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Abstract. An original software system for in–process Bayesian estimation is

presented with application to a vector of time–varying measurands. The estimation

algorithm, mainly based on the Kalman filter technique, is an innovative application to
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and implemented routines are illustrated and supported by numerical examples. The
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1. Introduction

In–process metrology deals with real time elaboration of measurands and related

uncertainties [1] during a measurement process. The measurand values — the

quantities being estimated [2] — can vary with time (e.g., a mobile position). When

dynamic systems (e.g., a mechanical plant or a chemical process) are being monitored,

measurement data are typically unavailable in advance and their treatment cannot be

postponed for batch–processing. Metrological approaches to dynamic systems can be

found in recent literature, e.g., [3, 4, 5, 6, 7].

In–process metrology bears relevance also to on–line estimation of unknown

parameters for system identification in adaptive control techniques. Optimization

criteria lead to estimators based on the principle of minimizing quadratic loss functions

[8, 9]. Estimates attained by Kalman filtering are optimal under diverse such criteria,

like least–squares (LS) or minimum–mean–square–error (MMSE). LS and MMSE are

recognized criteria in orthodox (i.e., non–Bayesian) statistics, which can be thought of

in terms of decision theory (DT) too. In fact, DT is also attractive for a comprehensive

approach to estimation inclusive of orthodox as well as Bayesian (such as the Kalman

filter [10, 11]) techniques.

Kalman filter theory is well established since more than half a century [10], and its

practice is developed with application to several fields. For some applications see, e.g.:

in–process measurement system, for enhancing the productivity and quality of grinding

processes [12]; human–robot interaction [13]; speed estimation of an induction machine

[14]; electrical motors [15]; position and orientation tracking systems [16]; human limb

angle measurement [17]; motion of the carotid artery estimation [18]; estimation of local

wind velocity [19]; process tomography [20].

In this perspective, a Bayesian approach to real time estimation was developed,

giving rise to a software (SW) [21], where the Kalman filter technique was customized

with applicability to coordinate measuring machines (CMMs). In [21] the case of a

scalar, time–invariant, quantity was taken into account, aiming at demonstrating (by

simulation) the performance of a procedure designed and implemented for real time,

simultaneous estimation of measurand value and relevant measurement uncertainty.

Advancing along the same lines, the present research work addresses a more general

case–study. Here — subsuming the scalar one as a particular case — estimation target

are vectors of time–varying measurands. However, this non trivial generalization entails

peculiar complexities to cope with. Two novel different strategies are presented in order

to perform estimations of time–varying measurands (in the cases of cyclic or acyclic

patterns). In the present paper, the rationale and performance of a SW realized in

MatlabTM‡ are presented and discussed with application to such a complex case–study.

This is an innovative application of the Kalman filter technique to in–process metrology.

The paper is organized as follows. The next Section 2 focuses on the estimation

‡ Identification of commercial products in this paper does not imply recommendation or endorsement,

nor does it imply that the products identified are necessarily the best available for the purpose
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problem from both statistical and computational points of view: the Kalman filter

foundation on Bayesian statistics roots is set out and technicalities of interest for

designed algorithms are detailed. On this basis, Section 3 is devoted to illustrate the

implemented strategy (§ 3.1) and to comment the performance of the demonstrator

SW realized and tested by simulation (§ 3.2): applications of metrological interest are

examplified and discussed. Section 4 closes the paper pointing out current results and

outlining future prospects.

2. From Kalman back to Gauss and Bayes

In this section, those formulae only needed to clarify the relationship of this technique

with Bayesian estimation are focused from the point of view of measurement science,

with particular attention to measurand and related uncertainty estimation, according

to metrological guidelines [1].

The route from Gauss to Kalman can be found in [11]; in the following, the route is

reversed from Kalman to Bayes. For a deeper insight into the filter, the seminal paper

by Kalman [10] clearly remains the authoritative reference. As to foundations and

technicalities of Bayesian statistics, comprehensive expositions are available in treatises:

see, e.g., [22] for estimation techniques also related to DT.

In this sense, the Kalman filter connotes an estimation technique with applicability

to dynamic processes modeled by discrete linear equations (non–linearity issues are not

dealt with in this research work). With application to vectorial quantities, the process

state at the step k (0 ≤ k ≤ L, discrete time with maximum value L determined by a

stopping criterion) is denoted by xk and its step by step evolution is described by the

following formula:

xk+1 = Akxk +Bkuk + wk, (1)

where xk (process state), uk (optional control input), and wk (white noise) are vectors,

and Ak, Bk are matrices which relate the process state at the step k + 1 with the k-th

process state and with the k-th control input, respectively.

The (indirect) measurement zk of xk is modeled as follows:

zk = Hkxk + vk, (2)

where vk is introduced due to the measurement uncertainty and Hk relates the (observ-

able) output zk with the (internal) state xk. In metrology terms, zk and xk represent the

measured quantity values and the measurand, respectively. In these terms, the model

is translated into the context of measurement science: according to the international

vocabulary of metrology, definitions of ’measurand’ and ’measured quantity value’ can

be found in [2] (clauses 2.3 and 2.10, respectively). To the purpose of the estimation

task, it is assumed that Hk = I (where I is the identity matrix) so to directly relate

the measured quantity values zk to the measurand xk. The estimation is obtained by

means of the following equations:
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x−0 = x̃−1 = x̃expert (3)

x̃k = x−k +Kk(zk −Hkx
−
k ), 0 ≤ k ≤ L (4)

x−k = Ak−1x̃k−1 +Bk−1uk−1, 1 ≤ k ≤ L, (5)

where Kk is the Kalman gain matrix and x̃−1 is a pre–process estimate obtained from

an expert judgment. The entries of Kk assign suitable weights to zk and x−k : according

to the MMSE criterion these weights are obtained by minimizing the expected value

E(ek
tek), where ek = |x̃k − xk| and the left-superscript t stands for the transposition

operator.

In [21], the Kalman filter has been developed in a metrological context, with

application to a single time–invariant measurand (the unknown value of a scalar

quantity, whose measurement is subject to uncertainty). In this paper, a more general

case–study is taken into account: the estimation targets are vectors of time–varying

measurands whose components are supposed uncorrelated so to simplify Kk into a

diagonal matrix.

In order to make explicit how the entry (i, i) of the gain matrix is determined,

reference to a single i–th component of the measurand vector is taken into account:

in the following, to avoid a sloppy notation the reference to i will be omitted, so that

the i–th component of x−k and zk (bold face) will be denoted by (italics) x−k and zk
respectively.

In fact, the Kalman filter implements a Bayesian estimation method, the roots

of which can be disclosed noting first that the presence of wk and vk introduces a

stochastic effect into the model through equations (1), (2). After that, let X, Z be

the stochastic counterpart of x−k , zk respectively and let f=fk represent a probability

density function (PDF) at the k-th step (the subscript is omitted, unless required in

PDF’s arguments showing computational details). The system of equations (3), (4), (5)

can thus be translated in Bayesian statistics terms as follows.

The Bayes’ theorem can be written as

f(X|Z) =
f(Z|X)f(X)∫ +∞

−∞ f(Z|X)f(X)dX
, (6)

where f(X|Z) is called the posterior density, f(X) the prior density, and f(Z|X) the

likelihood (the denominator is simply a normalization factor). Let f(X) = N (x−k , σ̃
2
k−1)

and f(Z|X) = N (zk, σ
2) be Gaussian PDFs. From (6) follows

f(X|Z) ∝ f(Z|X)f(X) = N

σ2x−k + σ̃2
k−1zk

σ2 + σ̃2
k−1

,

(
1

σ2
+

1

σ̃2
k−1

)−1
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where either 
σ̃2
−1 = σ2

−1, σ̃
2
0 = σ2

0

σ2 = σ̃2
k

σ̃2
k+1 =

(
1

σ2
+

1

σ̃2
k−1

)−1 , 0 ≤ k ≤ L, (7a)

or 
σ̃2
−1 = σ2

−1, σ
2 = σ2

0

σ̃2
k =

(
1

σ2
+

1

σ̃2
k−1

)−1
, 0 ≤ k ≤ L

. (7b)

In (7) the standard deviations σ−1, σ0 are initialized — according to an expert

judgment, or based on technical specifications — and can be used for type B (in

terms of Guide [1]) uncertainty treatment: x̃−1 and σ−1 represent prior knowledge

about the measurand value and its uncertainty, respectively. Moreover, σ0 translates

known metrological characteristics of the calibrated measuring system actually being

used in the measurement process: e.g., if the system is a CMM, σ0 can be derived

from the volumetric length measurement uncertainty and the volumetric probing

uncertainty declared by the CMM’s producer [21]. As to the parameter σ, its value

is either recursively updated or kept constant as in algorithm of equation (7a) or (7b),

respectively. This choice is up to an expert operator, whose decision is entered in (7)

at the routine initialization: updating σ by σ=σ̃k, reflects an increasing confidence in

repeated measurements. (The possibility of such a personalization reflects the fact that

the estimation algorithm is actually implementing a metrological customization of the

basic Kalman filter; another option might be allowing σ to vary according to criteria

for possible outliers treatment: however this topic is not a matter of the present paper:

see [23].)

By application of equations (4), (5), (6) the posterior PDF is the Gaussian

f(X|Z) = N (x̃k, σ̃
2
k+1) or f(X|Z) = N (x̃k, σ̃

2
k) if equation (7a) or (7b) has been chosen,

respectively, and where

x̃k =
σ2x−k + σ̃2

k−1zk

σ2 + σ̃2
k−1

, 0 ≤ k ≤ L. (8)

The result of equation (8) is the metrological realization of the Kalman based

equation (4). Equations (7), (8) are the core ingredients of the recursive estimation

model. Final results of this model are the estimates obtained at the last step of

the recursion, namely the expected value and the standard deviation of the posterior

Gaussian PDF fL(X|Z).

In the next section, the performance of the estimation technique shown in the above

described model is demonstrated by a SW developed with application to a variety of

measurands. These include time–varying quantities exhibiting diverse patterns.
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3. Demonstrator software

The intended goal of the Kalman filtering approach developed in the preceding section is

to provide a model for real time estimation. Accordingly, a suite of recursive algorithms

has been implemented. Aiming at displaying computational performance, functioning

of interface with an expert operator, and input/output flow, a simulation procedure

has been coded in MatlabTM and tested by use of realistic measurement data. This

procedure is the demonstrator SW presented and discussed in the next part.

3.1. SW strategy

The SW design is depicted in the flow chart of Figure 1. In the flow chart, the

recursive algorithm is represented by the routine where solid arrows are used. The

interface is composed of an initialization part, including dialogue with an expert operator

and default settings; finally, the outputs are displayed in terms of measurands and

uncertainties estimates, obtained by using (7), (8) evaluated at the final step.

In the initialization phase, the operator enters the dimension of the process state

vector whose components are the quantities being estimated (measurands). Moreover,

the patterns of the measurands time–variation must be specified in this phase, in order

to select the appropriate matrix B and vector u in the estimation procedure, see (5).

The possible patterns so far available are: linear time–functions, sawtooth,

triangular–, square–, sine–waves, exponential and parabolic shapes. These patterns are

identified by assigning proper parameters such as slopes and periods. For simulation

purpose, also the recursions number L must be specified (in real–time execution, L

derives from actual measurement process conditions). To initialize the algorithm, the

following expert–based inputs are required: x̃−1 — see (3) —, σ2
−1, σ

2
0 — see (7). It is

important to stress that to the combination of the values of these three inputs is related

the criterion leading to the choice of σ2 assignments, according to (7).

For instance, σ2
0 < σ2

−1 translates into a greater confidence into the measurements

process relative to prior measurand estimate and its uncertainty (this is the CMM case

as shown [21]). In this situation, updating σ2 = σ̃2
k balances the influence of measured

data compared to prior information about the measurand. Otherwise (σ2
0 > σ2

−1), the

option σ2 = σ2
0 would privilege prior estimates.

From a computational point of view, it is noteworthy that a concurrent processing

of all involved measurands can be obtained by matrix and vector algebra. In the next

section, simulations implementing this approach are shown and their performance is

discussed.
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Figure 1. Flow chart: interface and recursive algorithm.
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3.2. Simulation with discussion

For simulation purposes, the measurement process model (2) is implemented at each

step by using, for each component of 3–dimensional (3D) measurand vector. A normal

random function (a white noise) whose standard deviation (SD) is the SD of the corre-

sponding component of vk (this SD is a descriptor of measurements uncertainty). It is

assumed that Ak = Bk = I (where I is the 3× 3 identity matrix), for every 0 ≤ k ≤ L.

Next Figure 2, Figure 3, and Figure 4 report the relevant information with dis-

crete time k on the abscissa and on the ordinate (arbitrary units) the measured values

(squares), the estimates (crosses), the prior (expert–based) estimate (circle), and the

theoretical time evolution of the measurand (solid line).

Selecting the option σ2 = σ2
0 in (7b), simulations exhibit the behaviour shown in

Figure 2 and Figure 4, focused on acyclic time–variation patterns. In Figure 2a (linear

time–function): σ2
−1 = 0.02, σ2

0 = 0.02, and x̃−1 = 2.448. In Figure 2b (parabolic shape):

σ2
−1 = 0.1, σ2

0 = 0.3, and x̃−1 = 3.516. In Figure 2c (exponential shape): σ2
−1 = 0.3,

σ2
0 = 0.1, and x̃−1 = 7.322. These patterns may represent cases where a measurand is

monitored by tracking its time–evolution trajectory. In Figure 2a, it can be noted that

even if at the beginning z0 and x̃0 are very close to each other, after the first step, the

estimates x̃k are always better than corresponding zk. In Figure 2b, the situation is not

so much different, with the exception of k = 2, when z2 is better positioned (this is a

random effect) on the theoretical value: in general, as shown, the estimates are more

efficient than measurement data. In Figure 2c, it is noteworthy that the effect of a bad

expert–based estimate (circle) is quickly recovered after few steps (since k = 2).

On metrological premises, repeated measurements improve estimation: in statisti-

cal terms, this translates into selecting the updating mechanism σ2 = σ̃2
k. Results of

different simulations underpin this position. Related performance is demonstrated in

Figure 3, with application to periodic patterns, which may represent measurand’s time–

variation due to fluctuation of environment conditions (e.g., thermal effects on metal

specimen dimensions). In Figure 3a (sine–wave): σ2
−1 = 0.5, σ2

0 = 0.5, and x̃−1 = 1.750.

In Figure 3b (square–wave): σ2
−1 = 0.4, σ2

0 = 0.2, and x̃−1 = 11.771. In Figure 3c

(triangular–wave): σ2
−1 = 0.2, σ2

0 = 0.3, and x̃−1 = 2.129. In Figure 3a the bad expert–

based estimate (circle) affects only the first estimate: starting from k = 1, estimates

remain always close to the theoretical time–evolution curve of the measurand. In Fig-

ure 3b, a similar situation occurs, where z0 is better positioned than x̃−1. In this case,

choosing σ2 = σ̃2
k, the first estimate is ameliorated by the greater accuracy of z0. Even

after occurrence of a bad measurement (such as at k = 3), the estimation algorithm

is quickly convergent (the effect of an unforeseen over–confidence in measurement is

efficiently mitigated). In Figure 3c, z0 and x̃0 are almost superimposed and successively

measurements, estimates, and the theoretical values of the measurand are close to each

other.

The metrological improvement provided by estimates is noticeable at a glance from

above discussed simulation trials. However, the algorithm convergence can be further
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exhibited after some severe trials conducted with application to the exponential pat-

terns, using (7b). Related results are shown in Figure 4, under conditions σ2
−1 >> σ2

0

(and vice versa), starting from (purposely) inaccurate prior estimates.

In Figure 4a: σ2
−1 = 5, σ2

0 = 0.1, and x̃−1 = 12. In Figure 4b: σ2
−1 = 0.3, σ2

0 = 0.1,

and x̃−1 = 4. In Figure 4c: σ2
−1 = 0.1, σ2

0 = 1, and x̃−1 = 7.982. In Figure 4a the inac-

curate expert–based estimate (circle) is immediately compensated. Starting from k = 2

estimates remain always (except for k = 3) close to the theoretical time–evolution of the

measurand. This is due to the large σ2
−1 value that entails a greater weight (compared

to prior estimates) assigned to the measured values. In Figure 4b (where σ2
−1 is close

to σ2
0), the estimates approach the theoretical values of the measurand since k = 8 (the

convergence is slower if compared to the case in Figure 4a). In Figure 4c (σ2
0 = 10 ·σ2

−1),

estimates are able to compensate for inaccuracy in measured values, as an effect of the

accurate expert–based estimate.

Further examples of the algorithm convergence are shown in Figure 5, where in each

panel x̃−1 represents a very inaccurate expert–based estimate. In Figure 5a: σ2
−1 = 0.3,

σ2
0 = 0.1, and x̃−1 = 0.2. In Figure 5b: σ2

−1 = 0.3, σ2
0 = 0.1, and x̃−1 = 20. In Figure

5c: σ2
−1 = 10, σ2

0 = 0.1, and x̃−1 = 20. Compared to Figure 5b, a faster convergence is

obtained in Figure 5c thanks to a greater σ2
−1 value (i.e., a greater confidence in mea-

sured values).

Table 1, Table 2, and Table 3 contain data of the simulations previously illus-

trated by Figure 2, Figure 3, and Figure 4 respectively: columns labeled z, x, and x̃

report measured data, theoretical values of the measurands, and estimates, respectively;

x̃expert=x̃−1 is the initial expert judgment.

Table 1 – Measured (z), theoretical (x), and estimated (x̃) values; from Figure 2: linear

(a), parabolic (b), and exponential (c) patterns.
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Table 2 – Measured (z), theoretical (x), and estimated (x̃) values; from Figure 3:

sine (a), square (b), and triangular (c) waves.

Table 3 – Measured (z), theoretical (x), and estimated (x̃) values; from Figure 4:

exponential (a), (b), and (c) patterns.

In each panel of Figure 2, Figure 3, and Figure 4, the expert-based initial estimate

is pointed out at the instant k = −1: in measurement process term, x̃−1 is in fact a pre-

process estimate. On one hand, an accurate pre–process estimate enhances the tracking

performance of the algorithm. On the other hand, the influence of x̃−1 on in-process

estimates decays after a few steps, so that the algorithm convergence rate is preserved

in the presence of a scarce initial estimate too.

Simulation results demonstrate the accuracy provided by in-process estimates also

with application to the acyclic patterns shown in Figure 2 and Figure 4. Following

these patterns, it can be noted that each measured value pertains to a diverse

measurand state (i.e., measurements are not repeated in identical conditions). However,

the theoretical measurand pattern is narrowly tracked by estimates — provided an
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appropriate assignment of constant value to σ2 = σ2
0 is given in (7b), and that vectors

uk are properly pre–set (i.e., according to valuable prior knowledge of the measurand

pattern) in (5).

As regards the control input vectors used in the above simulations, they are

initialized as follows:

u0 = (0.007, 0.004,−0.632), u0 = (0.841, 0, 1.558), u0 = (−0.632,−0.632,−0.632)

for Figure 2, Figure 3, and Figure 4, respectively. Moreover, using Eq. (8) the entries of

the diagonal Kalman gain matrix Kk are given by the vector
σ̃2

k−1

σ2 + σ̃2
k−1

(component–

wise division). At the step k = 0 the Kalman gain matrices K0 are0.500 0 0

0 0.250 0

0 0 0.750

 ,

0.500 0 0

0 0.667 0

0 0 0.400

 ,

0.980 0 0

0 0.750 0

0 0 0.090


for simulations in Figure 2, Figure 3, and Figure 4, respectively.

In contrast to those represented in Figure 2 and Figure 4, the measurement

processes represented in Figure 3 are repeated in cyclically identical conditions, leading

to the choice of updating σ2 = σ̃2
k: measurement uncertainty diminishes step after step

according to (7a).

The stopping criterion for the recursion termination is given in term of maximum

number of steps k = L. In a real–time measurement process, when no measured data

are available in advance, the estimation can be stopped at any desired recursion step

k ≥ 1. It is worthwhile noting that — given initial values of σ̃2
−1 and σ̃2

0, the decreasing

rate of σ̃2
k is a function of the current value k only — a threshold on σ̃2

k is also a suitable

stopping criterion of real time applicability.

Recalling that measurands and measured data involved in Figures 2, 3, 4 and

in Tables 1, 2, 3 are two 3D vectors, relevant simulation results can be resumed in

vector form as follows. Let X and Z denote the measurand and measured data vectors,

respectively. In compliance with guidelines in [24], the expectation and the standard

deviation of the posterior PDF fL(X|Z) are taken as the measurand estimate and the

associated standard uncertainty, respectively.

As to Figure 2 (see corresponding panels), the (rounded) components of the vectors:

x̃9 = (2.506, 3.869, 7.134), σ̃9 = (0.04, 0.15, 0.10)

are the last step (L=9) estimates and their standard uncertainties, respectively. In the

same format, final results of the estimation process illustrated in Figure 3 (σ̃10 obtained

after equation (7a)) are

x̃9 = (2.677, 12.336, 2.729), σ̃10 = (0.06, 0.04, 0.04).
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4. Conclusion

An original SW for Bayesian in–process estimation, with application to a vector of

time–varying measurands has been implemented in MatlabTM. This is an innovative

customization of the Kalman filter for in–process metrology, aimed at combining type A

and type B estimation methods according to [1]. Based on the simulation tests carried

out, the following facets in the estimation philosophy and system performance can be

highlighted.

• simultaneous estimation is conveniently realized on an ensemble of measurands and

related uncertainties, by treating each measurand as the component of a same single

vector and by using matrix algebra to perform concurrent computation;

• the estimation process really improves the prior measurands knowledge: as a general

rule, attained estimates outperform measured data with respect to the theoretical

— in principle unknown — measurand time–evolution;

• the uncertainties associated to the estimates decrease at each step;

• the Kalman filter (used in different fields) is successfully applied to the metrological

context: this results — as demonstrated — from appropriate use of Gaussian

densities in Bayes rule.

Looking at perspective advancements, extension of the model so far presented and

discussed to include correlated measurements is envisaged.

Moreover, the presence of possible outlying observations that may occur during the

process is a fascinating topic. In fact, it encounters a lot of long standing problems, even

worsening when candidate outlier treatment is challenged by real time specifics. How-

ever, improvements of the SW system performance can be realistically expected: in a

recent work by the same authors [23], the topic of outliers has been tackled from a fuzzy

logic point of view — albeit focused on the estimation of a single, time–independent

(though subject to uncertainty in measurement) quantity.

For improvement, the realization of an integrated system for real time estimation

of a multiplicity of time-varying quantities, possibly mutually correlated, together with

real time treatment of suspected outliers is next research target.
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Figure 2 – Acyclic patterns of a 3D vector: simulation results.
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Figure 3 – Cyclic patterns of a 3D vector: simulation results.



An algorithm for Concurrent Estimation of Time–Varying Quantities 15

Figure 4 – Performance under severe test conditions.
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Figure 5 – Convergence after inaccurate prior (expert–based) estimates.
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Nomenclature

x̃k Process estimate vector

x̃−1 = x̃expert Expert–based prior estimate vector

σ Standard deviation (SD), σ̃k SD estimates, σ−1 = σ̃−1 Expert–based prior SD

estimate, σ0 = σ̃0 Pre–process SD initialization, σ̃k SD estimate vector

uk Control input vector

vk Measurement noise vector

wk White noise vector

xk Process state vector

x−k Process prior estimate vector

zk Process measurement vector

Ak Transition matrix

Bk Control input matrix

k (subscript) Discrete time, iteration step number

Kk Kalman gain matrix

L Maximum k–value, stopping criterion
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