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Drivers of Pinus sylvestris L. regeneration 

following small, high-severity fire in a dry, 

inner-alpine valley  

Giorgio VACCHIANO, Michele LONATI, Roberta BERRETTI, Renzo MOTTA 

 

Abstract 

In dry, inner-alpine valleys, regeneration of Scots pine after large, high-severity fires is limited by 

seed dispersal distance. When dispersal limitations are relaxed (small fires), colonization dynamics 

of Scots pine remain unclear. Our aims were: (1) to assess the regeneration niche of Scots pine 

seedlings following small fires in a dry, inner-alpine valley, and (2) to measure the influence of 

competition, drought, fertility, and soil pH on pine colonization. We sampled pine seedlings in six 

high-severity fires (1962-2006), where distance from the unburned edge was <60 m. We modeled 

seedling density as a function of topography and soil cover by means of Generalized Linear 

Models (GLM). Ellenberg indicator values (EIV) for light, moisture, soil pH, and fertility were 

computed from vegetation sampling at each plot, and used as additional predictors of seedling 

density. Pine colonization was initially slow due to drought, and peaked 16 years after fire. The 

inclusion of EIV provided +31% of explained deviance in models of seedling density. Herb cover 

and soil moisture were the most important predictors. Scots pine regenerates successfully 

following small, high-severity fires, albeit slowly due to unfavorable water balance. Hence, 

restoration by artificial regeneration may not be necessary when seed dispersal is ensured.  

 

Keywords 
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Scots pine (Pinus sylvestris L.) forests have a wide distribution and ecological 

amplitude in the northern hemisphere. In the southern Alps, Scots pine behaves as 

a pioneer species and establishes after disturbances and in abandoned agricultural 

lands. The only exceptions are dry (rainfall <700 mm year-1), inner alpine valleys, 

where pine is a strong competitor with respect to other conifers, and may form 

stable communities (Ozenda 1985). These forests are not very productive but 

provide important ecosystem services (Vacchiano et al. 2008a, 2008b).  

Both primary and secondary pine forests in the inner alpine valleys have 

experienced, in the last decades, high mortality rates related to forest decline 

(Bigler et al. 2006; Rigling et al. 2012; Vacchiano et al. 2012). 

BesidesAdditionally, these fire-prone ecosystems have undergone an increase in 

the frequency and intensity of forest fires, due to both anthropogenic and climatic 

causes (Zumbrunnen et al. 2009, 2011). Forest restoration is therefore an 

important ecological and social issue (Beghin et al. 2010).  

Lagging or absent Scots pine colonization was observed in mountain regions 

throughout Southern Europe following large, high-severity wildfires (>300 ha: 

Retana et al. 2002; Rodrigo et al. 2004; Moser et al. 2010). The main causes have 

been attributed to: (1) scarce resistance of seeds to the high temperatures attained 

during intense wildfires (Habrouk et al. 1999), and (2) limited dispersal distance, 

i.e.,  <60 m from the parent trees, with the exception of rare, long-distance 

dispersal events (Debain et al. 2007; Vilà-Cabrera et al. 2012). 

On the other hand, contradictory evidence exists regarding Scots pine colonization 

following small wildfires, i.e., when parent trees are closer than the maximum 

dispersal distance. In the Alps, there is evidence of both abundant (Beghin et al. 

2010, 28 ha fire) and scarce regeneration in fires of comparable size (Kipfer et al. 

2011, 2 to 25 ha). Such discrepancies likely result from additional limiting factors 
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that may or may not be locally important, e.g., poor soil water balance (Oleskog 

and Sahlén 2000; Castro et al. 2005), competition vs. facilitation by herbs or 

shrubs (Vickers and Palmer 2000; Nuñez et al. 2003; Hille and Den Ouden 2004), 

seedling mortality caused by drought or solar radiation (Castro et al. 2004; Moser 

et al. 2010), or adverse fire effects on micorrhiza (Kipfer et al. 2010; Pérez-

Cabello et al. 2010). 

Small fires represent a minor part of total area burned in the southern alpine 

domain, but their frequency is high (Zumbrunnen et al. 2009; Valese et al. 2011), 

due to fire suppression activities and landscape fragmentation. Conclusive 

evidence about the abiotic factors that limit Scots pine regeneration following 

small, high-severity fires (i.e., causing 100% canopy mortality) is needed. Insights 

into the functional ecology of the species based on field performance of early 

regeneration (i.e., seedlings) may enhance the success and cost-effectiveness of 

restoration (Oliet and Jacobs 2012) following commonly occurring fire 

disturbances in human-impacted mountain regions. 

The aims of this paper are (1) to assess vegetation dynamics of the herbaceous, 

shrub, and tree layers following small high-severity fires in inner-alpine Scots 

pine forests; the abundance and temporal colonization dynamics of early Scots 

pine regeneration in dry, inner-alpine Scots pine forests following small high-

severity fires, and (2) to assess the relative importance of potential limiting 

factors, such as site fertility, competition, soil moisture, and soil reaction, on Scots 

pine regeneration. We used Ellenberg’s (1992) indicator values (EIV) as proxies 

for light intensity, soil moisture, fertility, and pH at each site, with the additional 

objective of testing whether the inclusion of EIV would improve the accuracy of 

regeneration models.  
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Materials and methods 

1) Site selection and study area 

From a regional database of wildfires in Valle d’Aosta, Italy (source: Corpo 

Forestale Regione Autonoma Valle d’Aosta, Nucleo Antincendi Boschivi) we 

selected all fires that occurred in Scots pine forests between 1962 and 2010. In 

order to control for undesired variability (e.g., Fernandez Calzado et al. 2012), we 

subsetted the sample to sites similar in elevation (i.e., 1100 to 1600 m a.s.l.), 

aspect (southerly), fire behavior (crown fire), and post-fire treatment, i.e., salvage 

logging 1-4 years after fire (Beghin et al. 2010). Between-site variation of other 

abiotic factors (e.g., soil type, pre-fire forest cover type) was minimized by 

selecting fires at a maximum distance of 5 km between one another. We also 

assumed homogeneity of pre-fire understory community based on the proximity 

of the sites, and on the fact that mature, closed-canopy stands of Scots pine in 

ecologically similar sites should be associated to homogenous edaphic conditions. 

The selected fires (N =6) occurred between March and September of their 

respective year (1962 to 2006). Area burned by crown fire was 41 ha on average. 

The shape of fire perimeters was such that, in each fire, most of the burned area 

was <60 m from the unburned edge (Table I). In the two largest fires, we 

restricted our analysis to a buffer within 60 m from the unburned edge, so that 

successful seed dispersal was ensured. 

 

(Table I) 

 

Burned areas are located in the neighboring municipalities of Verrayes and Saint-

Denis. Mean annual precipitation is around 600 mm, and mean annual 
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temperature is 10° C. Soils are classified as entisols (Beghin et al. 2010). Pine 

stands belong to the Ononido-Pinion alliance (Blasi 2010), that is described as a 

xerothermic woodland of colline to montane altitudes on alkaline soils, 

geographically centered on the dry valleys of the inner Alps (Braun-Blanquet 

1961; Mucina et al. 1993). The canopy is composed almost exclusively of 

relatively short Scots pine; Archtostaphylos uva-ursi is frequent in the shrub layer 

(Filipello et al. 1985). In all sites, browsing of the terminal shoots, fraying, and 

bark stripping by wild ungulates are very rare. 

  

2) Data collection 

We used individual fires as treatment, similarly to previous research in post-fire 

regeneration dynamics (Capitanio and Carcaillet 2008; González-Tagle et al. 

2008). Lack of true replication is common in wildfire research (Van Mangtem et 

al. 2001): natural fire is a rare event, and true replicates (i.e., fires of the same age 

with none or minimal site variation between them) are hard to find. Moreover, in 

our study the number of wildfire events satisfying the conditions for site selection 

was very limited. 

We randomly established 5 circular plots (radius = 5m) within each fire perimeter, 

providing a minimum distance of 25 m between plots to avoid spatial 

autocorrelation, and a maximum distance of 60 m from the unburned forest edge, 

in order to ensure the arrival of pine seeds dispersed by the wind. Total number of 

plots was 30. Sampling was carried out in summer 2011. In each plot we 

measured the following variables: 

(a) site: elevation, aspect (subsequently linearized as Heatload Index: 

McCune and Keon 2002), percent cover of bare soil, herbaceous, lower 
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shrub (height ≤ 130 cm, excluding pine seedlings), upper shrub (height 

between 130 and 500 cm), and tree (>500 cm) layers; 

(b) regeneration: height and root collar diameter (RCD) of all pine seedlings 

and small saplings (height ≤130 cm; hereafter, “seedlings”); 

(c) vegetation: presence-absence and visually estimated cover of each species 

in the herbaceous, lower shrub (excluding pine seedlings), upper shrub, 

and tree layers. Species with very low cover (<1%) were registered as rare 

(‘+’), according to Braun-Blanquet (1932). Floristic nomenclature 

followed Pignatti (1982). 

 

3) Data analysis 

In order to understand the effect of time since fire on plant succession in the study 

area, we carried out an indirect gradient analysis (CTarni et al. 2011) of species 

cover data, by means of nonmetric multidimensional scaling (NMS) with Varimax 

rotation (Legendre and Legendre 1998). Species with very low cover (‘+’) were 

assigned using a 0.3% weight (Reichelt and Williams 1973; Tasser and Tappeiner 

2005). NMS was run in PCORD 4.17 (McCune and Mefford 1999) with the 

following configuration: Sorensen distance with Bray-Curtis dissimilarity index, 

200 runs with real data, max 250 iterations, stability criterion =0.0005, random 

starting configuration, six initial dimensions (McCune and Grace, 2002). 

Dimensionality was assessed by significance of a Monte-Carlo test (100 runs, p 

≤0.05 where p = proportion of randomized runs with stress lower or equal than the 

observed stress). The ecological significance of NMS axes was assessed by 

Pearson’s correlation with site and soil cover variables. 
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Ellenberg indicator values for light (L), moisture (U), soil reaction, anpH (R), and 

nutrient content (N) were associated to each species (Ellenberg et al. 1992, 

readapted by Pignatti 2005). Mean EIV for the herbaceous and lower shrub layers 

(excluding pine seedlings) were computed for each plot using both presence-

absence (unweighted mean) and percent cover data (weighted mean: Diekmann 

2003). We assumed that pine seedlings, having a sparse cover, did not 

substantially affect the understory, and that current herbaceous and lower shrub 

composition and abundance at the plot scale was similar to that at the time of 

seedling emergence. 

Following a square-root transformation to ensure normality, we assessed the 

effect of treatment (i.e., fire year) on pine seedling abundance, total pine cover, 

and EIV by univariate ANOVA with a Ryan-Einot-Gabriel-Welsch post-hoc test 

(alpha =0.95). Finally, in order to assess the influence of limiting factors on Scots 

pine seedling abundance, we fitted a Generalized Linear Model (GLM) with 

Poisson error distribution and log link to the following sets of variables: (1) a 

“reduced” model based on site variables only (i.e., topography and soil cover); (2) 

a “full” model including topography, site variable,s and unweighted EIV; (3) a 

“full” model including topography, site variables, and weighted EIV. We did not 

include in our models distance from the unburned edge, because: (a) all plots were 

within the dispersal range of most Scots pine seeds, i.e., 60 m (Debain et al. 

2007); and (b), the oldest post-fire cohorts have already reached sexual maturity 

(10-20 years in Scots pine: Vilà-Cabrera et al. 2012), and dispersed their seeds to 

neighboring sites, therefore introducing noise in the variable.  

 As time since fire was highly correlated to percent tree cover (Pearson’s R 

=0.96), we excluded the first from the set of model predictors. Lower and upper 

shrub covers were aggregated In order to improve model parsimonyreduce the 
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number of predictors and avoid model overfitting, we aggregated lower and upper 

shrub cover. All independent variables were standardized. GLM were assessed for 

overall significance (omnibus test, p ≤0.05) and compared based on percent 

deviance explained, Akaike's Information Criterion with small-sample correction 

(AICC), and Bayesian Information Criterion (BIC). Effect size of individual 

predictors was assessed by scrutinizing regression coefficients.  

 

Results 

1) Temporal vegetation dynamics 

A total of 165 plant species were found at all sites; the number of species per plot 

ranged from 20 to 46. We sampled an average of 38 species (i.e., alpha-diversity) 

5 years after fire, and only 24 species 49 years after fire, i.e., a 37% difference (p= 

0.0049, heteroschedastic t-test). Mean herbaceous, shrub (lower + upper), and 

bare soil cover were 60%, 19% and 29% respectively (Table II). Mean EIV were 

indicative of open, xeric sites with sub-basic soil pH and medium-low fertility. 

Light decreased and moisture increased with time since fire. N was high in the 

most recent fire, decreased 16-36 years from fire, and increased again in the oldest 

fire. R did not show any clear trends (Fig. 1). 

 

(Table I) (Figure 1) 

 

NMS (Fig. 2) suggested an ordination on 3 dimensions (final stress after 250 

iterations: 11.49, p= 0.0099). NMS components (Table III) were mainly 
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explicative of elevation (axis 1), shrub (axis 2) and tree cover, i.e., time since fire 

(axis 3).  

 

(Figure 2) (Table III)  

 

Following fire, sprouting broadleaves were the first to recolonize the site (i.e., 

downy oak Quercus pubescens, aspen Populus tremula, birch Betula pendula, 

willow Salix caprea, ash Fraxinus excelsior, cherry Prunus avium). Therophytic 

and nitrophilous early-seral species (e.g., Crupina vulgaris, Medicago minima, 

Tragopogon dubius, Daucus carota), were abundant in the most recent fire, but 

decreased 6 and 8 years after fire, to the advantage of species from meso-

xerophilous shrub and fringe communities (e.g., Colutea arborescens, 

Amelanchier ovalis, Coronilla varia, Hypericum perforatum) and dry grasslands 

(e.g., Koeleria pyramidata, Centaurea scabiosa, Galium verum, Lactuca 

perennis). Only 16 and 36 years after fire did we observe an increase in species 

from broadleaved and Scots pine forests (e.g., Prunus avium, Quercus pubescens, 

Astragalus monspessulanus, Viola rupestris). In the oldest site we observed a 

significant reduction of species from dry grasslands, and the appearance of species 

from boreal acidophilous woody communities (e.g., Picea excelsa, Melampyrum 

sylvaticum, Vaccinium myrtillus).  

 

2) Pine regeneration  

The density of Scots pine seedlings ranged from none in the most recent fire, to an 

average of 1900 seedlings ha-1 in the 1995 fire. While seedling density declined in 

older fires, the cover of pine regeneration of all ages continued to increase, up to 
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an average 61% in the oldest site, 49 years after fire (Fig. 3).  

 

(Figure 3) 

 

3) Limiting factors to pine regeneration  

All regeneration models were significant (omnibus test, p <0.001). Deviance 

explained improved from 57% (reduced model) to 88% when using EIV as 

additional predictors (Table IV). ‘Full’ models had similar deviance explained, 

AICC, and BIC (i.e., less than 2 units apart). However, the set of significant 

model parameters (Table V) differed.  

In the reduced model, all site variables were significant, and positively related to 

seedling abundance. When using the uweighted EIV model, we observed a 

significant influence of moisture (b = 2.40), soil reaction (b = 2.40), and soil 

fertility (b = -1.96), and a weaker, positive effect of herbaceous cover (b = 1.67) 

and heatload (b = 0.44). In the weighted EIV model herb cover, bare soil cover, 

and light intensity were the most important predictors (b =3.14, -2.16 and 2.13, 

respectively); a positive effect of total shrub cover (b =1.44) and heatload (b 

=1.3), and a negative effect of tree cover (b = -1.79), were also observed.  

 

(Table IV) (Table V) 
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Discussion 

1) Temporal vegetation dynamics 

In the first years after fire, we observed the dominance of ruderal nitrophilous 

therophytes and perennial communities (Thero-Brachypodietea, Stellarietea 

mediae, Agropyretea intermedii-repentis and Artemisietea vulgaris classes). 

Within these classes, drought-resistant species such as Conyza canadensis or 

Lactuca serriola were observed, similarly to observations in other dry, inner-

alpine valleys (Moser and Wohlgemuth 2006), as a likely result of high solar 

radiation and strong water deficit. 

With increasing time since fire, a transition was observed towards perennial 

species of xerophytic grasslands and forest edges ecotones (Festuco-Brometea 

and Crataego-Prunetea). Species from Pyrolo-Pinetea (i.e., Scots pine and related 

species) and Querco-Fagetea s.l. appeared only at a second stagelater in the 

succession, i.e., 15 years after fire.  

In the oldest fires (36 and 49 years since fire), we observed the appearance of 

Vaccinio-Picetea species (i.e., Picea and related herbaceous species), consistently 

with their shade-tolerance traits, and preference for fertile soils (Hofgaard 1993). 

Ordination analysis confirmed that this succession of plant communities was 

mainly associated with the increase in tree canopy cover. 

 

2) Pine regeneration 

Pine seedlings were absent from the most recent fire (5 years since fire), peaked 

16 years after fire, and declined in the oldest fires. Scarce regeneration of Scots 

pine in the first years after fire has been observed both in the Mediterranean 
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region (Rodrigo et al. 2004) and in the Alps (Moser et al. 2010). Scots pine is 

characterized by non-serotinous cones, absence of hard-coated seeds, and short-to-

medium seed dispersal distances (Vilà-Cabrera et al. 2012). Once burned in an 

intense fire, it is dependent for recovery on seed dispersal from adjacent unburned 

patches (Ramon Vallejo et al. 2012).  For this reason, large, high-severity fires 

may delay regeneration by many years (Rodrigo et al. 2004; see also Turner et al. 

1998). 

Dispersal distance was not limiting in our study. However, the most favorable 

time for seedling establishment was 8 to 16 years after fire, i.e., a later (and 

longer) window than that found in Mediterranean ecosystems (Retana et al. 2012). 

Although Scots pine is a light-demanding species, seed germination and seedling 

survival are very sensitive to drought (Castro et al. 2005), especially in inner 

alpine sites, where spring and summer precipitation are scarce (Moser et al. 2010). 

It is likely that the extremely unfavorable soil water balance, especially during 

summer, has resulted in a particularly slow establishment. Once herbs and shrubs 

are established, however, they may act as nurse plants, buffering summer drought 

without reducing radiation to critical levels, as was previously observed in similar 

environments (Castro et al. 2004, Pardos et al. 2007).  

In the older sites, pines that had established after fire have formed a closed canopy 

and entered a competitive exclusion phase (Oliver and Larson 1996; Vacchiano et 

al. 2008b). Following canopy closure and self-thinning of the main cohort, scarce 

or no new seedlings could establish in the understory, due to limiting light 

conditions. No shift in dominant tree species was observed, as had by contrast 

been predicted following large fires in dry Mediterranean and Alpine sites (Moser 

et al. 2010; Vilà-Cabrera et al. 2012). As we expected, we found few or no 

seedlings in these sites, because of the denser tree cover.  
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3) Limiting factors to pine regeneration  

Regeneration models that included EIV had a better fit, indicating a significant 

influence of microsite conditions. Unweighted EIV produced slightly better 

models, and three out of four EIV were significant only when computed from 

presence/absence data. Previous research suggested that presence/absence data are 

more responsive to environmental variation than abundance data (Smartt et al. 

1976; Wilson 2012). Unweighted EIV attribute a greater importance to sporadic 

species with high indicator power, in our case, mesophilous species that contrast 

with the general dryness of the area (e.g., Fraxinus escelsior, Viola riviniana, 

Lathyrus montanus). Site predictors, on the other hand, were more significant in 

the reduced model, likely because they captured the variability in the response 

that was not explained by the EIV.  

The effect of model predictors was consistent with our hypotheses: a) tree cover 

always had a negative effect on seedling abundance, as expected for a light-

demanding species such as Scots pine; b) heatload had a positive influence on 

pine establishment, but direct solar radiation (L)light was strongly limiting. This 

is expected in drought-prone sites, where the evapotranspiration balance is 

negative (Braun-Blanquet 1961, Schwabe and Kratochwil 2004); c) moisture was 

the strongest predictor (in the unweighted model), with higher moisture resulting 

in denser pine regeneration; d) herbaceous and shrub cover (when significant) 

were positively associated with pine density, indicating a potential facilitative 

effect played out by alleviating drought and evapotranspiration at ground level.  

pH Soil reaction was significant in the unweighted EIV model only. Soils were 

homogenous across sites- However, litterfall from established pine trees can 

Page 14 of 35

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

15 

increase topsoil acidity in the oldest fires, and Scots pine seedlings reportedly 

have a limited ability to cope with water limitations in more acidic soils (Bartsch 

1987). However, this EIV is less reliable when used in young secondary forests 

(Dzwonko 2001). 

Finally, site fertility had a strong, negative effect on pine seedling abundance. 

Scots pine is known to thrive on poorer soils (as confirmed by the positive effect 

of bare soil cover in the weighted model), and to be a poor competitor when site 

resources are more abundant (Picon-Cochard et al. 2006). N was high both in the 

most recent fire (post-fire fertilization: Maringer et al. 2011) and in the oldest one, 

likely due to litter accumulation. In these same sites, pine seedlings were scarce, 

even if mostly limited by U moisture and lightL, respectively.  

In conclusion, our study showed that even after small, high-severity fires, pine 

establishment is initially slow in dry, inner-alpine Valle d’Aosta (Italy), due to the 

unfavorable moisture regime and evapotranspiration balance. Seedling density 

increased with time since fire, peaked between 8 and 16 years after fire, and 

subsided in older fires, where post-fire trees represented the mature canopy.  

Contrary to larger fires, where a change in dominant species may occur because of 

seed dispersal limitations, pine finally achieved dominance. This indicates that 

Scots pine is capable, despite drought limitations, to colonize small areas burned 

by high-severity fire, albeit slowly. The fact has clear management implications: 

iIf such a laga temporal lag is tolerable (e.g., not in direct protection forests, 

where the fastest recovery of plant cover is desired to mitigate natural hazards), 

small-sized fires and areas surrounding unburned edges can be safely left to 

develop according to their natural dynamics, in contrast to larger fires, where 

planting may be needed for effective restoration. Moreover, the facilitative effect 

of herbs and shrubs indicates confirmed that they are key microhabitats in the 
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early phase of post-fire establishment in dry, inner-alpine Scots pine forests 

(Castro et al. 2004). 
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Tables 

Table I Characteristics of the selected fires 

Year Site 
Latitude 

Longitude 
(WGS84) 

Area burned 
by crown 
fire [ha] 

Area within 
60m from fire 
edge [ha (%)] 

Elevation 
range of crown 
fire [m a.s.l.] 

Aspect 

1962 Lavasè 
45°45'54''N 
7°34'57''E 

5.4 5.4 (100%) 1490-1550 SW 

1975 Chialey 
45°46'16''N 
7°32'36''E 

2.1 2.1 (100%) 1245-1335 S 

1995 Del 
45°46'19''N 
7°33'15''E 

22.0 21.9 (99.4%) 1160-1460 S 

2003 Vorpeillere 
45°45'40''N 
7°35'06''E 

46.4 35.4 (76.2%) 970-1525 SE 

2005 Hers 
45°46'10''N 
7°29'54''E 

167.9 74.2 (44.2%) 1305-1890 S 

2006 Menfrey 
45°46'00''N 
7°30'50''E 

4.6 4.5 (99.3%) 1020-1340 SE 
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Table II Plot-scale descriptors (N =30) of regeneration, site, soil cover variables, EIV 

(unweighted and weighted), and number of species per plot (i.e., alpha-diversity). L: 

light intensity; U: moisture; N: fertility; R: pH 

 
  Units Mean SE Min Max 
Scots pine 
regeneration 

Pine seedling density  trees ha-1 425.9 142.7 0 2801 

Site variables 

Elevation m a.s.l. 1306.7 23.84 1117 1559 
Heatload (0-1) 0.30 0.02 0.0 0.5 
Herbaceous % 60.2 3.03 20 85 
Tree cover % 22.4 5.54 0 75 
Lower shrub cover % 9.2 1.67 0 30 
Upper shrub cover % 9.9 1.79 0 35 
Bare soil % 29.3 3.99 3 72 

EIV, unweighted  

Light 1-9 7.4 0.095 6.4 8.5 
MoistureU 1-12 3.5 0.051 3.0 4.2 
Soil reactionR 1-9 6.7 0.084 5.3 7.2 
Nutrients 1-9 3.2 0.064 2.4 3.9 

EIV, weighted  

LightL 1-9 7.3 0.114 6.3 8.3 
MoistureU 1-12 3.5 0.073 2.7 4.4 
Soil reactionR 1-9 7.1 0.070 6.3 7.8 
NutrientsN 1-9 3.3 0.114 2.1 4.7 

 Number of species -  33.8 1.32  20 46 
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Table III Pearson's correlation coefficient 

between site variables and NMS axes. *p ≤0.05, 

**p ≤0.01, ***p ≤0.001 

Variable NMS 1 NMS 2 NMS 3 
Elevation  -0.67*** 0.16 -0.35 
Heatload -0.19 0.05 -0.34 
Tree cover  -0.52** -0.25 -0.77*** 
Lower shrub cover -0.05 0.02 0.13 
Upper shrub cover -0.22 -0.35 0.23 
Herbaceous 0.10 0.01 0.09 
Bare soil  -0.18 -0.25 -0.39* 
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Table IV GLM fit statistics for Scots pine seedling abundance (N). Df: degrees of 

freedom; LL: Log Likelihood; AICC: Finite Sample Corrected AIC; BIC: Bayesian 

Information Criterion 

 

Response 

variable 

Null 

deviance 
Predictors df 

Residual 

deviance 

% Deviance 

explained 
LL AICC BIC 

N 245.9 Site 23 106.6 56.6% -75.9 170.8 175.5 

  Site, EIV unweighted 19 29.6 88.0% -37.4 111.4 112.1 

    Site, EIV weighted 19 30.4 87.6% -37.8 112.2 113.0 
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Table V Coefficients (b) and significance 

(sig.) of predictors in GLM of Scots pine 

seedling abundance. 

Model and predictors b sig. 

Site     

 (Intercept) -0.34 0.285 

 Elevation 1.35 0.000 

 Heatload 0.60 0.001 

 Tree cover 0.88 0.000  

 Total shrub cover  0.88 0.000 

 Herbaceous  2.65 0.000 

 Bare soil 1.37 0.011 

Site, EIV unweighted     

 (Intercept) -0.75 0.056 

 Elevation -0.44 0.533 

 Heatload 0.44 0.050 

 Tree cover -0.86 0.199 

 Total shrub cover  -0.38 0.361 

 Herbaceous  1.67 0.027 

 Bare soil 0.41 0.576 

 LightL -1.65 0.059 

 MoistureU 2.40 0.000 

 Soil reactionR 2.04 0.000 

  NutrientsN -1.96 0.000 

Site, EIV weighted   

 (Intercept) -1.74 0.019 

 Elevation 0.88 0.146 

 Heatload 1.30 0.000 

 Tree cover -1.79 0.010 

 Total shrub cover 1.44 0.008 

 Herbaceous 3.14 0.003 

 Bare soil 2.16 0.045 

 LightL -2.13 0.000 

 MoistureU 0.04 0.956 

 Soil reactionR 0.32 0.440 

  NutrientsN -1.79 0.056 
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Legends to figures 

Fig. 1 Unweighted (left) and weighted (right) average EIV in the 6 fires selected. Error bars 

represent standard error. Letters from ANOVA with post-hoc REGW Q test (alpha =0.95) 

 

Fig. 2 NMS ordination of species composition and fire years (centroids of 5 plots per site), biplot 

of axes 1-2 [A] and 1-3 [B]. Species codes: Aab: Artemisia absinthium. Aag: Alyssum argenteum. 

Aal: Ailanthus altissima. Aar: Acinos arvensis. Aay: Alyssum alyssoides. Aca: Achnatherum 

calamagrostis. Ach: Ajuga chamaepitys. Acm: Artemisia campestris. Aco: Achillea collina. Adi: 

Antennaria dioica. Agl: Arabis glabra. Ahi: Arabis hirsuta. Ali: Anthericum liliago. Amo: 

Astragalus monspessulanus. Ano: Achillea nobilis. Aon: Astragalus onobrychis. Aov: 

Amelanchier ovalis. Apy: Ajuga pyramidalis. Aru: Asplenium ruta-muraria. Auv: Arctostaphylos 

uva-ursi. Avl: Artemisia vulgaris. Avu: Anthyllis vulneraria subsp. polyphylla. Ber: Bromus 

erectus. Bla: Biscutella laevigata. Bpe: Betula pendula. Bra: Bupleurum ranunculoides. Bru: 

Brachypodium rupestre. Bvu: Berberis vulgaris. Cab: Colutea arborescens. Cal: Chenopodium 

album. Cap: Clematis alpina. Car: Cirsium arvense. Cav: Convolvulus arvensis. Cca: Conyza 

canadensis. Cer: Cirsium eriophorum. Cgr: Chrysopogon gryllus. Chu: Carex humilis. Cmi: 

Chaenorhinum minus. Cnu: Carduus nutans. Cro: Campanula rotundifolia. Csc: Centaurea 

scabiosa. Ctr: Centaurea triumfetti. Cut: Carlina utzka. Cva: Calamagrostis varia. Cvi: Clematis 

vitalba. Cvl: Crupina vulgaris. Cvr: Coronilla varia. Cvu: Carlina vulgaris. Dca: Daucus carota. 

Dte: Diplotaxis tenuifolia. Eac: Erigeron acer. Ean: Epilobium angustifolium. Eat: Epipactis 

atropurpurea. Eau: Erigeron annuus. Eca: Eryngium campestre. Ecy: Euphorbia cyparissias. Ena: 

Erucastrum nasturtiifolium. Erh: Erysimum rhaeticum. Ese: Euphorbia seguierana. Evu: Echium 

vulgare. Far: Festuca arundinacea. Fci: Festuca cinerea. Fex: Fraxinus excelsior. Fpr: Fumana 

procumbens. Fva: Festuca valesiaca. Fve: Fragaria vesca. Gap: Galium aparine. Gcn: 

Gymnadenia conopsea. Gco: Galium corrudifolium. Gve: Galium verum. Hco: Hippocrepis 

comosa. Hfo: Helleborus foetidus. Hnu: Helianthemum nummularium subsp. obscurum. Hpe: 

Hieracium peletieranum. Hpi: Hieracium piloselloides. Hpr: Hypericum perforatum. Hsy: 

Hieracium sylvaticum. Hto: Hieracium tomentosum. Ico: Inula conyza. Jco: Juniperus communis. 

Kpy: Koeleria pyramidata. Ksa: Kernera saxatilis. Kva: Koeleria vallesiana. Lco: Leopoldia 

comosa. Lcr: Lotus corniculatus. Lde: Larix decidua. Lhi: Leontodon hispidus. Lmo: Lathyrus 

montanus. Lpe: Lactuca perennis. Lse: Lactuca serriola. Lsi: Laserpitium siler. Lsm: Linaria 

simplex. Lvu: Ligustrum vulgare. Mci: Melica ciliata. Mfa: Medicago sativa subsp. falcata. Mfs: 

Minuartia fastigiata. Mlu: Medicago lupulina. Mmi: Medicago minima. Mof: Melilotus officinalis. 

Msa: Medicago sativa subsp. sativa. Msy: Melampyrum sylvaticum. Oca: Orobanche 

caryophyllacea. Oha: Oxytropis halleri. Ola: Odontites lanceolata. Olu: Odontites lutea. Ona: 

Ononis natrix. Opi: Oxytropis pilosa. Opu: Ononis pusilla. Ore: Ononis repens. Oro: Ononis 

rotundifolia. Ovi: Onobrychis viciifolia. Pav: Prunus avium. Pch: Polygala chamaebuxus. Pex: 

Picea excelsa. Pgr: Prunella grandiflora. Phi: Picris hieracioides. Pma: Prunus mahaleb. Pni: 

Populus nigra. Por: Peucedanum oreoselinum. Ppa: Poa pratensis. Pph: Phleum phleoides. Ppr: 
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Petrorhagia prolifera. Psa: Petrorhagia saxifraga. Psp: Prunus spinosa. Psx: Pimpinella 

saxifraga. Psy: Pinus sylvestris. Pta: Potentilla tabernaemontani. Ptr: Populus tremula. Pun: Pinus 

uncinata. Qpu: Quercus pubescens. Rca: Rosa canina. Rid: Rubus idaeus. Rul: Rubus spp. Sar: 

Sorbus aria. Sca: Salix caprea. Sgr: Scabiosa gramuntia. Sin: Senecio inaequidens. Sit: Silene 

italica. Smi: Sanguisorba minor. Smo: Sedum montanum. Snu: Silene nutans. Soc: Saponaria 

ocymoides. Sot: Silene otites. Spe: Stipa pennata. Spr: Salvia pratensis. Sre: Stachys recta. Ste: 

Sempervivum tectorum. Tch: Teucrium chamaedrys. Tcr: Tragopogon crocifolius. Tdu: 

Tragopogon dubius. Thu: Thymus humifusus. Tla: Taraxacum laevigatum. Tli: Thesium 

linophyllon. Tme: Trifolium medium. Tmo: Teucrium montanum. Tof: Taraxacum officinale. Tvu: 

Thymus vulgaris. Var: Viola arvensis. Vly: Verbascum lychnitis. Vmy: Vaccinium myrtillus. Vof: 

Veronica officinalis. Vri: Viola riviniana. Vru: Viola rupestris. Vsa: Vicia sativa. Vth: Verbascum 

thapsus 

 

Fig. 3 Average seedling density (white bars) and average percent cover by the shrub and tree 

layers (grey bars) for Scots pine in the 6 fires selected. Error bars represent SE. Letters from 

ANOVA with post-hoc REGW Q test (alpha =0.95) 
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Unweighted (left) and weighted (right) average EIV in the 6 fires selected. Error bars represent standard 
error. Letters from ANOVA with post-hoc REGW Q test (alpha =0.95)  

414x351mm (72 x 72 DPI)  
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NMS ordination of species composition and fire years (centroids of 5 plots per site), biplot of axes 1-2 [A] 

and 1-3 [B]  

254x338mm (72 x 72 DPI)  
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Average seedling density (white bars) and average percent cover by the shrub and tree layers (grey bars) 
for Scots pine in the 6 fires selected. Error bars represent SE. Letters from ANOVA with post-hoc REGW Q 

test (alpha =0.95)  

162x161mm (72 x 72 DPI)  
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Occurence in 5 samples (min/max % cover)

4 years after 

fire

5 years after 

fire

7 years after 

fire

15 years 

after fire

35 years 

after fire

48 years 

after fire

Agropyretea intermedii-repentis  and subordinated units

Cav Convolvulus arvensis Convolvulo-Agropyrion repentis 2 (+/3) 0 0 0 0 0

Msa Medicago sativa ssp. sativa Agropyretea intermedii-repentis 2 (+/+) 0 0 0 0 0

Tdu Tragopogon dubius Convolvulo-Agropyrion repentis 2 (+/1) 0 0 0 0 0

Artemisietea vulgaris  and subordinated units

Agl Arabis glabra Geo-Alliarion 0 1 (+/+) 0 0 3 (+/+) 0

Aab Artemisia absinthium Onopordetalia acanthii 5 (6/28) 4 (+/10) 2 (+/2) 4 (+/4) 1 (+/+) 0

Avl Artemisia vulgaris Artemisietea vulgaris 1 (+/+) 0 0 0 0 0

Cnu Carduus nutans Onopordetalia acanthii 0 0 1 (2/2) 0 0 0

Cer Cirsium eriophorum Onopordetalia acanthii 4 (+/1) 3 (+/+) 4 (+/1) 1 (+/+) 1 (+/+) 1 (+/+)

Dca Daucus carota Dauco-Melilotion 5 (1/13) 0 0 1 (1/1) 0 0

Eau Erigeron annuus Artemisietea vulgaris 0 1 (+/+) 1 (+/+) 0 0 0

Gap Galium aparine Galio-Alliaretalia 1 (+/+) 0 0 0 0 0

Lse Lactuca serriola Onopordetalia acanthii 5 (+/3) 0 0 2 (+/+) 0 0

Mof Melilotus officinalis Dauco-Melilotion 2 (+/3) 0 0 0 0 0

Phi Picris hieracioides subsp. hieracioides Dauco-Melilotion 2 (1/3) 0 0 0 0 0

Sin Senecio inaequidens Artemisietea vulgaris 2 (+/6) 3 (+/6) 5 (+/10) 1 (+/+) 0 0

Asplenietea trichomanis  and subordinated units

Aag Alyssum argenteum Asplenion serpentini 0 0 1 (+/+) 0 0 0

Aru Asplenium ruta-muraria Potentilletalia caulescentis 0 0 0 0 0 1 (+/+)

Hto Hieracium tomentosum Potentillion caulescentis 0 1 (+/+) 0 0 0 0

Ksa Kernera saxatilis Potentilletalia caulescentis 0 0 0 0 0 1 (+/+)

Carpino-Fagetea sylvaticae  and subordinated units

Fex Fraxinus excelsior Carpino-Fagetea sylvaticae 0 0 0 0 2 (+/+) 2 (+/+)

Hsy Hieracium sylvaticum Carpino-Fagetea sylvaticae 0 1 (+/+) 2 (+/+) 0 2 (+/1) 5 (2/6)

Pni Populus nigra Populetalia albae 1 (1/1) 0 0 0 0 0

Pav Prunus avium Carpinion betuli 0 1 (+/+) 0 3 (+/+) 1 (+/+) 0

Crataego-Prunetea  and subordinated units

Aov Amelanchier ovalis Berberidenion 0 1 (+/+) 0 0 0 0

Bvu Berberis vulgaris Berberidion vulgaris 3 (1/8) 5 (2/8) 2 (+/2) 0 2 (+/2) 0

Cvi Clematis vitalba Crataego-Prunetea 1 (1/1) 0 0 3 (+/6) 0 0

Jco Juniperus communis Prunetalia spinosae 0 0 0 0 2 (3/5) 1 (+/+)

Lvu Ligustrum vulgare Prunetalia spinosae 0 0 0 0 2 (+/1) 0

Pma Prunus mahaleb Berberidenion 1 (+/+) 0 0 2 (+/+) 5 (+/2) 0

Psp Prunus spinosa Prunetalia spinosae 0 0 0 0 2 (20/30) 0

Rca Rosa canina Prunetalia spinosae 4 (1/8) 2 (2/4) 0 4 (+/1) 4 (+/+) 2 (+/+)

Rid Rubus idaeus Sambuco-Salicion capreae 0 3 (+/4) 3 (+/3) 1 (+/+) 0 3 (+/2)

Rul Rubus ulmifolius Crataego-Prunetea 0 0 5 (10/20) 5 (1/6) 3 (+/5) 3 (+/3)

Sca Salix caprea Sambuco-Salicion capreae 1 (+/+) 2 (1/3) 3 (5/5) 3 (3/8) 0 3 (1/5)

Elyno-Seslerietea variae  and subordinated units

Bla Biscutella laevigata Seslerion variae 0 1 (+/+) 1 (+/+) 0 0 0

Bra Bupleurum ranunculoides Seslerion variae 0 0 0 0 0 1 (+/+)

Ean Epilobium angustifolium Epilobion angustifolii 3 (+/+) 3 (+/1) 3 (+/+) 5 (1/6) 0 1 (+/+)

Fve Fragaria vesca Epilobietea angustifolii 2 (+/+) 1 (+/+) 2 (+/+) 4 (1/6) 1 (+/+) 5 (1/10)

Code Species name
Phytosociological optimum                                       

(Aeschimann et al. 2004)
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Vth Verbascum thapsus Atropion 0 2 (+/+) 0 0 2 (+/+) 0

Erico-Pinetea  and subordinated units

Cva Calamagrostis varia Erico-Pinetalia 0 1 (+/+) 3 (+/29) 0 0 1 (1/1)

Eat Epipactis atropurpurea Erico-Pinetea 1 (+/+) 3 (+/1) 2 (+/+) 1 (+/+) 0 5 (+/2)

Pch Polygala chamaebuxus Erico-Pinetea 0 0 3 (2/2) 0 1 (+/+) 5 (15/26)

Festuco-Brometea  and subordinated units

Aco Achillea collina Festucetalia valesiacae 5 (1/6) 0 0 0 1 (+/+) 0

Ano Achillea nobilis Festuco-Brometea 3 (+/1) 1 (+/+) 1 (+/+) 4 (+/2) 1 (+/+) 1 (+/+)

Ali Anthericum liliago Festuco-Brometea 0 1 (+/+) 0 0 0 0

Avu Anthyllis vulneraria subsp. polyphylla Festuco-Brometea 1 (+/+) 0 1 (+/+) 3 (+/+) 1 (+/+) 0

Ahi Arabis hirsuta Festuco-Brometea 0 0 0 0 0 1 (+/+)

Acm Artemisia campestris Festuco-Brometea 4 (+/1) 0 0 0 1 (+/+) 0

Aon Astragalus onobrychis Festucetalia valesiacae 2 (+/+) 4 (+/2) 0 5 (+/6) 5 (+/3) 0

Bru Brachypodium rupestre Festuco-Brometea 0 5 (1/26) 5 (1/28) 1 (+/+) 1 (3/3) 5 (6/52)

Ber Bromus erectus Brometalia erecti 2 (+/26) 1 (+/+) 0 2 (+/+) 4 (6/30) 0

Cro Campanula rotundifolia Mesobromion 0 3 (+/+) 3 (+/+) 3 (+/2) 2 (+/+) 3 (+/+)

Chu Carex humilis Festuco-Brometea 1 (+/+) 5 (1/15) 5 (6/26) 5 (3/15) 5 (3/15) 5 (6/26)

Cut Carlina utzka Ononidetalia striatae 0 0 0 2 (+/1) 1 (+/+) 0

Cvu Carlina vulgaris Brometalia erecti 0 0 0 5 (+/4) 0 0

Csc Centaurea scabiosa Festuco-Brometea 2 (+/1) 4 (+/4) 2 (+/+) 0 1 (+/+) 0

Cgr Chrysopogon gryllus Scorzonero-Chrysopogonetalia 1 (+/+) 0 0 0 0 0

Eac Erigeron acer Festuco-Brometea 3 (+/+) 5 (+/+) 2 (+/+) 1 (+/+) 0 0

Eca Eryngium campestre Festuco-Brometea 1 (1/1) 0 0 0 0 0

Erh Erysimum rhaeticum Festuco-Brometea 1 (+/+) 0 0 4 (+/+) 3 (+/1) 0

Ecy Euphorbia cyparissias Festuco-Brometea 0 5 (+/6) 3 (+/+) 0 2 (+/+) 3 (+/+)

Ese Euphorbia seguierana Festucetalia valesiacae 1 (+/+) 2 (+/+) 0 1 (1/1) 1 (+/+) 0

Fci Festuca cinerea Ononidetalia striatae 0 0 0 1 (1/1) 3 (+/2) 2 (+/+)

Fva Festuca valesiaca Festucetalia valesiacae 0 1 (+/+) 0 1 (+/+) 1 (+/+) 0

Fpr Fumana procumbens Festuco-Brometea 4 (+/5) 5 (+/6) 1 (+/+) 2 (+/8) 2 (+/+) 0

Gco Galium corrudifolium Festuco-Brometea 1 (+/+) 2 (1/6) 1 (+/+) 2 (+/+) 4 (+/3) 0

Gve Galium verum Festuco-Brometea 0 0 4 (+/6) 0 0 3 (+/+)

Hnu Helianthemum nummularium subsp. obscurum Festuco-Brometea 4 (+/15) 3 (1/6) 2 (1/1) 1 (+/+) 5 (+/+) 0

Hco Hippocrepis comosa Festuco-Brometea 2 (+/+) 4 (1/10) 5 (+/6) 4 (2/15) 5 (+/1) 1 (+/+)

Kpy Koeleria pyramidata Brometalia erecti 3 (+/1) 1 (2/2) 0 1 (+/+) 1 (+/+) 0

Kva Koeleria vallesiana Ononidetalia striatae 0 1 (+/+) 0 2 (1/10) 5 (+/2) 1 (+/+)

Lpe Lactuca perennis Festuco-Brometea 0 0 1 (+/+) 0 0 0

Mlu Medicago lupulina Festuco-Brometea 4 (+/1) 0 0 1 (+/+) 2 (+/+) 0

Mci Melica ciliata Festuco-Brometea 5 (1/15) 3 (+/+) 0 5 (+/26) 0 0

Olu Odontites lutea Festuco-Brometea 0 0 0 4 (+/1) 1 (+/+) 0

Ovi Onobrychis viciifolia Mesobromion 2 (+/+) 1 (+/+) 0 0 2 (1/3) 0

Ona Ononis natrix Festuco-Brometea 3 (1/2) 1 (1/1) 2 (2/6) 0 0 0

Opu Ononis pusilla Ononidetalia striatae 5 (+/5) 4 (+/1) 2 (+/2) 3 (+/3) 0 0

Ore Ononis repens Mesobromion 3 (1/10) 3 (+/2) 1 (6/6) 5 (3/10) 5 (+/8) 0

Oca Orobanche caryophyllacea Festuco-Brometea 0 1 (+/+) 0 0 0 0

Oha Oxytropis halleri Festucetalia valesiacae 0 3 (+/+) 0 3 (+/+) 1 (+/+) 0

Opi Oxytropis pilosa Festucetalia valesiacae 0 0 2 (+/1) 0 0 0

Pph Phleum phleoides Festuco-Brometea 2 (1/2) 0 0 1 (+/+) 4 (+/3) 0
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Psx Pimpinella saxifraga Festuco-Brometea 0 0 1 (1/1) 0 0 0

Pta Potentilla tabernaemontani Brometalia erecti 0 2 (+/+) 0 4 (+/3) 5 (+/3) 0

Pgr Prunella grandiflora Festuco-Brometea 0 0 0 0 0 1 (+/+)

Spr Salvia pratensis Festuco-Brometea 1 (+/+) 0 0 0 0 0

Smi Sanguisorba minor Festuco-Brometea 2 (+/1) 4 (+/1) 1 (+/+) 5 (1/1) 5 (+/+) 0

Sgr Scabiosa gramuntia Festuco-Brometea 2 (+/+) 0 0 0 0 0

Sot Silene otites Festuco-Brometea 3 (+/1) 2 (+/+) 0 0 0 0

Sre Stachys recta Festuco-Brometea 0 1 (1/1) 2 (+/+) 0 1 (+/+) 0

Spe Stipa pennata Festucetalia valesiacae 1 (+/+) 1 (+/+) 0 2 (1/1) 4 (+/3) 0

Tla Taraxacum laevigatum Festuco-Brometea 0 0 0 0 4 (+/+) 0

Tch Teucrium chamaedrys Festuco-Brometea 1 (+/+) 5 (1/20) 4 (1/6) 2 (1/1) 4 (+/2) 2 (1/2)

Tmo Teucrium montanum Festuco-Brometea 0 4 (+/+) 1 (+/+) 0 0 0

Tli Thesium linophyllon Festuco-Brometea 0 0 0 0 2 (+/+) 1 (+/+)

Thu Thymus humifusus Festuco-Brometea 0 4 (+/+) 0 0 0 3 (+/+)

Juncetea trifidi  and subordinated units

Apy Ajuga pyramidalis Caricetalia curvulae 0 1 (+/+) 0 0 0 0

Koelerio-Corynephoretea  and subordinated units

Aar Acinos arvensis Koelerio-Corynephoretea 1 (+/+) 1 (+/+) 0 0 0 0

Aay Alyssum alyssoides Alysso-Sedion albi 0 0 0 0 2 (+/+) 0

Evu Echium vulgare Koelerio-Corynephoretea 2 (+/+) 0 0 1 (+/+) 0 0

Hpe Hieracium peletieranum Sedo-Scleranthetalia 4 (+/3) 5 (+/+) 2 (+/1) 5 (1/10) 5 (+/+) 3 (+/+)

Mfs Minuartia fastigiata Alysso-Sedion albi 3 (+/1) 0 0 0 0 0

Ppr Petrorhagia prolifera Koelerio-Corynephoretea 3 (+/2) 0 0 0 0 0

Psa Petrorhagia saxifraga Koelerio-Corynephoretea 1 (+/+) 0 0 1 (+/+) 0 0

Smo Sedum montanum Sedo-Scleranthetalia 0 0 0 0 1 (+/+) 0

Ste Sempervivum tectorum Sedo-Scleranthetalia 0 0 0 1 (+/+) 1 (+/+) 2 (+/+)

Lygeo-Stipetea  and subordinated units

Lco Leopoldia comosa Brachypodietalia phoenicoides 2 (+/+) 0 0 0 0 0

Tcr Tragopogon crocifolius Brachypodietalia phoenicoides 0 1 (+/+) 0 0 0 0

Molinio-Arrhenatheretea  and subordinated units

Far Festuca arundinacea Potentillo-Poligonetalia 2 (+/+) 0 0 0 0 0

Gcn Gymnadenia conopsea Molinietalia caerulae 0 0 0 0 0 1 (+/+)

Lhi Leontodon hispidus Arrhenatheretalia elatioris 0 0 0 0 2 (+/+) 0

Lcr Lotus corniculatus Molinio-Arrhenatheretea 4 (+/+) 3 (+/+) 5 (1/6) 5 (1/3) 5 (+/+) 1 (1/1)

Ppa Poa pratensis Molinio-Arrhenatheretea 2 (+/+) 0 0 0 2 (+/+) 2 (+/+)

Tof Taraxacum officinale Arrhenatheretalia elatioris 3 (+/+) 1 (+/+) 1 (+/+) 1 (+/+) 2 (+/+) 0

Nardetea strictae  and subordinated units

Adi Antennaria dioica Nardetea strictae 0 0 0 0 0 1 (+/+)

Pyrolo-Pinetea  and subordinated units

Auv Arctostaphylos uva-ursi Juniperion nanae 0 4 (+/32) 4 (6/16) 5 (8/45) 3 (6/8) 4 (+/10)

Amo Astragalus monspessulanus Ononido-Pinion 1 (2/2) 1 (1/1) 4 (1/6) 4 (2/6) 2 (+/1) 0

Oro Ononis rotundifolia Ononido-Pinion 0 4 (+/+) 1 (6/6) 0 0 0

Psy Pinus sylvestris Pyrolo-Pinetea/Erico-Pinetea 1 (+/+) 1 (+/+) 4 (1/9) 5 (12/35) 5 (18/70) 5 (37/75)

Soc Saponaria ocymoides Pyrolo-Pinetea 1 (+/+) 4 (+/1) 5 (+/6) 4 (+/1) 5 (+/+) 0

Vru Viola rupestris Pyrolo-Pinetea 0 3 (+/+) 0 4 (+/1) 0 2 (+/+)

Quercetea pubescentis  and subordinated units

Cab Colutea arborescens Quercetalia pubescenti-sessiliflorae 0 0 3 (+/10) 0 0 0
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Hfo Helleborus foetidus Quercetea pubescentis 0 0 0 0 2 (+/+) 0

Qpu Quercus pubescens Quercetea pubescentis 3 (1/15) 2 (+/1) 3 (5/6) 5 (+/6) 5 (+/30) 0

Sar Sorbus aria Quercetea pubescentis 0 0 0 0 0 3 (+/1)

Quercetea robori-sessiliflorae  and subordinated units

Bpe Betula pendula Quercetea robori-sessiliflorae 0 1 (+/+) 2 (2/5) 0 0 1 (3/3)

Lmo Lathyrus montanus Quercetea robori-sessiliflorae 0 0 0 0 0 2 (+/1)

Ptr Populus tremula Quercetea robori-sessiliflorae 1 (2/2) 1 (1/1) 5 (5/28) 4 (+/5) 4 (+/26) 3 (+/20)

Vof Veronica officinalis Quercetea robori-sessiliflorae 0 0 2 (+/1) 0 0 3 (+/+)

Vri Viola riviniana Quercetea robori-sessiliflorae 0 0 0 0 2 (+/+) 1 (+/+)

Robinietea  and subordinated units

Aal Ailanthus altissima Robinietea 1 (+/+) 0 0 0 0 0

Rosmarinetea  and subordinated units

Tvu Thymus vulgaris Rosmarinetea 1 (+/+) 0 0 0 4 (+/8) 0

Stellarietea mediae  and subordinated units

Ach Ajuga chamaepitys Caucalidion lappulae 1 (+/+) 0 0 0 0 0

Cmi Chaenorhinum minus Stellarietea mediae 1 (+/+) 0 0 0 0 0

Cal Chenopodium album Stellarietea mediae 3 (+/1) 0 0 0 0 0

Car Cirsium arvense Stellarietea mediae 2 (5/8) 3 (+/6) 2 (+/+) 1 (+/+) 0 0

Cca Conyza canadensis Stellarietea mediae 5 (1/8) 0 0 0 0 0

Dte Diplotaxis tenuifolia Sysimbretalia 1 (1/1) 1 (1/1) 0 0 0 0

Ola Odontites lanceolata Caucalidion lappulae 2 (1/10) 0 0 0 0 0

Vsa Vicia sativa Stellarietea mediae 1 (+/+) 0 0 0 0 0

Var Viola arvensis Stellarietea mediae 2 (+/+) 0 0 0 0 0

Thero-Brachypodietea  and subordinated units

Cvl Crupina vulgaris Thero-Brachypodietea 2 (1/1) 0 0 0 0 0

Lsm Linaria simplex Thero-Brachypodietea 1 (+/+) 0 0 1 (+/+) 0 0

Mmi Medicago minima Thero-Brachypodietea 1 (+/+) 0 0 0 0 0

Thlaspietea rotundifolii  and subordinated units

Aca Achnatherum calamagrostis Stipetalia calamagrostis 0 4 (+/6) 0 1 (1/1) 0 0

Ena Erucastrum nasturtiifolium Epilobion fleicheri 0 2 (+/+) 1 (1/1) 0 0 0

Hpi Hieracium piloselloides Epilobion fleicheri 0 2 (1/1) 0 1 (+/+) 0 0

Trifolio-Geranietea sanguinei  and subordinated units

Ctr Centaurea triumfetti Geranion sanguinei 0 0 1 (+/+) 0 0 1 (+/+)

Cvr Coronilla varia Origanetalia vulgaris 0 2 (+/+) 4 (+/6) 0 0 2 (+/+)

Hpr Hypericum perforatum Origanetalia vulgaris 1 (1/1) 0 2 (1/6) 0 0 0

Ico Inula conyza Origanetalia vulgaris 1 (+/+) 0 0 1 (+/+) 0 0

Lsi Laserpitium siler Geranion sanguinei 0 2 (1/6) 1 (+/+) 0 0 2 (+/1)

Mfa Medicago sativa ssp. falcata Geranion sanguinei 0 0 0 0 3 (+/1) 0

Por Peucedanum oreoselinum Geranion sanguinei 0 1 (+/+) 1 (+/+) 0 0 0

Sit Silene italica Geranion sanguinei 0 1 (+/+) 3 (+/1) 1 (+/+) 3 (+/+) 0

Snu Silene nutans Trifolio-Geranietea sanguinei 0 0 0 0 0 1 (+/+)

Tme Trifolium medium Trifolion medii 0 0 1 (1/1) 0 0 1 (+/+)

Vly Verbascum lychnitis Origanetalia vulgaris 3 (+/3) 0 0 0 0 0

Vaccinio-Piceetea excelsae  and subordinated units

Cap Clematis alpina Piceenion excelsae 0 0 0 0 2 (+/2) 0

Lde Larix decidua Piceenion excelsae 0 0 1 (1/1) 1 (1/1) 3 (1/17) 0

Msy Melampyrum sylvaticum Vaccinio-Piceetea excelsae 0 0 0 0 0 5 (1/10)
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Pex Picea excelsa Vaccinio-Piceetea excelsae 0 0 0 1 (+/+) 1 (+/+) 2 (+/3)

Pun Pinus uncinata Piceetalia excelsae 0 0 0 0 1 (1/1) 0

Vmy Vaccinium myrtillus Vaccinio-Piceetea excelsae 0 0 0 0 0 1 (+/+)
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