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Reducibility method and resource control

The basic relationship between logic and computation is given by the Curry-Howard correspondence [4] between simply
typed λ-calculus and intuitionistic natural deduction. This connection can be extended to other calculi and logical systems.
The resource control lambda calculus, λr [2], is an extension of the λ-calculus with explicit operators for erasure and dupli-
cation, which brings the same correspondence to intuitionistic natural deduction with explicit structural rules of weakening
and contraction on the logical side [1]. It corresponds to the λcwlcw-calculus of Kesner and Renaud [5]. In λr in every
subterm every free variable occurs exactly once, and every binder binds (exactly one occurrence of) a free variable.

The main computational step is β reduction. But there are also reductions which perform propagation of contraction into
the expression and reductions which extract weakening out of expressions. This discipline allows to optimize the computation
by delaying duplication of terms and by performing erasure of terms as soon as possible.

Our intersection type assignment system λr∩ integrates intersection into logical rules, thus preserving syntax-directed-
ness of the system. We assign restricted form of intersection types to terms, namely strict types, therefore minimizing the
need for pre-order on types. By using this intersection type assignment system we prove that terms in the calculus enjoy
strong normalisation if and only if they are typeable. We prove that terms typeable in λr-calculus are strongly normalising
by adapting the reducibility method for explicit resource control operators.

The reducibility method is a well known framework for proving reduction properties of λ-terms typeable in different
type systems [3]. It was introduced by Tait [6] for proving the strong normalization property for the simply typed lambda
calculus. Its main idea is to relate terms typeable in a certain type assignment system and terms satisfying certain realizability
properties (e.g., strong normalisation, confluence). To this aim we interpret types by suitable sets of λ-terms called saturated
sets, based on the sets of strongly normalizing terms. Then we obtain the soundness of type assignment with respect to
these interpretations. As a consequence of soundness we have that every term typeable in the type system belongs to the
interpretation of its type. This is an intermediate step between the terms typeable in a type system and strongly normalizing
terms. Hence, the necessary notions for the reducibility method are: type interpretation, variable, reduction, expansion,
weakening and contraction properties (which lead to the definition of saturated sets), term valuation, and soundness of the
type assignment. Suitable modified reducibility method leads to uniform proofs of other reduction properties of λr-terms,
such as confluence or standardization.

References

1. G. Gentzen, “Untersuchungen über das logische Schließen”, Mathematische Zeitschrift, 39, 1935, 176–210, 405–431.
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