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From Context to Distance: Learning Dissimilarity for Categorical Data
Clustering

DINO IENCO, RUGGERO G. PENSA and ROSA MEO, University of Torino, Italy

Clustering data described by categorical attributes is a challenging task in data mining applications. Unlike numerical at-
tributes, it is difficult to define a distance between pairs of values of a categorical attribute, since the values are not ordered.
In this paper, we propose a framework to learn a context-based distance for categorical attributes. The key intuition of this
work is that the distance between two values of a categorical attribute Ai can be determined by the way in which the values
of the other attributes Aj are distributed in the dataset objects: if they are similarly distributed in the groups of objects in
correspondence of the distinct values of Ai a low value of distance is obtained. We propose also a solution to the critical
point of the choice of the attributes Aj . We validate our approach by embedding our distance learning framework in a hi-
erarchical clustering algorithm. We applied it on various real world and synthetic datasets, both low and high-dimensional.
Experimental results show that our method is competitive w.r.t. the state of the art of categorical data clustering approaches.
We also show that our approach is scalable and has a low impact on the overall computational time of a clustering task.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—data mining; I.5.1 [Pattern
Recognition]: Clustering—similarity measures
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1. INTRODUCTION
Clustering is a popular data mining technique that partitions data into groups or clusters in such a
way that objects inside a group are similar, and objects belonging to different groups are dissimilar
[Han and Kamber 2000]. Clearly, the notion of similarity is central in such a process. When ob-
jects are described by numerical (real, integer) features, there is a wide range of possible choices.
Among them, probably the most popular metric is Euclidean distance (or 2-norm distance), which
is a special case of Minkowski distance (also called p-norm distance). Commonly, objects can be
considered as vectors in a n-dimensional space, where n is the number of features. Given two ob-
jects, the distance measure between them only depends on the difference between the values of the
feature vectors.

In data mining applications, however, data are often described by categorical attributes that take
values in a (usually) finite set of unordered nominal values. This makes it impossible even to rank
or compute differences between two values of the feature vectors. For categorical data the simplest
comparison measure is overlap [Kasif et al. 1998]. The proximity between two multivariate cate-
gorical entities is proportional to the number of attributes in which they match. Other metrics, such
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as the Jaccard coefficient, are derived from overlap and have been adopted in several (partitional
and hierarchical) clustering algorithms [Huang 1998; Guha et al. 1999; Andritsos et al. 2004].

Clearly, these distance metrics do not distinguish between the different values taken by the
attribute, since they only measure the equality between pair of values. This is a strong limita-
tion for a clustering algorithm, since it prevents to capture similarities that are clearly identi-
fied by human experts. For instance, given an attribute like City, which takes values in the set
{Paris,Rome, F lorence} it is obvious that Florence is more similar to Rome than to Paris, from
a geographic point of view. However, in some other contexts, Paris might be more similar to Rome,
since both of them are capitals, and they may share similar features.

In the literature some measures that take into consideration the context of the features, have also
been employed but refer to continuous data, e.g., Mahalanobis distance [Mahalanobis 1936].

In this paper we present a new methodology to compute a context-based distance between values
of a categorical variable and apply this technique to hierarchical clustering of categorical data. The
ultimate resolution is to consider also categorical variables for the determination of the similarities
of entities described by these variables. The ultimate analysis and application of a hierarchical clus-
tering based on these similarity measures is to build an ontology on the basis of a taxonomy of enti-
ties. For the introduction of our technique, consider the dataset described in figure 1(a), representing
the set Person. It has two categorical attributes: City{Milan, Turin, Florence} and Sex{Male,Female}.
The contingency table in Figure 1(b) shows how these values are distributed in the persons of the
dataset. We observe that City=Florence occurs only with Sex=Female and City=Turin occurs only
with Sex=Male. Conversely, City=Milan is satisfied both when Sex=Male and Sex=Female. From
this distribution of data, we infer that, in this particular context, Florence is more similar to Milan
than to Turin because the probability to observe a person of a given sex is closer.

Sex City
Male Turin

Female Milan
Male Turin
Male Milan

Female Florence
(a)

Turin Milan Florence
Female 0 1 1
Male 2 1 0

(b)

Fig. 1. Person: a sample dataset with categorical attributes (a) and its related contingency table (b).

From this example we can deduce that the distribution of the co-occurrence table may help to
define a distance between values of a categorical attribute. To this purpose, we propose a two-step
method described in the following.

Let us denote by F = {X1, X2, . . . , Xm} the set of m attributes describing the dataset instances.
Let us denote by Y ∈ F the target, a categorical attribute on whose domain values we want to learn
the distances.

(1) For Y , first identify a suitable context constituted by a subset of the attributes in F composed
of Xi ̸= Y , such that each attribute Xi belonging to the context is somehow “correlated” to
the attribute Y . This notion, that we will implement by means of the use of mutual information
between Y and the context attributes, helps in deriving a set of target related attributes.

(2) In a second time, employing the distribution of the values of Y and each of the context attributes,
we derive the measure of distance between the values of Y . For any pair of values (yi, yj) of
Y , we measure the distance between the distributions of yi and yj in objects having the same
values for the context attributes.

Concerning the first point, in this paper, we focus on data-driven methods for selecting a good
context for a given attribute. However, an analyst could perform this context selection manually, ex-
ploiting its knowledge about the domain. In a knowledge-driven approach, for each given attribute,
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the analyst could select a subset of attributes of interest, following its knowledge base. We come
back to the first example reported beforehand: when we consider the distance between two values
of the City attribute, an analyst could decide to compute such a distance using, as context, some
income-related features. Another possibility is to compute distances on a context based on health
characteristics (if any). These two contexts would probably give rise to two different distance mea-
sures for the values of the City attribute. This difference might not be so evident when inferring the
context directly from the data. Although these points deserve to be discussed further, in this paper
we do not consider a user-driven context selection framework, since its validation would be rather
subjective and application-dependent. Instead, here, we focus on a fully unsupervised framework,
which, in our opinion, allows to produce fair experimental comparisons with other approaches,
without loss of generality.

The key contributions of our work are the following:

— we introduce a new method, called DILCA, to compute the distance between any pair of values
of a specific categorical attribute; notice that this distance-learning approach is independent of
any subsequent learning on the actual instances (e.g., nearest-neighbors classification or distance-
based clustering);

— we provide two methods for the selection of a suitable context: (i) a parametric method, and (ii)
a fully automatic one;

— we show the impact of DILCA within an agglomerative hierarchical clustering algorithm and
compare it with other three groups of algorithms from the state of the art; we evaluate results by
means of three evaluation measures;

— we study the scalability of DILCA with respect to both the number of instances and the number
of attributes: we show that DILCA can manage thousands of categorical attributes;

— we provide a study on the computational complexity of our solution;
— we provide an empirical study in which we break down the computational time of a usual cluster-

ing algorithm in all the times required by its successive steps. We show that the distance learning
time due to DILCA constitutes the lowest fraction on the overall total.

The remainder of this paper is organized as follows: Section 2 briefly explores the state of the
art in categorical data clustering. The theoretic fundamental details are presented in Section 3 while
the technical issues of our distance learning approach are provided in Section 4. In Section 5 we
present the results of a comprehensive set of experiments on low and high-dimensional real-world
and synthetic data, as well as a scalability analysis. Finally, Section 6 concludes.

2. RELATED WORK
Clustering is an important task in data mining, in information retrieval and in a wide range of analyt-
ical and scientific applications [Han and Kamber 2000]. The goal of clustering is to find a partition
of the instances by optimization of a predefined distance measure or an objective function. The
problem is particularly difficult when categorical attributes are involved in the clustering process
because a definition of the distance between the values of a categorical attribute is not immediately
available. Many approaches to categorical data clustering have been proposed. Most of them try to
optimize a global objective function without using any notion of distance between the values of the
categorical attribute. Furthermore they suffer in terms of efficiency and time complexity with large
data sets.

One of the first works in the field of categorical clustering is K-MODES [Huang 1998]. It extends
K-Means algorithm for categorical data. A cluster is represented as a single instance, or data point,
in which each attribute assumes the most frequent value in the database. Therefore, in K-MODES
the similarity of an unlabeled data point and a cluster representative can be simply computed by the
overlap distance [Kasif et al. 1998].

Another approach to categorical clustering is ROCK [Guha et al. 1999]. It employs links between
pairs of data points in order to measure their similarity/proximity. An instance belongs to the neigh-
borhood of another instance if the Jaccard similarity between them exceeds a user-defined threshold.
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It heuristically optimizes a cluster quality function with respect to the number of links between the
cluster members. The basic algorithm is hierarchical and has cubic complexity in the size of the data
set, which makes it unsuitable for large datasets.

CACTUS [Ganti et al. 1999] is a combinatorial search-based algorithm employing summary in-
formation of the dataset. CACTUS first computes the projections of the data points onto the indi-
vidual attributes. Then the projections are combined to form clusters over multiple attributes which
are validated against the original dataset. In the validation phase if the support (cardinality) of some
discovered cluster is less than a user-specified threshold, the cluster is removed. This approach op-
timizes a local function of the partition obtained by the clustering process.

A number of approaches have been proposed based on information theory. COOLCAT [Barbara
et al. 2002] is based on the idea of entropy reduction within the generated clusters. It tries to optimize
a global function based on entropy. It first bootstraps itself using a sample of maximally dissimilar
points from the dataset to create initial clusters. The remaining points are then added incrementally.
Naturally, this approach is highly dependent on the order of point selection. To mitigate this depen-
dency, the authors propose to remove the "worst fitting" points at defined times during the execution
and cluster them again. Li et al. [2004] propose an iterative algorithm to find optimal data partitions
that minimize an entropy-based criterion. In this approach the authors employ a Monte Carlo pro-
cess to randomly swap instances between clusters. Updates are retained when entropy decreases.
The algorithm iterates the process until clusters remain unchanged.

LIMBO [Andritsos et al. 2004], is a scalable hierarchical categorical clustering algorithm built
on the Information Bottleneck framework. As a hierarchical algorithm, LIMBO is not as fast as
partitional methods. The algorithm builds Distributional Cluster Features (DCF) trees to summarize
the data in k clusters. Each node in a DCF tree contains statistics on a subset of instances. Starting
from DCFs and the number of clusters k, a scan over the whole data set is performed to assign
each instance to the cluster with the closest DCF. In the article the authors introduce an approach to
define a distance measure for categorical tuples using the IB framework, but they do not experiment
their intuition.

CLICKS [Zaki and Peters 2005] is a clustering algorithm based on graph/hyper graph partitioning.
In general the cost of clustering with graph structures is acceptable, provided that the underlying
data is low dimensional. CLICKS finds clusters in categorical datasets based on a search method for
k-partite maximal cliques. The vertexes of the graph represent the value of the different attributes.
In the graph there is an edge between two vertexes if the two attribute-values occur in the same
instance. All maximal k-partite cliques in the graph are enumerated and the support of the candi-
date cliques within the original dataset is verified to form the final clusters. The crucial step of the
algorithm is the computation of the strongly connected components, pairs of attribute values whose
co-occurrence is above a specified threshold.

[Boriah et al. 2008] present an evaluation of different similarity measures for categorical data. The
authors use more then ten measures for categorical data and they experiment their performance using
the anomaly detection task. All of these measures use different heuristics to weigh the mismatch of
the values of the same attribute. Differently from our approach, all these measures use only the
distribution of the single attribute to compute similarity/distance between different values of the
same attribute. Our approach, instead, uses the cross-information between attributes to weigh the
mismatch. This type of information is extracted using the notion of context that we explain in the
following section.

Another notable attempt of computing a distance for categorical attributes is [Ahmad and Dey
2007] who propose a probabilistic framework which considers the distribution of all the attributes in
the dataset. To compute the distance between two values yi and yj of a categorical attribute Y ∈ F ,
they propose to partition the set of remaining attributes into two sets W and W̃ (W ∪ W̃ = F \ Y )
such that W is related to yi, and W̃ is related to yj . The retained partitioning is the one that optimizes
p(yi|W )− p(yj |W̃ ). Then, they consider p(yi|W )− p(yj |W̃ ) as the distance value between yi and
yj . In [Ahmad and Dey 2007], the authors only compare their approach with K-MODES. Moreover,
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since they consider distributions for all attributes, this method is not suitable for noisy and high-
dimensional datasets.

Notice that learning distances between categorical attributes in supervised settings is quite an old
task in machine learning. For instance, in [Stanfill and Waltz 1986], the authors propose a different
approach to compute distances between symbols for a prediction task. In particular, they propose a
“value difference metric” that takes into account how two values of an attribute are distributed w.r.t.
a goal feature Y in the following way:

vdm(xi, xj) =

√ ∑
yk∈Y

P (yk|xi)2
∑
yk∈Y

|P (yk|xi)− P (yk|xj)|2

where P (yk|xi) is the probability of class yk given that attribute X has the value xi. This metric only
considers how an attribute is distributed w.r.t. a class variable. Thus, it is only suitable for supervised
problems. Moreover, the computed distance is asymmetric, i.e., vdm(xi, xj) ̸= vdm(xj , xi).

3. THE DILCA APPROACH
In this section we present DILCA (DIstance Learning for Categorical Attributes) for computing
distances between any pair of values of a categorical attribute.

Let us consider the set F = {X1, X2, . . . , Xm} of m categorical attributes. Let D =
{d1, d2, . . . , dn} be the dataset of instances defined over F .

We denote by a lower case letter xj ∈ Xi a specific value of an attribute Xi. We refer to the
cardinality of an attribute (also referred to as a feature) Xi as |Xi|.

We denote by Y the target attribute, which is a specific attribute in F that constitutes the target
of the method, that is, on whose values we need to compute the distances. During the discussion
if we need to distinguish an attribute in F from another one in the context we adopt the notation
Xi. Otherwise, if we need to refer to a generic context attribute, distinguishing it with respect to the
target attribute Y , we use simply X .

From the example in Section 1 it turns out that the distribution of values of an attribute X can be
informative about the way in which another attribute Y is distributed in the dataset objects. Thanks
to our DILCA framework we can infer a context-based distance between any pair of values (yi, yj)
of the target attribute Y on the basis of the similarity between the probability distributions of yi and
yj given the context attributes, called context(Y ) ⊆ F \ Y .

The core part of our approach consists in computing the distance between each pair of values of
the target attribute Y . To compute the distance between yi and yj where yi ∈ Y , yj ∈ Y we use the
following formula:

d(yi, yj) =

√∑
X∈context(Y )

∑
xk∈X(P (yi|xk)− P (yj |xk))2∑

X∈context(Y ) |X|
(1)

For each context attribute Xi we compute the conditional probability for both the values yi and
yj given the values xk ∈ Xi and then we apply the Euclidean distance. The Euclidean distance
is normalized by the total number of considered values. We obtain the total number of values by∑

X∈context(Y ) |X|.
Our distance measure is an application of the Euclidean distance. As such, our definition of

distance is a metric. With our formulation we can see that our distance is bounded between 0 and 1:
0 ≤ d(yi, yj) ≤ 1.

This definition of distance strongly depends on the context associated to each attribute. How to
choose this context is then a crucial point in our approach, since a wrong selection would lead
to weak clustering results. As we anticipated in Section 1, the analyst is free to determine an
application-specific context for each attribute, exploiting her/his knowledge on the domain. Nev-
ertheless, in the following, we provide two automatic data-driven methods that, for each given at-
tribute, determine a suitable context.
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3.1. Context selection
The selection of a good context is not trivial, particularly when data are high-dimensional. In or-
der to simplify the determination of the context, we investigate the problem of selecting a good
(informative) set of features w.r.t. a given one. This is a classic problem in data mining named
feature selection. Feature selection is a preprocessing step of data mining. Its goal is to select a
subset of relevant and not redundant features and discard all the other ones w.r.t. a given class at-
tribute (supervised feature selection [Guyon and Elisseeff 2003]). In this branch of research many
approaches for measuring the correlation/association between two features have been proposed. An
interesting metric is the Symmetric Uncertainty, introduced in [Yu and Liu 2003]. This measure is an
association-based measure inspired by information theory. Symmetric Uncertainty is derived from
entropy: it is a measure of the uncertainty of a random variable. The entropy of a random variable
Y is defined as:

H(Y ) = −
∑
i

P (yi) log2(P (yi))

where P (yi) is the probability of the value yi of Y . The entropy of Y after having observed the
values of another variable X is defined as:

H(Y |X) = −
∑
j

P (xj)
∑
i

P (yi|xi) log2(P (yi|xi))

where P (yi|xi) is the probability that Y = yi after we have observed that X = xi. The information
about Y provided by X is given by the Information Gain [Quinlan 1993] which is defined as follows:

IG(Y |X) = H(Y )−H(Y |X)

When IG(Y |Xi) > IG(Y |Xj) then the feature Xi is more correlated to Y than Xj . Moreover, In-
formation Gain is symmetrical for two random variables X and Y [Yu and Liu 2003]. Symmetrical
Uncertainty is then defined as follows:

SU(Y,X) = 2 · IG(Y |X)

H(Y ) +H(X)
(2)

It compensates for Information Gain’s bias toward attributes with more values and normalizes
its values to the range [0,1] (1 indicates that knowledge of the value of either Y or X completely
predicts the value of the other variable; 0 indicates that Y and X are independent).

During the step of context selection, we select a set of context attributes for a given target attribute
Y . This context is such that the attributes Xi belonging to this set have a high value of SU(Y,Xi).
We denote the Symmetric Uncertainty of Xi for the target Y by SUY (Xi). The task of determination
of a suitable context is not trivial, because the decision of the adequate number of attributes for
context(Y ) is not immediate.

So far, we have considered information theory measures for categorical attributes only. However,
we can apply these metrics to the case of mixed categorical and continuous attributes using differen-
tial entropy [Verdugo and Rathie 1978], which extends the idea of entropy to continuous probability
distributions:

H(X) = −
∫
X
f(x) log f(x)dx

where X is the domain (support) of X and f(x) is the probability density function of X . When
f comes from a standard probability distribution (e.g., normal, uniform, exponential) the entropy
can be computed directly [Verdugo and Rathie 1978]. Otherwise, it is possible to discretize the
continuous attributes and use the metrics described beforehand for the case of categorical attributes.

In this work we propose two alternative ways to adopt the Symmetric Uncertainty for the selection
of an adequate context. The first one is parametric and employs a heuristic based on the mean
value of SU for a specific target attribute Y . This solution is suitable when a user has enough
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information about the distribution of the attribute values inside the dataset. The second one is non
parametric. This solution uses a well-known strategy in the feature selection field. This strategy
allows to compute a good context(Y ) for Y and eliminates loosely informative attributes (called
redundant) inside the specific context(Y ). In detail, the two strategies are performed as follows:

(1) The first heuristic is based on the mean value of SU for a specific target attribute Y . The mean
of this quantity is:

mean(SUY ) =

∑
Xi∈F\Y SUY (Xi)

|F\Y |
(3)

For the determination of the context of the target attribute Y we use the attributes that satisfy
the following inequality:

context(Y ) = {Xi ∈ F |Xi ̸= Y ∧ SUY (Xi) ≥ σ ·mean(SUY )}
where σ ∈ [0, 1] is a trade-off parameter that controls the influence of the mean value. In the
paper we refer to this approach with DILCAM .
According to this heuristic, at least one attribute is assigned to context(Y ). This is simple to
demonstrate. If SUY (Xi) is the same for all Xi then SUY (Xi) = mean(SUY ) for all Xi; in
this case all Xi would be selected in context(Y ). Otherwise, there exists at least one attribute
Xi such that SUY (Xi) ≥ mean(SUY ). Then Xi would be selected.

(2) The second approach is based on the FCBF algorithm for feature selection proposed in [Yu
and Liu 2003]. In this non-parametric approach we consider two issues: the relevance and the
redundancy between attributes.

Relevance. For the target attribute Y , we measure the relevance of all the attributes Xi ̸= Y
in F . An attribute X1 is more relevant than a second attribute X2 with respect to the target
Y if SUY (X1) ≥ SUY (X2). We rank this set of attributes according to decreasing values
of SUY (Xi). Therefore, the most relevant features are at the top of the ranking.
Redundancy. After the ranking step we remove all those attributes that are redundant. A
feature Xj is redundant with respect to Xi if Xi is more relevant with respect to the target
than Xj (according to the definition of relevance). Furthermore, the relevance of Xi for
the determination of Xj is high (which means that they are correlated) and higher than the
relevance of Xj with the target. In other terms, SUXi(Xj) > SUY (Xj). As a consequence,
Xj can be removed from the ranked list of attributes.

With these two steps we obtain a context(Y ) that automatically contains relevant and not
redundant attributes w.r.t. Y attribute. In the paper we refer to this approach with the name
DILCARR (the double ’R’ stands for relevance and redundancy).

4. DILCA IMPLEMENTATION
In this section we introduce the algorithmic details for DILCA. Our approach is based on two
steps:

(1) Context selection: selection of a relevant subset of the whole attributes set F that we use as the
context for the determination of the distances on the values of a given attribute Y ;

(2) Distance computation: computation of the distance measure between pair of values of Y using
the context defined in the previous step.

For the first step, we describe the two solutions given in the previous section, and we discuss the
complexity of the two approaches for the problem of learning a good context for a target variable.

In Algorithm 1 we show the adopted procedure for the computation of the correlation matrix
between each pair of attributes based on Symmetric Uncertainty. This algorithm takes as parameter
the entire data set D. Then, function ComputeCO(D,X, Y ) scans the dataset D once and for each
instance of D it updates the contingency tables (COXiY ) of each pair of attributes (Xi, Y ), where
Y is any categorical attribute in F , taken as the target, and Xi any other attribute in F . These tables
are used to compute the Symmetric Uncertainty between attributes to be stored in matrixSU .
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Each column of matrixSU is a vector that contains the Symmetrical Uncertainty between a
certain attribute Xi and all the other ones Xj ∈ F . A particular column of matrixSU regards the
symmetrical uncertainty of the target Y . Let us denote the column in matrixSU that regards the
Symmetrical Uncertainty of attribute Y as V ectorSUY . (Similarly, for any other attribute X ∈ F ,
we have V ectorSUX ). Each attribute X ∈ F is used as an index of V ectorSUY . V ectorSUY at
the position identified by X contains SUY (X). We denote it by V ectorSUY [X].

4.1. DILCAM

In Algorithm 2 we propose the parametric approach in which context(Y ) is built. At first, it com-
putes the mean of the vector V ectorSUY which constitutes a column of matrixSU . Then, at lines
4 and 5, it selects the attributes that will be included in the context of Y . When the features are
chosen, DistanceComputation function (see successive Algorithm 4) computes the distance matrix
between each pair of values of the attribute Y by application of equation (1).

4.2. DILCARR

In Algorithm 3 we extend to an unsupervised setting the FCBF approach proposed in [Yu and Liu
2003]. FCBF selects a relevant and non redundant set of attributes for a given attribute Y . In the
supervised approach the target Y is the class attribute. FCBF uses some heuristic about attributes.
It assumes that if two attributes Xi and Xj are relevant and one of them is found to be redundant
then it is removed.

For the context selection step of DILCARR (see Algorithm 3) we implement the idea just ex-
plained as follows. Given that both Xi and Xj are relevant to the target, one of them is considered
redundant if the Symmetrical Uncertainty that links them is higher than the Symmetrical Uncer-
tainty that links each of them to the target. In other terms, if both the following conditions are
satisfied:

(1) SUXj (Xi) > SUY (Xi)
(2) SUXj (Xi) > SUY (Xj)

In particular, Xj is removed if Xi is more relevent to the target Y . In terms of SU it is: SUY (Xj) <
SUY (Xi).

Then, after the context of Y is formed, we compute the distance matrix on the values of Y
similarly to DILCAM , by DistanceComputation function.

ALGORITHM 1: computeCorrelationMatrix(D)

forall the X,Y ∈ F |X ̸= Y do
COXY = ComputeCO(D,X, Y );
matrixSU [X][Y ] = SU(COXY );

end
return matrixSU ;

4.3. Complexity
Before computing the distance matrix on the target values, we must store the co-occurrence of the
values of any pair of attributes (X,Y ). This needs the computation of l matrices COX,Y , with
l = m ∗ (m − 1)/2 the number of all the pairs of attributes in F and m the total number of
attributes in F . In order to build these matrices we need to perform a complete scan of the entire
data set (which has a complexity of n). Later, we will use the co-occurrence matrices COX,Y also
to compute matrixSU . matrixSU is m × m. Follows the complexity of the construction of the
distance matrix in the two approaches DILCAM and DILCARR:
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ALGORITHM 2: DILCAM (V ectorSUY , Y , σ)
mean = computeMean(V ectorSUY );
context(Y ) = ∅;
forall the X ∈ F do

if V ectorSUY [X] ≥ σ ·mean then
insert(X ,context(Y ));

end
end
DistMatrixY = DistanceComputation(Y , context(Y ));
return DistMatrixY ;

ALGORITHM 3: DILCARR(matrixSU , Y )
V ectorSUY = MatrixSU [Y ];
context(Y ) = {X ∈ F |X ̸= Y };
/* relevance step */
sort V ectorSUY in descending order;
forall the V ectorSUY [X] starting from the top position and s.t. X ̸= Y do

V ectorSUX = MatrixSU [X];
forall the V ectorSUY [K] s.t. V ectorSUY [K] ≤ V ectorSUY [X] do

/* redundancy step */
if (V ectorSUX [K] ≥ V ectorSUY [K]) then

erase attribute K from context(Y );
erase V ectorSUY [K];

end
end

end
DistMatrixY = DistanceComputation(Y , context(Y ));
return DistMatrixY ;

ALGORITHM 4: DistanceComputation(Y , context(Y ))

forall the yi, yj ∈ Y |yi ̸= yj do

DistanceMatrix[yi][yj ] =

√∑
X∈context(Y )

∑
xk∈X (P (yi|xk)−P (yj |xk))

2∑
X∈context(Y ) |X| ;

end
return DistanceMatrixY ;

— DILCAM : from matrixSU we compute mean(SUY ) and then select the right context making
use of σ. For the computation of the distance matrix on the values of each target attribute we can
use the co-occurrence matrices COX,Y without the necessity of further scans of the dataset. From
this, we derive that our algorithm only needs to scan the dataset once. In conclusion, DILCAM

has complexity O(nm2), with n the number of instances and m the number of attributes.
— DILCARR: Using matrixSU , for each attribute we select the context with the algorithm 3.

From the study in [Yu and Liu 2003] the authors show that the complexity of this approach is
O(m logm). In our case we perform this analysis for each attribute and we see that the complex-
ity becomes O(m2 logm). Again, to compute the distance matrix for each attribute we can use
the co-occurrence matrices COX,Y without the necessity of further scans of the dataset. From
this analysis we can infer that the complexity of DILCARR is O(nm2 logm).
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5. EXPERIMENTS AND RESULTS
In this section we present a comprehensive evaluation of our approach. We coupled DILCA with a
standard hierarchical clustering method. We used Ward’s hierarchical clustering algorithm. It uses as
input a matrix with the distances between each pair of objects in the dataset. In order to compute this
matrix we must define the distance between two objects. In the definition of the distance between
two objects, we can combine the distances between the pairs of values of any attribute in the two
objects. To obtain the distance between each pair of values of the categorical attributes we apply
DILCAM or DILCARR. From a procedural point of view, each categorical attribute is taken as
the target attribute and each of the remaining attributes forms a candidate for the target context.
At this point we obtain a set of attribute distance matrices that we denote by {distMatrixXi} as
returned by procedures DILCAM and DILCARR, described by Algorithms 2 and 3. Since our
method provides the distance between pairs of values of categorical attributes, this distance can be
integrated in the standard distance measures (like the euclidean one) in an m-dimensional space as
follows:

distObj(ok, oj) =

√ ∑
Xi∈F

distMatrixXi [ok.Xi][oj .Xi]2 (4)

where distObj(ok, oj) is the distance between the two objects ok and oj ; ok.Xi and oj .Xi are the
values of the attribute Xi in objects ok and oj respectively; distMatrixXi [ok.Xi][oj .Xi] is the
distance which could be obtained using DILCAM or DILCARR between the two values ok.Xi

and oj .Xi.

5.1. Competitors
We compare our approaches with three different groups of competitors and we evaluate the obtained
results using three objective evaluation measures described in the Section 5.2.

5.1.1. Comparison using Base-Line methods. We perform a first set of experiments comparing
our approaches with two base-line methods.

The first base-line is a distance based on the Jaccard similarity. It is a normalized version of the
overlap [Kasif et al. 1998]. Given two instances, we compute the Jaccard distance as:

distJaccard(ok, oj) = 1−
∑

Xi∈F 1(ok.Xi = oj .Xi)

2 · |F | −
∑

Xi∈F 1(ok.Xi = oj .Xi)

where 1(· · · ) is the indicator function.
The second base-line that we employ is the Pearson distance. This measure is derived from the

Pearson’s coefficient [Han and Kamber 2000]. Given two variables, the Pearson’s correlation co-
efficient is defined as the covariance of the two variables divided by the product of their standard
deviations. The Pearson’s correlation coefficient ranges between -1 and 1. It also uses negative val-
ues to indicate that the two variables are anti-correlated. Given two vectors a,b ∈ Rn, the Person’s
coefficient is given by:

ρ =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1 (ai − ā)
2
√∑n

i=1

(
bi − b̄

)2
where ā and b̄ are the vector means. We define the Pearson distance as 1 − ρ. Since the Pearson
distance is designed for numerical vectors, we adapt this metric to categorical attributes. Given a
target attribute Y , for each value yi ∈ Y we build a vector whose components are the co-occurrences
of yi with each of the values of the attributes in {F \ Y }. Using this representation we compute the
Pearson distance between each pair of values of the attribute Y . We repeat this process for each
attribute Y . At the end we obtain a set of distance matrices and we employ Equation 4 to compute
the distance between two objects. We coupled both base-line approaches with Ward’s clustering and
refer to the first base-line method as JACCARD and to the second base-line method as PEARSON.
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5.1.2. Comparison using Categorical Clustering. In this second bunch of experiments we want to
compare the performance of our approaches w.r.t. state-of-the-art methods for clustering categorical
data. To do this we compare DILCAM and DILCARR with ROCK [Guha et al. 1999] and LIMBO
[Andritsos et al. 2004]. We also implemented the distance learning method described in [Ahmad
and Dey 2007] within Ward’s clustering algorithm: we refer to this solution as DELTA. Also for the
DELTA approach we use Equation 4 to compute the distance between two objects.

5.1.3. Comparison using Similarity measures for categorical data. For the last set of experiments,
we implemented three similarity measures proposed in [Boriah et al. 2008] (please, refer to this
paper for further details). In particular we use the LIN, OF (Occurrence Frequency) and Goodall3
measures that are shown to outperform the other discussed similarity/distance measures. The LIN
measure is derived from Information Theory, and it is related to compression. The OF measure
assigns high similarity when the mismatch involves two frequent values (and low similarity for
values that are less frequent). The Goodall3 measure assigns high similarities if the matching values
are infrequent regardless of the frequencies of the other values. Hence, to transform them in distance
we follow the suggestion given in [Boriah et al. 2008]. Given a similarity measure sim we obtain
the distance transformation using the following strategy:

dist =
1

1 + sim

We can adapt each of these measures to produce a set of matrices (like DILCAM and DILCARR).
As for the previous groups of competitors, we compute the distance between two objects using
Equation 4 and we couple them with Ward’s clustering algorithm. In the experiments, we refer to
these three methods as LIN, OF and GOODALL3.

5.2. Clustering Evaluation Metrics
The definition of the clustering quality is often a hard and subjective task. Therefore, we use three
objective criteria to evaluate the results: Purity, Normalized Mutual Information and Adjusted Rand
Index. These methods make use of the correspondence between the original class information of
each object and the cluster to which the same objects have been assigned.

We denote by C = {C1 . . . CJ} the partition built by the clustering algorithm on objects, and by
P = {P1 . . . PI} the partition inferred by the original classification. J and I are respectively the
number of clusters |C| and the number of classes |P|. We denote by n the total number of objects.

The first measure of the quality of a clustering solution is purity in terms of the class which the
cluster objects belong to. In order to compute purity each cluster is assigned to the majority class of
the objects in the cluster. Then, the accuracy of this assignment is measured by counting the number
of correctly assigned objects divided by the total number of objects n:

Purity(C,P) =
1

n

∑
j

maxi|Cj ∩ Pi| (5)

Notice that Purity is sensible to the presence of imbalanced classes.
The second metric provides an information that is independent from the number of clusters [Strehl

et al. 2002]. This measure takes its maximum value when the clustering partition matches com-
pletely the original partition. We can consider NMI as an indicator of the purity of the clustering
result. NMI is computed as the average mutual information between any pair of clusters and classes:

NMI =

∑I
i=1

∑J
j=1 xij log

n∗nij

ninj√∑I
i=1 ni log

ni

n

∑J
j=1 nj log

nj

n

(6)

where nij is the cardinality of the set of objects that occur both in cluster i and in class j; ni is
the number of objects in cluster i; nj is the number of objects in class j; n is the total number of
objects. I and J are respectively the number of clusters and the number of classes.
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Dataset Type Instances Features Values Classes
Audiology Real 226 59 154 24
Votes Real 435 16 32 2
Mushroom Real 8124 22 117 2
Car Real 1728 6 21 4
Dermatology Real 336 34 131 6
Soybean Real 683 35 100 19
Adult Real 4884 14 120 2
Post-operative Real 90 8 25 3
Titanic Real 2201 3 10 2
Hepatitis Real 155 19 38 2
Breast-cancer Real 286 9 53 2
Ballons Real 20 4 10 2
SynA Synth 1000 50 1000 5
SynB Synth 1000 50 2500 5
SynC Synth 1000 100 2000 5
SynD Synth 1000 100 5000 5

Fig. 2. Datasets characteristics

The third metric is the adjusted Rand index [Hubert and Arabie 1985]. Let a be the number of
object pairs belonging to the same cluster in C and to the same class in P. This metric captures
the deviation of a from its expected value corresponding to the hypothetical value of a obtained
when C and P are two random, independent partitions. The expected value of a denoted by E[a] is
computed as follows:

E[a] =
π(C) · π(P )

n(n− 1)/2

where π(C) and π(P ) denote respectively the number of object pairs from the same clusters in C
and from the same class in P. The maximum value for a is defined as:

max(a) =
1

2
(π(C) + π(P ))

The agreement between C and P can be estimated by the adjusted rand index as follows:

ARI(C,P) =
a− E[a]

max(a)− E[a]
(7)

Notice that this index can take negative values, and when AR(C,P) = 1, we have identical parti-
tions.

5.3. Datasets for Categorical Clustering Evaluation
For the evaluation of our distance learning approach on categorical data, we used two collections of
datasets.

The first collection consists in real world data sets downloaded from the UCI Machine Learning
Repository [Blake and Merz 1998].

The second collection contains synthetic datasets produced by a data generator [Melli 2008],
which employs a Gaussian distribution to generate the data.

The main characteristics of the datasets are summarized in Figure 2. Notice that some datasets
contains numerical variables. In order to perform experiments on it and compare DILCA with some
of the competitors that are able to treat only categorical attributes, we had to discretize the continu-
ous attributes using the supervised method proposed in [Fayyad and Irani 1993].
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Dataset DILCAM DILCARR DELTA ROCK LIMBO
Audiology 38.05% 39.82% 35.84% 32.30% 46.01%
Vote 91.95% 89.43% 89.43% 83.90% 87.12%
Mushroom 89.02% 89.02% 89.02% 49.43% 88.95%
Soybean 68.08% 71.74% 71.60% 43.71% 55.64%
Dermatology 94.54% 97.27% 88.80% 84.97% 87.70%
Car 70.08% 70.08% 30.15% 70.08% 44.50%
Adult 68.59% 76.16% 64.95% 61% 68.22%
Post-operative 47.78% 35.56% 35.56% 91.11% 41.11%
Titanic 77.37% 60.84% 60.84% 98.96% 60.84%
Hepatitis 83.22% 69.67% 69.67% 99.35% 84.52%
Breast-Cancer 74.47% 74.47% 70.97% 97.20% 69.93%
Balloons 100% 100% 80% 90% 100%
SynA 99.2% 99.2% 73% 100% 87.6%
SynB 93.7% 93.5% 75.5% 56% 63.8%
SynC 84.2% 83.4% 34.79% 77.6% 48.7%
SynD 94.7% 92.8% 67.4% 98.7% 59.9%

Fig. 3. Purity results w.r.t. state-of-the-art categorical algorithms

Dataset DILCAM DILCARR DELTA ROCK LIMBO
Audiology 0.6006 0.6040 0.5604 0.3216 0.5122
Vote 0.6009 0.5278 0.4994 0.3446 0.4358
Mushroom 0.5938 0.5938 0.5938 0.05681 0.5684
Soybean 0.7902 0.7813 0.8161 0.6299 0.7458
Dermatology 0.9120 0.9519 0.8790 0.6372 0.8776
Car 0.0359 0.0359 0.0621 0.0359 0.0142
Adult 0.1272 0.0680 0.1894 0.0943 0.2077
Post-operative 0.0674 0.0289 0.0289 0.0527 0.0555
Titanic 0.1673 0.0235 0.0235 0.0357 0.0235
Hepatits 0.2403 0.1342 0.1342 0.0728 0.2878
Breast-Cancer 0.0741 0.0741 0.0765 0.1252 0.0957
Ballons 1.0 1.0 0.4325 0.2141 1.0
SynA 0.9790 0.9790 0.4427 1.0 0.7540
SynB 0.8548 0.8345 0.4167 0.3320 0.4458
SynC 0.643 0.6269 0.0215 0.4799 0.0916
SynD 0.8705 0.818 0.3652 0.0591 0.2337

Fig. 4. NMI results w.r.t. state-of-the-art categorical algorithms

5.4. Experimental Settings
In this section, we report on the performance results of our proposal, that consists in DILCAM and
DILCARR coupled with Ward’s hierarchical clustering.

We run the experiments on a PC with a 2.66GHz Intel Core 2 Duo processor, 1024MB of RAM
running Linux.

The experiments were conducted as follows: since the hierarchical algorithm returns a dendro-
gram which, at each level, contains a different number of clusters, we consider the level correspond-
ing to the number of clusters equal to the number of classes. This is done for each of the methods that
employ the hierarchical Ward’s clustering. Moreover, for DILCAM , we varied parameter σ between
0 to 1 with steps of 0.1, and we selected the value of σ which gave the best results. For ROCK, we
set the threshold parameter between 0.2 to 1 with steps of 0.05. Also for this algorithm we retained
the best obtained result. For LIMBO, we set ϕ parameter between 0 to 1 with steps of 0.25 and we
report the best result obtained. This parameter influences the information loss during the merging
phase.

5.5. Results
In the tables of Figures 3, 4 and 5 we report the results of the comparative evaluation against ROCK,
LIMBO and DELTA. When looking at the purity values, it may seem that ROCK achieves signif-
icantly better results than all other approaches for the following datasets: Post-operative, Titanic,
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Dataset DILCAM DILCARR DELTA ROCK LIMBO
Audiology 0.2103 0.2280 0.2104 0.0807 0.2836
Vote 0.7031 0.6207 0.6200 0.4563 0.5496
Mushroom 0.6090 0.6090 0.6090 -0.0011 0.6070
Soybean 0.5094 0.5109 0.5635 0.1734 0.4442
Dermatology 0.9158 0.9542 0.7234 0.4420 0.7179
Car 0.0129 0.0043 0.0043 0.0043 0.0367
Adult 0.1364 0.1696 0.0849 0.0453 0.1319
Post-operative 0.0616 -0.0128 -0.0128 0.0403 -0.0130
Titanic 0.2744 0.0002 0.0002 0.0186 0.0002
Hepatits 0.3903 0.1459 0.1459 0.0362 0.4337
Breast-Cancer 0.159 0.159 0.1533 0.0775 0.1504
Ballons 1.0 1.0 0.3262 0.1215 1.0
SynA 0.9803 0.9803 0.4554 1.0 0.7350
SynB 0.8457 0.8437 0.3563 0.2518 0.4016
SynC 0.6498 0.6302 0.0127 0.4631 0.0359
SynD 0.8717 0.8247 0.3589 0.0004 0.1825

Fig. 5. Adjusted Rand Index results w.r.t. state-of-the-art categorical algorithms

Dataset DILCAM DILCARR LIN OF GOODALL3
Audiology 38.05% 39.82% 42.48% 34.07% 41.14%
Vote 91.95% 89.43% 89.65% 86.90% 81.84%
Mushroom 89.02% 89.02% 89.02% 89.02% 89.02%
Soybean 68.08% 71.74% 72.18% 75.70% 70.13%
Dermatology 94.54% 97.27% 97.27% 84.42% 87.70%
Car 70.08% 70.08% 32.40% 41.67% 32.41%
Adult 68.59% 76.16% 62.63% 61.01% 61 %
Post-operative 47.78% 35.56% 40% 35.56% 37.78%
Titanic 77.37% 60.84% 60.84% 59.79% 59.79%
Hepatitis 83.22% 69.67% 80.64% 69.03% 71.61%
Breast-Cancer 74.47% 74.47% 68.53% 61.88% 56.64%
Balloons 100% 100% 80% 80% 80%
SynA 99.2% 99.2% 97.3% 86.7% 88.6%
SynB 93.7% 93.5% 90.2% 79.5% 82.8%
SynC 84.2% 83.4% 81.79% 52.8% 56.89%
SynD 94.7% 92.8% 96.3% 83.7% 83.4%

Fig. 6. Purity results w.r.t. advanced measures

Dataset DILCAM DILCARR LIN OF GOODALl3
Audiology 0.6006 0.6040 0.5536 0.4562 0.5535
Vote 0.6009 0.5278 0.5426 0.4226 0.3985
Mushroom 0.5938 0.5938 0.5938 0.5938 0.5938
Soybean 0.7902 0.7813 0.7988 0.8138 0.7845
Dermatology 0.9120 0.9519 0.9381 0.7333 0.8484
Car 0.0359 0.0359 0.0621 0.0634 0.0621
Adult 0.1272 0.0680 0.0295 0.1447 0.1448
Post-operative 0.0674 0.0289 0.0585 0.0380 0.0257
Titanic 0.1673 0.0235 0.0235 0.0168 0.0168
Hepatits 0.2403 0.1342 0.2594 0.2022 0.1816
Breast-Cancer 0.0741 0.0741 0.0599 0.0041 0.0227
Ballons 1.0 1.0 0.4325 0.4325 0.4325
SynA 0.9790 0.9790 0.9138 0.6702 0.7054
SynB 0.8548 0.8345 0.7751 0.593 0.6399
SynC 0.643 0.6269 0.595 0.2032 0.2582
SynD 0.8705 0.818 0.882 0.6188 0.612

Fig. 7. NMI results w.r.t. advanced measures

Hepatitis and Breast-cancer. However, when we inspected the partitions returned by ROCK, we
discovered that for these datasets, this algorithm generates some very small and pure clusters (con-
taining few instances of the same class) and some huge clusters containing instances from different
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Dataset DILCAM DILCARR LIN OF GOODALl3
Audiology 0.2103 0.2280 0.1480 0.1025 0.1806
Vote 0.7031 0.6207 0.6280 0.5419 0.4040
Mushroom 0.6090 0.6090 0.6090 0.6090 0.6090
Soybean 0.5094 0.5109 0.5577 0.5408 0.5019
Dermatology 0.9158 0.9542 0.9507 0.6754 0.7023
Car 0.0129 0.0043 0.0129 0.0544 0.0129
Adult 0.1364 0.1696 0.0555 0.0398 0.0260
Post-operative 0.0616 -0.0128 0.0278 -0.0156 -0.0161
Titanic 0.2744 0.0002 0.002 -0.0009 -0.0009
Hepatits 0.3903 0.1459 0.3488 0.1411 0.1791
Breast-Cancer 0.159 0.159 0.12 0.0139 0.0142
Ballons 1.0 1.0 0.3262 0.3262 0.3262
SynA 0.9803 0.9803 0.9339 0.6937 0.7297
SynB 0.8457 0.8437 0.7798 0.5786 0.632
SynC 0.6498 0.6302 0.5986 0.1735 0.1798
SynD 0.8717 0.8247 0.9092 0.6301 0.6201

Fig. 8. Adjusted Rand Index results w.r.t. advanced measures

Dataset DILCAM DILCARR JACCARD PEARSON
Audiology 38.05% 39.82% 45.13% 48.67%
Vote 91.95% 89.43% 86.2% 85.28%
Mushroom 89.02% 89.02% 89.02% 89.02%
Soybean 68.08% 71.74% 69.1% 75.4%
Dermatology 94.54% 97.27% 94.54% 87.43%
Car 70.08% 70.08% 32.4% 99.82%
Adult 68.59% 76.16% 58.87% 64.09%
Post-operative 47.78% 35.56% 40.0% 54.44%
Titanic 77.37% 60.84% 60.83% 77.32%
Hepatitis 83.22% 69.67% 74.83% 82.58%
Breast-Cancer 74.47% 74.47% 61.53% 74.47%
Balloons 100% 100% 80% 100%
SynA 99.2% 99.2% 93.0% 100%
SynB 93.7% 93.5% 87.2% 90.5%
SynC 84.2% 83.4% 67% 70.2%
SynD 94.7% 92.8% 91.5% 92.1%

Fig. 9. Purity results w.r.t. base-line measures

Dataset DILCAM DILCARR JACCARD PEARSON
Audiology 0.6006 0.6040 0.6014 0.476
Vote 0.6009 0.5278 0.4039 0.4363
Mushroom 0.5938 0.5938 0.5938 0.5938
Soybean 0.7902 0.7813 0.7881 0.7731
Dermatology 0.9120 0.9519 0.8997 0.8089
Car 0.0359 0.0359 0.0621 0.0358
Adult 0.1272 0.0680 0.0811 0.1293
Post-operative 0.0674 0.0289 0.0211 0.055
Titanic 0.1673 0.0235 0.0234 0.1673
Hepatits 0.2403 0.1342 0.1775 0.2423
Breast-Cancer 0.0741 0.0741 0.0188 0.0741
Ballons 1.0 1.0 0.4325 1.0
SynA 0.9790 0.9790 0.8079 1.0
SynB 0.8548 0.8345 0.7126 0.7757
SynC 0.643 0.6269 0.3971 0.4286
SynD 0.8705 0.818 0.7587 0.7772

Fig. 10. NMI results w.r.t. base-line measures

classes. Purity is biased by this unbalanced partitioning, but, if we look at NMI and ARI results,
the values of these two metrics are lower than the values computed for DILCA in most cases. In
this group of experiments, both DILCAM and DILCARR outperform the others in most cases (12
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Dataset DILCAM DILCARR JACCARD PEARSON
Audiology 0.2103 0.2280 0.2668 0.1952
Vote 0.7031 0.6207 0.5218 0.4969
Mushroom 0.6090 0.6090 0.6090 0.6090
Soybean 0.5094 0.5109 0.4966 0.4539
Dermatology 0.9158 0.9542 0.9086 0.684
Car 0.0129 0.0043 0.0129 0.0042
Adult 0.1364 0.1696 0.0257 -0.0028
Post-operative 0.0616 -0.0128 -0.0218 0.0269
Titanic 0.2744 0.0002 0.0002 0.2744
Hepatits 0.3903 0.1459 0.2285 0.3801
Breast-Cancer 0.159 0.159 -0.0098 0.159
Ballons 1.0 1.0 0.3262 1.0
SynA 0.9803 0.9803 0.8372 1.0
SynB 0.8457 0.8437 0.7134 0.7862
SynC 0.6498 0.6302 0.3267 0.4079
SynD 0.8717 0.8247 0.7978 0.8112

Fig. 11. Adjusted Rand Index results w.r.t. base-line measures

datasets), but, even when they fail in achieving the best results, at least one of the performance pa-
rameters is close to the winning approach. On the other hand, the performance indexes achieved by
DILCA are sensibly better than those obtained by the other approaches in many datasets (Vote, Der-
matology, Titanic, SynB, SynC and SynD). Notice that the last three datasets are high-dimensional
and significantly sparse (20 and 50 values per variable). This means that DILCA provides accurate
results also in these hard contexts. Moreover, we observed that ROCK is very sensitive to the param-
eter value. In these experiments we noticed that DILCAM obtains the best results when we set the
σ parameter to values higher than 0.5. Indeed, during the distance learning phase on the categorical
values, the algorithms consider as a context only small portions of the whole attribute set.

In the tables of Figures 6, 7 and 8, instead, we report the results of the comparison of our ap-
proaches with LIN, OF and GOODALL3. Also in this case, when some of the other approaches
outperform DILCA, the performance indexes are in general close (except for Car). However, in
many cases, when DILCA outperforms all other approaches, its performance parameters are much
higher (e.g., in Vote, Titanic, Ballons, SynA, SynB for NMI, and in the same datasets, plus Audiology,
Adult and Post-operative for ARI). We omit here the discussion on Purity, since its values are less
significant than NMI and ARI, as shown beforehand. However, for completeness, we report them in
the table of Fig. 6.

Finally, we consider the last group of competitors, which employs two well known similarity
coefficients (see tables of Figures 9, 10 and 11). As expected, results for the standard Jaccard metrics
are poor in general. The Pearson’s coefficient, instead, in some cases achieves comparable results
w.r.t. DILCA. In many cases, however, the NMI and ARI performance indexes are far from being
comparable with those obtained by DILCA. This is the case of Audiology, Vote, Dermatology, SynB,
SynC and SynD (when considering NMI), and Vote, Dermatology, Car, Adult, SynB and SynC (when
considering ARI).

In general our approach outperforms the other studied approaches for at least one performance
index. However, since our distance is learnt from the distribution of the attribute values within the
data, when the size of the dataset is small w.r.t. the number of attributes/values, it is somehow
expected that the results are biased by the weak representativeness of the samples. Nevertheless,
the context selection phase sometimes puts a remedy to this effect: attributes that introduce noise
are ignored in the value distance computation step. In some cases, the performances are low for
any clustering algorithm: this fact means that the partitions determined by the class labels are not
supported by the data. For instance, it is well known that Car dataset has relatively low attribute
prediction accuracies [Zhu et al. 2004]. This explains why our approach never wins against the
other competitors in this particular case.
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5.5.1. Impact of σ on DILCAM . We plot the behavior of DILCAM to check how the σ parameter
influences the algorithm.

We let vary the parameter σ from 0 to 1 with steps of 0.1. When the parameter is equal to 0 all
the features are included in the context. We observed that the influence of different settings of σ on
performance indexes is minimum on UCI datasets (see Figure 12(a) and 12(b)). In most datasets,
the variation in Purity and NMI is very low (the only exception is Vote). In Figure 12 we report only
the sensitivity plot for those datasets in which the variation between the maximum value and the
minimum one is greater than or equal to 0.05. We use the same policy for both Purity and NMI. For
the purity this means that the variation is greater than or equal to 5%.

On synthetic data, performance indexes grow with increasing values of σ (See Fig.13). Also in
this figures, we report only those curves that show a significant variations.

Although there is no general law about how to choose this parameter, we estimate that, in general,
its impact is less important than standard clustering parameters (such as, the number of clusters, or
other algorithm-specific parameters).

5.5.2. Scalability of DILCARR and DILCAM . We introduce now a study on the scalability of our
distance learning approach, coupled with hierarchical clustering algorithms. We evaluate the scala-
bility varying the two dimensions of the dataset that may have an impact on time performances. The
datasets are generated with [Melli 2008]. For DILCAM , LIMBO and ROCK we set the parameters to
zero. Using this setting we analyze the worst case for each of the methods. DILCARR and DELTA
do not need any parameter setting.

The first dimension under study is the number of instances. For this purpose, we generated 10,000
synthetic instances described by 50 attributes, then we built 10 datasets containing from 1000 to
10,000 instances. Results are shown in Figure 14(a). The picture shows that DILCA is faster than
the other methods. ROCK was instead unable to process more than 8,000 instances within reasonable
time.

The second dimension under study is the number of features. We also performed an analysis
on the scalability of the methods w.r.t. the number of features. We used another synthetic dataset
consisting of 1,000 instances and 1,000 attributes, from which we built 10 datasets containing from
100 to 1,000 features. Each attribute ranges over ten nominal values. We compared the two versions
of DILCA with LIMBO and DELTA. Unfortunately, it did not make much sense to analyze the
scalability w.r.t. the number of features for ROCK, since it does not take into consideration a
feature selection phase. Rather, the implementation provided by the authors takes as input already a
point-to-point distance matrix, pre-computed on the complete feature set.

We report the results in Figure14(b). The picture shows again that DILCA is faster than the other
methods. Let us now analyze the performance of DILCAM and DILCARR in depth. Apparently
they do not reflect the complexity analysis given in Section 4.3. However, as we anticipated, the
complexity analysis supposes the worst case. This means that the time spent to rank all attributes is
compensated by the second step of the algorithm. When the feature space grows, it is more probable
that non-relevant and redundant features are present in the dataset. Indeed, during the second step,
the algorithm only needs to compute distances over a small portion of the attribute set. To give
an idea of the impact of the feature selection step, we report in Figure 15 the average number of
retained features for the datasets described in Section 5.3.

Finally, we also investigated on the time spent by DILCAM , DILCARR and DELTA to perform
clustering. In Figure 16 we report the time spent by the three parts of the hierarchical clustering
algorithms: (i) computation of the distances between the values of the categorical attributes; (ii)
computation of the point-to-point distance matrix; (iii) generation of the dendrogram.

Since DELTA is coupled with the same hierarchical clustering algorithm employed for DILCA,
the second and third phases are the same for the three methods. Thus, we obtain a total of five curves
that represent respectively the time spent by DILCAM , DILCARR and DELTA to compute distances
between categorical values, the time spent to compute the instance-to-instance distance matrix given
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Fig. 12. Stability analysis on sigma parameter (UCI datasets)

as input to the hierarchical algorithm, and the effective time spent by Ward algorithm to build the
dendrogram.

As a result, we can notice that the most consistent portion of the overall computational time is
employed to calculate the dendrogram and the instance-to-instance distance matrix. Notice also that
DELTA performs much slower than both DILCAM and DILCARR.

6. CONCLUSION
We introduced a scalable approach to learn a context-based distance between the values of categor-
ical attributes. We showed the effective impact of this approach on two distance-based clustering
approaches. We believe that the proposed framework is general enough and it can be applied to
any data mining task that involves categorical data and requires distance computations. As a future
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Fig. 13. Stability analysis on sigma parameter (Synthetic datasets)

work we will investigate the application of our distance learning approach to different distance-
based tasks. Although DILCAM seems preferable from the point of view of the computational
complexity we must acknowledge that the computational complexity is given by the worst case. In
practice, on average, experiments on real computational time showed that DILCARR is preferable.
In fact, the preliminary phase of context selection speeds up the distance computation phase. From
the point of view of the quality of the obtained clusters whether DILCAM or DILCARR is prefer-
able is not easy to predict. It is a matter of future work to learn which of them would be better as a
prediction task according to the typology of the data.

A first possible application of DILCA is within a nearest neighbors classifier (kNN [Bishop
2006]) to estimate a good distance measure between two instances that contain categorical attributes.
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Fig. 14. Time performance w.r.t. the number of instances (a) and attributes (b).

Moreover, any other distance-based classification algorithm is a good candidate for DILCA, e.g.,
SVM [Bishop 2006].

Boolean variables are a special case of categorical attributes. DILCA can be used with any
task that employs boolean features and the necessity of computing distance between instances, e.g.,
within a transactional clustering [Yang et al. 2002] algorithm. In transactional clustering we can
represent a transaction as a boolean vector that indicates if a specific object is contained in the
transaction. Another field of application is anomaly/outlier detection [Tan et al. 2005].

An issue we could investigate in the future is whether, given a representative set of data instances,
it could be possible to populate an ontology system automatically using our distance learning ap-
proach.
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Dataset Orig. # of attr. Avg. # of attr. in context
Audiology 59 5.55 ± 5.25

Vote 16 2.94 ± 1.34
Mushroom 22 4.36±1.97

Dermatology 34 4.24 ± 1.78
Soybean 35 4.71 ± 1.68

Car 6 3.0 ± 0.0
Adult 14 2.93 ± 1.10

Post-operative 8 2.25 ± 0.97
Titanic 3 1.33±0.47

Breast-Cancer 9 2.33±0.94
Ballons 4 2 ± 1
SynA 50 6.92 ± 2.58
SynB 50 6.86±2.20
SynC 100 10.54±2.75
SynD 100 10.13 ± 3.18

Fig. 15. Mean number of attributes in the context for DILCARR
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Finally, using this distance it will be possible to compute distances between objects described by
both numerical and categorical attributes.
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