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Abstract

Among the many atmospheric pollutants, fine particles are known to be
particularly damaging to respiratory health, and therefore many efforts are
being made worldwide to explore their spatio-temporal behavior. In this
paper we focus on PM10, specifically addressing the probability (or risk)
that such particles will exceed potentially harmful thresholds. We combine
smoothing in the time domain with spatial interpolation to model threshold
exceedance probabilities and their corresponding confidence regions in a flex-
ible framework. We then present a comprehensive study of air quality in the
North-Italian region Piemonte from October 2005 through March 2006. The
proposed methodology, consisting of a two-stage modeling approach followed
by a block bootstrap scheme, has a myriad applications to other research
fields.

Key words: block bootstrap, bootstrap percentile confidence regions,
particulate matter, threshold exceedance probability.

1. Introduction

It is well known that high levels of air pollution adversely impact human
and environmental health. Many research studies conducted worldwide in
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the last decade have found associations between mortality rates and poor air
quality, especially in urban areas. Examples include Wong et al. (2008) in
Asia, Peters et al. (2000) in Central Europe, Shin et al. (2008) in Canada,
Johnson and Graham (2005), McCarthy et al. (2009) and Jerrett et al. (2005)
in the United States, to name only a few. A comprehensive critical review
of methods addressing estimation of associations between air pollution and
health is given in Dominici et al. (2003), which presented a thorough com-
parison of epidemiological designs and statistical approaches. In order to
monitor pollution levels and prevent potential threats, many environmental
agencies have issued specific standards for various pollutants. For example,
the last annual report of the European Environmental Agency1 provides in-
formation about all the major pollutants (including fine particles) and gives
a thorough overview of the status and trends of air quality in Europe, based
on measurements of air pollutants’ concentrations as well as anthropogenic
emissions. It also includes the current European air quality standards.

The negative effects that fine particles have on respiratory health have
prompted many efforts in recent years to explore spatial and temporal pat-
terns of their concentrations. In this paper, we focus on PM10, specifically
modeling the probability of exceeding certain potentially harmful thresh-
olds. Many recent PM10 studies address the behavior of space-time trends
for this pollutant (see for instance Cameletti et al. (2011), Fassò and Fi-
nazzi (2011), De Iaco et al. (2012) and the references therein); however the
threshold exceedance probabilities and the corresponding uncertainties are
less understood. Statistically, it is possible to model and estimate the prob-
ability that a specified value of a given pollutant will be exceeded and thus
identify areas where the risk of exceeding such limit values is high. Past stud-
ies focused on trend behavior revealed that inclusion of exogenous variables
may lead to better estimators and predictors of pollutant concentrations.
It seems therefore natural to expect that additional information (meteoro-
logical and orographical variables, for example) might help improve daily
predictions of threshold exceedance probabilities. In this paper we extend
the methodology introduced in Draghicescu and Ignaccolo (2009) by adding
exogenous variables in the statistical models that we use to predict and map
threshold exceedance probabilities. Our preliminary study Ignaccolo et al.
(2011) showed promising results. Based on daily PM10 measurements at 24

1http://www.eea.europa.eu/publications/air-quality-in-europe-2012.
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sites in the North-Italian region Piemonte, as well as exogenous variables,
we obtained daily predictions of threshold exceedance probabilities over the
region of interest. We detected reasonable spatial patterns for the threshold
exceedance probabilities; however, the confidence regions were insufficiently
informative, and there were several open questions left for future investiga-
tion.

Alternative approaches toward analyzing particulate matter involve Bayesian
modeling, see for instance Sahu et al. (2006), and more recently Cameletti
et al. (2012), which propose fully Bayesian space-time models for mean PM10

levels. Such models could be used to estimate and map threshold exceedance
probabilities; however, they could not provide any estimates for the corre-
sponding standard errors. Davison and Smith (1990) use the generalized
Pareto distribution to model exceedances over high thresholds and discuss
models for serial dependence in point processes with applications to wave
heights and river flows. For geostatistical analyses focused on indicator krig-
ing we refer to Guardiola-Albert and Pardo-Iguzquiza (2011) and the ref-
erences therein. For an exploratory alternative based on functional data
analysis to get risk maps see Ignaccolo et al. (2013).

In this paper, in addition to extending the two-stage procedure intro-
duced in Draghicescu and Ignaccolo (2009) by adding exogenous variables,
we introduce a block bootstrap scheme to provide more accurate maps, as
well as bootstrap percentile confidence regions for threshold exceedance prob-
abilities in a flexible framework. The paper is organized as follows. Section
2 describes the data used in this study. In Section 3 we present a mathe-
matical framework to model threshold exceedance probabilities for processes
with complex space-time dependencies. Our goal is to limit theoretical as-
sumptions and give a flexible, realistic setting, appropriate for a wide variety
of environmental processes. Section 4 is devoted to describing a detailed
block bootstrap procedure used to correctly assess uncertainty and produce
reliable confidence regions for space-time threshold exceedance probabilities.
In Section 5 we show applications of the previously described methodology
to our data, and conclude with the discussion in Section 6.

2. Data

We use daily PM10 concentrations (in µg/m3) measured from October 1,
2005 to March 31, 2006 (182 days) by the monitoring network of the North-
Italian region Piemonte at 34 sites. Measurements at 30 sites are utilized for
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modeling, while data at 4 sites are kept for validation (see Figure 1). The
latter have been selected to cover the most representative pollution patterns
and geographic features of the region. Site A is located in Torino (altitude
260 m, population 869,312), the largest city of Piemonte, characterized by
persistently high pollution levels. High and persistent PM10 concentrations
are found at site B as well. This is located in Bra (altitude 275 m, population
29,021). Both stations C and D enjoy better air quality, with site C located
in Novara (altitude 154 m, population 101,739), and station D placed in the
smaller town of Serravalle Scrivia (altitude 227 m, population 6,345).
The threshold set by the European Commission (2008/50/EC directive) for
PM10 is 50 µg/m3 and it should not be exceeded for more than 35 days a
year2. Fine particles in the ambient air are a serious concern in Piemonte,
a region with complex orography and diverse meteorological features and
atmospheric dynamics. Piemonte is situated in the western part of the Po
Valley and is surrounded on three sides by the Alps. These characteristics
have a strong effect on the dispersion of air pollution. For instance, weak
winds leading to stagnation are commonly observed in the central part of the
region, whereas the strong gusts in the mountains and valleys clear the air
more rapidly. Thus, lower PM10 concentrations are generally observed near
the Alps, while higher values are more common at lower altitudes, close to
the urban areas in the plains.
In Figure 2 we show boxplots of the PM10 concentrations used for modeling
(left panel) and validation (right panel), respectively. These distributions are
generally skewed and display large variability among the monitoring sites.
We also use geographic coordinates, daily maximum mixing height, daily
mean wind speed, daily emission rate of primary aerosols, and altitude. The
time-varying covariates are obtained from a nested system of deterministic
computer-based models implemented by the environmental agency ARPA
Piemonte. For a complete description and preliminary analysis of the data
we refer to Cameletti et al. (2011).

2For details see Directive 2008/50/EC of the European Parliament and of the Council
of May 21, 2008 on ambient air quality and cleaner air for Europe, http://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32008L0050:en:NOT; implemented
in Italy on August 13, 2010.
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Figure 1: Locations of 34 PM10 monitoring sites in Piemonte: 30 sites used for modeling
labeled numerically and marked by red bullets (ordered from West to East), 4 validation
sites labeled A, B, C, D and marked by blue diamonds, respectively.

3. Framework

LetD ⊂ R2 and assume that at each location s ∈ D we observe a temporal
process Xs(t), for which we define the threshold exceedance probability

Px0(t, s) = P (Xs(t) ≥ x0) (1)

5



Figure 2: Distributions of PM10 concentrations by station (ordered from West to East);
orange dots indicate means over the 182 days. Left panel shows boxplots of the 30 modeling
sites, whereas the right panel displays the boxplots at the validation sites; labels correspond
to those in Figure 1.

for any fixed threshold x0 ∈ R. Note that Px0(t, s) takes values in [0, 1] and
is non-increasing in x0. The problem of interest is to predict Px0(t, s

∗) at
location s∗ ∈ D where there are no observations for any time point t, based
on observations of the process Xs(t) at n time points and m spatial locations.
Typically n is much larger than m, and thus one may think about the obser-
vations as long time series that are spatially correlated. The naive estimator
P̂n,m(x0) = 1

mn

∑n
i=1

∑m
j=1 1{Xsj (ti)≥x0} (analoguous to the empirical distri-

bution function) is too rough and cannot capture realistically the complex
spatio-temporal dynamics of the process. To overcome this challenge, as well
as model threshold exceedance probabilities comprehensively at all sites, we
employ the following flexible, two-step procedure.

In the first step we use the methodology proposed in Draghicescu and Ig-
naccolo (2009). For each site s, we model the temporal risks non-parametrically,
by using the Nadaraya-Watson (Nadaraya (1964) and Watson (1964)) kernel
estimator

P̃x0(t, s) =

∑n
i=1K

(
ti−t

b

)
1{Xs(ti)≥x0}∑n

i=1K
(

ti−t
b

) , (2)

where ti = i/n, i = 1, . . . , n are rescaled time points and K is the so-
called kernel, a symmetric, twice continuously differentiable density function
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with compact support. Rather than getting the same weight as in the naive
estimator, the indicator variables are now assigned different weights, thus
obtaining smooth, time-varying threshold exceedance probabilities. For an
illustration see Figure 3. The tuning parameter (or bandwidth) b = b(n)
controls the amount of smoothing. Note that b may vary with time but
should not depend on the threshold x0 in order for the resulting estimator
to be non-increasing. The threshold x0 is considered fixed. For theoretical
details and asymptotic properties of the estimator (2) we refer to Draghicescu
and Ignaccolo (2009), where it is assumed that Xs(t) is a time-dependent
transformation of a second-order stationary Gaussian process. This is a very
flexible framework, suitable for many environmental processes.

In the second step, we use universal kriging with exogenous variables to
predict the exceedance probability field at any location s ∈ D. Since linear
interpolation does not guarantee that the resulting exceedance probability
estimator takes values in the interval [0, 1], we first apply a 1 : 1 transfor-
mation and consider Q̂x0(t, s) = Φ−1(P̃x0(t, s)) which is defined on R, where
Φ(·) is the standard normal cumulative distribution function. After perform-
ing kriging on the transformed field Q̂x0(t, s) at site s∗ ∈ D, we obtain the
desired exceedance probability maps by inversion: P̂x0(t, s

∗) = Φ(Q̂x0(t, s
∗)).

We use the following model for this space-time transformed field Q̂x0(t, s):

Q̂x0(t, s) = βY (t, s) + w(t, s), (3)

where Y (t, s) is a vector of exogenous variables, β denotes the correspond-
ing coefficients, and w(t, s) is a zero-mean second-order stationary spatial
process for any s ∈ D ⊂ R2. In this step time point t is fixed and the
spatial dependence of the residual process is modeled through the variogram
2γ(t, ||si−sj||) := V ar

(
[w(t, si)− w(t, sj)]

2 ), where ||·|| is the Euclidean dis-
tance. After considering a number of flexible parametric variogram models,
we chose to use the spherical model with nugget

2γ(t, ||si − sj||) = ρt + σ2
t

(
3

2
· ||si − sj||

rt

− 1

2
· ||si − sj||3

r3
t

)
, (4)

where the nugget ρt captures the discontinuity (or jump) at small distances,
σ2

t is the variance of the spatial field and rt denotes the range. For details see
Chilès and Delfiner (1999), Section 2.5.1. These parameters of the spherical
variogram are estimated by weighted least squares for all time points t. The
best linear unbiased predictor (BLUP) of the transformed field at location
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s∗ ∈ D is obtained via universal kriging (Gaetan and Guyon, 2010, page 44)
as

Q̂x0(t, s
∗) = β̂Y (t, s∗) + ŵ(t, s∗). (5)

Here β̂ is the generalized least squares estimate of the trend coefficients and
ŵ(t, s∗) =

∑m
i=1 λiŵ(t, si) is the simple kriging predictor, with ŵ(t, si) =

Q̂x0(t, si)− β̂Y (t, si). The weights λi, 1 ≤ i ≤ m are completely determined
by the variogram parameters ρt, σ

2
t , and rt. The standard error of Q̂x0(t, s

∗)
can be also expressed in terms of the interpolation parameters λi. However,
this standard error may not be completely accurate since the variogram pa-
rameters are estimated from the same data thus adding uncertainty. In fact,
the spatial kriging predictor of the residual field is an empirical (or esti-
mated) BLUP. Moreover, the error induced by the first step (smoothing in
the time domain) is not considered. In order to account for all these uncer-
tainty sources, in the next section we propose a block bootstrap scheme that
adapts Buhlmann (2002) to this space-time setting.

4. Uncertainty assessment

As mentioned previously, the elaborate scheme we proposed for model-
ing spatio-temporal threshold exceedance probabilities involves a number of
sources of uncertainty, not all tractable. As is the case in all statistical stud-
ies, we need to consider the tradeoff between the space-time trend and the
space-time residuals. Our two-stage approach, combining nonparametric and
parametric methodology, targets a wide class of processes and avoids strong
theoretical assumptions that would be very hard, if not impossible to check
and/or justify in practice. For instance, one common approach to addressing
EBLUP’s in spatial prediction problems is through conditional simulation;
however, this involves specifying a parametric distribution (such as the mul-
tivariate normal) that may not be appropriate. For this reason we chose to
use resampling through block bootstrap in order to assess the uncertainty in
the space-time maps of the threshold exceedance probabilities. Specifically,
we designed a block bootstrap scheme that takes into account the temporal
evolution of the process and preserves the short-term memory of the observed
PM10 distributions.

Many resampling schemes for dependent data have been shown to have ex-
cellent asymptotic properties and extensive applicability. Politis et al. (1999)
study uniform confidence bands for marginal distributions of stationary time
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series (example 3.4.7 page 89), and discuss ways to generalize bootstrap pro-
cedures to the nonstationary case (Section 4.4). A thorough review of boot-
strap methods in time series is given in Haerdle et al. (2003), which notes
a number of shortcomings of resampling methods under dependency. Lahiri
(2003), Sections 11.5-11.7 addresses bootstrapping extremes of stationary
random variables. However, our study differs in that the threshold for which
we model the exceedance probability does not need to be an extreme. Canty
et al. (2006) address concerns stemming from complex models where boot-
strapping is applied. The paper describes initial steps for providing useful
and practicable diagnostics. In our study, we have been trying to respond
to the challenges posed in the aforementioned article regarding appropriate
diagnostics tools. Lahiri et al. (2007) introduce a generalized plug-in rule
for the empirical choice of optimal block size and prove its consistency in
different bootstrap estimation scenarios.

In our study we propose the following resampling scheme based on or-
dered blocks. After selecting the block length l, each bootstrap iteration
r = 1, 2, . . . , R involves the following steps:

– sample with replacement 182/l blocks of consecutive days (to preserve
the temporal dependence, the selected blocks of consecutive days were
ordered);

– for the selected days, retrieve the corresponding PM10 data and covariates
for the 30 sites (the PM10 threshold is set to x0 = 50 µg/m3);

– predict the bootstrap threshold exceedance probability P̂r
50(t, s

∗) for the
4 validation sites using the procedure described in Section 3.

These steps are repeated R = 1000 times obtaining the sequence of bootstrap
probabilities bootP̂50(t, s

∗) = {P̂1
50(t, s

∗), . . . , P̂r
50(t, s

∗), . . . , P̂1000
50 (t, s∗)} for

t = 1, . . . , 182 at the 4 validation sites. We denote by ?P̂50(t, s
∗) the me-

dian of the sequence bootP̂50(t, s
∗) and compute the root mean square error

(RMSE) as a prediction performance index in a single validation site s∗ as

RMSE(s∗) =

√P182
t=1(?P̂50(t,s∗)−P̃50(t,s∗))

2

182
, where P̃50(t, s

∗) is the threshold ex-

ceedance probability computed on the original data. Table 1 gives these
RMSE’s for the 4 validation sites A, B, C and D and three choices of the
block length l = 7, 14, 26, respectively. Since l = 7 minimizes the RMSE for
all the validation sites, we use this block length in our applications in next
section.
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Site s∗ l = 7 l = 14 l = 26
A 0.4388 0.4624 0.4828
B 0.2995 0.3195 0.3078
C 0.3694 0.3877 0.4018
D 0.5838 0.5880 0.5974

Table 1: RMSE over 1000 bootstrap replications in the four validation sites for different
bootstrap block lengths.

5. Results

5.1. Estimation

As mentioned in Section 2, we use data at m = 30 spatial locations
(monitoring sites) and n = 182 time points (days). The PM10 threshold is
set to x0 = 50 µg/m3. The computations were done in R, using the gstat

package (Pebesma, 2004). We used the truncated Gaussian density function
with support [−1, 1] as the kernel function in the first step with a fixed
bandwidth b = 3, chosen empirically.
Figure 3 shows the time series of daily PM10 concentrations at three sites,
and the corresponding smoothed threshold exceedance probabilities P̃50(t, s)
after performing the first step. It can be seen that both the patterns and the
ranges are quite different. For this reason we decided to use nonparametric
modeling in the time domain and used the aforementioned kernel smoothing
scheme. In this way we can model these time series in a comprehensive way.
Then, in the second step, spatial interpolation was performed on a 56 × 72
regular grid covering the whole region of Piemonte. In Figure 4 we show
the implementation of the second step for four fixed time points. Left pan-
els display the spatial trend β̂Y (t, s) in equation (5), middle panels give the
fitted residual variograms, while right panels map the fitted spatial residu-
als ŵ(t, s), respectively. This time we can see how the patterns vary with
time as well as space. Note, for instance, that on November 19, 2005 (top
panels) and March 6, 2006 (bottom panels), the spatial trend is dominant
compared to the spatial residuals, which have a simple dependence structure.
Here it seems that inclusion of the exogenous variables helped considerably.
During December 31, 2005 and January 30, 2006 we found the reverse situ-
ation: weaker trends compared to stronger spatial variation still present in
the residuals.
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Figure 3: Time series of PM10 concentrations at three sites (left), and corresponding
estimated probability to exceed 50 µg/m3 (right).

5.2. Uncertainty assessment

Regarding the bootstrap, we sampled with replacement k = 26 blocks of
length l = 7 from the (n−l+1) possible overlapping blocks. The block length
l = 7 was chosen based on the validation results given in Table 1. It seems
that a temporal window of one week captures the meteorological and air
pollution patterns well. As mentioned in Section 4, we ordered the sampled
blocks in order to preserve temporal dependence. The block sampling was
then repeated R times, yielding the R bootstrap samples. Bootstrap repli-
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cated exceedance probability maps were obtained by performing the first and
second steps (as described in Section 3) on each bootstrap sample. Based on
the distribution of the R bootstrap replications, we obtained the percentile
maps of the threshold exceedance probabilities, and produced bootstrap per-
centile confidence regions (Efron and Tibshirani, 1993, equation 13.5). We
used R = 500 bootstrap replications. As an example, in Figure 5 we show
maps of the predicted probability to exceed 50 µg/m3 of PM10 throughout the
region under study (middle panels), together with the corresponding maps
for the 10th, 25th, 75th and 90th bootstrap percentiles (yielding 50% and
80% bootstrap percentile confidence regions, respectively), during the same
four days showed in Figure 4. These maps identify increased risks around the
metropolitan area of Torino. The blue regions indicating low threshold ex-
ceedance probabilities could be explained by proximity to mountain ranges,
the Alps in the North-West, and the Apennines in the South of Piemonte, re-
spectively. We also note that the high-risk areas stretch towards Lombardia,
the neighboring region in the East.

5.3. Other summaries
As we have shown in the previous examples, based on this two-step ap-

proach in combination with the block bootstrap scheme we can produce daily
spatial maps of threshold exceedance probabilities together with correspond-
ing confidence regions. One way of visualizing the spatio-temporal patterns
could be by using animation techniques, or by selecting specific days as we
did in Figure 5. It is also possible to produce other types of summaries
(seasonal or yearly means for instance) that may help policy makers identify
areas in need of interventions to improve air quality.

As an alternative summary, one can look at the percentage of days (out
of the 182) when the probability of exceeding 50 µg/m3 is high, for instance
higher than 0.75. This way, it is possible to detect regions that may not
be in compliance with the European standards and where interventions are
needed to improve air quality. Figure 6 displays the proportion of time (over
the period under study) when P̂50(t, s

∗) ≥ 0.75 and 50% and 80% bootstrap
confidence regions, respectively, identifying, as expected, the mountain and
plateau areas as less susceptible to air pollution and the metropolitan area
of Torino as potentially dangerous. These maps were based on a space-time
bootstrap distribution, where each r bootstrap iteration was performed as
follows:

– sample the bootstrap data with the usual procedure;
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– compute the bootstrap sequence of predictions bootP̂50(t, s
∗) for all the

182 time points and all the 4032 spatial grid points;

– obtain the 4032× 182 matrix of predicted threshold exceedance probabil-
ities;

– compute (the number and) the percentage of days when the predicted
probability is higher than 0.75.

These steps were repeated R = 500 times yielding the bootstrap distribution
of the percentage of days with high exceedance probability.

6. Discussion

In this paper we describe a two-stage procedure to model spatio-temporal
threshold exceedance probabilities and apply it in a comprehensive study of
air quality in the North-Italian region Piemonte. We expand the method-
ology introduced in Draghicescu and Ignaccolo (2009) by adding exogenous
variables into a flexible framework that allows for complex spatio-temporal
dependencies, and is thus suitable to model wide classes of real-life processes.
We also propose a resampling scheme (block bootstrap) that preserves the ob-
served temporal short-memory, yielding confidence regions for the predicted
threshold exceedance probability maps. By including geographic and mete-
orological information, we obtained more accurate and informative spatio-
temporal maps for the predicted air pollution risks. Several sources con-
tributed to the uncertainty associated with these maps. By using resam-
pling we were able to realistically assess the variability associated with these
predictions through bootstrap percentile confidence regions. The proposed
bootstrap scheme can be adapted to produce other summaries that may be
more relevant for policy makers. We show an example in Subsection 5.3.
To conclude, we presented a comprehensive study of air quality in Piemonte
from October 2005 through March 2006, showing high risks to exceed the
legal standard limit around the main connection roads and industrial areas,
as well as the biggest towns in the Po valley (toward the neighboring region
Lombardia). The proposed methodology, consisting of a two-stage model-
ing approach combined with the block bootstrap scheme is not limited to
this regional study, and could be applied in many fields, including but not
limited to atmospheric sciences, demography, ecology, epidemiology, finance,
medicine.
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Figure 4: Spatial trend (left), fitted variogram of residuals (middle) and fitted spatial
residuals (right); fixed time points top to bottom: November 19, 2005, December 31,
2005, January 30, 2006, March 6, 2006, respectively.
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Figure 5: Maps of the predicted PM10 exceedance probabilities; 50% and 80% bootstrap
percentile confidence regions, respectively. From top to bottom: November 19, 2005,
December 31, 2005, January 30, 2006, March 6, 2006.
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Figure 6: Estimated percentage of days (out of 182) with threshold exceedance proba-
bilities higher than 0.75 (center), and corresponding 50 % and 80 % bootstrap percentile
confidence regions, respectively. PM10 threshold is set to 50 µg/m3.
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