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Abstract 

European larch (Larix decidua Mill.) forests in the are a cultural landscape that has been 

shaped by humans for centuries through traditional management. Biological and historical data 

sources were employed, and a multi-scale approach was adopted to capture the influence of 

factors affecting the structure of these forests. Landscape and stand scale dynamics were 

analyzed in 4 watersheds (c. 13000 ha) of the western and central Italian Alps that have 

experienced different land-use intensities. Observed landscape changes were generalized using 

path analyses developed from a common conceptual model.  Stand structure and a range of 

environmental variables were sampled in 203 circular plots, and land use and anthropogenic 

variables were derived from thematic maps and aerial photographs. We used multivariate 

statistical analyses (ordination and SEM models) to relate forest structure, anthropogenic 

influences, land uses, and topography. The most commonly observed land cover transition was 

an expansion of forests at the expense of open areas. All studied watersheds were dominated 

by larch forests, but their structure and spatial pattern differed greatly. Anthropogenic variables 

were less important at Ventina, the least accessible site, but emerged as fundamental to explain 

stand structure in the other study sites. Complexity of topography and proximity to roads had 

influenced past human activities mainly in the most accessible sites. Regeneration density was 

higher at lower elevations and closer to human settlements. Quantification of the role played by 

forest harvesting and cattle grazing in past centuries is critical for understanding how global 

change factors may influence future dynamics of mountain forests in the European Alps and 

similar cultural landscapes worldwide.  
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MUS – Musella; VEN – Ventina; VEG – Veglia; DEV – Devero;  

Introduction 

Land-use history and its consequences are considered as major components of global change 

(Foster et al. 1998) and the temporal effects of land-use legacies can persist long after the 

abandonment of human activities (Bellemare et al. 2002; Gimmi et al. 2008). In regions of the 

world where human impacts have been pervasive and dominant for centuries, the ecosystem 

effects of climate change can be altered and overwhelmed by landscape modifications induced 

by land-use change (Clavero et al. 2011; Foster et al. 1998). A historical understanding of land-

use change as a fundamental ecological process is necessary to predict future landscape change 

scenarios in cultural landscapes and better inform policy decisions on landscape management 

and conservation (Chauchard et al. 2007; Foster et al. 1998; Foster et al. 2003). 

The regime of land use or anthropogenic disturbance regime (Gimmi et al. 2008) is 

determined by previous agricultural land use type (e.g. mowing, thinning, grazing), intensity 

(e.g. traditional or delayed mowing, density of grazing animals), extent, and duration of land 

use (e.g. timing of agricultural abandonment). Despite the importance of land-use change for 

landscape ecological investigations (Bolliger et al. 2007; Wu and Hobbs 2002) little is known 

regarding the anthropogenic disturbance regime and its long-term effects on the structure and 

distribution of vegetation in mountain forest regions such as the European Alps (Tasser et al. 

2007). Due to several centuries of intense land use and subsequent natural reforestation (Sitzia 

et al. 2010) land use is the most important factor for landscape change in the Alps (Gehrig-

Fasel et al. 2007) and human influence on forest landscapes is also manifest through the 

anthropogenic alteration of disturbance regimes such as fire, avalanches, and debris flows 

(Kulakowski et al. 2011). 

European mountain economies were largely based on traditional non-timber forest uses, 

such as wood pasture and forest litter collecting (Burgi 1999; Gimmi et al. 2008; Peterken 
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1999). Forest grazing was the most important non-timber forest use in the mountain regions 

and was often more important than timber harvesting, particularly at higher elevations. Long-

term influences of former grazing activities have been documented throughout the entire 

European Alps ({Albert, 2008 #2711} Chauchard et al. 2007; Motta et al. 2006; Tasser et al. 

2007). Modified landscapes where extensive livestock grazing is the dominant land use can be 

defined as variegated landscapes (Fischer and Lindenmayer 2007). These landscapes are 

characterized by gradual boundaries between native vegetation (forest patches) and 

surrounding modified land (pastures). The importance of grazing activities in the Italian Alps 

during the early 1950s was much higher than today. Range and permanent pastures occupied 

about 53% of the mountain area and all pastures had already been grazed for hundreds of years 

(White 1950). Cattle grazing in un-fenced pastures was the dominant use, but lesser numbers 

of sheep and goats also grazed mountain pastures.  

In European alpine settings, livestock grazing remains an important component of land 

use that is strongly influenced by natural, socio-economical, and political environments 

(Neumann et al. 2009). The anthropogenic disturbance regime is generally strongly influenced 

by socio-economical changes leading to land-use intensification or else abandonment (Wu 

2006). An example of this can be found in the European Alps where the abandonment of 

traditional practices such as grazing is a consequence of depopulation and marginalization of 

mountainous areas (Baldock et al. 1996; Bätzing et al. 1996; MacDonald et al. 2000). Land use 

change in developed countries is often strictly linked to abandonment of traditional agricultural 

practices on less productive and less accessible lands (Kulakowski et al. 2011). This is 

particularly true for southern Europe, where the twentieth century was characterized by land 

use intensification in the plains, valley bottomlands, and coastal areas (Falcucci et al. 2007). 

Conversely, marginal and less productive areas, usually located in the mountains, were 

abandoned (Chauchard et al. 2007). 
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One of the most evident consequences of land abandonment is the reforestation of 

formerly open lands (Bolliger et al. 2007) with a subsequent loss of biodiversity, cultural 

heritage, and landscape attractiveness (Dullinger et al. 2003; Hunziker and Kienast 1999). 

Land abandonment in Mediterranean mountains has led to the expansion of shrubs and forests 

at the expense of many semi-natural open habitats (species-rich grasslands, hay meadows, 

wood pastures, and grazed wetlands), which were previously maintained by traditional 

practices (Chauchard et al. 2007). Natural reforestation is a site-dependent process influenced 

by several natural factors: topography, climate, soil, vegetation, snow gliding, avalanches, and 

seed dispersal strategies. The type and intensity of former land use, such as pasturing and 

mowing additionally play a decisive role (Wickham et al. 1999).  

This study investigated the anthropogenic disturbance regime of subalpine forests of the 

Italian Alps to inform management strategies for subalpine landscapes including former 

agricultural areas. Subalpine forests of western and central Alps are dominated by European 

larch (Larix decidua Mill.) and are heterogeneous landscapes where dense and sparse stands 

coexist together with open areas  and wood pastures (Garbarino et al. 2011). The traditional 

silvo-pastoral management of this cultural landscape favored a sparse cover of larch trees, 

resulting in open woodlands that were used for grazing or production of natural hay meadows 

for livestock fodder (Albert et al. 2008; Motta and Lingua 2005; Schulze et al. 2007). As a 

consequence of reduced grazing pressure and lack of management a dramatic reduction of 

grasslands and subalpine wood pastures has been documented (Cousins et al. 2003; Dullinger 

et al. 2003). 

Aerial photography is a powerful tool to study land cover and land use changes (LUCC) 

of small mountain watersheds because it allows for high spatial and radiometric resolution 

(Morgan et al. 2010). This study combined landscape reconstruction and mapping, using aerial 

photography  and historical records, with field sampling to estimate the impact of historical 
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land use on the structure of modern-day European larch forests of the Italian Alps at both stand 

and landscape scales. Specifically, we tested the following hypotheses: a) the historical land 

use intensity affects the landscape structure, composition, and dynamics of central Italian 

Alpine valleys; b) topography and the anthropogenic disturbance regime are strong drivers of 

stand structure of larch forests; c) statistical causal models can provide a synthetic tool to 

highlight the underlying gradients that commonly affect the structure of subalpine Larix 

decidua forests. Finally we discuss the importance of historical data sources for ecosystem 

modeling.  

Methods 

Study area 

The analysis units for this study were four inner valleys of the western and central Italian Alps 

(Fig. 1). Two of these watersheds (Veglia and Devero) were located in the western Lepontine 

Alps, Piedmont region. The others (Musella and Ventina) were two watersheds of the 

Valtellina, in the western Retiche Alps, Lombardy region. The Veglia (VEG) watershed 

occupies 4117 ha in the upper Cairasca valley (46°16’ N; 8°08’ E), the Devero (DEV) 

watershed occupies 6674 ha in the Devero valley (46°19’ N; 8°15’ E), the Musella (MUS) 

watershed occupies 1150 ha in the eastern Valmalenco (46°19’ N; 9°54’ E), and the Ventina 

(VEN) watershed occupies 1124 ha in the western Valmalenco (46°18’ N; 9°46’ E). Rock 

outcroppings, bare soil and glaciers dominate above tree line in all four valleys, but slopes are 

steeper at VEN (Table 1). The bedrock is silicate and serpentine is a common rock to all the 

sites, but at VEG and DEV the Augen gneiss is also present. MUS and VEN follow a north-

south orientation, whereas VEG and DEV are oriented from northeast to southwest. All study 

areas are inner valleys of the “endalpic district” (Del Favero 2004) characterized by a 

temperate continental climate. In all watersheds, European larch is the dominant tree species 

with Norway spruce (Picea abies (L.) H. Karst) as a co-dominant species at lower elevations. 
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mountain pine (Pinus uncinata Mill.) and Swiss stone pine (Pinus cembra L.) are more 

abundant at VEN. Locally abundant shrub species include alpenrose (Rhododendron 

ferrugineum L.) and green alder (Alnus viridis (Chaix) D.C.). 

#Figure 1 and Table 1 approximately here# 

The traditional economic system of these alpine valleys in medieval times was based on 

frequent movements of people and domestic animals due to the seasonal fluctuations in 

availability of natural resources. Charcoal production and pitch extraction from the bark of 

larch trees were common practices and the cultivation of rye was active during the 1300s at 

DEV, but only at lower elevations. However, the most important historical land use was 

grazing in the subalpine pastures and larch forests between June and August. Mowing was 

practiced at DEV only, but stone removal, burning of shrub fields, and thinning were activities 

common to all the studied watersheds, and were used to improve and maintain the quality and 

quantity of pastures (Crosa Lenz and Frangioni 2005). Cattle grazing has occurred in these 

areas since approximately 1300 (Bergomi 2006; Streifeneder et al. 2006), and was restricted 

and managed by the local authorities, but goats grazed freely as long they did not damage 

pastures. 

Image analysis 

Aerial photographs for the years 1954, 2000 (Piedmont sites), 1961, and 2003 (Lombardy 

sites) were available for ca 13000 ha of forested landscape. Historical aerial photographs were 

scanned and orthorectified at 1-m resolution using PCI Geomatica 10.2 (PCI Geomatics 

Enterprises Inc., Richmond Hill, ON). Automated segmentation (scale parameter = 10) with 

manual correction was used to delineate polygons (Definiens 2004) that were classified into six 

categories of land cover (dense forests: >80% crown cover, sparse forests: 30-80% crown 

cover, grazed forests: 10-30% crown cover, shrubland, meadow, rock). The eight resulting 

raster maps (i.e. 4 landscapes x 2 time periods) were then enhanced in a GIS environment in 
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order to reduce the effect of different input image quality and achieve a minimum mapping unit 

(MMU) of 9 m2 (Garbarino et al. 2011). The landscape pattern analysis was limited to the 

vegetated part of the 4 valleys in order to reduce the weight of the rocks category. Thus, each 

raster map was clipped using an altitudinal cutoff of 2400 m a.s.l. representing the potential 

treeline for the central Italian Alps (Caccianiga et al. 2008; Lingua et al. 2008).  An accuracy 

assessment was performed on each map resulting in the K statistic ranging from 0.63 (69% 

overall accuracy) for VEN 1961 to 0.87 (93% overall accuracy) for VEG 1954 (Table 2). 

#Table 2 approximately here# 

Landscape analysis 

To analyze changes in landscape pattern, we used Fragstats software (McGarigal and Marks 

1995) to calculate several key landscape metrics for the studied period, applying an 8-cell 

neighborhood definition. We selected representative metrics for landscape configuration and 

composition, including patch size and density, edge, contagion, connectivity, and diversity 

(Cushman et al. 2008). Since many metrics are closely related at the landscape level and 

describe similar aspects of landscape structure (Cain et al. 1997; Neel et al. 2004; Riitters et al. 

1995), nine landscape-level metrics were selected excluding those that were highly correlated 

(r > 0.8) (Tischendorf 2001). 

Landscape structure was also analyzed at the class level by computing 14 metrics for the 

6 land cover classes of the four sites for the two time periods. Indirect ordination analysis 

(PCA) was used to reduce the redundancy of landscape metrics into uncorrelated components 

(McCune and Grace 2002), allowing comparison of land cover classes from all time periods 

and watersheds (Tinker et al. 1998). 

A transition matrix was used to summarize the state of each landscape in each time 

period and the transitions through time with respect to each land cover category. 
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Historical data on grazing activities in the four watersheds were obtained from regional 

inventory dataset of Piedmont (Pastorino et al. 1980) and Lombardy (Della Marianna et al. 

2004; Società Agraria di Lombardia 1901), historical archives (Bergomi 2006) and grazing 

management plans (Scalabrini et al. 2004). Grazing data at the watershed scale were only 

available for the 1901-2010 period and were used as proxy variable of human pressure on the 

studied landscapes.  

Stand structure and data analysis 

Stand structure data were collected in the field in 203 circular plots (56 for VEG, 79 for DEV, 

28 for MUS, and 40 for VEN). Sampling plots for the VEG and DEV watersheds were located 

on a 300 x 300 m wide regular grid, whereas at MUS and VEN a stratified random sampling 

design was applied (Garbarino et al. 2009). Plots of 12-m radius were used for the tree 

(diameter at 1.30 m, DBH ≥5 cm) layer survey, and subplots with a radius of 6 m were 

established within each plot for the sapling (DBH <5 cm and height >10 cm) layers. For all 

trees we measured DBH and total height. The three larch trees with the greatest diameter were 

cored upslope at a height of 50 cm in order to estimate stand age. For regeneration only 

density, composition and height were collected. From these data the following stand 

descriptors were used in the analyses: relative dominance of larch trees, maximum age of trees, 

density of trees, tree height, basal area, canopy cover, average DBH, standard deviation of 

DBH, relative dominance of larch regeneration, regeneration density and richness. The 

topographic variables (elevation, slope, aspect) were derived from a 10-m digital elevation 

model and the anthropogenic variables (proximity to buildings and roads) were derived from 

thematic maps (see Garbarino et. al 2009 for details). 

Redundancy analysis (RDA), a constrained ordination method (Rao 1964; ter Braak and 

Prentice 1988) was used to investigate the proportion of variability explained by predictor 

variables relating to environment, anthropogenic influences and historical land cover, and their 
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correlation with stand structure variation. Historical land cover classes were derived from the 

land cover maps previously obtained and were treated in the analysis as nominal variables. All 

ordination analyses (PCA and RDA) were performed using Canoco® software (ter Braak and 

Smilauer 1998), and their statistical significance tested by the Monte Carlo permutation 

method based on 10000 runs with randomized data. 

Relationships among independent (topographic and anthropogenic) variables and the 

response variable (stand structure) were analyzed by means of path analysis in the Mx software 

that utilizes covariance matrices as input data and a maximum likelihood (ML) fit function 

(Neale 1994). Path analysis is a specialized version of Structural Equation Models (Shipley 

2000) that permits testing an a priori model including cause-and-effect relationships between 

the studied variables. Our a priori or conceptual model (Fig. 2) was based on the interactions 

between topographic and anthropogenic variables in shaping forest structure. A PCA was used 

to extract a smaller subset of stand structure descriptors (first two principal components) for 

use in the path models. Alternative models were compared using a combination of Akaike’s 

Information Criterion (AIC) statistic and the Root Mean Square Error of Approximation 

(RMSEA). The latter is a goodness-of-fit index that is relatively independent of sample size. A 

model with RMSEA < 0.06 was considered a good fit (Hu and Bentler 1999). All such models 

were computed and the models with the smallest AIC statistics were selected as the most 

parsimonious models (Hu and Bentler 1999). 

#Figure 2 approximately here# 

Results 

Land use history and landscape configuration 

Historical data on grazing activities (Table 3) suggested a declining trend through time that was 

common to all the studied valleys. Cattle were more abundant than sheep and goats at VEG 

and DEV, but the proportion of species animals was more evenly distributed in the Lombardy 
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sites (MUS and VEN). VEN emerged as the least utilized watershed and is the only currently 

ungrazed.  

#Table 3 approximately here# 

The increase of edge density and shape index mean was common to all the study sites, 

indicating a general increase in polygon shape irregularity from 1954 to the present (Table 4).  

Patch density, area mean and landscape shape index increased in all the study sites, except for 

VEN that proved to be the only study site to remain relatively stable in terms of its landscape 

configuration. Landscape diversity (SDI) ranged from 0.5 at VEN to 0.8 at MUS  in 1961and 

remained fairly stable in all the studied watersheds. 

#Table 4 approximately here# 

Land cover change 

The total area of forest cover (‘Dense’ plus ‘Sparse’) increased in all study sites (Table 5) with 

the increase being particularly strong at DEV (+88%) and VEG (+58%). Conversely a 

consistent reduction of the wood pastures or ‘Grazed Forests’ was observed, with the greatest 

decline (-95%) at VEN. The ‘Meadows’ class decreased in all study sites ranging from -39% at 

VEN to -20% at DEV. The land cover changes in the four study sites were similar, but MUS 

and VEN emerged as the most and the least dynamic landscapes, respectively. 

#Table 5 approximately here# 

Principal component analysis provided a graphical depiction of changes in landscape 

metrics associated with the different land-cover classes. The first component accounted for 

40.3% of the total variation and reflected a gradient of patch density, edge density and 

contiguity (Table 6). The second component explained an additional 23.7% of the total 

variation and was negatively correlated with patch size and aggregation. The ordination 

revealed that open and semi-open land cover classes (‘Meadows’ and ‘Grazed Forests’) were 

strongly fragmented as a consequence of a reduction of their surface area and number of 
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patches (Fig. 3). An increase of fragmentation was also experienced by ‘Sparse Forests’ class 

as reflected in an increase of patch density. Conversely the ‘Dense Forests’ class showed an 

increase of aggregation and mean patch size. 

#Figure 3 and Table 6 approximately here# 

Stand structure and its driving factors 

European larch dominated in all the studied landscapes, but VEN emerged as having the 

highest species richness both in the trees and the regeneration layers (Table 7). VEG had a 

strong dominance of larch (96%) and among the older (217 years) and bigger (c.a. 24 cm) 

trees. Closed and dense stands were abundant at MUS where the presence of Norway spruce 

and small trees was more common.   

# Table 7 approximately here# 

The relationships between stand structure variables, environmental variables and 

anthropogenic factors were assessed through RDA (Fig. 4). The first and second axes 

accounted for 9.4 and 2.8% of the total variation, respectively and the species-environment 

correlation for the first RDA axis was 58.6%. Higher regeneration density (R-De) was 

associated with former pastures (‘Meadows’) and wood pastures (‘Grazed Forests’). These 

sites were located in close proximity to human settlements and shepherds’ huts (Bu), at lower 

elevations (El), and gentle slopes (Sl). All tree size (e.g. Dbh and He) and stand density (e.g. 

BA and CC) descriptors were positively associated with former ‘Dense Forests’. At higher 

elevations, corresponding to the former ‘Sparse Forests’, the dominance of larch both in the 

tree (T-Do) and the regeneration (R-Do) layers was strong. 

#Figure 4 approximately here# 

Starting from a conceptual model (Fig. 2), we tested alternative path models combining 

data from all four watersheds (n = 203 plots). The focus dependent variables were two 

synthetic descriptors of stand structure derived from a PCA: tree size (PC 1) and stand age (PC 
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2). Only one of the tested models was statistically significant (Fig. 5). The model included tree 

size as dependent variable and the positive interaction between anthropogenic influences 

(Proximity to buildings) and topographic factors (aspect; β = 0.11). Elevation was the most 

important predictor and was negatively associated with tree size (β = -0.34). A weak negative 

effect on the dependent variable was also observed for proximity to buildings (β = -0.13). A 

direct negative effect (β = -0.12) of aspect on tree size was slightly enhanced by indirect effects 

mediated by proximity to buildings (total effect β = -0.13).  

#Figure 5 approximately here# 

Discussion 

Results of this study provide strong evidence that the anthropogenic disturbance regime in the 

central Alps remains an overriding factor for shaping the actual structure and composition at 

landscape and stand scales. The studied alpine valleys have a long history of human land use 

expressed mainly by grazing on mountain pastures and forests. The decline of these traditional 

practices has directly affected the present landscape pattern. In less accessible valleys the 

human impact was less intense and less frequent resulting in a landscape less prone to land 

cover changes. 

The anthropogenic disturbance regime of our study sites was dominated by cattle grazing 

that was active every summer mainly in open pastures and secondarily within wood pastures. 

However, the intensity of historical human impact has differed among our study sites. VEG, 

DEV and MUS experienced a very intense land-use probably due to their more favorable 

topography, whereas VEN, which occupies a more marginal and less accessible valley, was 

less disturbed by human activities. These topographic differences are clearly reflected in our 

results for land cover change. Since 1954, all the studied landscapes have been characterized 

by increased forest cover and decreased open and semi-open habitats. VEN experienced a 
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lower magnitude of this natural reforestation process, as well as less intense changes to 

landscape configuration overall.  

Our findings on the expansion of forest cover in the subalpine belt are consistent with 

other recent studies on the Alps (Didier 2001; Dullinger et al. 2003; Gellrich et al. 2007; Tasser 

et al. 2007) where a decrease of heterogeneity was observed. However, landscape 

heterogeneity or diversity increased in our study sites, where new patches of trees expanded 

over abandoned pastures, balancing the opposing trend of canopy closure experienced by wood 

pastures. The observed small increase of landscape heterogeneity can also be explained by the 

fact that grazing is still active in at least three of our study sites (MUS, VEG and DEV), 

limiting the aggregation of existing forests. The general increase of complexity of the 

landscape mosaic can be explained by the reduction of large patches of former meadows and 

wood pastures and the establishment of new patches of forest.  

Historical records such as population and livestock archival data are valuable sources of 

information for understanding reforestation patterns on abandoned land (Chauchard et al. 2007; 

Motta and Lingua 2005). These kinds of data were incomplete for our study sites; however a 

clear trend of grazing decline over the last 100 years was common to all watersheds. Tree 

recruitment and thus regeneration appears to be influenced by grazing pressure in that when the 

pressure is high regeneration is lacking and vice versa (Chauchard et al. 2007). 

Notwithstanding the damages caused by goats to tree regeneration, non-selective grazing by 

cattle is more destructive for tree regeneration than selective grazing by sheep and goats 

(Hester et al. 1996, Tasser et al. 2007). However, trampling by heavy animals like cattle can 

have a positive selective effect for certain tree species like larch that require exposed mineral 

soil for germination (Tasser et al. 2007). Extensive grazing is often necessary to maintain tree 

regeneration within subalpine wood pastures (Mayer et al. 2003; Schulze et al. 2007). 
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Previous studies on pre-industrial land use have shown that traditional practices such as 

grazing, tree felling and fire, singly or in combination, may have a great impact on current 

forest ecosystems when carried out for long time periods {Conedera, 2010 #3670} (Josefsson 

et al. 2010). Wood pasture and grazing land uses have strong species-specific consequences in 

that larch trees are less damaged than other species such as broadleaved trees. In addition, there 

are other traditional human practices (e.g. seedling removal, thinning, burning) that favored 

larch at the expense of other less desirable tree species such as stone pine (Motta and Lingua 

2005; Motta et al. 2006). The forests of our study sites are almost pure larch forests with stone 

pine occasionally appearing in the regeneration layer, a clear consequence of the long and 

pervasive human impact on the species composition of these forests. An analysis of pollen data 

at VEG revealed that the colonization by larches and birches started ca. 7300 yr BP followed 

by the establishment of a mixed and open conifer forest with stone pine, mountain pine, 

Norway spruce and larch (Paganelli and Borgato 2000). Circa 2000 yr BP all evergreen 

conifers were removed, directly or as a consequence of fire and land use to favor a pure and 

sparse larch forest associated with extensive pastures {Carcaillet, 2009 #3078}. 

Topographic variables and spatial proxies for the strength of anthropogenic influence 

were important predictors for stand structure. The highest regeneration densities were found at 

lower elevations and closer to shepherds’ huts, where the former land use was pasture or wood 

pasture. Historical cattle grazing was commonly more intense on gentle slopes close to human 

settlements. Anthropogenic pressure on low elevation, accessible, and productive forests is 

generally strong (Castagneri et al. 2010). Denser stands with bigger trees were associated with 

formerly dense forests meaning that the portion of the landscape that covered by forests has 

remained almost the same. Elevation has been shown to be a key variable for forest increase 

elsewhere in the Alps (Kulakowski et al. 2011) where the greatest changes in forest structure 

have been observed close to the tree-line (Gehrig-Fasel et al. 2007). Kulakowski and others 
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(2011) indicated a hierarchical importance of multiple interacting factors: 1) the most 

important variable was elevation, 2) followed by land use expressed by abandonment, 3) then 

by suppression of natural avalanche disturbance, 4) and climate warming. Our findings 

generally confirmed this hierarchical classification of underlying gradients of forest changes in 

the Alps. In fact, our path models for all four study sites indicated elevation as the most 

important variable and human impact, expressed by proximity to buildings, as the second most 

important variable. The path model developed within the present research proved to be valid 

for our four alpine valleys, and may be broadly generalizable to large areas of the Italian Alps. 

Our findings indicate that the anthropogenic disturbance regime and its alteration due to 

land abandonment are key factors for shaping forest and landscape structure. Structural 

changes in landscapes are ultimately determined by changes in anthropogenic disturbance 

regimes (Kulakowski et al. 2011), although the physical template and the socio-economic 

environment act as local constraints. The dramatic reduction of cultural landscapes in the Alps 

is important to consider from the point of view of sustainable management. Pastures and wood 

pastures can be maintained through the regulation of cattle densities only in those valleys (e.g. 

MUS, VEG, DEV) where these practices are still active (Garbarino et al. 2011). More remote 

and marginal valleys (e.g. VEN) can be considered as monitoring units that should be studied 

in order to predict future landscape change scenarios in a climate change context. ?? develop 

naturally towards mixed-multilayered  forests? 

The present structure and composition of larch forests must be considered in light of their 

historical context in order to accurately plan future management strategies. The understanding 

of past land use should be integrated into ecological models used to advise the management of 

biological reserves (Eberhardt et al. 2003; Gimmi et al. 2008). Reliable quantitative estimates 

of biomass output due to traditional forest uses provides the potential to incorporate these 

practices into ecological models and assess the impact on biogeochemical cycles and 
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vegetation changes (Gimmi et al. 2008). Historical ecology can serve as a source of 

quantitative data on human pressure to inform ecosystem models for prediction of future 

scenarios of landscape change and species compositional shifts (Robinson et al. 2009; 

Tappeiner et al. 1998).  

Habitat suitability models can be used to simulate or predict potential impacts of 

landscape changes on species habitats (Bolliger et al. 2007). For example, it would be 

interesting to use a species distribution modeling approach (Guisan and Zimmermann 2000; 

Hirzel and Le Lay 2008) for a species such as Swiss stone pine to compare potential habitat 

with current distribution, and so isolate the effects of historical land-use practices on current 

species distribution. Ultimately, this type of understanding is needed to model climate change 

response of tree species in the context of changing land-use practices in mountain forests and 

for the planning of the expected forest ecosystem services {Lindner, 2010 #3671}.  
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Tables 

Table 1 Summary statistics and characteristics of the four watersheds analyzed in this study. 

Total area is the total watershed surface, analyzed area is the portion (below 2400 m a.s.l.) of 

the watershed used in the landscape structure analyses, and forested area is the sum of 3 land 

cover categories (dense, sparse and grazed forests) in 2000 or 2003. The values within 

parenthesis under the precipitation column are elevations of meteorological stations.  

Landscapes Total 

Area 

(ha) 

Analyzed 

Area 

(ha) 

Forested 

Area 

(ha) 

Elevation 

Mean 

(m a.s.l.) 

Elevation 

Range 

(m a.s.l.) 

Slope 

Mean 

(°) 

Mean Annual 

precipitation 

(mm) 

Veglia 4117 2505 515 2314 
1496-

3419 
24 

1520 (2240 m 

a.s.l.) 

Devero 6674 4843 1092 2227 
1412-

3175 
21 

1626 (1840 m 

a.s.l.) 

Musella 1151 787 412 2275 
1650-

3050 
28 

975 (1000 m 

a.s.l.) 

Ventina 1123 468 132 2534 
1651-

3587 
32 

975 (1000 m 

a.s.l.) 
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Table 2 Classification accuracy (OA = Overall Accuracy, K = K statistic) obtained through 

confusion matrices (Lillesand and Kiefer 1994) of eight land cover maps derived from aerial 

photographs (sources). 

Watershed Year Sources Accuracy 

(OA) 

Accuracy (K) 

Veglia 1954 IGM G.A.I. 93 0.87 

Veglia 2000 IT2000 89 0.82 

Devero 1954 IGM G.A.I. 90 0.85 

Devero 2000 IT2000 88 0.83 

Musella 1961 IGM 80 0.75 

Musella 2003 Sondrio P. 72 0.66 

Ventina 1961 IGM 69 0.63 

Ventina 2003 Sondrio P. 77 0.71 
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Table 3 Domestic livestock data (number of animals) in the four study areas in the 1901-2010 

period. Missing data are expressed with a “-“. 

 Veglia Devero Musella Ventina 
Year Cattle Sheep Goats Cattle Sheep Goats Cattle Sheep Goats Cattle Sheep Goats 
1901 - - - - - - 200 0 150 24 50 30 
1921 2299 900 95 802 500 35 - - - - - - 
1969 583 348 201 - - - - - - - - - 
1979 798 600 500 - - - 47 0 20 29 0 0 
1981 1148 1000 500 819 300 64 - - - - - - 
1982 860 - - - - - - - - - - - 
1983 800 150 100 - - - - - - - - - 
1986 - - - 416 122 51 - - - - - - 
1988 450 500 400 - - - - - - - - - 
1989 200 - - - - - - - - - - - 
1990 250 - - - - - - - - - - - 
1991 228 66 - 371 4 89 - - - - - - 
1992 262 98 - - - - - - - - - - 
2000 - - - - - - 40 0 40 0 0 0 
2003 229 - - 333 - - - - - - - - 
2005 - - - - - - 85 0 0 0 0 0 
2006 - - - - - - 97 0 0 0 0 0 
2007 - - - - - - 68 0 0 0 0 0 
2008 208 127 254 291 0 0 - - - - - - 
2009 284 138 224 257 0 0 - - - - - - 
2010 241 156 269 280 0 0 - - - - - - 
 

 

 

 

 

 

 

 



22 

 

 

Table 4 Key landscape metrics (McGarigal and Marks, 1995) computed for the 4 watersheds at 

two periods (8 land cover maps). 

Metrics (Units) Musella 

(787 ha) 

Ventina 

(468 ha) 

Veglia 

(2505 ha) 

Devero 

(4843 ha) 

1961 2003 1961 2003 1954 2000 1954 2000 

Patch Density (n/100ha) 12.2 20.4 4.6 4.4 10.7 12.4 8.5 9.2 

Largest Patch Index (%) 11.1 16.3 36.2 34.6 27.9 23.5 15.9 10.6 

Patch Area Mean (ha) 4.4 2.6 12.7 13.4 4.7 4.1 4.3 4.0 

Edge Density (m/ha) 91.5 144.3 45.6 46.7 85.0 108.7 70.0 79.4 

Landscape Shape Index 9.8 14.8 4.3 4.3 16.0 20.1 21.1 23.8 

Shape Index  Mean  2.4 2.6 2.1 2.3 2.4 2.9 2.5 2.9 

Contagion Index (%) 53.4 56.2 69.1 70.1 62.5 59.2 59.4 56.5 

Connectance Index (%) 3.4 2.4 11.4 7.7 1.5 1.7 0.9 0.8 

Simpson’s Diversity Index 0.8 0.7 0.5 0.6 0.6 0.7 0.7 0.7 
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Table 5. Transition matrices showing land cover changes in the 4 study sites. Values are 

expressed in hectares and in percent (in parentheses) relative to the total area of the class in 

1954 or 1961. The category ‘Bare soil and water’ was removed from the transition matrices. 
Veglia 1954 to 2000 1 2 3 4 5 Total area 

1 Dense Forest 62.55 (79%) 11.47 (15%) 0.00 (<1%) 1.63 (3%) 4.19 (6%) 79.82 (8%) 

2 Sparse forest 28.87 (15%) 138.11 (68%) 8.75 (5%) 10.03 (5%) 18.94 (10%) 204.68 (21%) 

3 Wood pasture 8.88 (8%) 48.94 (40%) 38.97 (32%) 3.47 (3%) 23.53 (20%) 123.78 (13%) 

4 Shrubland 1.46 (2%) 47.95 (33%) 0.34 (<1%) 68.37 (48%) 27.28 (19%) 145.39 (15%) 

5 Meadow 10.69 (3%) 90.93 (20%) 17.18 (4%) 52.40 (12%) 283.79 (63%) 454.97 (46%) 

Total area 112.43 (12%) 337.38 (34%) 65.23 (7%) 135.89 (14%) 357.71 (36%) 1008.62 (100%) 

Devero 1954 to 2000       

1 Dense Forest 114.06 (88%) 14.08 (11%) 0.76 (1%) 0.03 (<1%) 1.81 (2%) 130.72 (6%) 

2 Sparse forest 68.89 (19%) 232.36 (64%) 18.64 (6%) 13.40 (4%) 32.03 (9%) 365.30 (16%) 

3 Wood pasture 36.71 (13%) 125.55 (44%) 92.71 (32%) 9.89 (4%) 26.29 (10%) 291.12 (13%) 

4 Shrubland 3.56 (1%) 101.38 (28%) 5.23 (2%) 175.13 (48%) 87.16 (24%) 372.44 (16%) 

5 Meadow 29.13 (3%) 208.19 (17%) 40.68 (4%) 118.52 (10%) 838.21 (68%) 1234.71 (52%) 

Total area 252.33 (11%) 681.54 (29%) 157.99 (7%) 316.94 (14%) 985.49 (42%) 2394.27 (100%) 

Musella 1961 to 2003       

1 Dense Forest 104.48 (92%) 6.35 (6%) 2.20 (2%) 0.73 (<1%) 1.02 (<1%) 114.75 (24%) 

2 Sparse forest 84.97 (49%) 74.94 (43%) 2.20 (2%) 2.32 (2%) 10.25 (6%) 174.66 (36%) 

3 Wood pasture 61.64 (74%) 6.07 (8%) 13.8 (17%) 0.05 (<1%) 2.72 (4%) 84.27 (18%) 

4 Shrubland 4.67 (13%) 13.71 (36%) 0.12 (<1%) 19.69 (52%) 0.00 (<1%) 38.17 (8%) 

5 Meadow 14.33 (19%) 12.81 (17%) 9.93 (13%) 0.22 (<1%) 39.72 (52%) 76.99 (16%) 

Total area 270.07 (56%) 113.85 (24%) 28.23 (6%) 22.99 (5%) 53.7 (11%) 488.82 (100%) 

Ventina 1961 to 2003       

1 Dense Forest 46.91 (84%) 9.45 (17%) 0.07 (<1%) 0.00 (<1%) 0.00 (<1%) 56.42 (40%) 

2 Sparse forest 15.27 (26%) 37.86 (63%) 0.00 (<1%) 6.86 (12%) 0.37 (<1%) 60.35 (42%) 

3 Wood pasture 16.85 (93%) 0.44 (3%) 0.84 (5%) 0.00 (<1%) 0.00 (<1%) 18.12 (13%) 

4 Shrubland 2.03 (35%) 0.82 (15%) 0.00 (<1%) 2.97 (52%) 0.00 (<1%) 5.81 (5%) 

5 Meadow 0.02 (<1%) 1.09 (30%) 0.00 (<1%) 0.73 (20%) 1.87 (51%) 3.70 (3%) 
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Total area 81.06 (57%) 49.65 (35%) 0.9 (<1%) 10.56 (8%) 2.24 (2%) 144.39 (100%) 

Table 6 Principal component loadings for the metrics on class level (McGarigal and Marks 

1995). Bold font indicates the highest value for each metric. 

Metrics (abbreviation) PC1 PC2 PC3 PC4 

Clumpiness Index (CLUMPY) 0.347 -0.220 0.150 -0.283 

Edge Density (ED) -0.326 -0.298 -0.098 -0.210 

Patch Density (PD) -0.321 -0.225 -0.191 -0.202 

Core Area Index Mean (CAI_MN) 0.310 -0.191 0.183 0.077 

Contiguity Index Mean (CONTIG_MN) 0.306 0.203 0.229 -0.166 

Disjunct Core Area Density (DCAD) -0.130 -0.400 -0.092 -0.133 

Cohesion (COHESION) -0.118 -0.381 0.367 0.182 

Landscape Division Index (DIVISION) 0.108 0.372 0.291 0.065 

Area mean (AREA_MN) 0.239 -0.357 0.242 0.254 

Total class Area (CA) -0.238 -0.053 0.509 -0.221 

Landscape Shape Index (LSI) -0.348 0.035 0.378 -0.046 

Connectance (CONNECT) 0.117 -0.278 -0.168 0.623 

Shape Index Mean (SHAPE_MN) -0.295 0.096 0.337 0.369 

Aggregation Index (AI) 0.320 -0.271 0.129 -0.327 

Eigenvalue 5.643 3.314 1.656 1.061 

% of variance 40.3 23.7 11.8 7.6 

P (10000 Monte Carlo runs) 0.0001 0.0001 ns ns 
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Table 7 Mean values and standard deviations (indicated in italics) of the 12 stand structure 

descriptors (Ri – number of trees/regeneration species, Do – proportion of larch 

trees/regeneration, De - number of trees/regeneration per hectare, Dbh – mean tree diameter at 

130 cm, BA – basal area per hectare, He – mean trees/regeneration height, CC – percent 

canopy cover, Age – age estimation of the 3 largest-diameter larches) collected in the field in 

203 circular plots at VEG, DEV, MUS and VEN sites. 

 Descriptors Landscapes 

  Veglia Devero Musella Ventina 

Trees Ri (n) 1.23 0.47 1.56 0.73 1.86 0.52 2.13 0.88 

 Do (%) 0.96 0.09 0.85 0.24 0.56 0.35 0.82 0.23 

 De (n/ha) 506.12 270.68 540.86 363.80 525.32 226.44 401.46 289.72 

 Dbh (cm) 23.94 13.39 21.01 12.47 18.89 11.25 19.65 12.94 

 BA (m2/ha) 19.02 13.31 17.14 13.91 21.71 14.76 19.88 20.66 

 He (m) 10.51 3.42 11.08 3.62 10.09 4.14 8.12 3.49 

 CC (%) 33.57 12.75 33.48 20.09 48.75 15.88 36.80 21.98 

 Age (yrs) 217.27 153.82 211.43 132.50 141.46 53.33 198.23 126.15 

Regeneration Ri (n) 1.02 0.45 1.29 0.70 1.43 0.92 1.83 1.01 

 Do (%) 0.77 0.40 0.57 0.45 0.63 0.41 0.57 0.36 

 De (n/ha) 683.77 665.61 359.56 572.73 361.82 333.04 212.35 248.24 

 He (m) 1.04 0.60 1.12 0.64 0.97 0.59 1.06 0.59 
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Figure captions 

Figure 1 Location of the four study areas (VEG = Veglia, DEV = Devero, MUS = Musella, 

VEN = Ventina) within the Alps and Piemonte and Lombardia regions. 

Figure 2 Conceptual model tested for all the 4 study areas separately and as a whole through 

path analysis. Topographic and anthropogenic variables are included in the full model and 

associated through positive or negative causal path to “Stand structure” that refers to first and 

second principal components (PC1 and PC2) interpreted as tree size and absolute density 

respectively. 

Figure 3 Principal component analysis of 4 land cover classes (D – dense forest, S – sparse 

forest, G – grazable forest, M – meadow) for 8 maps (4 landscapes, 2 periods). Rocks and 

shrubs classes are not shown to reduce the graphic complexity. Land cover classes are labeled 

according to sites (VEG: rhombus points; DEV: triangle points; VEN: square points; MUS: 

circular points) and periods (1954 and 1961: unfilled points; 2000 and 2003: filled points). 

Figure 4 Redundancy analysis (RDA of 203 plots) of forest structure in relation to historical 

land uses (1954 and 1961) and environmental variables. Dashed arrows represent the stand 

structure variables (T-Do = relative dominance of larch trees; AGE = maximum age of trees; 

T-De = density of trees; T-He = trees height; BA = basal area; CC = canopy cover; Dbh-Me = 

average Dbh; Dbh-Sd = standard deviation of Dbh; R-Do = relative dominance of larch 

seedlings; R-De = regeneration density; R-Ri = regeneration richness). Full line arrows are the 

“biplot scores of environmental variables” (El = elevation; Sl = slope; As = aspect; Bu = 

proximity to buildings). Triangular dots are historical land uses classified by aerial 

photographs. The analysis emerged as significant (p < 0.0001, Monte Carlo test) with 10000 

permutations under the full model. 

Figure 5 Path diagram for the 4 study areas as a whole (203 plots). Continuous lines: positive 

paths; dotted lines: negative paths; single arrow lines: causal paths; double arrow lines: 
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covariance paths. Thickness of causal path vectors corresponds to the strength of effect. Only 

significant path coefficients are presented next to each path. Fit indices of the model are: 

RMEA (Root Mean Square Error of Approximation) < 0.001; AIC (Akaike’s Information 

Criterion) = -2.365; P = 0.441; degrees of freedom = 2; ML ChiSq = 1.635. 
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