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Abstract

In this paper we deal with the critical node problem, where a given number of nodes
has to be removed from an undirected graph in order to maximize the disconnections
between the node pairs of the graph. We propose an integer linear programming model
with a non-polynomial number of constraints but whose linear relaxation can be solved
in polynomial time. We derive different valid inequalities and some theoretical results
about them. We also propose an alternative model based on a quadratic reformulation
of the problem. Finally, we perform many computational experiments and analyze the
corresponding results.

Keywords: Critical Node Problem, Branch and Cut, Valid Inequalities, Reformulation-
Linearization Technique

1 Introduction

This paper deals with the problem of deleting from an undirected graph G = (V,E) a subset
of nodes S ⊆ V , whose cardinality is bounded from above by a given K, in order to obtain a
residual graph G[V \S] (i.e., the subgraph induced by V \S) where the number f(S) of node
pairs {i, j} connected by at least one path is as small as possible. Following [2] we name this
the critical node problem (CNP).

1



From a practical point of view, the problem is interesting in assessing the robustness (or
symmetrically, the vulnerability) of network structures; indeed the objective function f(S)
measures the minimum number of connections that can be still reliably guaranteed on G after
a “smart” attacker has damaged K ≤ |V | nodes. With this aim in mind, similar problems
have been studied in the literature.

The problem can be seen as a multicommodity version of the interdiction problems pio-
neered by Wollmer [19], and later developed by Wood [20] and Smith and Lim [18].

Myung and Kim [12] tackle the problem of deleting a limited number of edges from an
undirected graph in order to minimize the weighted number of connections guaranteed in the
residual graph. Their approach is based on a Mixed Integer Linear Programming (MILP)
model and branch and cut. Such an MILP formulation has a non-polynomial number of
constraints. They report computational experience on instances with up to 100 nodes and
200 edges.

Matsziw and Murray [11] propose a polynomial-size MILP formulation, and apply it to
instances derived from the Ohio’s state highway network.

Dinh et al. [6] focus on telecommunication networks; they propose algorithms for detecting
in a directed graph what they call node-disruptors and arc-disruptors, i.e., sets of nodes and
arcs to be deleted in order to minimize the number of directed connections surviving in the
residual graph.

Arulselvan et al. [2] precisely formalize the CNP, establish its NP-hardness for general
graphs, and propose an MILP model and a simple and effective heuristic, which is tested on
sparse graphs. They also point out applications in immunization problems for populations or
computer networks: if the graph G represents physical links between computers or contacts
between people, vaccinating the optimal set of critical nodes S∗ would minimize the ability
of malicious software or infective diseases to spread on the graph, since the disease cannot
spread through immunized nodes. Also, Boginski and Commander [3] present applications of
CNPs in biology, in order to achieve maximum fragmentation of protein-protein interaction
graphs through node deletions. For the case where the connections between node pairs have
weights subject to uncertainty, a robust optimization model is considered in [8].

The paper is structured as follows. In Section 2 we extend and enhance the model provided
by Arulselvan et al. [2], switching to a formulation with non-polynomial size (related to that
in [12]), working in the branch and cut framework. In Section 3 we introduce a number of
valid inequalities to tighten the model and we present a theoretical study of such inequalities
giving insights about the polyhedral structure of the problem. In Section 4 we develop
stronger — although more time consuming — relaxations based on a quadratic programming
reformulation of the problem. Finally, in Section 5 we perform a computational study on
sparse as well as dense (with density up to 30%) graphs.

2 Basic models

Throughout the paper we use the following notation. G = (V,E) is the graph of the problem,
with node set V = {1, 2, . . . , N}, hence N = |V |. We denote the edges {i, j} ∈ E with the
shorthand notation ij ∈ E. The set of neighbors of a node v ∈ V is N(v) = {u ∈ V : uv ∈ E}.
When we deal with a special subgraph H of G — paths and/or cycles — the sets of nodes
and edges of H are denoted by V (H) and E(H) respectively.

The first model we consider is drawn from Arulselvan et al. [2]. We consider the CNP in
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its complementary form: delete at most K nodes in order to disconnect as many node pairs
{i, j} as possible in the residual graph. Define binary variables x = (xi : i ∈ V ), with xi = 1 if
and only if node i ∈ V is deleted from the graph, and binary variables y = (yij : i, j ∈ V, i < j)
with yij = 1 if and only if nodes i and j are disconnected in the residual subgraph. A model
with O(N3) constraints is the following:

maximize
∑

i,j∈V
i<j

yij (1)

subject to
∑

i∈V
xi ≤ K (2)

xi + xj ≥ yij ij ∈ E (3)

yij + yjk − yik ≥ 0 i, j, k ∈ V, i < j < k (4)

yij − yjk + yik ≥ 0 i, j, k ∈ V, i < j < k (5)

−yij + yjk + yik ≥ 0 i, j, k ∈ V, i < j < k (6)

xi ∈ {0, 1}, yij ∈ {0, 1} i, j ∈ V, i < j. (7)

Constraint (2) ensures that at most K nodes are deleted; constraints (3) guarantee that if two
nodes i, j linked by an edge are to be disconnected, then at least one of i, j is to be deleted.
The O(N3) constraints (4)–(6) model a series of implications in order to ensure that if a node
pair {i, j} is disconnected in the residual graph then we cannot have both pairs {i, k} and
{j, k} connected. Note that the variables yij are not strictly required to be binary, but can
be relaxed to bounded variables yij ∈ [0, 1]. Apart from using the complementary version of
the problem, this model is the one used in [2]. It can be seen as an adaptation of the model
proposed by Matisziw and Murray for the edge deletion problem tackled in [11].

Model (1)–(7) can be derived from a model exhibiting an exponential number of con-
straints, similar to the one used by Myung and Kim [12] again for the edge-deletion case.
Keep the same variables as above, and let P(i, j) be the set of paths linking nodes i and j in
G. Then the problem can be written as

maximize
∑

i,j∈V
i<j

yij (8)

subject to
∑

i∈V
xi ≤ K (9)

∑

r∈V (P )

xr ≥ yij P ∈ P(i, j), i, j ∈ V, i < j (10)

xi ∈ {0, 1}, yij ∈ {0, 1} i, j ∈ V, i < j. (11)

Again, variables yij are not strictly required to be binary and can be relaxed to bounded
variables yij ∈ [0, 1]. Also note that for ij ∈ E the unique non-redundant constraint among
those in (10) is xi + xj ≥ yij.

Constraints (10) (also called in what follows path inequalities) state that in order to dis-
connect two nodes i and j, at least one node for each path linking i and j must be deleted from
the graph. The number of these constraints is clearly not polynomially bounded, but they can
be separated by solving node-weighted shortest path problems as follows. Given an optimal
solution (x∗, y∗) for the LP relaxation of (8)–(11), define an auxiliary directed complete graph
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H = (V,A) with A = V × V and arc weights wij = x∗j ; let P
∗
ij be the minimum-weight path

in H linking the node pair i < j, and w(P ∗
ij) be its total weight. Then the most violated

inequality (10) among those for the paths in P(i, j) is

∑

r∈V (P ∗
ij)

xr ≥ yij if x∗i + w(P ∗
ij) < y∗ij.

If x∗i + w(P ∗
ij) ≥ y∗ij, no inequality for paths in P(i, j) is violated. The detection of the most

violated inequalities (10) can be carried out in O(N3) time, for example by means of the
Floyd-Warshall algorithm (see, e.g., [9]).

For the sake of completeness, we also considered a bilevel approach following the classical
interdiction models (see [20]). We state the CNP as

maximize
∑

s,t∈V
s<t

fst(x) (12)

subject to
∑

i∈V
xi ≤ K (13)

xi ∈ {0, 1}, i ∈ V, (14)

where the function fst(x) = 0 if a path exists between nodes s, t in G[V \ S(x)], with S(x) =
{i ∈ V : xi = 1}. We set fst(x) = 1 if such a path does not exist. The value of fst(x) can be
computed by solving the inner (un)reachability problem

fst(x) = max usts − ustt (15)

subject to usti − ustj ≤ zij ij ∈ E (16)

− usti + ustj ≤ zij ij ∈ E (17)

usts − ustt ≤ 1 (18)

xi ≤ zij ij ∈ E (19)

xj ≤ zij ij ∈ E (20)

xi + xj ≥ zij ij ∈ E (21)

usti ∈ [0, 1] i ∈ V (22)

zij ∈ [0, 1] ij ∈ E. (23)

Problem (15)–(23) corresponds to the dual of a shortest s− t path problem (or, equivalently,
a unit-commodity minimum cost flow) on the directed auxiliary graph Hst(V̂ , Â) where

V̂ = V \ S(x), and

Â = {(i, j), (j, i) : ij ∈ E and i, j /∈ S(x)} ∪ {(s, t)}.

All arcs in Â have zero cost, except a unit-cost arc (s, t). Constraints (16)–(18) implement
the dual problem, while constraints (19)–(21) account for the presence/absence of arcs in Â:
zij = 1 if (i, j), (j, i) /∈ Â, while zij = 0 if (i, j), (j, i) ∈ Â.
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Combining the two problems, the CNP can be written as

maximize
∑

s,t∈V
s<t

(usts − ustt ) (24)

subject to constraints (16)–(18) for all s, t ∈ V , s < t (25)

constraints (19)–(21) (26)
∑

i∈V
xi ≤ K (27)

xi ∈ {0, 1} i ∈ V, (28)

zij ∈ [0, 1] ij ∈ E. (29)

Model (24)–(29) has O(|V |3) variables and O(|V |2 · |E|) constraints. We note that the number
of constraints (16)–(18) coming from the inner models is large, since all node pairs s < t
have to be taken into account.

3 Valid inequalities

In this section we discuss some families of valid inequalities for formulation (8)–(11) of the
CNP. The inequalities that we derive are based on the presence of special configurations in
the graph, such as cliques or cycles. Some of the configurations and inequalities considered
here are the ones that gave the best results in our computational experiments (see Section 5).

3.1 Clique inequalities

Let Q ⊆ V be a clique of G. Then formulation (8)–(11) includes the following constraints:

yij ≤ xi + xj, i, j ∈ Q, i < j, (30)

xi, yij ∈ {0, 1}, i, j ∈ Q, i < j. (31)

Note that (30) contains all the non-redundant inequalities of the model that involve only
variables xi, yij relative to nodes of Q, except for the cardinality constraint (9). We describe
and discuss a family of inequalities, which we refer to as clique inequalities, that are valid for
all the feasible solutions to (30)–(31).

Proposition 1 Let Q ⊆ V be a clique of G, with |Q| = q. Then, for every integer 1 < t < q,
the following clique inequality is valid:

∑

i,j∈Q
i<j

yij ≤ (q − t)
∑

i∈Q
xi +

t(t− 1)

2
. (32)

Proof. Since inequality (32) involves only variables xi, yij with i, j ∈ Q, in this proof we
ignore all other variables.

We fix any feasible solution (x, y) of (30)–(31) and show that (x, y) satisfies inequality (32).
Define R = {i ∈ Q : xi = 1} and r = |R|. Constraint (30) implies that yij = 1 only if at least
one of i, j belongs to R. Thus

∑

i,j∈Q
i<j

yij ≤ r(q − r) +
r(r − 1)

2
. (33)
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Then, in order to prove that (x, y) satisfies (32), it is sufficient to show that

r(q − r) +
r(r − 1)

2
≤ r(q − t) +

t(t− 1)

2
.

To see that the above inequality holds, note that from simple calculations one finds

r(q − t) +
t(t− 1)

2
− r(q − r)− r(r − 1)

2
=

(t− r)(t− r − 1)

2
≥ 0, (34)

where the last inequality is a consequence of r and t being integer values. �

Note that inequality (32) is valid also when t = 1 or t = q. However, in these cases it is
implied by the inequalities defining the linear relaxation of (30)–(31): specifically, for t = 1,
(32) can be obtained by summing inequalities yij ≤ xi + xj for all i, j ∈ Q, i < j; and for
t = q, (32) can be obtained by summing inequalities yij ≤ 1 for all i, j ∈ Q, i < j.

On the contrary, inequality (32) is never implied by the original inequalities when 1 <
t < q, as shown by the vector (x, y) defined by xi = 1/2 for all i ∈ Q and yij = 1 for all
i, j ∈ Q, i < j, which is in the linear relaxation of (30)–(31) but violates (32).

3.1.1 Strength of the inequalities

One might wonder whether, for 1 < t < q, every clique inequality (32) induces a facet of the
convex hull of (30)–(31). Computational tests carried out with softwares specifically designed
for the analysis of polyhedra (such as PORTA [5]) suggest that indeed this might be the case.
Though we do not have a proof that this is true for all 1 < t < q, we can prove a weaker
result.

Proposition 2 Let Q ⊆ V be a clique of G, with |Q| = q. Then for t ∈ {2, q − 1} inequal-
ity (32) induces a facet of the convex hull of (30)–(31).

Proof. Let d = q+ q(q− 1)/2 be the number of variables of the model. In order to prove that
inequality (32) induces a facet of (30)–(31), we show that there are d affinely independent
points in (30)–(31) that satisfy (32) at equality.

For any fixed r = 0, . . . , q, we define a family Sr of feasible solutions to (30)–(31): (x, y) ∈
Sr if and only if (i) exactly r components of x are equal to 1 and (ii) yij = 1 if and only if
at least one of xi, xj is equal to 1. Note that |Sr| =

(q
r

)
and the sets S0, . . . , Sq are pairwise

disjoint.
Fix an integer 1 < t < q. It is easy to check that every point (x, y) ∈ Sr satisfies (33) at

equality. Thus, using the equation in (34), we see that a point (x, y) ∈ Sr satisfies (32) at
equality whenever r = t or r = t− 1.

Now assume that t = 2. By the above arguments, the set S1∪S2 contains exactly d points
that satisfy (32) at equality. To show that inequality (32) is facet-inducing, it remains to
prove that the points in S1 ∪ S2 are affinely independent.

Let M be the d × d matrix whose rows are the vectors in S1 ∪ S2. We assume that
the first q rows of M contain the vectors in S1 and the other q(q − 1)/2 rows contain the
vectors in S2. Also, the first q columns of M correspond to the x-components and the other
q(q−1)/2 columns correspond to the y-components. Accordingly, we decomposeM as follows:

M =

(
A B
C D

)
— see the first part of Figure 1 to fix the ideas. Note that by choosing a
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suitable ordering for the first q rows of M we can assume that A = Iq (the identity matrix
of size q × q). Since the column of B corresponding to variable yij has a 1 in rows i and j,
and 0 elsewhere, we can transform B into the all-zero matrix with the following elementary
operations on the columns of M : for every ij, subtract the columns corresponding to variables

xi and xj from the column corresponding to variable yij. This yields a matrix M ′ =
(
Iq 0
C D′

)

with det(M) = det(M ′) = det(D′). Now it can be checked that D′ has precisely one −1 per
row and per column (and 0 elsewhere): more specifically, the row of D′ corresponding to the
feasible solution with xi = xj = 1 has a −1 in the column corresponding to variable yij and 0
elsewhere. Then |det(M)| = |det(D′)| = 1. This shows that the points in S1∪S2 are linearly
independent, thus they are also affinely independent.

Now assume that t = q−1. In this case we take the points in Sq−1∪Sq−2: there are exactly
d points in Sq−1∪Sq−2 and they all satisfy (32) at equality. Using these vectors, we construct
a matrix M similarly to what we did before. Since the property of being (or not being)
affinely independent is not affected by translating all the points by a given vector, we can

subtract the all-one vector from every row of M , thus obtaining a matrix M ′ =
(
A′ B′

C ′ D′

)
.

It is easy to check that both A′ and D′ have precisely one −1 per row and per column (and 0
elsewhere), and B′ = 0 (see the second part of Figure 1). It follows that |det(M ′)| = 1. Thus
the rows of M ′ are affinely (actually, linearly) independent, which implies that the rows of M
are affinely independent, as well. �

If 2 < t < q − 1, using the same arguments and notation as in the above proof, we know
that the points in St−1 ∪ St satisfy (32) at equality. Furthermore, the number of points in
St−1∪St is larger than d. Thus, in order to prove that inequality (32) is facet-inducing also for
these values of t, it would be sufficient to show that St−1 ∪St contains d affinely independent
points. However, we currently do not have a proof for this.

3.1.2 Sub-cliques

Since every clique with q nodes contains
(q
q̄

)
sub-cliques with q̄ nodes (q̄ ≤ q), one might ask

whether all the corresponding clique inequalities are needed in the description of the convex
hull of the larger model (i.e., the one describing the clique with q nodes). It turns out that
every clique inequality that is facet-inducing for the q̄-clique model is also facet-inducing for
the q-clique model. Indeed, we can prove a more general result.

Proposition 3 Let G = (V,E) be any graph and let Q ⊆ V be a clique of G. Every inequality
ax+ by ≤ γ, with γ 6= 0, that is facet-inducing for the model for Q is also facet-inducing for
the model for G.

Proof. We assume without loss of generality that V = {1, . . . , N} and Q = {1, . . . , N − p},
where p > 0. In this proof, the model for G (respectively, Q) will be called the larger
(respectively, smaller) model. Note that the larger model has p+ p(N − p)+ p(p− 1)/2 more
variables than the smaller one, namely xi for i ∈ V \Q, yij for i ∈ Q and j ∈ V \Q, and yij
for i, j ∈ V \Q, i < j.

If an inequality ax + by ≤ γ is facet-inducing for the smaller model, then there exist
d affinely independent solutions of the smaller model that satisfy ax + by = γ, where d is
the number of variables of the model. Let us denote these points by z1 = (x1, y1), . . . , zd =
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1 2

3 4




1 2 3 4 12 13 14 23 24 34

S1 1 0 0 0 1 1 1 0 0 0

S1 0 1 0 0 1 0 0 1 1 0

S1 0 0 1 0 0 1 0 1 0 1

S1 0 0 0 1 0 0 1 0 1 1
S2 1 1 0 0 1 1 1 1 1 0

S2 1 0 1 0 1 1 1 1 0 1

S2 1 0 0 1 1 1 1 0 1 1

S2 0 1 1 0 1 1 0 1 1 1

S2 0 1 0 1 1 0 1 1 1 1

S2 0 0 1 1 0 1 1 1 1 1




−→




1 2 3 4 12 13 14 23 24 34

S1 1 0 0 0 0 0 0 0 0 0

S1 0 1 0 0 0 0 0 0 0 0

S1 0 0 1 0 0 0 0 0 0 0

S1 0 0 0 1 0 0 0 0 0 0
S2 1 1 0 0 −1 0 0 0 0 0

S2 1 0 1 0 0 −1 0 0 0 0

S2 1 0 0 1 0 0 −1 0 0 0

S2 0 1 1 0 0 0 0 −1 0 0

S2 0 1 0 1 0 0 0 0 −1 0

S2 0 0 1 1 0 0 0 0 0 −1







1 2 3 4 12 13 14 23 24 34

S3 0 1 1 1 1 1 1 1 1 1

S3 1 0 1 1 1 1 1 1 1 1

S3 1 1 0 1 1 1 1 1 1 1

S3 1 1 1 0 1 1 1 1 1 1
S2 1 1 0 0 1 1 1 1 1 0

S2 1 0 1 0 1 1 1 1 0 1

S2 1 0 0 1 1 1 1 0 1 1

S2 0 1 1 0 1 1 0 1 1 1

S2 0 1 0 1 1 0 1 1 1 1

S2 0 0 1 1 0 1 1 1 1 1




−→




1 2 3 4 12 13 14 23 24 34

S3 −1 0 0 0 0 0 0 0 0 0

S3 0 −1 0 0 0 0 0 0 0 0

S3 0 0 −1 0 0 0 0 0 0 0

S3 0 0 0 −1 0 0 0 0 0 0
S2 0 0 −1 −1 0 0 0 0 0 −1

S2 0 −1 0 −1 0 0 0 0 −1 0

S2 0 −1 −1 0 0 0 0 −1 0 0

S2 −1 0 0 −1 0 0 −1 0 0 0

S2 −1 0 −1 0 0 −1 0 0 0 0

S2 −1 −1 0 0 −1 0 0 0 0 0




Figure 1: Illustration of the proof of Proposition 2 for a clique with four vertices.
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(xd, yd). We show how to extend this set of d points in {0, 1}d to a set of d̄ affinely independent
points in {0, 1}d̄ that are feasible for the larger model and satisfy ax + by = γ, where d̄ =
d+ p+ p(N − p) + p(p− 1)/2.

(a) The first d points are defined as follows: for k = 1, . . . , d, we extend point zk by setting
xi = 0 and yij = 0 for all the additional variables that have been introduced.

(b) Then we define the following p points: for each fixed i ∈ V \ Q, we take point z1 and
extend it by setting xi = 1 and all other additional variables equal to 0.

(c) The next p(N − p) points are defined as follows. Fix i ∈ Q and j ∈ V \Q. Since γ 6= 0,
the origin does not satisfy ax + by = γ. Thus there exists an index k such that xki = 1.
We then take point zk and extend it by setting yij = 1 and all other additional variables
equal to 0.

(d) Finally, we define the last p(p− 1)/2 points: for i, j ∈ V \Q, i < j, we take point z1 and
extend it by setting xi = yij = 1 and all other additional variables equal to 0.

We denote the above points by z̄1, . . . , z̄d̄, where the first d points z̄1, . . . , z̄d are those con-
structed in (a).

It can be checked that z̄1, . . . , z̄d̄ are all feasible for the larger model and they all satisfy
ax + by = γ. We claim that these points are affinely independent. To see this, assume by
contradiction that one of the points, say z̄ℓ, can be written as an affine combination of the
other points. Since, for i ∈ V and j ∈ V \Q, there is a single point satisfying yij = 1 (either
in group (c) or (d)), z̄ℓ cannot be a point in group (c) or (d); furthermore, all points of groups
(c) and (d) have coefficient zero in the affine combination. Now, considering only groups (a)
and (b), for each i ∈ V \ Q there is a single point satisfying xi = 1 (and this point is in
group (b)); then z̄ℓ cannot be a point in group (b) and all points in group (b) have coefficient
zero in the combination. It follows that z̄ℓ is in group (a) and z̄ℓ is an affine combination
of the other points of group (a). This implies that the original points z1, . . . , zd are affinely
dependent, a contradiction. �

Since γ 6= 0 in the clique inequalities, we immediately have the following result.

Corollary 4 Let Q be a clique of G and consider a sub-clique Q̄ ⊆ Q. Every clique inequality
that is facet-inducing for the model for Q̄ is also facet-inducing for the model for Q.

Note that if Proposition 2 held for every 1 < t < q (as we conjecture), then the above result
would show that when giving a linear-inequality description of the convex hull of (30)–(31)
one has to include all the clique inequalities for all the sub-cliques of Q.

3.1.3 Cliques with three or four nodes

We now discuss the special cases of a clique with only three or four nodes. For a clique with
exactly three nodes, there is a single nontrivial clique inequality (32). It turns out that adding
this inequality to the linear relaxation of (30)–(31) gives the convex hull of the set.

Proposition 5 If |Q| = 3, then a non-redundant linear-inequality description of the convex
hull of points in (30)–(31) is obtained by adding to the linear relaxation the clique inequal-
ity (32) (with q = 3, t = 2).
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Proof. See Section A.1. �

For a clique with exactly four nodes, we can of course write two clique inequalities (32)
(with q = 4 and t ∈ {2, 3}). By Proposition 2, these two inequalities are facet-inducing.
However, since a clique with four nodes contains four sub-cliques with three nodes each, it
is also possible to write the four clique inequalities corresponding to these sub-cliques. By
Proposition 2 and Corollary 4, these inequalities are also facet-inducing. Therefore no clique
inequality can be omitted in the description of the convex hull of (30)–(31) for a clique of size
4. On the other hand, no other inequality is required, as stated in the following proposition,
whose proof, based on techniques that are similar to those used in the proof of Proposition 9,
is omitted.

Proposition 6 If |Q| = 4, then a non-redundant linear-inequality description of the convex
hull of points in (30)–(31) is obtained by adding to the linear relaxation all clique inequali-
ties (32) corresponding to Q, as well as the clique inequalities corresponding to all sub-cliques
of Q containing three nodes.

Unfortunately, a similar result does not hold for cliques containing more than four nodes:
computational tests show that already with five nodes many other different types of inequal-
ities are needed to describe the convex hull of (30)–(31).

3.2 Cycles of length 4

Let C be a cycle of length 4 in G with vertex set V (C) and edge set E(C). To simplify
notation, we assume that V (C) = {1, 2, 3, 4} and E(C) = {12, 23, 34, 14}. Then formulation
(8)–(11) includes the following constraints:

yij ≤ xi + xj, ij ∈ E(C), (35)

yij ≤ xi + xj + xk, ij /∈ E(C), k ∈ V \ {i, j}, (36)

xi, yij ∈ {0, 1}, i, j ∈ V (C), i < j. (37)

We describe two types of valid inequalities for the above set of points.

Proposition 7 The following is a valid inequality for (35)–(37):

y13 + y24 ≤ x1 + x2 + x3 + x4. (38)

Proof. We show that inequality (38) can be obtained by applying the Chvátal-Gomory pro-
cedure. Consider the following valid inequalities:

y13 ≤ x1 + x2 + x3,

y13 ≤ x1 + x3 + x4,

y13 ≤ 1,

y24 ≤ x2 + x3 + x4,

y24 ≤ x1 + x2 + x4,

y24 ≤ 1.

Summing them together and dividing by 3, we find y13 + y24 ≤ x1 + x2 + x3 + x4 + 2/3. By
applying Chvátal-Gomory rounding, we obtain inequality (38). �
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Inequality (38) is not implied by the original inequalities, as proven by the following point:
xi = 1/3 for all i ∈ V (C), yij = 2/3 for ij ∈ E(C), yij = 1 for ij /∈ E(C). Also, it is not hard
to find 10 affinely independent feasible points that satisfy (38) at equality, thus showing that
this inequality induces a facet of the convex hull of (35)–(37).

Proposition 8 The following is a family of four valid inequalities for (35)–(37):

yij + yjk + yik ≤ x1 + x2 + x3 + x4 + 1, i, j, k ∈ V (C), i < j < k. (39)

Proof. Fix any feasible solution (x, y) of (35)–(37) and define R = {i ∈ V (C) : xi = 1} and
r = |R|. Inequality (39) is trivially satisfied if r ≥ 2, as the value of the left-hand side cannot
exceed 3. If r = 0, i.e., x1 = x2 = x3 = x4 = 0, then by (35)–(36) we necessarily have yij = 0
for all i, j ∈ V (C), i < j, thus inequality (38) is satisfied. Finally, assume that exactly one
component of x is equal to 1. Then there are at least two indices ℓ1, ℓ2 ∈ {i, j, k} such that
xℓ1 = xℓ2 = 0. It follows by (35)–(36) that yℓ1ℓ2 = 0 and inequality (39) is satisfied. �

Inequality (39) is not implied by the original inequalities, as proven by the following
point: assuming without loss of generality i = 1, j = 2, k = 3, we choose x1 = x2 = x3 = 1/3,
y12 = y23 = 2/3, y13 = 1, all other entries equal to 0. Again, it is not hard to see that this
inequality induces a facet of the convex hull of (35)–(37).

It turns out that the two types of inequalities presented above are sufficient to describe
the convex hull of (35)–(37).

Proposition 9 A non-redundant linear-inequality description of the convex hull of points in
(30)–(31) is obtained by adding inequalities (38)–(39) to the linear relaxation of the set.

Proof. See Section A.2. �

3.3 Neighborhood inequalities

Further valid inequalities can be defined for our problem. For instance, the clique inequalities
described in Section 3.1 can be extended to a more general configuration. Here we do not
make any assumption on the structure of the graph.

Proposition 10 Let v ∈ V be any node and let N(v) be the set of neighbors of v. Then, for
every subset Q ⊆ N(v) with q = |Q| ≥ 3 and every integer 1 < t < q, the following inequality
is valid: ∑

i,j∈Q
i<j

yij ≤
(
q(q − 1)

2
− t(t− 1)

2

)
xv + (q − t)

∑

i∈Q
xi +

t(t− 1)

2
. (40)

Proof. Let (x, y) be a feasible solution. If xv = 1, then the inequality is trivially satisfied, as
the value of the left-hand side cannot exceed q(q− 1)/2. So we assume xv = 0. Note that for
any pair of nodes i, j ∈ Q, i < j, we have the constraint yij ≤ xi + xv + xj . If xv = 0, this
inequality reduces to yij ≤ xi + xj. Thus all constraints (30)–(31) are satisfied by our vector.
Then, by Proposition 1, inequality (32) is also satisfied. To conclude, note that inequalities
(32) and (40) coincide when xv = 0. �

Unfortunately, this class of inequalities, as well as a few others that we tested and are not
presented here, did not appear to be very effective, at least according to our computational
experiments.
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4 Further relaxations

In this section we discuss some further relaxations for the CNP. We immediately point out
that, as we will see in Section 5, overall such new relaxations appear to be inferior with respect
to those previously discussed, but there are some interesting exceptions (in particular as the
density of the graph and the value of K increase) for which they are superior, thus making
their presentation worthwhile.

For a given graph G = (V,E), observing that for ij ∈ E the following equality always
holds

yij = xi + xj − xixj ,

we have that a nonlinear (quadratic) model strictly related to model (8)-(11) is

maximize
∑

i,j∈V
i<j

yij

subject to
∑

i∈V
xi = K

yij ≤
∑

r∈V (P )

xr ij 6∈ E, P ∈ P(i, j)

yij = xi + xj − xixj ij ∈ E

xi ∈ {0, 1}, 0 ≤ yij ≤ 1 i, j ∈ V, i < j.

Notice that we have an equality constraint in place of the inequality cardinality constraint
(9). In fact, this is not a relevant difference, as equality always holds for optimal solutions of
(8)-(11). Now, let us introduce the matrix variable

X = xxT .

We notice that:

• xi ∈ {0, 1} ⇔ x2i = xi ⇔ Xii = xi

• for all j ∈ V,

∑

i∈V
xi = K ⇒ xj

(∑

i∈V
xi

)
= Kxj ⇒

∑

i∈V
Xij = KXjj. (41)

The last equation is an RLT constraint, where RLT stands for Reformulation-Linearization
Technique, see, e.g., [13, 15, 16]. Then, we can add the above constraints to our model, thus

12



obtaining

maximize
∑

i,j∈V
i<j

yij (42)

subject to
∑

i∈V
xi = K (43)

yij ≤
∑

r∈V (P )

Xrr ij 6∈ E, P ∈ P(i, j) (44)

yij = Xii +Xjj −Xij ij ∈ E (45)
∑

i∈V
Xij = KXjj j ∈ V (46)

X = xxT (47)

Xii = xi i ∈ V (48)

xi ∈ {0, 1}, 0 ≤ yij ≤ 1 i, j ∈ V, i < j. (49)

Now we obtain a polynomially solvable relaxation by relaxing the binary constraints xi ∈
{0, 1} into 0 ≤ xi ≤ 1 and substituting the rank one constraint X = xxT with some more
manageable constraint(s). First, we will always assume symmetry of the matrix X. Next, we
discuss two possibilities for the relaxation of the rank one constraint:

• RLT relaxation: remove the constraint X = xxT and substitute it with the RLT in-
equalities

Xij ≤ xi, Xij ≤ xj, Xij ≥ xi + xj − 1, Xij ≥ 0, i, j ∈ V, i < j (50)

(note that, as previously remarked, also equations (41) can be viewed as RLT con-
straints).

• Semidefinite (SDP) relaxation: remove the constraint X = xxT and substitute it with
the semidefinite constraint

X � xxT

or, equivalently, (
1 xT

x X

)
� O,

where O is the null matrix and A � B denotes that matrix A−B is positive semidefinite
(see, e.g., [14]).

A combination of the two relaxations can also be considered (see, e.g., [1]). It is important to
remark that, independently of how we replace the rank one constraint, the separation problem
for the path constraints

yij ≤
∑

r∈V (P )

Xrr

remains identical.
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The above relaxation can be improved by strengthening the path constraints. Let

i0 → · · · → is, with i0 = i and is = j,

be some path P ∈ P(i, j). Then, we can replace the path constraint

yij ≤
s∑

r=0

xir

with the stronger constraint

yij ≤
s∑

r=0

xir −
s−1∑

r=0

xirxir+1 .

The second summation is such that if we remove both ir and ir+1, we count them only once
by subtracting xirxir+1. Therefore, recalling that X = xxT , we obtain the constraint

yij ≤
s∑

r=0

Xirir −
s−1∑

r=0

Xirir+1. (51)

If we impose the RLT constraints (50), the separation problem for these constraints is still
solvable through the solution of a shortest path problem. Indeed, we only need to redefine
the weights of the edges by taking into account also the Xirir+1 values. If (x∗,X∗, y∗) is the
solution of the current relaxation, the arc weights are wij = x∗j −X∗

ij, which are nonnegative
in view of (50).

Constraint (51) can be further strengthened. Indeed, we can replace it by any set of
constraints

yij ≤
s∑

r=0

Xirir −
∑

jrjt∈ET (P )

Xjrjt , (52)

where ET (P ) is the edge set of a spanning tree T over the complete subgraph with vertex set
V (P ). The following observation proves that these are valid inequalities for our problem.

Proposition 11 Inequalities (52) are valid for problem (42)–(49).

Proof. Let (x̄, X̄, ȳ) be a feasible solution for (42)–(49). If x̄i = 0 for all i ∈ V (P ), then
ȳij = 0 and the right-hand side of inequalities (52) is also equal to 0, so that inequalities (52)
are satisfied. Otherwise, let

V ′(P ) = {i ∈ V (P ) : x̄i = 1}, E′
T (P ) = {jrjt : jr, jt ∈ V ′(P ), jrjt ∈ ET (P )}.

Notice that
X̄jrjt = 1 ⇐⇒ x̄jr = x̄jt = 1.

Since F = (V ′(P ), E′
T (P )) is a forest, the right-hand side of (52) is equal to

|V ′(P )| − |E′
T (P )| ≥ 1,

and the inequality is then satisfied. �
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Constraint (51) is a special case of constraints (52) in which the spanning tree has edges

ET = {irir+1 : r = 0, . . . , s− 1}.

In fact, by denoting with (x∗,X∗, y∗) the optimal solution of the current relaxation and
assigning weight X∗

ij to all edges ij with i, j ∈ V (P ), we can find the most violated among
constraints (52) by solving a maximum spanning tree problem. Therefore, we can first detect
the most violated among constraints (51) by solving a shortest path problem, and then we
can strengthen each violated constraint by solving a maximum spanning tree problem.

Finally, we notice that all the valid inequalities introduced in Section 3 can also be added to
these new relaxations, and it is not difficult to see that the new relaxations are always at least
as good as the corresponding ones discussed in Sections 2-3 if the same set of valid inequalities
is added. Indeed, if (x∗,X∗, y∗) is an optimal solution of one of the above relaxations, possibly
reenforced through the addition of some of the valid inequalities discussed in Section 3, then
(x∗, y∗) is a feasible solution for problem (8)-(11) reenforced with the same valid inequalities.
Moreover, easy examples, such as the following one, can be built for which strict dominance
holds.

Example 1 Consider the graph G = (V,E) with V = {1, . . . , 10} and

E = {12, 13, 14, 25, 26, 37, 38, 49, 4-10},

which is a tree. Let K = 2. The optimal value for this problem is 39, obtained by deleting
node 1 and any one of the three nodes 2, 3, 4. The relaxation (8)–(10) yields a bound equal to
40.5 for the root node of the branch-and-bound tree (note that for a tree the clique and cycle
inequalities have no effect, while there is a single path inequality for each node pair), while
both the RLT and semidefinite relaxation give a bound equal to 39.

We also notice that one might strengthen the valid inequalities introduced in Section 3.
E.g., if we have the following subgraph (a cycle of length 4)

V ′ = {i, j, k, p} E′ = {ij, jk, kp, ip},

then, it is easily seen that inequality (38)

yik + yjp ≤ xi + xj + xk + xp

can be replaced by the following pair of inequalities:

yik ≤ xi + xk −Xik +Xjp, yjp ≤ xj + xp −Xjp +Xik. (53)

Indeed, to see that the first one holds, notice that nodes i and k are disconnected if we
remove at least one of such nodes or if we remove both nodes j and p (similar for the second
inequality). The first inequality can also be introduced if edge jp is in the graph, while the
second one would not need to be added in this case, because it is already implied by constraint
yjp = xj + xp −Xjp. Similarly, the second inequality can also be introduced if we add edge
ik, while the first one does not need to be added.
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5 Computational experiments

In order to test our approaches, we considered two different classes of test instances. The
first class of instances consists of Barabasi graphs (see the generator [7]) with 100 nodes and,
respectively, 194, 285 and 380 edges. Such instances are denoted by Barabasixx where xx is
the number of edges. The second class consists of random graphs with 50 and 100 nodes and
density equal to 0.1, 0.2 and 0.3. Such instances are denoted by Randxx-yy where xx is the
number of nodes and yy is the density. For each graph type we considered ten instances and
values of K equal to 0.1N, 0.2N, 0.3N, 0.4N (recall that N is the number of nodes). For each
set of instances we report:

• the average computation times Tavg;

• the average gap GAPavg, where the gap for an instance is equal to

100 · Final Upper Bound− Best

Final Upper Bound
%,

where Best is the best observed value for the instance;

• the number of successes within the imposed time limit equal to 1,000 seconds, denoted
by #OPT.

All tests have been performed by running CPLEX 12.1 over a Xeon processor at 2.33 GHz with
8 GB RAM.

We performed three different sets of experiments. In the first set we compared the basic
version of our model (only including the path inequalities (10)), from now on denoted by Base,
with the model (1)–(7) proposed in [2]. Constraints (4)–(6) were efficiently handled, in our
implementation, as lazy constraints, separating them like cuts. Though we only considered
the Barabasi graphs, the results, reported in Table 1 for the model proposed in [2] and in
Table 2 for the Base version, appear to be quite clear: the basic model seems to perform
better than the model proposed in [2] in terms of average computation time and/or average
gap. It is worthwhile to remark that instances which turned out to be challenging for one
model were also challenging for the other model.

In the second set of experiments we compared the Base version with the versions with
the additional 4-cycle inequalities (38) (denoted by Base+4cyc), with the additional 4-clique
inequalities (32) with q = 4 and t = 2, 3 (denoted by Base+4clq), and with both the 4-cycle
and 4-clique inequalities (denoted by Base+4cyc+4clq). All results are reported in Tables
2–5. From the tables we can observe the following.

• Overall the impact of the 4-clique inequalities appears to be quite mild. The ver-
sions Base and Base+4clq behave very similarly, while the versions Base+4cyc and
Base+4cyc+4clq also behave very similarly with the exception of the Rand100-0.3 in-
stances, where the latter performs much worse. In fact, looking at the behavior of
Base+4cyc+4clq over such instances, we could observe that the bad behavior was due
to the fact that this version was even unable to conclude the bound computation for
the root node within the time limit.

• The versions Base and Base+4cyc behave very similarly over the Barabasi instances.
The only significative improvement of Base+4cyc with respect to Base is in the compu-
tation times for the Barabasi380 instance with K = 40.
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• The improvement of version Base+4cyc with respect to Base becomes clear over the
Randxx-yy instances. We can also observe that such improvement becomes more evident
as the density increases (the only exception is the case Rand50-0.3 with K = 5). A
possible explanation for this is that as the density increases, the number of 4-cycles also
grows. This makes the model heavier (as also confirmed by the decrease of the number
of branch-and-bound nodes explored) but the bounds much tighter.

We point out that at each node of the branch-and-bound tree only violated path, 4-cycle
and 4-clique inequalities, detected through proper separation procedures, have been inserted.
The separation procedure for the path inequalities is based on the solution of a shortest path
problem, as already pointed out in Section 2, while the separation procedure for the 4-cycle
and 4-clique inequalities is based on a simple enumeration.

We also performed tests with 3-clique inequalities (but their impact was quite mild),
while we did not performed experiments with cliques of cardinality larger than 4. Moreover,
as already commented in Section 3.3, we also tested the neighborhood inequalities (as well as
other inequalities not described here), but these did not appear to be very effective.

Finally, in the third set of experiments we compared the Base+4cyc version with the ver-
sion based on the RLT relaxation with the path inequalities strengthened through inequalities
(52), obtained by solving maximum spanning tree subproblems, and with the additional 4-
cycle inequalities strengthened by (53). Such version is simply denoted by RLT. We restricted
the attention to the Rand50 instances. In Table 6 we report the average number of nodes vis-
ited when using the two different approaches. We notice that this value is usually much lower
for RLT, in particular as the density and K increase. Therefore the RLT relaxation appears to
be much tighter with respect to the version Base+4cyc. On the other hand, the computation
times are usually larger for the RLT version. This is a consequence of the fact that the addi-
tional Xij variables make the RLT relaxations much more expensive. The results for the RLT

version are reported in Table 7. Overall, Base+4cyc is clearly superior with respect to RLT

in terms of number of successes, average gaps and average times. However, in spite of the
much lower number of visited nodes, approach RLT tends to become better with respect to
Base+4cyc when we increase the density and the value of K. For K = 15 and density equal
to 0.3, RLT obtains three successes with respect to the zero successes of Base+4cyc, and the
average gap for RLT is clearly lower than that for Base+4cyc. For K = 20 and density equal to
0.3, both Base+4cyc and RLT have no success within the time limit, but again the average gap
for RLT is clearly lower than that for Base+4cyc. Thus, it seems that RLT becomes advisable
as soon as the density of the graph and the value of K increase.

For what concerns the SDP relaxation, we have only performed a few preliminary experi-
ments with the solver CSDP [4] through YALMIP, from which we could observe that the bound
computation was quite slow even on relatively small graphs. We did not further investigate
such relaxation but this could be an issue for future research. A possible approach is that
of using SDP-cuts to take advantage of the tightness offered by the SDP relaxations, while
maintaining manageably-sized LP relaxations (see, e.g., [14, 17]). As another possible direc-
tion for future developments, it might be convenient to use the cheaper but weaker relaxations
of Sections 2-3 during the first iterations of the branch-and-bound approach, and to use the
more expensive but stronger relaxations of Section 4 at later stages.

Finally, we have also performed a few tests with model (24)–(29). Similarly to what we
did for model (1)–(7), the large set of constraints (16)–(18) was efficiently handled as a set
of lazy constraints, by separation. Such model did not compare favorably with respect to
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the other two models considered. In a preliminary testing, it was able to optimally solve a
batch of ten instances with |V | = 30, K = 4 and density 10% within 324 seconds on average
(530 in the worst case). Its performances worsened on instances with density 20%, where it
could solve at optimality only 4 out of 10 instances within a time limit of 1000 seconds. In
both cases the model was easily outperformed by model (1)–(7), that was able to solve at
optimality all such instances with computation times usually below 30 seconds. In view of
these results we did not pursue investigation on the bilevel approach.
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Instance K = 0.1N K = 0.2N K = 0.3N K = 0.4N

Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT
Barabasi194 1000.0 37.706 0 369.3 0.15093 8 2.76 0 10 0.5 0 10
Barabasi285 1000.0 59.564 0 1000.0 25.781 0 777.2 0.74527 3 4.5 0 10
Barabasi380 1000.0 63.36 0 1000.0 44.821 0 1000.0 10.48 0 505.9 0.071781 7

Table 1: Average time, average gap and number of successes within the time limit over all the instances for the model in [2].

Instance K = 0.1N K = 0.2N K = 0.3N K = 0.4N

Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT
Barabasi194 724.97 10.978 4 1.488 0 10 0.302 0 10 0.05 0 10
Barabasi285 1000.1 27.906 0 1000.1 19.043 0 127.3 0.17389 9 0.601 0 10
Barabasi380 1000.2 27.434 0 1000.1 34.069 0 1000.1 8.2691 0 17.746 0 10
Rand50-0.1 34.52 0 10 338.65 0 10 605.6 3.6413 6 43.786 0 10
Rand50-0.2 54.637 0 10 888.04 2.5521 5 1000.1 14.595 0 1000 16.552 0
Rand50-0.3 1000.3 1.2605 0 758.5 0.80965 8 1000.2 13.588 0 1000.1 18.913 0
Rand100-0.1 1000.3 26.44 0 909.25 32.511 0 1000.2 38.936 0 1000.2 27.596 0
Rand100-0.2 1000.2 26.111 0 1000.2 31.466 0 1000.2 35.681 0 1000.1 31.875 0
Rand100-0.3 1000.1 21.202 0 1000.1 29.881 0 1000.1 34.668 0 1000.1 31.189 0

Table 2: Average time, average gap and number of successes within the time limit over all the instances for the Base version.
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Instance K = 0.1N K = 0.2N K = 0.3N K = 0.4N

Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT
Barabasi194 729.39 11.184 4 1.532 0 10 0.308 0 10 0.052 0 10
Barabasi285 1000.1 27.505 0 1000.1 18.5 0 123 0.18584 9 0.539 0 10
Barabasi380 1000.5 27.411 0 1000.1 32.577 0 957.96 7.696 1 8.655 0 10
Rand50-0.1 37.894 0 10 295.21 0 10 562.43 3.19 6 14.796 0 10
Rand50-0.2 27.995 0 10 452.37 0.33984 9 976.32 6.8859 1 1000 10.532 0
Rand50-0.3 1000.1 2.4896 0 289.05 0.020619 9 1000.1 5.5766 0 1000.1 10.048 0
Rand100-0.1 1000.7 22.732 0 909.27 28.182 0 1000.2 34.204 0 1000.2 25.225 0
Rand100-0.2 906.53 5.1262 3 1000.2 9.941 0 1000.2 15.13 0 1000.1 20.186 0
Rand100-0.3 1000.7 4.5455 0 1000.6 14.118 0 1000.6 14.674 0 1000.3 19.567 0

Table 3: Average time, average gap and number of successes within the time limit over all the instances for the Base+4cyc version.

Instance K = 0.1N K = 0.2N K = 0.3N K = 0.4N

Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT
Barabasi194 718.43 10.891 4 1.467 0 10 0.309 0 10 0.057 0 10
Barabasi285 1000.1 27.046 0 1000.1 19.082 0 126.93 0.17238 9 0.612 0 10
Barabasi380 1000.1 31.533 0 1000.1 34.252 0 1000.1 8.3262 0 21.492 0 10
Rand50-0.1 35.536 0 10 321.45 0 10 594.09 3.5791 6 44.113 0 10
Rand50-0.2 69.811 0 10 904.82 2.3058 4 1000.1 15.289 0 1000.1 16.162 0
Rand50-0.3 1000.1 1.3834 0 809.91 1.6337 7 1000.1 13.02 0 1000.1 18.901 0
Rand100-0.1 1000.2 28.989 0 1000.1 35.721 0 1000.2 38.935 0 1000.2 27.577 0
Rand100-0.2 1000.1 26.09 0 1000.2 31.466 0 1000.2 35.447 0 1000.1 31.145 0
Rand100-0.3 1000.1 23.534 0 1000.1 29.883 0 1000.2 34.303 0 1000.1 29.281 0

Table 4: Average time, average gap and number of successes within the time limit over all the instances for the Base+4clq version.
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Instance K = 0.1N K = 0.2N K = 0.3N K = 0.4N

Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT
Barabasi194 754.37 12.058 4 1.646 0 10 0.313 0 10 0.057 0 10
Barabasi285 1000.2 29.113 0 1000.1 18.86 0 117.93 0.18833 9 0.56 0 10
Barabasi380 1000.1 31.074 0 1000.1 32.98 0 996.5 7.6364 1 12.419 0 10
Rand50-0.1 36.804 0 10 275.68 0 10 557.13 3.1299 6 14.804 0 10
Rand50-0.2 32.214 0 10 454.16 0.21249 9 1000.1 7.3819 0 1000.1 10.407 0
Rand50-0.3 1000.5 2.4139 0 341.57 0.020619 9 1000 5.019 0 1000 9.075 0
Rand100-0.1 1000.1 24.369 0 1000.1 31.005 0 1000.2 34.146 0 1000.2 25.188 0
Rand100-0.2 945.99 5.5417 1 1000.3 10.077 0 1000.2 15.073 0 1000.1 19.486 0
Rand100-0.3 1000.7 11.584 0 1000.8 27.703 0 1000.9 36.487 0 1000.6 31.757 0

Table 5: Average time, average gap and number of successes within the time limit over all the instances for the Base+4cyc+4clq

version.

Base+4cyc RLT
Instance K = 0.1N K = 0.2N K = 0.3N K = 0.4N K = 0.1N K = 0.2N K = 0.3N K = 0.4N

Rand50-0.1 103 708 1672 460 78 284 445 458
Rand50-0.2 181 2240 2085 1952 72 254 173 191
Rand50-0.3 13371 4669 4808 3472 203 133 104 94

Table 6: Average number of nodes visited over the Rand50 instances for the Base+4cyc and RLT versions
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Instance K = 0.1N K = 0.2N K = 0.3N K = 0.4N

Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT Tavg GAPavg #OPT
Rand50-0.1 155.1 0 10 753.2 2.65 4 734.5 5.34 3 141.3 0 10
Rand50-0.2 117.3 0 10 885.3 3.9 4 1000 8.74 0 1000 10.85 0
Rand50-0.3 1000 3.43 0 613.6 0.32 5 891.4 3.46 3 1000 6.86 0

Table 7: Average time, average gap and number of successes within the time limit over the Rand50 instances for the RLT version.
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Appendix

A Convex hull description

Ignoring the cardinality constraint
∑

i∈V xi ≤ K, formulation (8)–(11) reads as follows:

max
∑

i,j∈V
i<j

yij

subject to
∑

r∈V (P )

xr ≥ yij i, j ∈ V, P ∈ P(i, j), i < j (54)

xi, yij ∈ {0, 1} i, j ∈ V, i < j. (55)

When the underlying graph G is a path, the constraint matrix of system (54) is totally
unimodular, as (ignoring unit columns) the 1s appear in consecutive positions on each row.
Therefore in this case the linear relaxation of the above set provides a description of the
convex hull of integer solutions. However, the linear relaxation of (54)–(55) has fractional
extreme points already for G = K3 or when G is a tree. In the following subsections we give
a linear-inequality description of the convex hull of (54)–(55) for some special cases. We first
discuss here the proof technique and give some results that will be used later.

First of all we observe that the convex hull of (54)–(55) is a full-dimensional polyhedron,
as the following N + N(N − 1)/2 + 1 feasible points are affinely independent (recall that
N = |V | and the number of variables is N +N(N − 1)/2):

• for i ∈ V , the point defined by setting xi = 1 and all other variables to 0;

• for i, j ∈ V, i < j, the point defined by setting xi = yij = 1 and all other variables to 0;

• the origin.

The convex hull of (54)–(55) will be described by some candidate linear system Ax+By ≥
d. In order to prove that this system actually describes the convex hull of (54)–(55), we will
use a well-known technique due to Lovász [10]: first we will observe that Ax + By ≥ d is
a valid relaxation for our set; then we will show that for every optimization problem of the
form

max




∑

i∈V
pixi +

∑

i,j∈V
i<j

qijyij : (x, y) satisfies (54)–(55)





(56)

with (p, q) 6= 0, there is an inequality in the system Ax+By ≥ d that is satisfied at equality
by all the optimal solutions of problem (56). Since our set is full-dimensional, this proves the
result, as when the objective function is parallel to a facet of the convex hull of (54)–(55), an
inequality that is tight for all optimal solutions must induce that facet; thus all the facets of
the convex hull of (54)–(55) appear in Ax+By ≥ d.

We now discuss some preliminary results. In the following we assume that an objective
function (p, q) 6= 0 is fixed. Also, expressions such as “optimal solution” or “optimal value”
will always implicitly refer to problem (56).

Lemma 12 If pi > 0 for some i ∈ V , then all optimal solutions satisfy xi = 1. If qij < 0 for
some i, j ∈ V, i < j, then all optimal solutions satisfy yij = 0.
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Proof. If a feasible solution satisfies xi = 0, we can increase xi to 1: this gives a feasible
solution with better objective value. Similarly, if a feasible solution satisfies yij = 1, we can
decrease yij to 0. �

Therefore, from now on we assume that p ≤ 0 and q ≥ 0.
Note that if (x, y) is an optimal solution, then

yij = min
{
1,min{∑r∈V (P ) xr : P ∈ P(i, j)}

}
(57)

for every ij such that qij > 0. A feasible solution (x, y) with yij satisfying (57) for all ij,
(including those for which qij = 0), will be called a standard solution. Since a standard
solution is uniquely determined by its x-components, when constructing a standard solution
we will only specify x.

Lemma 13 If p = 0 or q = 0, then one of the bounds 0 ≤ xi ≤ 1 is tight for all optimal
solutions.

Proof. If p = 0, then, since (p, q) 6= 0, there exist i, j such that qij > 0. We claim that all
optimal solutions satisfy yij = 1. Assume this is not true, i.e., there is an optimal solution
with yij = 0. Then the standard solution x = 1 has a larger objective value, a contradiction.

If q = 0, then, since (p, q) 6= 0, there exists i such that pi < 0. We claim that all optimal
solutions satisfy xi = 0. Assume this is not true, i.e., there is an optimal solution with xi = 1.
Then the standard solution x = 0 has a larger objective value, a contradiction. �

Lemma 14 If i ∈ V is the only node such that pi < 0, then xi = 0 for all optimal solutions.

Proof. If a feasible solution satisfies xi = 1, we can decrease xi to 0 and set all other
components of x to 1 (without changing y): this gives a better feasible solution. �

Therefore, from now on we assume that q 6= 0 and pi < 0 for at least two nodes.
For a given objective function as in (56), we denote by Q the set of pairs ij such that

qij > 0. We also define graph GQ = (V,Q). The following result will be used several times.

Lemma 15 Let i ∈ V be a node of degree 1 in GQ and let j be its unique neighbor in GQ. If
pi < 0 and ij ∈ E, then all optimal solutions satisfy xi + xj = yij.

Proof. Assume that there is an optimal solution (x, y) such that xi + xj > yij. Since qij > 0,
it follows that xi = xj = yij = 1. Then we find a better solution by decreasing xi to 0 and
taking the corresponding standard solution. �

We now consider two configurations in detail.

A.1 Clique with three nodes

Here we consider the case G = K3 and prove that the convex hull of (54)–(55) is obtained by
adding the following inequality to the linear relaxation of (54)–(55):

y12 + y23 + y13 ≤ x1 + x2 + x3 + 1. (58)

Note that inequality (58) is valid, as it is a clique inequality.
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Let px+qy be an objective function satisfying the above assumptions. Recall that |Q| ≥ 1.
If 1 ≤ |Q| ≤ 2, we can use Lemma 15 (the existence of an index i as required in Lemma 15 is
guaranteed by the fact that pi < 0 for at least two nodes). So we only have to consider the
case |Q| = 3, i.e., qij > 0 for all ij.

If qij > 0 for all ij, every optimal solution is a standard solution. Thus we have eight
candidates, one for each possible choice of x ∈ {0, 1}3. It can be checked that the only
candidates for which (58) is not tight are x = 0 and x = 1. However, x = 1 cannot be
optimal, as by choosing an index i such that pi < 0 and decreasing xi to 0, a feasible solution
with larger objective value is obtained. It follows that if x = 0 is not optimal, then all optimal
solutions satisfy (58) at equality.

It only remains to consider the case in which x = 0 is an optimal solution. Clearly in
this case the optimal value is 0. If all optimal solutions satisfy x1 + x2 = y12, the proof is
complete. So we assume that there is an optimal solution such that x1 + x2 > y12. The only
candidate with this property is the standard solution x = (1, 1, 0). The optimality of this
solution implies

p1 + p2 + q12 + q23 + q13 = 0. (59)

Now, if we consider the two standard solutions x = (1, 0, 0) and x = (0, 1, 0), since their
objective values cannot exceed 0, we have:

p1 + q12 + q13 ≤ 0, p2 + q12 + q23 ≤ 0.

If we take the sum of these two inequalities and subtract equation (59), we obtain q12 ≤ 0, a
contradiction.

A.2 Cycle of length 4

Let V = {1, 2, 3, 4} and E = {12, 23, 34, 14}. We prove that in this case the convex hull
of (54)–(55) is obtained by adding the following five inequalities to the linear relaxation of
(54)–(55):

yij + yjk + yik ≤ x1 + x2 + x3 + x4 + 1, i, j, k ∈ V, i < j < k (60)

y13 + y24 ≤ x1 + x2 + x3 + x4. (61)

The validity of (60) and (61) has been already proven in Section 3.2.

Lemma 16 Suppose that pi < 0 for exactly two nodes (i and j, say). (a) If ij ∈ E, then all
optimal solutions satisfy xi+xj = yij . (b) If ij /∈ E, then all optimal solutions satisfy xi = 0.

Proof. (a) Without loss of generality, i = 1 and j = 2. If there is an optimal solution (x, y)
such that x1 + x2 > y12, then at least one of x1, x2 is equal to 1, say x1 = 1. Note that
y12 = 1 only if x2 = 1. Then we obtain a better solution by decreasing x1 to 0 and setting
(or leaving) x3 and x4 to 1 (other components unchanged).

(b) Without loss of generality, i = 1 and j = 3. If there is an optimal solution (x, y) with
x1 = 1, then the standard solution x = (0, 1, 0, 1) would have a better objective value. �

Therefore, from now on we assume that pi < 0 for at least three nodes.

Lemma 17 If there is an optimal solution with more than two x-components equal to 1, then
there exists ij ∈ E such that all optimal solutions satisfy xi + xj = yij.
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Proof. First of all note that no optimal solution satisfies x = 1 (otherwise one can obtain a
better solution by choosing an index i such that pi < 0 and decreasing xi to 0).

It is easy to see that there cannot be an optimal solution with three x-components equal
to 1 if pi < 0 for all i. Thus we assume that pi = 0 for some i, say p1 = 0 without loss of
generality (thus p2, p3, p4 < 0).

Now we claim that if q23 > 0 then all optimal solutions satisfy x2+x3 = y23. If this is not
true, there is an optimal solution with x2 = x3 = y23 = 1. But then the standard solution
x = (1, 0, 1, 0) would have a better objective value.

It remains to consider the case in which p1 = q23 = 0 and there is an optimal solution with
three x-components equal to 1. Such a solution must satisfy x1 = x2 = x4 = 1. However, we
obtain a better feasible solution by decreasing x2 to 0 and setting (or leaving) y23 to 0. �

Therefore, from now on we assume that all optimal solutions have at most two x-components
equal to 1.

Lemma 18 If q13 > 0 and q24 > 0, then all optimal solutions satisfy (61) at equality.

Proof. Since q13 > 0 and q24 > 0, for every optimal solution the components y13, y24 satisfy
(57), i.e., their value is maximal. Now it can be checked that every feasible solution with at
most two x-components equal to 1 and with y13, y24 maximal satisfies (61) at equality. �

Therefore, from now on we assume that q13q24 = 0. We now analyze several cases,
depending on the cardinality of Q. Note that 1 ≤ |Q| ≤ 5.

Case 1: |Q| = 1. Let us assume that Q = {ij}. If ij ∈ E, we can apply Lemma 15 (as at
least one of pi, pj is negative). So we assume that ij /∈ E, say ij = 13 without loss of generality.
Since, by our assumptions, at least three components of p are negative, we can assume without
loss of generality that p1, p2 < 0. We claim that then x1 + x2 + x3 = y13 for all optimal
solutions. Assuming by contradiction that this is not true, consider an optimal solution such
that x1 + x2 + x3 > y13. Note that since q13 > 0, variable y13 satisfies condition (57). We
now distinguish two possibilities.

If y13 = 0, then x1 = x3 = 0 (by (57)) and x2 = 1. Then we can obtain a better feasible
solution by decreasing x2 to 0 and taking the corresponding standard solution.

If y13 = 1, at least two of x1, x2, x3 are equal to 1. If x2 = 1, we can decrease x2 and take
the corresponding standard solution; otherwise we have x1 = x3 = 1 and we can decrease
x1 and take the corresponding standard solution. In both cases we obtain a better feasible
solution.

Case 2: |Q| = 2. If Q is either a maximum matching with both edges in E or a path of
length 2 with both edges in E, we can apply Lemma 15. Since Q 6= {13, 24} (as q13q24 = 0),
the only remaining case is when Q is a path with one edge in E and the other edge not in
E, say Q = {12, 13} without loss of generality. If p1 < 0, we can apply Lemma 15. So we
assume p1 = 0, which implies p2, p3, p4 < 0. Now, proceeding exactly as in Case 1, one can
show that x1 + x2 + x3 = y13 for all optimal solutions.
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Case 3: |Q| = 3. The only case that cannot be treated with the above lemmas and as-
sumptions is when Q is a 3-clique, say Q = {12, 23, 13} without loss of generality.

If p4 = 0, we claim that x1 + x2 = y12 for every optimal solution. If this is not true, there
is an optimal solution with x1 = x2 = y12 = 1. We obtain a better solution by decreasing x1
to 0 (note that p1 < 0) and setting (or leaving) x4 to 1. So we now assume p4 < 0.

Assume that the origin is an optimal solution. If all optimal solutions satisfy x1+x2 = y12,
the analysis of this case is complete. So we assume that there is an optimal solution such that
x1 + x2 > y12. Since, by our assumption, there is no optimal solution with more than two
component of x equal to 1, all optimal solutions such that x1+x2 > y12 satisfy x = (1, 1, 0, 0),
with objective value

p1 + p2 + q12 + q23 + q13 = 0. (62)

Now, if we consider the two standard solutions x = (1, 0, 0, 0) and x = (0, 1, 0, 0), since their
objective values cannot exceed 0, we have:

p1 + q12 + q13 ≤ 0, p2 + q12 + q23 ≤ 0.

If we take the sum of these two inequalities and subtract equation (62), we obtain q12 ≤ 0, a
contradiction.

Thus we now assume that the origin is not optimal. We claim that then all optimal
solutions satisfy (60) at equality (with i = 1, j = 2, k = 3).

We first consider optimal solutions with exactly two x-components equal to 1. Up to
symmetries, constraint (60) is not satisfied at equality only if x4 = 1 and x2 = 0. However,
since one of x1 and x3 is equal to 1, we find a better feasible solution by decreasing x4 to 0
and taking the corresponding standard solution.

We now consider optimal solutions with exactly one x-component equal to 1. Con-
straint (60) is not satisfied at equality only if x4 = 1. However, in this case the origin
would be a better solution.

Case 4: 4 ≤ |Q| ≤ 5. The only cases that cannot be treated with the above lemmas
and assumptions are (up to symmetries) the following: (a) Q = {12, 23, 34, 14} and (b)
Q = {12, 23, 34, 14, 13}. For the most part, these two cases can be analyzed together.

First of all we show that if pi = 0 for some i, then xi = 1 for all optimal solutions.
Assume that pi = 0 and there is an optimal solution with xi = 0. Note that x can have at
most one x-component equal to 1: otherwise, by increasing xi we would obtain an optimal
solution with more than two x-components equal to 1, a contradiction to our assumptions.
So there is at most one x-component equal to 1. Now, if we increase xi to 1 and construct the
corresponding standard solution, we obtain a better solution (as at least one yij with qij > 0
can be increased from 0 to 1), a contradiction. Therefore, from now on we assume that pi < 0
for all i ∈ V .

We will show that there is ij ∈ E such that all optimal solutions satisfy xi + xj = yij.
The proof is by contradiction, so from now on we assume that for every ij ∈ E there is an
optimal solution such that xi + xj > yij.

Note that there is always a standard solution that is optimal. In the following we consider
all possible standard solutions. Recall that we can assume that the number of x-components
equal to 1 is at most two in any optimal solution.
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Assume that the standard solution x = 0 is optimal (thus the optimal value is 0). Take
an optimal solution with x1 + x2 > y12. Such a solution satisfies x1 = x2 = 1, thus

p1 + p2 + q12 + q13 + q14 + q23 = 0. (63)

If we consider the two standard solutions x = (1, 0, 0, 0) and x = (0, 1, 0, 0), we have p1 +
q12 + q13 + q14 ≤ 0 and p2 + q12 + q23 ≤ 0. If we sum these two inequalities and subtract
equation (63), we find q12 ≤ 0, a contradiction.

Assume that the standard solution x = (1, 0, 0, 0) is optimal. Then the optimal value is
α = p1+ q12+ q13+ q14. Take an optimal solution such that x1+x2 > y12: its objective value
is p1 + p2 + q12 + q13 + q14 + q23 = α, hence p2 + q23 = 0. Similarly, considering an optimal
solution such that x1 + x4 > y14, we find p4 + q34 = 0. Now, if we consider the standard
solution x = (0, 1, 0, 1), we have p2+ p4+ q12+ q13+ q14+ q23+ q34 ≤ α, which, together with
the conditions obtained above, gives p1 ≥ 0, a contradiction.

Note that the above case also covers the situation in which the standard solution x =
(0, 0, 1, 0) is optimal (by symmetry arguments); moreover, if 13 /∈ Q, the above analysis also
covers the cases in which x = (0, 1, 0, 0) and x = (0, 0, 0, 1) are optimal. However, if 13 ∈ Q
these two cases need a different argument. So let us assume that 13 ∈ Q and the standard
solution x = (0, 1, 0, 0) is optimal (the other case is analogous). Then the optimal value is
α = p2 + q12 + q23. Take an optimal solution such that x1 + x4 > y14: its objective value is
p1 + p4 + q12 + q13 + q14 + q34 = α, hence p1 + p4 + q13 + q14 + q34 = p2 + q23. Now, if we
consider the standard solution x = (0, 1, 0, 1), we find p2+ p4+ q12+ q13+ q14+ q23+ q34 ≤ α,
thus p2 + q23 ≤ p1 also holds. If we consider the standard solution x = (1, 0, 0, 0), we find
p1 + q12 + q13 + q14 ≤ α, thus p1 + q13 + q14 ≤ p2 + q23 ≤ p1. We then obtain q13 + q14 ≤ 0, a
contradiction.

Assume that the standard solution x = (1, 1, 0, 0) is optimal. Then the optimal value is
α = p1 + p2 + q12 + q13 + q14 + q23. Take an optimal solution such that x1 + x4 > y14: its
objective value is p1+p4+q12+q13+q14+q34 = α, hence p4+q34 = p2+q23. Now, if we consider
the standard solution x = (0, 1, 0, 1), we find p4 + q34 ≤ p1. Finally, with x = (1, 0, 0, 0) we
find p2+ q23 ≥ 0. The last three conditions together imply p1 ≥ 0, a contradiction. Note that
this case also covers the situation in which one of the following standard solutions is optimal:
(0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1).

Assume that the standard solution x = (1, 0, 1, 0) is optimal. Then the optimal value is
α = p1 + p3 + q12 + q13 + q14 + q23 + q34. Take an optimal solution such that x1 + x2 > y12:
its objective value is p1 + p2 + q12 + q13 + q14 + q23 = α, hence p2 = p3 + q34. Similarly, if we
consider an optimal solution such that x3 + x4 > y34, we find p4 = p1 + q12. Now, if we take
the standard solution x = (0, 1, 0, 1), we find p2 + p4 ≤ p1 + p3. The last three conditions
together imply q12 + q34 ≤ 0, a contradiction.

If 13 /∈ Q, the above case also covers the situation in which x = (0, 1, 0, 1) is optimal. It
only remains to consider the case when 13 ∈ Q and the standard solution x = (0, 1, 0, 1) is
optimal. In this case the optimal value is α = p2+p4+q12+q13+q14+q23+q34. Take an optimal
solution such that x1+x2 > y12: its objective value is p1+p2+q12+q13+q14+q23 = α, hence
p1 = p4 + q34. Similarly, if we consider an optimal solution such that x1 + x4 > y14, we find
p1 = p2+q23. Now, with the standard solution x = (1, 0, 0, 0), we find p1 ≤ p2+p4+q23+q34.
The last three conditions together imply p1 ≥ 0, a contradiction.
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