
27 July 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Adapting web services to maintain QoS even when faults occur

Publisher:

Published version:

DOI:10.1109/ICWS.2013.61

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE Computer Society

This is the author's manuscript

This version is available http://hdl.handle.net/2318/137072 since 2016-06-27T12:09:41Z



This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Marie-Odile Cordier; Roberto Micalizio; Sophie Robin; Laurence Rozé.
Adapting web services to maintain QoS even when faults occur, in:
Proceedings of the IEEE 20th International Conference on Web Services,
IEEE Computer Society, 2013, 9780769550251, pp: 403-410.

The publisher's version is available at:
http://xplorestaging.ieee.org/ielx7/6596022/6649542/06649605.pdf?arnumber=6649605

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/137072



Adapting web services to maintain QoS even when faults occur

Marie-Odile Cordier

University Rennes 1 / IRISA

Rennes, France

Email: cordier@irisa.fr

Roberto Micalizio

University di Torino

Torino, Italia

Email: micalizio@di.unito.it

Sophie Robin

University Rennes 1 / IRISA

Rennes, France

Email: robin@irisa.fr

Laurence Roze

INSA / IRISA

Rennes, France

Email: roze@insa-rennes.fr

Abstract—The paper addresses the problem of maintaining
the quality of service (QoS) of an orchestration of Web services
(WS), which can be affected by exogenous events (i.e., faults).
The main challenge in dealing with this problem is that
typically the service where a failure is detected is not the one
where a fault has occurred: faults have cascade effects on the
whole orchestration of services. The paper presents a novel
methodology to treat the problem that is not based on Web
service (re)composition, but on an adaptive re-execution of the
original orchestration. Specifically, an orchestrator Manager
exploits an abstract representation of the whole orchestration
and a diagnostic module to localize the source of the detected
failure. Then, the Manager drives the re-execution of the or-
chestration by deciding which service activities can be skipped,
and which others must be re-executed.

Keywords-monitoring, web services, on-line diagnosis, repair,
adaptive systems.

I. INTRODUCTION

Complex Web applications can be defined as a compo-

sition of already existing Web services. The composition

of Web services has been successfully applied especially in

the B2B model in order to support the exchange of services

across enterprises and customers [5].

Web services, however, may be affected by a number

of faults, which can be both logical (e.g., corrupted data,

wrong input data), and hardware (e.g., network faults). These

faults typically cause local failures which may propagate

in the whole orchestration, leading to a global failure of

the application. To make a Web application more flexible

and robust to faults, faults must be detected as soon as

possible and properly handled. The usual way to deal with

this problem is to establish a closed loop of control detecting

and reacting to anomalies that might arise during the run of

the application itself. This loop is known in literature as

the MAPE model [11]: Monitoring, Analysis, Planning and

Execution.

There are two main ways to realize the MAPE loop over

an orchestration of services: one based on global composers,

the other based on local adapters. In an approach based

on global composers, a single MAPE loop involves all the

services within the orchestration. A specific service, the

orchestrator, monitors and analyses all the other services,

and when the monitored conditions suggest a potential mis-

behavior of a service, the orchestrator substitutes that service

with an equivalent one obtaining a new orchestration. On the

contrary, in an approach based on local adapters, the MAPE

loop is addressed in a purely local way: each service, or even

each activity, has the ability to adapt itself. The advantage

of global composers is that they propose globally consistent

solutions which are usually computationally expensive. On

the other hand, local adapters are in general more efficient,

but the solutions are in general less relevant from a global

point of view, especially they are unable to deal with

cascading effects.

In this paper, we propose a different methodology to

realize the MAPE loop, which falls amidst the two previous

kinds of approaches. Our aim is to trade off between the high

flexibility of a local adapter and the best quality of service of

a global composer. In particular, we do not allow to change

the original orchestration; but we endow each activity with

the ability of selecting the best way to get its local goal

among a number of alternative modalities, which make each

activity very flexible and apt to solve part of the adaptation

problem locally. Since an activity can locally select the best

modality only having a global view of the composition, we

exploit a global context, called Road Map, which is public

and accessible by each activity within the orchestration. The

Road Map maintains relevant pieces of information about

the whole orchestration and helps the activities in their local

process of adaptation. An orchestration Manager is in charge

of managing the Road Map, initializing and keeping it up-

to-date. In our methodology, the MAPE loop is neither

completely global nor completely local; in fact, while the

Monitoring and the Execution activities are solved locally

by each activity; the Analysis and the Planning phases are

solved at a global level.

The paper is organized as follows. Section II describes the

application that motivates and illustrates our work. Section

III gives the architecture of our approach, explaining the role

of the four modules composing the MAPE loop. Section IV

explains how services and activities are enriched to make

them context-adaptable. Sections V and VI detail the two

main modules for adaptation, namely the Adapter and the

Manager modules. Section VII illustrates the approach on

the applicative example. Section VIII is dedicated to related

work and Section IX concludes and gives some perspectives.



Figure 1. Services, activities and interactions

II. APPLICATION

A. An illustrative example

We present here the Album Composer example that we

use to illustrate and test the methodology we propose. In this

example, a customer uses a Web application to compose an

electronic album (e.g., a document in pdf format) consisting

of a sequence of images (one image by page). The customer

gives in input a list of keywords, and gets from the appli-

cation an album where each image refers to a keyword in

the input list. For instance, the customer’s keywords could

be : {“Mont-Saint-Michel”, “George Clooney”}, and the

returned album should contain any image representing the

Mont-Saint-Michel city and the well-known actor.

To answer the customer’s request, the Web application

is an orchestration of three services: WELcome, SUPplier,

and COmposer. The orchestration of these three services is

given in Figure 1. The WELcome service gets the customer’s

request and calls the SUPplier service, in charge of finding

one image for each keyword, and then asks the customer for

confirmation after having displayed the keywords for which

images can be provided. In fact, the SUPplier may be unable

to match some keywords with corresponding images, in that

case the customer decides whether (s)he confirms or cancels

the command. After the confirmation by the customer1, the

WELcome service sends the customer’s email address to the

COmposer service; similarly, the images selected by the

SUPplier service are sent to the COmposer service. This

service is in charge of composing the final pdf document

1Note that the non-confirmation case is not considered in this paper.

and emailing it to the customer, who then confirms to the

WELcome service the good reception of the pdf file. That

terminates the request process by triggering the end of

waiting processes for all the services of the orchestration.

B. Faults and symptoms

Faults may occur during the process of the request by

the service orchestration and propagate through the ser-

vices. In this example, we only consider four faults, one

by the WELcome service, two by the SUPplier and one

by the COmposer. The first three ones are logical faults

and concern erroneous data like bad typing or data base

errors. They are: email-fault, an error in the email address

(the user typed an email address that is not the mail box

(s)he is currently working with); image-database-fault, an

inconsistency between a keyword and the image stored in

the supplier database (the “Mont-Saint-Michel” keyword is

linked to an image representing a “Chateau-de-la-Loire”);

and corrupted-image-fault, which occurs when the set of

images sent by the supplier to the composer is corrupted and

prevent the COmposer from performing the composition.

The last fault, sending-composer-fault, is a hardware fault,

and occurs when the COmposer is unable, for some technical

reasons, to send the pdf file to the customer. Faults are

depicted as pentagons in figure1. The observations we rely

on to detect the faults are called symptoms. Most of the

time, symptoms are observed in a service that is not the

one in which the fault occurs. We consider two kinds of

symptoms: the first one corresponds to the non-conformity

between what is normally expected and what is observed.



In our case, the customer may be unhappy with the pdf file

(s)he received, and push the “Grumpy” button instead of the

“Happy” one; or the COmposer service may be unable to

process the images sent by the SUPplier because they are

corrupted. The second type of symptoms cause abnormal

delays in the arrival of messages (i.e., time-outs). This

happens when the user does not receive the pdf file within

the expected delay. Symptoms are depicted as stars in Figure

1. Faults and symptoms are summarized in Table I.

To preserve the QoS of a customer’s request, the faults

must be detected, diagnosed and adequate repair actions

decided. The example is used to illustrate that the archi-

tecture we propose in section III is well-suited to go from

symptoms to faults and, thanks to the adapter (section V)

and the manager (section VI), to adapt the request process

and maintain, as much as possible, the quality of the web

service for this request.

III. COPING WITH FAULTS BY ADAPTING ACTIVITIES

As mentioned in the introduction, any service may be

affected by faults that may provoke failures. To cope with

this issue, many approaches propose to have a specific

service, the orchestrator, that reacts to faults by changing

the whole orchestration, the QoS being then preserved by

solving a (re-)composition problem. Instead of that, we

propose to keep unchanged the orchestration and to adapt

the process by means of a Manager module in charge of

managing the adaptation loop.

In the rest of this section we first give a general idea

about our proposal, and then we provide some details about

its internal architecture and compare it with the MAPE loop.

A. Basic idea

In our approach, all the services within a given orchestra-

tion are encapsulated into a Manager module. A customer’s

request is received by the Manager that “staples” on it

what we call a Road Map. The Road Map is the global

context the activities use, in conjunction with their own

local context, to choose the best way to process the request.

The request is then processed by the workflow as usual.

When everything goes smoothly, the Manager is in charge

of stopping the process and sending a final acknowledgment,

that terminates all the service instances in a nominal mode.

When a failure is detected, usually by a local monitor, the

process is suspended, and the Manager is in charge of finding

the best way to pursue the request treatment, according

to a new, generally abnormal, context. The Manager is

helped in this task by the analysis/diagnosis and the plan

adaptation suggested, respectively, by the Analyzer and the

Adapter. The idea is to update the Road Map stapled to the

request, and then reprocess the request in an alternative way,

best adapted to the current context. Rather than allocating

new services instances, the Manager keeps alive the same

instances as before, and tries to reuse as far as possible

Figure 2. Architecture

data and results previously obtained. The Manager is also in

charge of keeping trace of the different attempts and errors

encountered during the processing of the request. These

data are used by the Manager to determine unrecoverable

conditions, and terminate, if needed, the process in a not

nominal mode.

B. Control architecture

Let us now describe the control architecture we pro-

pose given in Figure 2. The MAPE loop we propose is

composed of four modules in charge of monitoring the

execution (MONITOR), analysing it (ANALYSER), looking

for possible adaptation changes (ADAPTER) and deciding

(MANAGER) what precisely must be done to adapt the

execution to the new context. The roles of each of these

modules, starting from the lowest level, is now described.

The EXE module corresponds to the workflow, usually

composed of interacting distributed services, each service

being itself composed of a set of activities, organized ac-

cording to usual control structures : sequence, conditionals,

loops, and so on. The EXE module is in charge of processing

the request, both fulfilling QoS constraints and satisfying its

goal. In order to make the process adaptive, the activities

encapsulate different ways to accomplish their task. These

alternative ways are called modalities of the activity. During

the execution phase, each activity selects the best way to

accomplish its task according to the Road Map associated

with the customer’s request and the local context of the

activity itself.

The Monitor module is a distributed functionality, at-

tached to each service, in charge of logging the actual

behavior of that service, detecting when something goes

wrong (recognizing a symptom), analyzing local misbehav-

iors and determining whether it is worth suspending the

current process, and entering in a diagnosis/adaptation/re-

execution loop. In this case, it awakes the Analyser and

sends it monitoring information, called local diagnoses.



Fault Occurs in Observed in Symptom

email-fault WELcome WELcome time-out: the user pushed the time-out button; (s)he did not
received the file in the expected delay

sending-composer-fault COmposer WELcome time-out: the user pushed the time-out button; (s)he did not
receive the file in the expected delay

image-database-fault SUPplier WELcome non-conformity : the user pushed the grumpy button; the
images do not correspond to the input keywords

corrupted-image-fault SUPplier COmposer non-conformity : the composer is unable to process the images
sent by the Supplier

Table I
A SUMMARY OF FAULTS AND THEIR SYMPTOMS.

The Analyser (also called Diagnoser [6], [7]) is a central-

ized functionality in charge of looking for primary causes

(global diagnoses) given the local diagnoses provided by

the monitors. It is awaken by one of the monitors. It may

pool the monitors (initiate a discussion with them) to get a

global view of what happened and resulted in a misbehavior.

It computes a global diagnosis, as a list of achieved/not

achieved goals and transmits such a list to the Adapter.

The Adapter (Planner in the MAPE terminology) is a

centralized functionality in charge of looking for the best

ways to adapt the process of the request given the diagnosis

and the global context. It consists in adapting the current

plan, determining which subgoals have to be (re)achieved

(and thus which activities must be re-executed), and which

subgoals are reusable (and thus which activities may be

skipped as no longer needed to achieve the request goal).

Of course, a subgoal is reusable when it has been correctly

achieved in a run of the application, stored, and fetched

in a subsequent run of the application. The Adapter relies

on the composition model, that is an abstract goal-oriented

view of the orchestration that resembles a plan. We suppose

the composition model is built by the module in charge of

composing the orchestration and transmitted to the Manager.

The Manager is a centralized functionality controlling the

life cycle of the Web application. In particular, the Manager

initializes and updates the Road Map, and decides when to

stop the Web application either in a normal or in an abnormal

state.

In conclusion, the loop model we propose matches with

the MAPE model; however, not all the four phases are

carried out at the same level. The monitoring and execution

phases are performed locally by each single service/activity,

relying upon the global context associated with the request

and possibly a local context that each activity maintains. On

the contrary, the analysing/diagnosing and adapting/planning

phases are carried out at a global level by the Anal-

yser/Diagnoser and the Adapter modules, respectively. This

solution allows the services/activities to take local decision

being driven by the global context; and also to ensure

a global surveillance of whole workflow when needed. It

therefore represents a good balance between the flexibility

of local decisions and global consistency.

In the rest of the paper we will focus on two modules

of the proposed architecture: the Adapter and the Manager.

Details about the Monitors and the Analyser can be found

in [6], [7]).

IV. ENRICHING THE ACTIVITIES

In this section, we describe how the activities are enriched

to make them adaptable so that they can take advantages

of the Road Map. In our framework, an activity a is

characterized by the following set of facets:

• id : the identifier of the activity

• goals: the list of goals the activity has to achieve

• modalities : the set of execution modalities correspond-

ing to different ways of achieving the set of goals

• policy : a set of rules of the form ”condition : modality”

The idea is that an activity can reach its goals in differ-

ent manners, called modalities. The selection of the most

appropriate modality depends on the Road Map and on the

policy of the activity itself. In other terms, an activity a can

be seen as a nested workflow where the activity policy is

realized as a test on both the Road Map (global context) and

on the activity context (local context): a modality identifies a

branch of the nested workflow (i.e., a sequence of activities)

that leads to the activity goal.

For instance, let us consider activity ImagesSelection of

the Supplier. Activity ImagesSelection has a unique goal

images-selected-from-DB, that is to select images matching

the client keywords. It has two modalities, accessing either a

HighQuality or a LowQuality data base. The activity policy

is to choose the LowQuality one by default (i.e., the first

time), and the HighQuality data base when it is not the first

time the activity is executed. This activity is described by

the following frame:

activity-id : SUP::ImagesSelection ,

activity-goals : images-selected-from-DB,

set-of-modalities :

HighQualityDBSelection,

LowQualityDBSelection

policies :

if not the first execution of the request :

HighQualityDBSelection

by default : LowQualityDBSelection

It is easy to see that two subsequent executions of this

activity may lead to a different selection of the images as

the activity chooses to retrieve images from different DBs.



V. MODEL-BASED ADAPTATION

The Adapter module is activated whenever the Analyser

has discovered some misbehavior during the execution of the

services. This means that at least one attempt to accomplish

the request has been done, but the occurrence of a fault

prevented the achievement of the customer’s goals.

The Adapter has the task of inferring the list of reusable-

Goals. These goals are already available as obtained during

a previous run of the Web application; thus there is no

need to recompute them again. By exploiting such a list,

the Manager can obtain an adaptive, and hence smart, re-

execution of the orchestration as only a subset of activities

is actually re-executed; all the activities providing goals in

reusableGoals simply reuse the results they have already

inferred. In the rest of the section we discuss the inferences

and the models exploited by the Adapter to complete its

task.

Figure 3. The GD-Graph for the Album Composer scenario.

A. GD-Graph: the model of the service composition

To infer the reusableGoals list, the Adapter exploits an

abstract model of the composition, which is one of the

results of the WS-Composer. In such a composition model,

each activity is seen as a goal; input/output variables and

data exchanged among activities are abstracted in terms of

causal dependencies between goals. The whole composition

of services is therefore represented as a network, called

Goal-Dependencies-Graph (GD-Graph), which is formally

defined as a pair (V,E), where V is the set of nodes, each

of which corresponds to an intermediate goal, and E is a set

of directed edges 〈gh, gk〉: the edge from goal gh to goal gk
means that gh is a prerequisite for the achievement of gk,

so gh has to be achieved before gk.

Figure 3 shows the GD-Graph abstracting the services

composition for the Album Composer scenario. For example,

the links between nodes 6 - 7 and 6 - 8 indicate that the goal

confirmed-request is necessary for achieving both the goals

requested-pdf and confirmed-order; however, these two goals

can be achieved independently from each other. Likewise,

the goal prepared-pdf (node 12) can be obtained only after

the achievement of both the goals requested-pdf and images-

received-from-SUP (nodes 7 and 11, respectively).

Table II reports a complete matching between activities

and goals in the Album Composer scenario.

Note that, the input/output variables of each activity, and

which data are actually exchanged among the activities are

not traced within the GD-Graph. The main purpose of the

GD-Graph abstraction is to capture transversal dependencies

among activities through which failures may propagate.

Thereby, there is no need to keep neither the notion of which

activities belong to which services nor the actual pieces of

data exchanged between the activities.

Each goal g in the GD-Graph is associated with a Boolean

flag, avail(g), that is true when g is storable; that is,

when the goal achieved during a run of the system can be

stored and re-used during a subsequent re-execution of the

services. For instance, physical objects hived in warehouses,

or data produced by an activity and stored into the local

memory of the same activity are all reusable goals, and

hence their avail flag is set to true. The flag avail(g) is

false otherwise. Table II shows how the availability flag is

set for each goal in our running scenario. In principle, goals

related to the production of data have the avail flag set to

true; for example, acquired-keywords and acquired-email are

satisfied when, by means of some activities, the customer’s

list of keywords and his/her email are stored within the local

memory of the WELcome service. Goals which represent

synchronization points, on the other hand, have the avail flag

set to false, for instance confirmed-order and requested-pdf

are synchronization goals used to start specific workflow

activities. The synchronization among activities is strictly

related to a particular execution of the services, and hence

in case of a re-execution these goals have to be obtained

again.

B. Complementing the GD-Graph

The flag avail states whether a goal has been stored,

but it does not specify under which conditions the goal is

actually reusable. An erroneous goal should not be reused

even if its avail flag is true. For this reason, the GD-Graph

is complemented with a Domain Theory (DT), that specifies

under which circumstances a goal is reusable. It is the case

when either (a) the goal has been correctly achieved2 and is

available, or (b) the goal is no longer needed. A first type

of rules in DT corresponds to case (a):

∀g (achieved(g) ∧ avail(g) →reusable(g)).

2In the following, achieved is a short cut for correctly-achieved.



Service Activity Goal (node no.) Avail

WELcome EnterConfirmEmail acquired-email (1) true

WELcome EnterKeywords acquired-keywords (2) true

SUPplier RequestImages requested-images (3) false

SUPplier SearchAvailable found-available (4) true

SUPplier SendAvailable got-available-images-list (5) true

WELcome ConfirmRequest confirmed-request (6) true

COmposer RequestPdf requested-pdf (7) false

SUPplier ConfirmOrder confirmed-order (8) false

SUPplier ImagesSelection images-selected-from-DB (9) true

SUPplier SendImages images-sent-to-CO (10) false

COmposer ReceiveImages images-received-from-SUP (11) false

COmposer PreparedPdf prepared-pdf (12) true

COmposer SendPdf sent-pdf-to-customer (13) false

WELcome Notification sent-notification-to-WEL (14) false

WELcome ConfirmReceptionPdf confirmed-reception (15) false

Table II
MATCHING ACTIVITIES WITH GOALS.

If a goal has been already correctly achieved during

a previous run and is still available, then there is no

need to re-achieve it again. For example, let us con-

sider the rule achieved(acquired-email) ∧ avail(acquired-

email) → reusable(acquired-email), and let us assume

that after the first execution of the services, we infer

that achieved(acquired-email) holds. Since according to

Table II avail(acquired-email) is true, we can conclude

reusable(acquired-email). This means that during the re-

execution phase, the activity responsible for such a goal,

here EnterConfirmEmail, achieves the goal by retrieving the

email address from its local memory, instead of asking it

again to the customer.

A second type of rules in DT corresponds to case (b):

[∀g(parent(G, g)∧ reusable(g))] → reusable(G)

where parent(gh, gk) is satisfied if the directed edge

〈gh, gk〉 belongs to the GD-Graph. The rule means that,

when all the children of a goal gh are reusable, then the

goal gh itself is reusable. For example, if prepared-pdf is

reusable, there is no need to execute neither requested-pdf

nor images-received-from-SUP again.

In conclusion, the Adapter exploits the domain theory to

determine which goals can be included within the reusable-

Goals list; these goals are either already available or no

longer required, and hence the activities providing them may

be skipped during a re-execution of the orchestration. The

reusableGoals list is forwarded to the Manager so that the

Road Map is consequently updated and provides a guidance

for an efficient re-processing of the whole orchestration.

VI. THE MANAGER

Once the Adapter has inferred the reusableGoals list, it

forwards it to the Manager that is in charge of managing the

customer’s request. The Manager has to decide whether it is

worth processing the request again, or it is time to stop the

orchestration and return the user a global failure. To make

this decision, the Manager may bill the costs gathered so far,

both in terms of consumed resources and elapsed time3. In

case the Manager decides that the request be re-processed,

it updates the current Road Map so that the new execution

step benefits from what is currently known on the (global)

context:

• the reusableGoals list gives which goals are no longer

required and therefore which activities can be skipped;

• the contextual pieces of information, such as the re-

quest’s priority or the number of attempts, may be used

to select the most appropriate execution modality.

VII. BACK TO THE ALBUM COMPOSER EXAMPLE

Let us now go back to the Album Composer scenario and

let us suppose that the composer detects it has received

a corrupted image from the supplier. After a Monitor has

detected the symptom, the Analyser proposes one diagnosis

corresponding to the corrupted-image-fault in the SUPplier

service and a list of correctly achievedGoals containing all

goals from 1 through 8.

The Adapter is activated with this list as an input and uses

the DT rules to infer the reusable goals. By using Rule 1,

the goals asserted to be reusable are {1, 2, 4, 5, 6}. By

using Rule 2, the reusable property is propagated through

the network, and as a consquence also goal 3 is marked as

reusable even though its avail flag is set to false. Finally,

the Adapter collects all the goals marked as reusable within

the reusableGoals list and forwards it to the Manager.

Given the reusableGoals list, the Manager has now to

decide whether the current request should be resubmitted or

not. In our current implementation the Manager is always

willing to resubmit a request unless a non-recoverable fault

has been detected; therefore the Manager updates the Road

Map by attaching the reusableGoals list and relaunch the

whole orchestration.

In the subsequent processing of the request, all the activities

producing goals in the reusableGoals list are not executed

3Aging policies maybe adopted to increase the request’s priority over
time.



again; in fact, each activity has just to retrieve the results

computed at the previous run and forward that results to

the subsequent activities. For instance, during the second

run, the EnterConfirmEmail and EnterKeywords activities

are skipped: the email and keywords are not (re-)asked to the

customer, but they are retrieved from the local memory of the

corresponding activities, and forwarded through the work-

flow. All the activities which are not associated to reusable

goals are re-executed as usual; however, they also exploit

the Road Map to choose the best way for achieving their

goals according to the current context. For instance, when

the activity SUP::ImageSelection is reactivated, it is known

from the Road Map that, in the previous run, a wrong image

was selected. Thus, in order to avoid incurring in the same

error, an alternative way for achieving the goal is selected.

According to its internal policy, HighQualityDBSelection is

executed instead of LowQualityDBSelection, meaning that

the requested pictures are retrieved from a different(probably

non-defective) DB. If no other faults occur, the user will

receive an album where all the images are correct and he/she

will terminate the application nominally.

VIII. RELATED WORK

The paradigm of autonomic computing [9] has the objec-

tive of developing self-managing systems, which are capable

of maintaining an adequate level of QoS while accomplish-

ing their own tasks. Autonomic systems must therefore be

endowed with the capabilities of detecting and diagnosing

faults, and with the capacity of reacting to faults by self-

adapting. Several proposals have been made to cope with this

general objective, especially in the case of composed Web

services. Composed Web services are encoded in BPEL,

which however is not equipped with mechanisms that let

Web Services adapt themselves in case of failures. To fill this

gap, a number of alternative approaches have been proposed

in literature.

A first way is to enhance BPEL with recovery facilities,

either by preprocessing the BPEL code and adding recovery

activities without having to change the BPEL engine, or

by designing dedicated plug-ins. For instance, Charfi et

al. propose in [2] a plug-in architecture for self-adaptive

web-service composition where self-adaptation features are

defined as aspects-based plug-ins. Aspects specify what

and how SOAP messages can be modified to add, for

instance, security information. The adaptation is done at

the messaging layer and this framework requires a BPEL

engine adjusted for this specific purpose. O. Ezenwoye and

S. M. Sadjadi also present a proxy-based solution to BPEL

as a framework for dynamic adaptation of composite Web

Services [3]. The TRAP/BPEL framework defines a generic

proxy used to encapsulate automatic behavior through the

use of self-management policies. This proposal does not re-

quire any change of the original code of the BPEL processes

nor of BPEL engine, however it is limited as it supports

only the substitution of failing partner services. In [8], E.

Juhnke and al. identify classes of faults that can be handled

automatically and define a policy language to configure

automatic recovery behaviors without the need for adding

explicit fault handling mechanisms to the BPEL process.

The approach provides automatic cloud-based redundancy of

services to allow substitution of defective services. S. Sub-

ramanian et al. propose in [12] a self-healing policy, called

sh-policy, consisting of four parts: 1) the plan details pre-

and post- conditions of each BPEL activity, 2) the monitor

details the BPEL activities to track during BPEL process, 3)

the diagnosis details the unexpected failures and their root

causes, and 4) the recovery details solutions to recover from

failures. The plan and monitor parts are identified during

BPEL process compilation, while the diagnosis and recovery

parts are identified during the BPEL process execution. A

Self-heal-BPEL engine extends the classic BPEL engine to

support these self-healing mechanisms.

In [1], Baresi et al. exploit probes that monitor the

execution of the composition and suggest recovery activities

to make the system continue its execution in case of faulty

behaviours. The information acquired through the monitors

is used to handle the exceptional behaviors. Besides the

classical retry and replace strategies, the authors propose a

local reorganization of the process. In this case, the BPEL-

like process definition is considered as a directed graph

and graph transformation rules are applied to modify its

topology. This directed graph has similarities with the GD-

Graph used by our Adapter to get a global goal-oriented

view of the orchestration.

The WS-Diamond framework [13] supports the execution

of self-healing web services, thanks to monitoring, diag-

nosing and recovering functions. Our MAPE architecture is

actually inspired by the WS-Diamond architecture. In WS-

Diamond, however, the repair process is a global procedure

that individuates activities to be compensated and re-tried. In

our approach, we take advantage of adaptive BPEL activities

and implement the compensate/re-try steps at a local level.

Another point of view, focusing on repair actions acquisi-

tion, is developed by B. Pernici and A. M. Rosati [10], who

present an approach for learning the repair strategies of Web

Services to automatically select repair actions. In particular,

a Bayesian classifier is used to drive the repair strategy

selection, together with a comparison analysis among faults

context, to extract repair actions. Only the two recovery

actions retry and substitution are taken into account. Op-

erations provided by the Repair Module are implemented

by SH-BPEL, a plug-in for a WS-BPEL engine that allows

the execution of repair actions with respect to standard

mechanisms.

Finally, G. Friedrich and al. propose a model-based ap-

proach to exception handling in service-based processes [4].

A set of repair actions is defined in the process model. Repair

is specified as a planning problem whose goal is to build a



plan consisting of recovery actions to be executed when an

exception arises during execution.

IX. CONCLUSION

This paper addresses the problem of maintaining the

quality of service (QoS) of a Web application seen as an

orchestration of Web services even when faults occur during

the processing of a request. The main challenge is when

faults have cascading effects and cause local failures that

may propagate in the whole orchestration, leading to a

global failure of the application. The usual way to deal with

the problem consists in establishing a closed control loop,

known in literature as the MAPE model [11]: Monitoring,

Analysis, Planning and Execution. The two main trends

to implement the MAPE model are either by using local

adapters - close to exception-handlers, that are efficient

but limited to deal with local, non-propagating faults; or

by using global adapters, that generally solve the problem

by calling for a new orchestration where defective activi-

ties/services are substituted with alternative ones.

In this paper, we propose a different methodology which

falls amidst the two previous kinds of approaches. The aim is

to trade-off between the high flexibility of a local adapter and

the relevance of a global composer to deal with faults having

cascading effects. To reach this objective we propose to

enhance the activities within a Web service by viewing them

as nested workflows. The different paths inside the workflow

of an activity represent the alternative ways with which

that activity can reach its expected goals. Thanks to this

improvement, each activity has the ability to select the most

appropriate way to get a result according to its contextual

conditions; thus, we gain the local flexibility we need to

cope with faults. On the other hand, a Manager module is

in charge of driving the adaptation process and uses a Road

Map, stapled to the request, to inform the activities and

services of its strategy. The Road Map maintains relevant

pieces of information about the whole orchestration and

helps the activities in their local process of adaptation.

The proposed approach has several advantages. First of

all, the effort of composing an application is done just once.

During the life cycle of the application, the orchestration

is preserved and there is no need to look for alternative

services. This leads to save most of the computational efforts

that other recomposition-based solutions have.

In addition, the flexibility achieved with modalities does

not require special infrastructures: the activities are still

BPEL activities, and modalities are just workflows nested

within them.

Finally, although each activity needs to be enriched with

modalities, it can respond to anomalies better than a tra-

ditional activity since an ”enriched” activity can exploit its

local context that is preserved from a run of the system to

a subsequent one.

We are currently completing an implementation of an e-

commerce application, similar to the one illustrated in the

paper, to prove the efficiency of the proposed methodology

from a practical point fo view.

REFERENCES

[1] L. Baresi, C. Ghezzi, and S. Guinea. Towards self-healing
service compositions. In Proceedings of PRISE, volume 4,
pages 11–20, 2004.

[2] A. Charfi, T. Dinkelaker, and M. Mezini. A Plug-in Ar-
chitecture for Self-Adaptive Web Service Compositions. In
Proceedings of the IEEE International Conference on Web
Services, ICWS ’09, pages 35–42, 2009.

[3] O. Ezenwoye and S. M. Sadjadi. TRAP/BPEL: A framework
for dynamic adaptation of composite services. In Proceedings
of the International Conference on Web Information Systems
and Technologies WEBIST, pages 1–6, 2007.

[4] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni.
Exception handling for repair in service-based processes.
IEEE Transactions on Software Engineering, 99:198–215,
2010.

[5] K. D. Gottschalk, S. Graham, H. Kreger, and J. Snell. Intro-
duction to web services architecture. IBM Systems Journal,
41(2):170–177, 2002.

[6] X. Le Guillou, M.-O. Cordier, S. Robin, and L. Rozé.
Chronicles for on-line diagnosis of distributed systems. In
Proceedings of European Conference of Artificial Intelligence
(ECAI), pages 194–198, 2008.

[7] X. Le Guillou, M.-O. Cordier, S. Robin, and L. Roze. Mon-
itoring WS-CDL-based choreographies of Web Services. In
Proceedings of the 20th International Workshop on Principles
of Diagnosis, pages 43–50, 2009.

[8] E. Juhnke, T. Dörnemann, and B. Freisleben. Fault-tolerant
bpel workflow execution via cloud-aware recovery policies. In
Proceedings of the 35th Conference on Software Engineering
and Advanced Applications, SEAA ’09, pages 31–38, 2009.

[9] M. Parashar and S. Hariri. Autonomic computing: An
overview. LNCS, 3566:247–259, 2005.

[10] B. Pernici and A. M. Rosati. Automatic Learning of Repair
Strategies for Web Services. In Proceedings of the Fifth
European Conference on Web Services, pages 119–128, 2007.

[11] M. Salehie and L. Tahvildari. Self-adaptive software: Land-
scape and research challenges. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 4(2):1–42, 2009.

[12] S. Subramanian, P. Thiran, N. C. Narendra, G. K. Mostefaoui,
and Z. Maamar. On the Enhancement of BPEL Engines for
Self-Healing Composite Web Services. In Proceedings of the
International Symposium on Applications and the Internet,
pages 33–39, 2008.

[13] WS-Diamond Team. WS-DIAMOND: Web Services, DI-
Agnosability, MONitoring and Diagnosis. At your service:
an overview of results of projects in the field of service
engineering of the IST programme, chap 9, 2009.


