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On Fragility of Bubbles in Equilibrium Asset Pricing Models of
Lucas-Type∗

Luigi Montrucchio† Fabio Privileggi‡

January 2001

Abstract

In this paper we study the existence of bubbles for pricing equilibria in a pure exchange economy
à la Lucas, with infinitely lived homogeneous agents. The model is analyzed under fairly general
assumptions: no restrictions either on the stochastic process governing dividends’distribution or
on the utilities (possibly unbounded) are required. We prove that the pricing equilibrium is unique
as long as the agents exhibit uniformly bounded relative risk aversion. A generic uniqueness result
is also given regardless of agent’s preferences. A few ”pathological” examples of economies ex-
hibiting pricing equilibria with bubble components are constructed. Finally, a possible relationship
between our approach and the theory developed by Santos and Woodford on ambiguous bubbles
is investigated. The whole discussion sheds more insight on the common belief that bubbles are a
marginal phenomenon in such models.
JEL Classification Numbers: C61, C62, D51, G12.

1 Introduction

The main objective of this paper is to test how reasonable is the conjecture that multiple equilibria,
or bubbles1, are a negligible phenomenon in sequential equilibrium models of Lucas-type [15], with
infinitely lived homogeneous agents. While we have not been lucky in proving that optimizing behavior
of a representative agent with smooth preferences is enough to rule out bubbles, regardless of the
random behavior of the economy, in the present work we definitely provide robust arguments that
confine their appearance to a very restrictive class. This is achieved for a more general model than
the original Lucas’one, in a framework similar to that developed in [11]. Two important aspects are
implemented. First, no restriction on the probabilistic law of dividends is postulated (a similar setting
can be found in [13] as well, but for different purposes). Second, nearly no boundedness assumption on
both dividends and trading prices is assumed, as well as on utilities. The only hypotheses maintained
are the differentiability of preferences and the zero short-sales constraint.

∗This research was partially supported by M.U.R.S.T. (Italy), National Group on ”Nonlinear Dynamics and Stochastic
Models in Economics and Finance”and by NATO-CNR (Italy) under Grant # 217.31. We are grateful to Tapan Mitra
for giving the second author the opportunity to be visiting at the Department of Economics, Cornell University, while the
present research was terminated. We also thank David Easley and all the participants of the Macro-Workshop, especially
Karl Shell and Guido Cozzi, for valuable comments and constructive discussion. We have also beneficiated by insightful
comments of two anonymous referees. The usual disclaimer applies.
†Dipartimento di Statistica e Matematica Applicata, Università di Torino, e ICER (Italy).
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‡Dipartimento di Politiche Pubbliche e Scelte Collettive, Università del Piemonte Orientale, e ICER (Italy).

E-mail: fabio.privileggi@unipmn.it.
1We are aware that the terminology here adopted may give rise to misinterpretations. Our model is a peculiar case

in which the assets fundamental value is unambiguously defined, and thus bubble existence turns out to be equivalent
to price indeterminacy. By slightly relaxing some assumptions (e.g. separability or differentiability of preferences), or
by considering heterogeneity of individuals, indeterminacy and bubbles immediately get unrelated. For example, in [23]
an economy is constructed such that the unique equilibrium is supported by positively priced fiat-money. We shall turn
on the distinction between multiple equilibria and bubbles at the end.
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Surprisingly, until recently the issue of bubbles in such a model has not attracted much attention.
On the other hand, rather few examples of bubbles can be found in the literature. At least two reasons
may explain this ”lack of interest”. First, since all bubble-producing factors are absent in Lucas-style
models, it has been taken for granted that they should emerge only in rather special circumstances.
This view-point is easily captured by consulting the by now wide literature on intertemporal asset
pricing models (see [19], [4], [22], [6], [9], [14], [8], [16], [18], [10]). Perhaps, this intuition suggested
that economies such that the equilibrium allocation is given by the initial resources deserved no further
investigation, thus addressing more attention toward analyzing equilibrium models with heterogeneous
agents as well as with various debt constraints.

A second reason for the scarce interest in studying price bubbles in Lucas-type models is perhaps
due to the well known analytical diffi culties in formulating some necessary condition of transversality
at infinity (see Ekeland and Scheinkman [7] and Kamihigashi [12]). Results available in the literature
show that this is a hard task in the stochastic setting, unless severe restrictions are imposed (see [24]
and [21]).

Two recent papers stimulated the present research. Santos and Woodford [18] established general
results on rational bubbles within a quite broad scenario of sequential equilibrium economies where
traders have rational expectations. They proved that perpetual assets in non-zero net supply cannot
give rise to unambiguous price bubbles and, in addition, to any sort of bubbles whenever preferences
satisfy a certain property of discounting. However, it is important to stress that Santos and Woodford’s
analysis rests on the simplified assumption that the underlying stochastic environment has a tree
structure with finitely many information sets at each instant of time. This allows them to provide an
elegant theory of asset pricing which extends to an infinite-horizon dynamic context Kreps’arbitrage
approach. Besides this, it is very important to remark that their analysis is somewhat different than
ours: they are concerned with the issue of whether a given equilibrium involves a bubble component.
Indeed, a natural consequence of dynamical incompleteness of markets is that the present value of the
streams of future dividends is not uniquely determined, causing several complications and additional
types of bubbles (the so-called ambiguous bubbles). We discuss some of these aspects that are in
common with our results in Section 5.

The second paper, due to Kamihigashi [11], resembles closely our approach. To further strengthen
the broadly accepted idea of marginality of bubbles, he provides a condition that assures the uniqueness
of equilibrium not properly related to discounting properties of agent’s preferences. To construct an
example of multiple equilibria in a two-period economy where there are countably many states of
the world, he needs to use a consumer’s utility function that is unbounded. Moreover, he makes an
important remark by observing that the presence of positive bubbles in his example is related to the
violation of the Euler equation.

Owing to the generality of our setting, we must first study carefully the consistency of the model,
in order to formulate suitable necessary and suffi cient conditions for price equilibria to exist such
that they include the fundamental values of assets. This is pursued in Section 2 where we show that
the standard Euler equation is not necessary to construct the classical theory of assets equilibrium
valuation. In place of the stochastic Euler equation, we shall utilize an Euler inequality as an optimality
necessary condition. It is soon realized that the imposition of the Euler equations is not fully justified
and may preclude potential bubbles.

Section 3, where the main results of this paper are given, is devoted to make precise the notion
of ”fragility” for potential multiple equilibria. We establish a result (Theorem 3) that characterizes
potential price indeterminacy precisely as a borderline phenomenon: a slight modification of the
amounts of assets, or that of dividends, has the effect that multiple equilibria disappear. To strengthen
our argument, we then show that all preferences exhibiting uniformly bounded relative risk aversion
fall outside the class of models having bubbles (Theorem 4).

It is natural, after having outlined multiplicity of equilibria as a possible outcome only in a non-
generic set of economies, to devote our attention to the study of this ”tiny”category. We are able to
provide a rough classification of bubbles into two categories. All this is argued in Section 4 where we

2



construct two polar examples of bubbles. It turns out that agent’s unbounded relative risk-aversion
is the key ingredient in their construction.

Finally, Section 5 is dedicated to the already mentioned issue of ambiguous bubbles introduced by
Santos and Woodford [18]. Two assumptions ruling out ambiguous bubbles and their connection with
the theory developed in the previous sections are investigated. The first one generalizes an assumption
on agent’s impatience already studied in [18]. The second one is a transversality condition at infinity
that turns out to be suffi cient for non-existence of ambiguous bubbles. Their relation with Kamihigashi
[11] uniqueness condition is discussed.

Most of the proofs are gathered in the final Appendix.

2 The Set-up

Let us formalize the model that closely follows [15]. There are k productive assets, each in fixed
supply, that produce random quantities of a single perishable consumption good in all time periods.
Consumers are identical in terms of preferences and endowments. At each trading time there are spot
markets both for the consumption good and for shares in the assets. The uncertainty is modelled
by a probability space (Ω,F,µ) where F = {F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F} is a filtration of σ-algebras
describing the revelation of information. The asset dividends d =

{
dt (ω) ∈ Rk

+, t = 0, 1, 2, ...}
form an F-adapted process which represents the amount of the consumption good yielded by one unit
of each single asset. The process w = {wt (ω)} is the non-negative F-adapted process of exogenous
endowments of the consumption good. We shall denote by Et (·) the conditional expectation2 E (· | Ft).

Households’preferences are given by the separable life-time utility

E0

∞∑
t=0

ut [ct(ω), ω]

defined over the consumption processes c = {ct(ω)}. Each instantaneous utility ut is not necessarily
uniform across states and the above series needs not be convergent. A process of assets holding
strategy is denoted by y = {yt(ω)}. The initial endowment of each asset is normalized to one, i.e.,
y0 = e = (1, 1, ..., 1) ∈ Rk.

Here are the main assumptions to be effective throughout this paper. Even where it is not explicitly
specified, properties pertaining all the functions involved must hold almost surely with respect to the
measure µ. For vectors notation, a superscript will denote its component. For instance, dit(ω) is the
dividend payed by asset i, at epoch t when the state of the world is ω.

A. 1 0 < dt(ω) · e + wt (ω) =
∑k

i=1 d
i
t(ω) + wt (ω) < +∞ a.s. for all t.

A. 2 For each t, utilities ut (·, ·) are B1⊗Ft-measurable, where B1 is the Borel σ-algebra in R+, and,
ut (·, ω) are concave, strictly increasing and differentiable over R++, for each fixed ω.

A.1 could be relaxed by admitting the total good supply dt · e + wt to vanish with positive prob-
ability. However this requires the marginal utility to be finite at zero, thus generating some further
formal complications. Needless to say, Assumption A.2 encompasses standard unbounded utilities,
like logarithm, having ut (0,ω) = −∞ with positive probability, as well as functions having infinite
derivative at zero.

A contingent plan (c,y) = {ct (ω) , yt (ω)}, t ≥ 0, is said to be feasible if:

i) ct (ω) ≥ 0 are Ft-measurable variables for all t ≥ 0;

ii) yt (ω) ≥ 0 are Ft−1-measurable for t ≥ 1 and y0 = e = (1, 1, ..., 1);

2 In general, the initial σ-algebra F0 may not be the trivial one and thus the operator E0 does not agree necessarily
with the expectation E. This is not a merely empty generalization. It enables us to treat time t homogeneously. Every
result obtained for t = 0 is immediately translated to any epoch t.
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iii) ct (ω) + pt (ω) · [yt+1 (ω)− yt (ω)] ≤ dt(ω) · yt (ω) + wt (ω) a.s. for t ≥ 0.

Below we give the definition of Arrow-Radner sequential equilibrium, where Brock’s [3] concept
of weak maximality is adopted. To ease notation, from now on we will drop the argument ω of all
the random functions under study. By abusing a bit notation, we shall also write ut (ct) instead
of ut (ct (ω) , ω) and the derivative D1ut (c,ω) will be denoted by u′t (c). Symbols X− and X+ will
denote the negative and the positive part of a random variable X, respectively. We also recall that,
for non-negative random vectors Y (ω) ∈ Rk, the notation Et (Y ) < +∞ means Et (|Y |) < +∞ or,
equivalently, Et (Y · e) < +∞. For a measurable set A ∈ F , the indicator function of A will be denoted
by 1A.

Definition 1 An equilibrium is an F-adapted price process p such that:

i) 0 ≤ pt < +∞ a.s. for all t;

and the plan c∗ = {c∗t } = {dt · e + wt}, y∗ = {e} satisfies the two conditions:

ii) E0 [ut(c
∗
t )− ut(ct)]

− < +∞ a.s. for all t,

iii) lim supN→+∞E0
∑N−1

t=0 [ut(c
∗
t )− ut(ct)] ≥ 0 a.s.

for any feasible plan (c,y) where the yt’s are essentially bounded, for each t ≥ 1.

Here we are given the standard notion of no-trade equilibrium in which agents hold their assets
forever, and consume all their available income dt ·e+wt at each trading date. The framework adopted
here is similar to that in [11], where a discounted, single-asset model has been analyzed. We want to
remark that the restriction concerning boundedness of the yt’s is needed for technical reasons. It will
only be effective whenever suffi cient conditions of optimality are used (see proof of Theorem 1). It
will also be seen that, at least for the fundamental prices, the plan c∗ satisfies the stronger property
of optimality lim infN→+∞E0

∑N−1
t=0 [ut(c

∗
t )− ut(ct)] ≥ 0. Henceforth, we shall always write {c∗t } to

denote the equilibrium consumption allocation c∗= {dt · e + wt}.

In the remaining part of this section, we build up the equilibrium analysis for our general frame-
work. Though the whole discussion on the determination of pricing equilibrium as sum of its fun-
damental value and the speculative bubble is familiar in macroeconomics and finance (see Blanchard
and Fischer [2]), we believe it is worth being reported here owing to the generality of our setting
and the stress we shall put on a supermartingale property that turns out to characterize the bubble
component. It is important remarking that we do not restrict prices to belong to some pre-chosen
space as well as we maintain the weak notion of optimality. Both restrictions on prices or the use of
stronger concepts of optimality might rule out possible pricing bubbles.

The starting point is formula (1) below, which turns out to be a short-run first-order condition,
that takes the form of an Euler inequality rather than equality.

Proposition 1 Under A.1-2, if p is an equilibrium then

u
′
t−1

(
c∗t−1

)
pt−1 ≥ Et−1

[
u
′
t (c∗t ) (pt + dt)

]
(1)

for t ≥ 1.

One could ask in what cases equality in (1) is necessarily true. This requires to perform the left-
hand derivative in the proof of this proposition. That is problematic insofar, once again, a priori
restrictions on prices pt are needed. It is not diffi cult to show that (1) holds with equality if the
following two qualifications are satisfied:

pt · e ≤Mtc
∗
t (2)
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for some scalar Mt, and
Et−1 [ut (c∗t )− ut (ζdt · e + wt)] < +∞ (3)

for some ζ < 1. For instance, either conditions are true when the states of the world are finite at
trading date t. We shall also see later that a suffi cient requirement for (3) is that ut exhibits bounded
relative risk-aversion.

Inequality (1) will be enough to build up pricing analysis within our general setting. As usual, by
iterating (1) starting from t we get

u
′
t (c∗t ) pt ≥ Et

N∑
s=1

u
′
t+s

(
c∗t+s

)
dt+s +Et

[
u
′
t+N

(
c∗t+N

)
pt+N

]
which, by taking the limsup over N , yields

u
′
t (c∗t ) pt ≥ Et

∞∑
s=1

u
′
t+s

(
c∗t+s

)
dt+s + lim sup

N→+∞
Et

[
u
′
t+N

(
c∗t+N

)
pt+N

]
. (4)

Since u
′
t (c∗t ) pt < +∞, by (i) of Definition 1, and the last term is non-negative, we infer both conditions

(5) and (6) displayed in the following proposition.

Proposition 2 Under A.1-2, a necessary condition for equilibria to exist is

E0

∞∑
t=1

u
′
t (c∗t ) dt < +∞. (5)

In this case

u
′
t (c∗t ) pt ≥ Et

∞∑
s=1

u
′
t+s

(
c∗t+s

)
dt+s (6)

for all t ≥ 0.

In view of (6), let us define

u
′
t (c∗t ) pt = Et

∞∑
s=1

u
′
t+s

(
c∗t+s

)
dt+s + u

′
t (c∗t ) bt (7)

where the ”bubble” component bt (ω) ∈ Rk
+ is Ft-measurable. Accordingly, we define the market

fundamental (adapted) process f = {ft} as

ft =
1

u
′
t (c∗t )

Et

∞∑
s=1

u
′
t+s

(
c∗t+s

)
dt+s. (8)

Thanks to (7), if p is an equilibrium, then p = f + b, with b = {bt}. We have here the traditional
definition of speculative bubble as the difference between the price of the asset and its fundamental
value. Clearly, the fundamental price process f satisfies Euler inequality (1) with equality, i.e.:

u
′
t−1

(
c∗t−1

)
ft−1 = Et−1

[
u
′
t (c∗t ) (ft + dt)

]
while the non-negative price bubble b is a supermartingale.

u
′
t−1

(
c∗t−1

)
bt−1 ≥ Et−1

[
u
′
t (c∗t ) bt

]
. (9)

We obtain, in our general setting, the property that a bubble ”never starts”in the rational expectations
equilibrium (see [18]) but, as will be seen in Section 4, the possibility for a bubble component to exist
and burst as time goes on, cannot be excluded.
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It is interesting to sketch prices evolution according to the standard Euler equation, i.e., as long
as (1) holds with equality. In this case (4) turns into

u
′
t (c∗t ) pt = Et

∞∑
s=1

u
′
t+s

(
c∗t+s

)
dt+s + lim

N→+∞
Et

[
u
′
t+N

(
c∗t+N

)
pt+N

]
and

u
′
t (c∗t ) bt = lim

N→+∞
Et

[
u
′
t+N

(
c∗t+N

)
pt+N

]
(10)

while the bubble process obeys the martingale difference equation

u
′
t−1

(
c∗t−1

)
bt−1 = Et−1

[
u
′
t (c∗t ) bt

]
Clearly, in such a case the bubble component, if it exists, can never burst.

Next statement establishes fundamental values f to be an equilibrium, thus ensuring the suffi ciency
of (5) as well. This kind of results are usually proven by means of familiar suffi cient conditions of
transversality. Nonetheless, owing to the special nature of constraints, we prefer resorting to a more
direct method. Details are reported in the Appendix. It should be noted that we do not assume the
present value of future wealths E0

∑∞
t=1 u

′
t (c∗t )wt to be finite.

Theorem 1 Under A.1-2 and the additional condition E0 [u′t (c∗t )wt] < ∞ for all t ≥ 0, a necessary
and suffi cient condition for an equilibrium to exist is that

E0

∞∑
t=1

u
′
t (c∗t ) dt < +∞. (11)

An equilibrium is given by the market fundamental values:

ft =
1

u
′
t (c∗t )

Et

∞∑
s=1

u
′
t+s

(
c∗t+s

)
dt+s.

3 Main Results

In this section we present results ruling out the emergence of multiple equilibria. The first suffi cient
criterion has been established by Kamihigashi [11]. Its proof reflects the intuition that, if a bubble
occurred, an infinitely lived consumer could gain by permanently reducing his holding of the asset. To
be more specific, it allows for a uniform downward perturbation within the feasible set without facing
an infinite loss.

Theorem 2 A suffi cient condition for the fundamental price f given in (8) to be the unique equilibrium
is that for some scalar 0 < ζ < 1

E0

∞∑
t=1

[ut (dt · e + wt)− ut (ζdt · e + wt)] < +∞ (12)

To illustrate the strength of (12), consider the standard case in which the utilities are discounted,
i.e., ut (c) = βtu (c). If the preference function u is bounded, then (12) is trivially true. Therefore,
possible violation to (12) requires u to be unbounded. We refer to [11] (Theorem 5.1) for several
assumptions on u (c) guaranteeing qualification (12).

The following criterion will play a central role in proving Theorems 3 and 4.
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Corollary 1 A suffi cient condition for (12) is

E0

∞∑
t=1

u
′
t (ζdt · e + wt) dt < +∞ (13)

for some scalar 0 < ζ < 1.

This corollary is an immediate consequence of concavity of ut’s that entails

ut (dt · e + wt)− ut (ζdt · e + wt) ≤ (1− ζ)u
′
t (ζdt · e + wt) dt · e

and thus (13) implies (12).
It is worth also noticing that, again in force of concavity,

ut (dt · e + wt)− ut (ζdt · e + wt) ≥ (1− ζ)u
′
t (c∗t ) dt · e

which reveals (12) to be suffi cient for (11). Therefore, Kamihigashi’s criterion implies existence and
uniqueness simultaneously.

A slight modification of the proof of Theorem 2 establishes a further specification of (12) focussing
on a single asset i and upon the occurrence of some event A ∈ Fs.

Proposition 3 If for an event A ∈ Fs, one has

Es

∞∑
t=s+1

1A
[
ut (c∗t )− ut

(
c∗t − (1− ζ) dit

)]
< +∞ (14)

for some scalar 0 < ζ < 1, then the bubble component, for the ith component pit, vanishes after epoch
s, as long as A occurs. That is, bit (ω) = 0, for t ≥ s and almost all ω ∈ A.

A remarkable consequence of Proposition 3 is the absence of a positive bubble component for fiat
money assets, i.e., assets for which dit (ω) ≡ 0 for all t. In fact, in such a case, (14) is trivially true,
irrespectively of agent’s preferences. This extends Corollary 3.2 in [18] to our setting.

The intuition behind next fragility result rests behind the evident similarity between necessary
condition for existence of at least one equilibrium (11) and suffi cient condition for uniqueness (13).
The idea of fragility can be easily grasped through two parallel arguments: consider the economy
parametrized either on the initial assets endowment y0 = e or on the dividend stream d = {dt}, then
any slight perturbation of the parameter forces a possible bubble to disappear.

Theorem 3 If a price bubble occurs for an initial endowment y0 = v ∈ Rk
++, then there is only one

equilibrium for each initial endowment v� v, while there are no equilibria at all for each endowment
v � v. Likewise, if for some dividend sequence d = {dt} a bubble arises, then there is only one
equilibrium for dividends {ζdt}, with ζ > 1, and there are no equilibria if ζ < 1.

This theorem amounts to saying that uniqueness and non-existence of equilibrium are the sole
robust configurations, while bubbles are a borderline phenomenon that may only arise when the set
of equilibria is about to become empty. To further illustrate this point, let us focus on economies
parametrized with respect to dividends {ζdt}, where ζ ∈ (0,∞). For sake of simplicity, assume k = 1
and F0 to be the trivial algebra. Consider the function

J (ζ) = E0

∞∑
t=1

u′t (ζdt + wt) dt

which turns out to be non-increasing and right-continuous. If J (ζ) < +∞ for all ζ, there is always
uniqueness. Likewise, J (ζ) = +∞ for all ζ, implies no equilibria. Therefore, the only interesting case
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happens when there is a jump from +∞ to a finite value at some (unique) critical level ζb, which is
the unique parameter value such that bubbles may arise. Note also that, as long as J (ζb) = +∞, a
sudden change through the two stable configurations is witnessed and no bubble can occur. However,
the existence of a threshold ζb, such that J (ζb) < +∞ (i.e. such that (13) fails), is not enough to
generate a bubble: (12) must be violated as well.

We have not been able to single out classes of models assuring the existence of bubbles along this
argument. For instance, the two-period economies studied in Example 1 of the next section enjoy
this property, but other examples analyzed in [17] lead to different outcomes. On the other hand, an
important class where condition (12) is not necessary at all has to be mentioned: in the deterministic
model bubbles can never arise, regardless of (12). This case will be briefly recovered in Section 5.

Let us end this section by presenting another strong argument in favor of bubble fragility. Unlike
Theorem 3, formulated without resorting to any specification of agent’s preferences, next statement
is related to agent’s risk aversion. We give a suffi cient condition for (13) in the spirit of assumptions
(L2) and (U2) in [11] that implies to be J (ζb) = +∞ for the critical value (if any).

Theorem 4 Assume preferences ut exhibit uniformly bounded relative risk aversion, i.e.,

−u
′′
t (c) c

u
′
t (c)

≤ R (15)

for all c ≥ 0, t ≥ 0 and for some scalar R. Then pricing equilibrium is uniquely determined, whenever
it exists3.

Note that this result encompasses almost all agent preferences in conceivable economic models.

4 Bubbles Examples

All the criteria formulated in the previous section are only suffi cient conditions, hence, it is not clear
at this stage whether or not examples of economies in which equilibrium valuations contain positive
bubbles actually exist. Theorems 3 and 4 make clear that their construction is not a simple matter.

In view of Theorem 2, the first step in trying to construct bubbles is the following rough classifi-
cation distinguishing two polar cases in which suffi cient criterion (12) is violated.

1. For all ζ < 1,

E0

∞∑
t=1

[ut(c
∗
t )− ut(ζdt · e + wt)] = +∞

with positive probability, but there is a time N > 1 and some constant ζ < 1 such that

EN−1

∞∑
t=N

[ut(c
∗
t )− ut(ζdt · e + wt)] < +∞.

2. For all time N ≥ 1 and all ζ < 1,

EN−1

∞∑
t=N

[ut(c
∗
t )− ut(ζdt · e + wt)] = +∞

with positive probability.

3 It must be emphasized that twice differentiability hypothesis on preferences is not necessary at all. It is suffi cient
that some R exists such that u′t(c, ω)c

R are nondecreasing for all t and for a.e. ω.
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By virtue of Proposition 3, economies falling into the first category, exhibit prices having bt = 0
for t ≥ N − 1, and therefore bubbles, if any, must eventually burst after some time. Not surprisingly,
it turns out that their occurrence is related to the violation of the Euler equation. Models with bubble
component belonging to the second class, seem less dependent on violation of Euler equality, as it will
emerge clearly in Example 2 below.

Despite of a somewhat common view-point, we show that bubbles do occur, that is, the borderline
set described in Theorem 3 may be non-empty. An example of bubbles of the first type has already
been given by [11]. Here, we propose a general construction.

Example 1 Let (Ω,F , µ) be a probability space modelling the world states. The uncertainty is
completely revealed at time t = 1. Therefore, F0 = {∅,Ω}, and Ft = F for t ≥ 1. The dividends of
a single asset are d0 > 0, d1 (ω) > 0 and dt (ω) = 0 for t ≥ 2. Endowments are w0 = w1 = 0 and
wt = w > 0 for t ≥ 2. Agent’s preferences are given by ut = βtv(c). Regarding to the utility v, it is
assumed to satisfy the two requirements

E [v′(d1)d1] < +∞
E [v(d1)− v(ζd1)] = +∞ (16)

for all ζ < 1. The fundamental values turn out to be

f0 =
β

v′ (d0)
E
[
v′(d1)d1

]
and ft (ω) = 0for t > 0.

Clearly, a consequence of Proposition 3 is that no bubbles can arise for t ≥ 1.
We show the existence of a positive bubble component at t = 0. Since pt = ft = 0 for t ≥ 1, if we

set y1 = 1 + δ, consumptions are c0 = d0 − p0δ, c1 = (1 + δ)d1, ct = w, for t ≥ 2. By evaluating the
objective function over this consumption plan, it is immediate to see that p0 will be an equilibrium if
the convex function

ϕ(δ) = v(d0)− v(d0 − p0δ) + βE [v(d1)− v((1 + δ)d1)]

defined over the interval −1 ≤ δ < d0/p0, achieves its minimum at δ = 0. In view of (16), ϕ(δ) = +∞
if δ < 0 and ϕ(0) = 0. Thanks to convexity, the optimum lies at zero whenever ϕ

′
+(0) ≥ 0. Simple

calculations lead to D+ϕ(0) = v
′
(d0)p0−βE

[
v
′
(d1)d1

]
≥ 0, which amounts to p0 ≥ f0. Consequently,

any price p0 ≥ f0 is an equilibrium and the Euler equation is violated when p0 > f0. Observe that
here the violation of the Euler equation is due the failure of (3), while (2) remains true.

To complete this example, we need to specify functions v satisfying both conditions in (16). Set
Ω = {1, 2, .....} and F = 2Ω. In view of Theorem 4, a good candidate turns out to be v (c) = −e 1c ,
exhibiting unbounded relative risk aversion close to the origin. Let d1 (n) = n−1 be the dividend payed
at epoch 1 by the asset and µn be any probability defined over states satisfying

µn ∼
e−n

n2+α

as n→∞ and with α > 0. The first hypothesis of (16) becomes

E
[
v′(d1)d1

]
= E

(
e
1
d1 d−1

1

)
=
∞∑
n=1

ennµn < +∞

where the series converges since ennµn is asymptotically equivalent to n
−(1+α). Regarding to the

second one of (16), observe that

E [v(d1)− v(ζd1)] = E
(
e

1
ζd1 − e

1
d1

)
=

∞∑
n=1

(
e
n
ζ − en

)
µn

9



where the terms of this series are asymptotically equivalent to

n−(2+α)
[
en(ζ

−1−1) − 1
]

which go to infinity as n→∞, and so E [v(d1)− v(ζd1)] = +∞.
Obviously, this bubble is not robust at all. To test its fragility, set the dividend to be d1 (n) = ζn−1.

Then the fundamental values are the unique equilibrium for ζ > 1, while, there are no equilibria if
ζ < 1, since the first of (16) fails.

It should be noted that the assumption of having infinitely many observable states at time t = 1
becomes crucial in order to violate the Euler equation. Since Example 1 represents essentially a
two-period economy, here the ”infinity” feature of the economy is spread along states over a single
period. On the contrary, next example features the existence of second-kind bubbles by means of
a truly infinite-horizon economy with finitely many information nodes at every trading date. As a
consequence, Euler equation can never be violated. In this circumstances, multiple equilibria may
arise by modeling agents having increasing relative risk-aversion over time.

Example 2 (Bubbles and Petersburg assets) Let Ω = {1, 2, ...} and the σ-algebra Ft be generated by
the finite partition {1}, {2}, . . ., {t}, {t+ 1 , t+ 2, . . .}. If we set the dividends of a single perpetual
asset to be dt (ω) > 0 for ω = t and dt (ω) = 0 otherwise, it is easy to realize that for any equilibrium
one has pt (ω) = 0 for all ω ≤ t, while pt (ω) > 0 for ω ≥ t + 1, no matter whatever preferences and
exogenous resources are given.

Given that the informational structure is finite at any trading date, it is simpler to describe it by
means of an event-date tree. Among the t+1 information sets of Ft, we label st = {t+ 1, t+ 2, ....} and
mt = {t}. The remaining nodes will be little relevant and thus we do not assign them any particular
symbol. With this notation at hand, all nodes st have two immediate successors st+1 and mt+1, while
all others nodes have only one immediate successor. According to this notation, we have d

(
mt
)
> 0

and d (·) = 0 elsewhere, while p
(
st
)
> 0 and p (·) = 0 elsewhere. We now specialize the elements of

this tree. The probability measure will be defined through the uniform transition probabilities

π
(
mt+1 | st

)
= π

(
st+1 | st

)
= 1/2.

The agents’preferences are
u
(
mt, c

)
≡ vt (c) = −2tt−2−αc−t

with α > 0, and linear elsewhere. More specifically, u
(
st, c

)
= βtc with 0 < β < 1. Clearly, preferences

display unbounded relative risk aversion along states mt since vt’s relative risk-aversion index equals
t + 1. The dividends payed by the asset are d

(
mt
)

= 1, for all t ≥ 1, and 0 elsewhere. At each date
t, the endowments are w

(
mt
)

= 0 and w (·) = w > 0 at each other node.
Condition (12) fails, given that for ζ < 1

E0

∞∑
t=1

[vt (1)− vt (ζ)] =

∞∑
t=1

t−2−α (ζ−t − 1
)

=∞ (17)

We can easily calculate the Euler equation along states st. By using the shorthand pt ≡ p
(
st
)

pt = (1/2)
[
βpt+1 + β−tv′t+1 (1)

]
. (18)

By iterating (18), we get

pt = β−t
∞∑
s=1

2−sv′t+s (1) + lim
n→∞

2−nβnpt+n

where the first addendum is its fundamental value and the second is the bubble component. Note that
this series converges since

∞∑
s=1

2−sv′t+s (1) = 2t
∞∑
s=1

(t+ s)−1−α <∞

10



and the bubble component obeys the martingale law bt+1 = 2β−1bt.
Next proposition states formally that such trading prices with positive bubble component are

consistent with equilibrium requirements.

Proposition 4 All prices pt = ft + bt with bubble component growing along states st according to the
difference equation bt+1 = 2β−1bt, with b0 ≥ 0, are equilibria.

The structure of this event-date tree resembles the Petersburg game and it could slightly be
modified to get several more elaborated examples. Note, for instance, that here the bubble component
will burst with probability 1 (although it grows exponentially). However, it is not diffi cult to modify
the probability law over Ω so that the bubble does not burst with positive probability. In the original
working paper version of this article [17], we derive another example of Petersburg asset, having
countably many nodes at every date, that exhibits a bubble due to the continuous violation of the
Euler equation at each trading date. This confirms our intuition on pursuing an Euler inequality
rather than equality to develop the equilibrium theory of Section 2.

5 Ambiguous Bubbles

It is well known from the finite-horizon theory that state-prices can be determined by non-existence
of opportunities for pure intertemporal arbitrage profits. In our general probabilistic structure, this
can be taken into account by conveniently adopting the following terminology. Given an equilibrium
price process p, an adapted sequence at (ω) of strictly positive functions will be termed a (pseudo)
state-prices consistent with p, if

atpt = Et [at+1 (pt+1 + dt+1)] (19)

holds for all t ≥ 0. Strictly speaking, the at’s are not the traditional state-prices of Finance, because
they are distorted by the probability law. However, there is a one-to-one correspondence with state
prices, as long as the stochastic process is given through finite information nodes. In fact, in this case
(19) amounts to

a
(
st
)
p
(
st
)

=
∑
st+1|st

π
(
st+1 | st

)
a
(
st+1

) [
p
(
st+1

)
+ d

(
st+1

)]
where π

(
st+1 | st

)
is the transition probability and st, st+1 are adjacent nodes (we are using here the

notation in [18]). After multiplying by µ
(
st
)
, we get

a
(
st
)
p
(
st
)

=
∑
st+1|st

a
(
st+1

) [
p
(
st+1

)
+ d

(
st+1

)]
,

which is the traditional intertemporal no-arbitrage equation and a
(
st
)

= a
(
st
)
µ
(
st
)
are the familiar

state-prices. Clearly, formulation (19) suits better when the states are not necessarily finite.
The theory developed Section 2 can be easily embedded into this approach that uses (19). For

instance, we would have

a0p0 = E0

∞∑
t=1

atdt + lim
N→∞

E0 [aNpN ] (20)

which might generate a different splitting between the fundamental solution and the bubble component,
with respect to the classical decomposition discussed in Section 2.

According to [18], a pricing equilibrium p (possibly the unique one) is said ambiguously to in-
volve a speculative bubble if one has limt→∞E0 [atpt] = 0 for some state-price process at, while
limt→∞E0 [a′tpt] > 0 for some other process a′t. On the contrary, an equilibrium p involves unambigu-
ously no bubble, provided that limt→∞ E0 [atpt] = 0 holds regardless of state-price processes at which
are chosen.

11



As a matter of fact, the only example in [18] of bubbles for Lucas’models (Example 4.5) is an
economy exhibiting an ambiguous bubble, as the bubble component depends crucially on different
state-prices adopted. To see why this sort of bubble must be considered outside the theory discussed
in the previous sections, it suffi ces observing that the equilibrium so constructed is unique and (12)
is fulfilled. Example 3 presented later will display similar features (another example generalizing the
binomial tree of [18] is reported in [17]).

In the following we investigate the relationship between Kamihigashi’s condition (12) and other
two criteria that exclude the occurrence of ambiguous bubbles. We treat separately each single asset
and, since its price may vanish with positive probability, we make use of the following notation. For
a given equilibrium and for a fixed asset i, let P it =

{
pit = 0

}
be the zero-price event belonging to Ft.

Clearly, from (19), it turns out that P it ⊂ P it+1.
The first assumption is related to agent’s preferences.

A. 3 There is a non-negative scalar sequence {σt}, having the following properties:

i)
∞∑
t=1

σt = +∞

ii) for every integer s and A ∈ Fs with µ(A) > 0 and A ⊂
(
P is
)c, there exists a scalar ζ = ζ (s,A),

with 0 < ζ < σ−1
s , depending on s and A and such that the consumption stream c̃ = {c̃t},

defined as

c̃t =


c∗t , for 0 ≤ t ≤ s− 1,
c∗t + ζdit, for t = s,
c∗t − ζσsdit, for t ≥ s+ 1

overtakes c∗ over A. That is:

lim infN→+∞ E0
∑N−1

t=0 1A [ut (c̃t)− ut (c∗t )] =
E0
∑∞

t=0 1A [ut (c̃t)− ut (c∗t )] > 0.

The second assumption does not rely on preferences, but it is directly constructed along a given
equilibrium.

A. 4 For each fixed asset i

lim
T→∞

T∑
t=0

dit
pit

= +∞ (21)

holds uniformly (adopting the convention
∑T

t=0 d
i
t/p

i
t = +∞ over P it ).

A few comments are in order. A.3 is closely related to the assumption A.2 on agent’s impatience
postulated by Santos and Woodford [18] as well as the uniform lower bound on impatience assumption
in Magill and Quinzii [16]. Indeed Theorem 3.3 in [18] on non-occurrence of bubbles, regardless of
the state prices chosen, basically rests on their assumption on impatience. Note that our A.3 is
considerably weaker that theirs. A.4 is a transversality condition at infinity related to the exclusion
of rolling-over debts in Ponzi strategies. It is also linked to Cass’effi cient condition (see [5]): in the
deterministic setting (21) amounts to saying that the equilibrium allocation is effi cient. However, this
is no longer true in the stochastic framework4.

Let us establish at once the relationship between these two different assumptions and (12).

Proposition 5 A.3 =⇒ (12). A.3 =⇒ A.4.

4We are indebted to an anonymous referee to have drawn our attention on this interpretation. See also [17] for further
qualifications.

12



Caution is needed to interpret these implications. A.3 is a property on the preferences, while A.4
is a transversality hypothesis on one single equilibrium. Implication A.3 =⇒ A.4 means that all the
price equilibria will satisfy that transversality condition, provided A.3 is true. The proof of this part
is given in the Appendix. The first implication deserves explanation as well. From (i) of A.3, some
time N will exist so that σN > 0. If we set A = Ω in (ii), we can infer

E0

∑
t≥N+1

[
ut (c∗t )− ut

(
c∗t − ζσNdit

)]
< E0

[
uN
(
c∗N + ζdiN

)
− uN (c∗N )

]
<∞

where the last inequality is true in force of (ii) of Definition 1. Therefore, (14), which is a specification
of (12), is valid at least for t ≥ N + 1.

Next statement is our main result on non-existence of ambiguous bubbles.

Theorem 5 If a pricing equilibrium p satisfies A.4, then pit unambiguously involve no bubble.

It is worth observing that A.3, while more restrictive than (12), guarantees our desired property
of non-existence of ambiguous bubbles. On the contrary, next example shows that (12) does not
guarantee this property. Furthermore, it also shows that, despite of having (a bit improperly) labelled
A.3 as a condition on impatience, as a matter of fact it involves a more complicated interplay between
the discounting and the nature of dividend process.

Example 3 (Petersburg asset and ambiguous bubbles) The asset structure is similar to that of Exam-
ple 2. Ω = {1, 2, . . .} and Ft are generated by the finite set partition {1}, {2} , . . ., {t}, {t+ 1, t+ 2, . . .}.
Let µ (n) > 0, for all n, be an assigned probability over Ω. Once again, the dividends of a single asset
be dt (ω) > 0 for ω = t and dt (ω) = 0. We know that for any pricing equilibrium one has pt (ω) = 0
for all ω ≤ t, while pt (ω) > 0 for ω ≥ t+ 1, irrespectively of preferences and exogenous resources.

The series (21) goes to infinity trivially, but the limit is never uniform across states since

µ

(
T∑
t=1

dt
pt
≥ N

)
=

T∑
n=1

µ (n)

for all N > 0, and consequently A.4 fails. Therefore, in view of Proposition 5, A.3 fails as well. Note
that this price process could well be the unique equilibrium determined by one agent having preferences
satisfying (12). Now we show that there is always a valuation bubble in this class of economies.

To see this is convenient to adopt the tree notation of Example 2. With the notation st =
{t+ 1, t+ 2, ....} and mt = {t}, we must specify the state-price sequence a

(
st
)
along states st. Else-

where, the state prices can be any. Let us fix any number 0 ≤ ∆ < p
(
s0
)
and any sequence a

(
mt
)

such that
∑∞

t=1 a
(
mt
)
d
(
mt
)
<∞. If we define

a
(
st
)

= p
(
st
)−1

[
∆
[
p
(
s0
)
−∆

]−1
∞∑
s=1

a (ms) d (ms) +

∞∑
s=t+1

a (ms) d (ms)

]

it is readily seen that such state prices are consistent with the equilibrium since

a
(
st
)
p
(
st
)

= a
(
st+1

)
p
(
st+1

)
+ a

(
mt+1

)
d
(
mt+1

)
Moreover,

lim
t→∞

a
(
st
)
p
(
st
)

a (s0)
= ∆,

which proves the existence of a positive bubble along the states st. Clearly this bubble is ambiguous
since it disappears by setting ∆ = 0. In this circumstance, the prices equal the fundamental values
according to a certain state-price process (of course, this last assertion is also a consequence of Theorem
3.1 in [18]).
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A few words on the context where the various assumptions discussed in this section can be used
are needed. Actually, they play significantly different roles. The state-price approach addresses more
general intertemporal pricing models than the one examined in the previous sections. Preferences must
not necessarily be time-separable and differentiable. Moreover, the method (Theorem 5 in particular)
applies also to heterogeneous agents models. To stay inside our original focus, it must be assumed
that the set of state-prices contains the process at = u′t(c

∗
t ) (namely, the Euler equation must hold).

Under this hypothesis, any price equilibrium p with respect to some state-price that satisfies A.4 is
the market fundamental value which unambiguously involves no bubble. On the other hand, whenever
A.3 holds there is a unique price equilibrium which does not contain a bubble component regardless
of the chosen state-price process.

Let us conclude with a simple but interesting application of the discussion above: the assets pricing
in deterministic sequential markets. As already mentioned, assumption A.4 boils down to the condition
of effi ciency. Hence, A.4 must hold true along any price equilibrium. Consequently, Theorem 5 implies
that no ambiguous bubble may arise with no uncertainty. We give a formal statement of this since
it is a straightforward and meaningful consequence of the approach based on A.4. Moreover, our
statement is slightly more general than other results available in literature. It could be derived from
Theorem 3.1 in [18] and from Theorem 6.1 in [10] as well, though both require the present value of
the aggregate endowment to be finite, an assumption not required in our statement.

Proposition 6 Any price sequential equilibrium in markets without uncertainty satisfies A.4 and
therefore Theorem 5 applies.

The last result clearly implies uniqueness of price equilibrium in the differentiable case. As long
as non-differentiability is assumed, like in Gilles-LeRoy example (see [9], [11] and [17]), equilibrium
indeterminacy is possible, with no bubbles involved. As said at the beginning, this is one case where
the two concepts, bubbles and multiple equilibria, get totally unrelated.

6 Concluding Remarks

Is the issue of price bubbles in intertemporal capital asset pricing models with one representative
agent basically closed? The answer is yes, as long as one follows the traditional valuation by means of
fundamental value. We have indeed added further strong arguments in favor of fragility of occurrence
of bubbles. Of course, some theoretical issues remain still open and interesting enough to deserve
further investigation. One of them is the identification of classes of models in which suffi cient criterion
(12) turns out to be necessary as well. In view of Theorem 3, this would allow a characterization for
models with a unique equilibrium for ζ > 1, no equilibria for ζ < 1 and an equilibrium involving some
bubble component for ζ = 1. Actually, some examples studied in [17] tell us that formal elaborations
in this direction are a diffi cult task.

As long as one tries to encompass the theory developed by Santos and Woodford [18] into this
point of view, several technical diffi culties arise. Their Theorem 3.1 on non-existence of unambiguous
bubbles must definitely be regarded as one of the main contributions on bubbles fragility, and we do
not know to what extent it could be modified to fit our setting. The roots of our treatment rest upon
the asymptotic behavior of series (21) which is closely related to the exclusion of Ponzi schemes. Up to
our knowledge, such an approach seems novel and this series happens to exhibit a strong relationship
with the exclusion of valuation bubbles, as established in Theorem 5.

Let us add some more comments on the construction of bubbles. As it has been argued in Section
4, the occurrence of bubbles seems to be another form of paradox related to the economics of infinity
(some kind of paradoxes has well been described in Shell [20]). Roughly speaking, we have met two
paradoxes of infinity.

The first one, the milder one, arises when an infinite number of states of the world is observable, at
least at some trading date. The traditional first order condition (Euler equation), valid for a uniformly
interior equilibrium, is no longer necessarily true. This has led to the construction of the so-called
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bursting bubbles that violate the Euler equation (Example 1). It must be underlined that this kind
of bubbles is not related to the infinite-horizon setting. They do survive in finite-horizon economies
(Kamihigashi’s example is just performed for a two-period economy). It should also be noted that
the violation of the Euler equation here has nothing to do with the violation of the Euler equations
in heterogeneous agents models with debts constraints. We have in mind Bewley’s [1] consumption
smoothing example with positively valued fiat money (see [14] and [18]). There, it is not possible to
uniformly perturb downward the equilibrium trading plan, because the borrowing constraint is binding
and, consequently, the failure of the Euler equation is the rule.

The second type of bubbles requires a truly infinite-horizon economy (Example 2). In this case
no violation of the Euler equation is required. The paradox of infinity here is originated by violating
the already cited principle asserting that whenever a bubble occurred, an infinitely lived agent might
gain by permanently reducing the asset holding. For instance, if the agent has increasing relative
risk-aversion through time5, this rule may be no longer true.

7 Appendix

The short-run optimality conditions stated in Proposition 1 require a preliminary lemma.

Lemma 1 Under A.1-2, if p is a pricing equilibrium process, then{
u
′
t−1

(
c∗t−1

)
pt−1 −Et−1

[
u
′
t (c∗t ) (dt + pt)

]}
· y ≥ 0 (22)

for all t ≥ 1 and for all random vectors y (ω) ≥ 0, Ft−1-measurable, essentially bounded and such that
pt−1 · y ≤ γc∗t−1, for some number γ > 0, depending on y.

Proof. Fix y (ω) and consider the function

J (ε) = ut−1

(
c∗t−1

)
− ut−1 (ct−1) +Et−1 [ut (c∗t )− ut (ct)]

for 0 ≤ ε ≤ ε0, with ε0 small enough and where

yt = e + εy
ct−1 = c∗t−1 − εpt−1 · y
ct = c∗t + ε (pt + dt) · y

By construction, yt > 0, ct > 0 and in force of (ii), ct−1 > 0 as long as ε < γ−1. Clearly J (0) = 0. It
is readily seen that such perturbation must leave the agent worse-off. Therefore, it must be J (ε) ≥ 0.
Moreover, J (ε) is well defined because J (ε) < +∞; this is true as ct ≥ c∗t and thus ut (c∗t )−ut (ct) ≤ 0.
Take a decreasing sequence εn → 0 and consider the sequence ε−1

n [J (εn)− J (0)] ≥ 0. The limit J
′
+ (0)

must be non-negative, provided it does exist. It is immediately seen that

J
′
+ (0) = u

′
t−1

(
c∗t−1

)
pt−1 · y −Et−1

[
u
′
t (c∗t ) (pt + dt) · y

]
where the second addendum holds by the monotone convergence theorem, since the functions ε−1

n [ut (c∗t )− ut (ct)] ≤
0 converge to u

′
t (c∗t ) (pt + dt) ·y decreasingly in force of concavity of ut. From J

′
+ (0) ≥ 0, (22) follows.

Proof of Proposition 1. Fix an integer n and define the event An = {ω : |pt−1 (ω)| ≤ n and
c∗t−1(ω) ≥ n−1

}
∈ Ft−1. As n→∞, An ↑ Ω\N , where µ (N) = 0. Consider the function y (ω) = 1Anv,

5Note also that the focus on risk-aversion in our model has a respectable antecedent in Lucas’ paper, where the
relation between asset prices elasticity and relative risk aversion is pointed out.
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where v ∈ Rk
+ is any fixed vector. This Ft−1-measurable function meets assumptions (i) and (ii) of

Lemma 1 and thus we can write:

1An

{
u
′
t−1

(
c∗t−1

)
pt−1 −Et−1

[
u
′
t (c∗t ) (pt + dt)

]}
· v ≥ 0.

As vector v ≥ 0 is arbitrary, it follows

u
′
t−1

(
c∗t−1

)
pt−1 ≥ Et−1

[
u
′
t (c∗t ) (pt + dt)

]
for all ω ∈ An. As n goes to infinity, it is true almost surely and this completes the proof.

Proof of Theorem 1. Observe that E0

[
u
′
(c∗t ) pt

]
< +∞ for any price sequence satisfying (1),

provided that p0 < +∞, as it has been assumed. This has two implications. First, E0

[
u
′
(c∗t ) pt · y

]
<

+∞, for all essentially bounded functions y (ω) . Second, Es
[
u
′
(c∗t ) pt · y

]
< +∞ for s ≥ 0, as well.

Let (ct, yt) be any feasible consumption-portfolio plan for a price process satisfying (1). Multiplying
the budget constraint by u

′
t ≡ u

′
t (c∗t ), we obtain

u
′
tct ≤ u

′
tpt · (yt − yt+1) + u

′
tdt · yt + u

′
twt

Taking the expected value and exploiting (1)

Et−1

[
u
′
tct

]
≤ Et−1

[
(pt + dt)u

′
t

]
· yt −Et−1

[
u
′
tpt · yt+1

]
+Et−1

[
u
′
twt

]
≤ u′t−1pt−1 · yt −Et−1

[
u
′
tpt · yt+1

]
+Et−1

[
u
′
twt

]
.

Note that index t is taken greater than 0 and Et−1

[
u
′
tpt · yt+1

]
is finite, as yt+1 is assumed to be

essentially bounded. Taking now the expected value E0 and summing up from t = 1 to t = N

E0
∑N

t=1 u
′
tct ≤ u

′
0p0 · y1 −E0

[
u
′
NpN · yN+1

]
+ E0

∑N
t=1 u

′
twt ≤ u

′
0p0 · y1 +E0

∑N
t=1 u

′
twt.

By adding the first term u
′
0c0 ≤ u

′
0p0 · (e− y1) + u

′
0d0 · e + u′0w0, and by using (7), we get

E0

N∑
t=0

u
′
tct ≤ u

′
0b0 · e +E0

N∑
t=0

u
′
tc
∗
t +E0

∞∑
t=N+1

u
′
tdt · e

that is true for all N , for any feasible consumption sequence and where b0 is the price bubble at epoch
0. To conclude, from the concavity property ut (c∗t )− ut (ct) ≥ u

′
t (c∗t ) (c∗t − ct), it follows that

E0

N∑
t=0

[ut (c∗t )− ut (ct)] ≥ E0

N∑
t=0

u
′
t (c∗t ) (c∗t − ct) ≥ −u

′
0 (b0 · e)−E0

∞∑
t=N+1

u
′
tdt · e

and, in force of (11),

lim inf
N→∞

E0

N∑
t=0

[ut (c∗t )− ut (ct)] ≥ − (b0 · e)u
′
0

Therefore, if the market prices agree with the fundamental values ft, that is b0 = 0, we obtain the
desired property of optimality.

Proof of Theorem 2. It follows the same line of the proof of Lemma 4.1 in [11] and therefore
we shall only sketch it. Consider the asset holding strategy y1 defined by y1

0 = e and y1
t = e − εv

for t ≥ 1, where v is a fixed vector in Rk
++ and ε satisfies the condition 0 < εv ≤ (1 − ζ)e, being ζ
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defined in (12). Let c1 be the corresponding consumption stream. Now, for α ∈ (0, 1), define the plan
yα = (1− α) e + αy1 with the relative consumptions cα = (1− α)c∗ + αc. By concavity,

α−1 [ut (c∗t )− ut (cαt )] ≤ ut (c∗t )− ut
(
c1
t

)
.

Since cαt ≤ c∗t , from t ≥ 1 on, sums are increasing and, by taking the limit as N → ∞ and then
expectation, the following inequalities are true:

0 ≤ E0

∞∑
t=0

α−1 [ut (c∗t )− ut (cαt )] ≤ E0

∞∑
t=0

[
ut (c∗t )− ut

(
c1
t

)]
< +∞

where the first is due to optimality of plan c∗ (see (iii) of Definition 1), whilst the second is valid by
(12). As α ↓ 0, the functions above increase, therefore, through repeated applications of the monotone
convergence theorem, we get

u
′
0 (c∗0) p0 ≤ E0

∞∑
t=1

u
′
t (c∗t ) dt. (23)

In view of (6), (23) yields p0 = f0, and the proof is complete because, from (9), b0 = 0 implies bt = 0
for all t.

Proof of Proposition 3. It is a straightforward variant of Theorem 2. It will suffi ce to consider
the assets holding strategy yi defined by yi0 = e and yit = e− εei for t ≥ 1, where ε > 0 is suffi ciently
small and ei is the vector having zero components but the ith, which equals one. The corresponding
consumption stream ci is given by ci0 = c∗0 + εpi0 and c

i
t = c∗t − εdit for t ≥ 1. Remaining steps closely

follows those of the preceding proof.

Proof of Theorem 3. Suppose there is some bubble when the initial assets supply is y0 = v ∈
Rk

++. Since (11) must be fulfilled, one has

E0

∞∑
t=1

u
′
t (dt · v + wt) dt < +∞

Take any initial vector v such that v� v. Then, there is some ζ < 1 for which ζv� v. Monotonicity
of u′t implies

E0

∞∑
t=1

u
′
t(ζdt · v + wt)dt < +∞

which is the suffi cient condition (12) for the equilibrium with initial asset holding v to be unique.
Likewise, assume that, for y0 = v� v, equilibria do exist, hence

E0

∞∑
t=1

u
′
t(dt · v + wt)dt < +∞

which in turn entails

E0

∞∑
t=1

u
′
t(ξdt · v + wt)dt < +∞

for all ξ > 1. By picking ξ > 1 and ζ < 1 so that v� ξv� ζv� v,

E0

∞∑
t=0

u
′
t (ζdt · v + wt) dt < +∞

must hold. But this contradicts the assumption that some bubble occur for y0 = v. Clearly, a similar
line of reasoning applies for a perturbation of the dividends dt.
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Proof of Theorem 4. Let us utilize suffi cient condition (13) formulated in Corollary 1. We first
observe that if there is a constant M(ζ), independent of t, such that

u
′
t (ζc+ h) ≤M(ζ)u

′
t (c+ h) (24)

for some ζ < 1 and for all c ≥ 0, h ≥ 0, t ≥ 0, then (11) implies (13). In force of (15), the function
u
′
t (c+ h) cR is non-decreasing, as can be checked by calculating its derivative. Thus u

′
t (ζc+ h) ζR ≤

u
′
t (c+ h) for ζ ≤ 1, and (24) is valid by setting M(ζ) = ζ−R.

Proof of Proposition 4. Denote by yt+1 ≡ y
(
st
)
a feasible trading plan. It finances consump-

tions
c
(
st
)

= pt (yt − yt+1) + w, c
(
mt
)

= yt

and c (·) = w elsewhere. Furthermore

E0
∑N

t=0 [ut (c∗t )− ut (ct)] =
∑N

t=1 2−t [vt (1)− vt (yt)] +∑N
t=0 2−tβtpt (yt+1 − yt)

(25)

The proof will be accomplished by considering strategies yt separately in the two following exhaustive
classes: a) lim supt→∞ yt ≥ 1; b) lim supt→∞ yt < 1.

By means of the inequality
vt (1)− vt (yt) ≥ v′t (1) (1− yt)

the right-hand side of (25) is greater than∑N
t=1 2−t+1βt−1

[
pt−1 − 2−1β1−tv′t (1)− 2−1βpt

]
(yt − 1)

+2−NβNpN (yN+1 − 1) = 2−NβNpN (yN+1 − 1)

where equality holds thanks to (18). Since 2−NβNpN → b0 ≥ 0, in the case (a)

lim sup
N→∞

2−NβNpN (yN+1 − 1) ≥ 0

and our claim is proven. Consider now case (b). Taking limits in (25), we get

∞∑
t=1

2−t [vt (1)− vt (yt)]−
∞∑
t=0

2−tβtpt (yt − yt+1)

provided that the two series make sense. The first series diverges. In fact, it turns out to be definitively
yt ≤ ζ for some ζ < 1 and the series diverges by virtue of (17). Thus, our claim will be true provided
that the second series does not diverge. On the other hand,∑∞

t=0 2−tβtpt (yt − yt+1) =
∑∞

t=0 2−tβtpt (1− yt+1)−
∑∞

t=1 2−tβtpt (1− yt)
=
∑∞

t=1 2−t+1βt−1
(
pt−1 − 2−1βpt

)
(1− yt)

=
∑∞

t=1 2−tv′t (1) (1− yt)
≤
∑∞

t=1 2−tv′t (1) <∞

where the third equality uses (18), and the desired result is proven.

Proof of Proposition 5. To show the implication A.3 =⇒ A.4, we claim the events

At =
{
dit/p

i
t < σt

}
⊂
(
P it
)c

to be µ-negligible for all t. Arguing by contradiction, suppose that µ (As) > 0 for some s. Then, picking
ζ, relatively to As as in A.3, one can rewrite this event as As =

{
ζdis − ζσspis < 0

}
or, equivalently,

in vector notation
As =

{
ζdis + ps · [(e− ζσsei)− e] < 0

}
(26)
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where ei denote the Rk vector with all null entries but the ith equals 1.
We now construct a plan {c̃t, ỹt} as follows: {c̃t, ỹt} = {c∗t , e} for all ω ∈ Ω, if t < s and for ω /∈ As

if t ≥ s. If ω ∈ As, then {c̃s, ỹs} =
{
c∗s + ζdis, e

}
and {c̃t, ỹt} =

{
c∗t − ζσsdit, e− ζσsei

}
for t ≥ s + 1.

By using (26), (
c∗s + ζdis

)
+ ps · [(e− ζσsei)− e] ≤ c∗s = ds · e + ws and

c∗t − ζσsdit + pt · 0 = dt · (e− ζσsei) + wt for t ≥ s+ 1.

and thus {c̃t, ỹt} is feasible. By construction we have

E0

N−1∑
t=0

[ut (c̃t)− ut (c∗t )] = E0

N−1∑
t=0

1As [ut (c̃t)− ut (c∗t )]

for all N ≥ 1. Taking the liminf, A.3 entails

lim inf
N→+∞

N−1∑
t=0

E0 [ut (c̃t)− ut (c∗t )] > 0

which contradicts weak optimality of plan {c∗t , e}. Concluding, µ (At) = 0, for all t and, consequently,
dit/p

i
t ≥ σt for almost all ω ∈ Ω. This implies our assert.

To prove Theorem 5, some more notation and one preliminary lemma are required. Let us introduce
the scalar sequence ŷit defined recursively as:

ŷit+1 =

(
1 +

dit
pit

)
ŷit. (27)

and where the initial condition ŷi0 is assumed to be a strictly positive scalar. Clearly, ŷ
i
t+1 is well

defined over
(
P it
)c.

Lemma 2 Let {pt, at} be two F-adapted processes satisfying (19). Given the sequence ŷit defined
above, if we agree upon setting pitŷ

i
t+1 = 0 over P it , then the process atp

i
tŷ
i
t+1 is a supermartingale.

Proof. Set Cit =
(
P it
)c. By definition,

Et−1

[
atp

i
tŷ
i
t+1

]
= Et−1

[
1Citatp

i
tŷ
i
t+1

]
According to (27)

1Cit (p
i
tŷ
i
t+1) = 1Cit (p

i
t + dit)ŷ

i
t

that, by means of (19), leads to

Et−1

[
atp

i
tŷ
i
t+1

]
= Et−1

[
at1Cit (p

i
t + dit)ŷ

i
t

]
≤

Et−1

[
at(p

i
t + dit)

]
ŷit = at−1p

i
t−1ŷ

i
t

as was to be shown.

Proof of Theorem 5. We shall extend the sequence ŷit+1, defined in (27), by setting ŷ
i
t+1 = ∞

over P it . Clearly, ŷ
i
t+1 is an extended-value and increasing sequence. According to (27),

ŷit+1 =
t∏

k=0

(
1 +

dik
pik

)
ŷi0.

By means of the first of the inequalities
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1 +

N∑
t=0

αt ≤
N∏
t=0

(1 + αt) ≤ exp

(
N∑
t=0

αt

)
(28)

that holds for all sequences of scalars αt ≥ 0 and all N ≥ 1, from (21) it follows that the sequence
ŷit →∞ uniformly.

Fix any pseudo state-prices at consistent with p. We know from Lemma 2 that atpitŷ
i
t+1 is a

supermartingale. Hence, E0

[
atp

i
tŷ
i
t+1

]
≤ a0p

i
0ŷ
i
1. This means E0

[
1Citatp

i
tŷ
i
t+1

]
≤ a0p

i
0ŷ
i
1, where

Cit =
(
P it
)c. Since the sequence ŷit diverges uniformly, for any N we can find a time T so that

ŷit+1 ≥ N for all t ≥ T . Hence, E0

[
1Citatp

i
t

]
≤ N−1a0p

i
0ŷ
i
1. On the other hand, E0

[
1P it atp

i
t

]
= 0,

which gives E0

[
atp

i
t

]
≤ N−1a0p

i
0ŷ
i
1 and, in turn, E0

[
atp

i
t

]
→ 0 as t → ∞. Now, in view of (20), we

can infer that the bubble component relative to the selected state-prices vanishes.

Proof of Proposition 6. Let us focus on a single asset. If prices pit eventually vanish, nothing
is to be proved. Hence set pit > 0 for all t. Arguing by contradiction, suppose A.4 fails, namely

∞∑
t=0

dit
pit

= M < +∞.

From the second inequality in (28), it follows

∞∏
t=0

(
1 +

dit
pit

)
≤ exp

( ∞∑
t=0

dit
pit

)
= eM

Therefore, the deterministic increasing sequence ŷit, defined in (27) is bounded by e
M ŷi0. So, if we

take ŷi0 < e−M , we shall have ŷit < 1 for all t. We claim that this leads to a contradiction. It suffi ces
constructing the following plan. If ei denotes the vector having zero components but the ith equal to
one, then let

ỹt = e− gtŷitei
where g0 = 0 and gt = 1 for all t ≥ 1. It is feasible because ỹt > 0 and finances consumptions

c̃t = c∗t + (gt+1 − gt) pitŷit+1

Clearly c̃0 = c∗0 + pi0ŷ
i
1, while c̃t = c∗t for all t ≥ 1. This contradicts the optimality of c∗t .
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