y1⌉
l , . . . ,§k⌈ys⌉l

into the inputs ofΠ, in the natural way, normalizes to§k⌈z⌉l , whenever z is the result of t(−→x n;−→y s).

Proposition 12 (SRN embeds into LALL) Let l ≥ 0, and t∈ SRNn;s. Then,⌈t⌉l k-simulates t with l-

bounded inputs. Moreover, (i) k≤ ∂R(t) ·2∂C(t), and (ii) |⌈t⌉l | is O
(

l∂ (pt)
(∂C(t)+∂R(t))

)

, namely a polynomial

in l.

The statement holds by induction ont, using the definition of⌈·⌉·, the size of every net that⌈·⌉· generates,
the definitions ofnbt(·), andtbt(·), together with Facts 8, 6, and 10.

7 Conclusions and further works

We have shown that the compatibility between thepredicative analysisover recursive functions thatSRN
encodes, and the proof theoreticalstratification, that regulates the complexity of some Light Logic that
characterizePTIME , can be improved, provided that (i) the stratification we findin Light Linear Logic
andILAL relaxes to boxes with “fuzzy” border, as inML 4 or LALL , and (ii) we move to a representation
of wordsalternative to the standard one, able both to represent the basic functions ofSRN in constant
time, and to exploit the independence of the cut eliminationcomplexity from the logical complexity of
the formulæ in a net.
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As a consequence, every termt of SRN maps to a family〈⌈t⌉l 〉l∈N of nets inLALL , where⌈t⌉l

simulatest with inputs at most as long as l. The number of paragraph modalities in the type of the
conclusion of⌈t⌉l depends on the structural complexity oft. The size of⌈t⌉l is a polynomial inl whose
degree depends on the degree of the characteristic polynomial of t and on the structural complexity oft.

As an example, the following program, which returnsy if w 6= 0 contains a digit ’0’ that is not the
lowermost digit, andzotherwise, is inSRNbut not inBC−:

{

g(0;y,z) = z (∗)

g(siw;y,z) = h(w;y,z,g(w;y,z)) ,

whereh(w;y,z, t) = cond( ;w,y, t). The embedding we propose gives the family of nets that implement
it in LALL , while, it is worth remarking, it is unknown how to representg(w;y,z) insideILAL .

Admittedly, the representation of a term ofSRN by a family of nets, rather than as a unique net, is
not standard. For example, one might be tempted to observe that every function with finite domain is
the initial fragment of some polynomial time function, soLALL representsevery function with finite
domain. Beware, however, thatnot every algorithmis in LALL . For example, in analogy with [7], we
show an algorithmexp that cannot exist as a net ofLALL because it calculates a non-polytime function.
exp will be defined using the traditionalnon-predicativerecursive schemes, so that it is not a program of
SRN. exp is defined as follows. We know that the two programsconcat(x;y), which concatenates two
strings of bits, anddouble(x; ) = concat(x;π1,0

1 (x; )) belong toSRN. Then, we can define the recursive
functionexp:

exp(0; ) = s1( ;π1,0
1 (0; )) exp(si( ;x); ) = double(exp(x; ); ) (i ∈ {0,1})

The programexp is not in SRN because of the position of the argument that drives the unfolding. This
reflects intoLALL , where⌈concat⌉l : S ,§S ⊢ §S and⌈double⌉l : S ⊢ §S exist, but⌈double⌉l

cannot be iterated because of the form of its type. So,⌈exp⌉l cannot be defined as a net ofLALL using
the constructions of this paper.

We conclude by an example about how the approach “SRNas family-of-proofs” we present here can
be rewarding. We consider the following program:

{

gt(0,y) = False

gt(six,y) = if (y= 0) then True else gt(x,pred(y)).

The programgt is such thatgt(x,y) = True iff |x| > |y|. It has a recursive definition more liberal than
the primitive recursion scheme, as the recursive call ofgt applies a function on the parametery that does
not drive the unfolding. Namely,gt incorporates adouble iteration. Certainly,gt cannot exist inSRN
in the form here above. Instead,LALL admits to representgt as follows:

gtC⊸S⊸B = λxC .λyS .π2 (x{S ⊗B}(step)(y⊗F))

stepS⊗B⊸S⊗B = λsS ⊗bB.b{S ⊗B}(0⊗T)
(

s(0⊗T)(λxB.λyS .y⊗F)
)

whereB,T,F are at page 69. The existence ofgt in LALL implies the existence of a family〈ordl 〉l∈N

of nets. Everyordl takes two Scott words withat most l bits, and gives them back sorted according to
their length. The definition of everyordl is a net ofLALL that we compactly write as aλ -term:

ordS⊗S⊸S⊗S

l = λxS ⊗yS .(λxS
1 ⊗xS

2 .λyS
1 ⊗yS

2 .BtoB(gt(StoCl [x1])y1)(y2⊗x2))(∇Sl x)(∇Sl y)

BtoBB⊸B = λxB.x{B}(Λγ .λwγ ⊗zγ .w⊗z)(Λγ .λwγ ⊗zγ .z⊗w)
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L(X) = ∀α.!(X ⊸ α ⊸ α)⊸ §(α ⊸ α) is the type of lists,

/0L(X) = λc!(X⊸α⊸α).λzα .z

sort
L(S )⊸§L(S )
l = λ tL(S ).t{L(S )}(insertl ) /0L(S )

insert
S⊸L(S )⊸L(S )
l = λnS .λ tL(S ).λc!(S⊸α⊸α).λzα .

(λxS ⊗ yα .cxy)((t putTop[c]l )(CoerS
1
l [n]⊗ z))

putTop[c]S⊸S⊗α⊸S⊗α
l = λaS .λbS ⊗ tα .(λ iS ⊗λ jS .i ⊗ c j t)(ordl a⊗b)

Figure 12: Insertion sort for Scott Words no longer thanl .

whereB= ∀γ .(γ ⊗γ)⊸ (γ ⊗γ) is a linear version of the booleans,StoCS⊸C
l is at page 71, and thesafe

duplication∇SS⊸S⊗S

l is at page 71.
Givenordl , we can write a family of insertion sorts that sort lists of Scott Words as much long as

l . Figure 12 describes one element of the family. We warn the reader about the syntax we use. It does
not perfectly adhere to the one in Figure 5, but nets would consume too much space. The effort to move
from the terms in Figure 12 to the nets ofLALL they represent should be a reasonably simple exercise.
We observe thatputTopl is a linear algorithm that manipulates only theheadof a given list. Instead,
insertl takes a number and a sorted list, and puts the number at the correct position of the list, so to
preserve the sorting. While performing an iteration,insertl doesnotadd any paragraph § in front of the
type of the output. The reason is that it exploits the generalscheme that allows to write a perfectly linear
predecessoron Church numerals in theλ -calculus [9]. Finally,sortl , iteratesinsertl in the usual way,
thus adding a § in front of its output type.

Future lines of research. We must say that the representation ofSRN as a family of nets ofLALL
that we present in this work has been an alternative approachto the standard one, which would explore
the relations betweenSRN and stratification by mapping a single term ofSRN into a single net. That
standard approach has been developed in [11, 10, 13]. Those works make some progress as compared
to [8]. This means that they identify a Light Logic that strictly containsILAL , and which allows to
represent a strict extension ofBC−. However, the wholeSRNstill escapes any full representation inside
a Light Logic. So, it has been natural to look for an alternative approach; and this brought us to this
work.

Naturally enough, future work is about “integrating” bothby level technologyand multimodality.
Multimodality is in the frameworkMS developed in the previously cited works [11, 10, 13]. The con-
jecture is that the two technologies together may lead to a more refined proof theoretical representation
of the principles underpinning the definition ofSRN, and of the predicative analysis it encodes, possibly
increasing the set of algorithms that we can represent inside Light Logics.
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