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Abstract Functional data featured by a spatial dependence structure occur in
many environmental sciences when curves are observed, for example, along time
or along depth. Recently, some methods allowing for the prediction of a curve at
an unmonitored site have been developed. However, the existing methods do not
allow to include in a model exogenous variables that, for example, bring meteo-
rology information in modeling air pollutant concentrations. In order to introduce
exogenous variables, potentially observed as curves as well, we propose to extend
the so-called kriging with external drift - or regression kriging - to the case of
functional data by means of a three-step procedure involving functional modeling
for the trend and spatial interpolation of functional residuals. A cross-validation
analysis allows to choose smoothing parameters and a preferable kriging predic-
tor for the functional residuals. Our case study considers daily PM10 concentra-
tions measured from October 2005 to March 2006 by the monitoring network of
Piemonte region (Italy), with the trend defined by meteorological time-varying
covariates and orographical constant-in-time variables. The performance of the
proposed methodology is evaluated by predicting PM10 concentration curves on
10 validation sites, even with simulated realistic datasets on a larger number of
spatial sites. In this application the proposed methodology represents an alterna-
tive to spatio-temporal modeling but it can be applied more generally to spatially
dependent functional data whose domain is not a time interval.
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1 Introduction

In recent years there has been an increasing interest in modeling functional data
that, in environmental studies, often arise when dense sets of measurements are
recorded over a period of time or over some domain (depth or height for instance).
Statistical methods for analyzing this type of data are enclosed in a new branch of
statistics called Functional Data Analysis (FDA) [26], [25], [8]. Over the last few
years the analysis of functional data has been the focal attention of the statistical
community. Functional data models provide a suitable framework for the statistical
analysis of several environmental phenomena involving continuous time evolution
and/or spatial variation. The functional autoregressive model in Salmerón and
Ruiz-Medina (2009) [33] extends the classical autoregressive model to the infinite-
dimensional space context. In Ruiz-Medina and Salmerón (2010) [30] the prob-
lem of functional filtering of an autoregressive Hilbertian (ARH) process, affected
by additive Hilbertian noise, is addressed when the functional parameters defin-
ing the ARH(p) equation are unknown. Pseudodifferential evolution models have
been widely used in the description of biological, geophysical and environmental
systems. As an interesting case, Ruiz-Medina and Fernández-Pascual (2010) [29]
consider the case where functional sample information is available from such sys-
tems. Despite these references, the scarce amount of contributions in the FDA
inferential area has stood out. In particular, more recently, attention has been di-
rected to spatially dependent functional data so that the term Spatial Functional
Statistics has been introduced; Delicado et al. (2010) [5], Ruiz-Medina (2012) [31],
Horváth and Kokoszka (2012) [16](Ch. 17-8), and Kokoszka (2012) [18] give a
review of recent contributions and open challenges in this field. Specifically, for
geostatistical data, the problem to predict a curve at a specified location using
the curves at available locations has been addressed in [13], [11], [10], [21] by
generalizing univariate and multivariate geostatistical techniques to the functional
context and giving rise to the so-called functional kriging. Nevertheless, these re-
cently developed geostatistical techniques for functional data consider ordinary
kriging models such that the mean function of the process is supposed to be con-
stant. In many applicative contexts this assumption is not realistic, hence there
is need for methodologies suitable for non-stationary functional data. In this con-
text, Caballero et al. (2013) [1] provide a solution to the problem of the spatial
prediction of functional data in the absence of stationarity when the spatial trend
is modeled as a function of the coordinates only. Actually Gromenko and Kokoszka
(2013) [14] develop a methodology to estimate a mean function that is a linear
combination of known covariate functions, but this mean function does not depend
on space since it is defined to represent the mean temporal evolution of spatially
distributed curves. Instead Temiyasathit et al. (2009) [34] propose a procedure
to obtain spatial prediction of ozone concentration profiles using meteorological
variables. They use multiple linear regression to model the wavelet coefficients of
the ozone profile as a function of the wavelet coefficients of the profiles of mete-
orological variables. In a later stage, kriging is used to interpolate the regression
coefficients at unsampled locations.
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In classical geostatistics, spatial prediction for nonstationary processes is per-
formed by taking into account a spatial trend (also called “drift”) that is modeled
as a function of the coordinates only - in the Universal kriging - or defined “exter-
nally” through some auxiliary/exogenous variables - in the Kriging with External
Drift (KED) model. Being mathematically equivalent, also the term Regression
Kriging is used to specify that the drift and residuals are fitted separately and
then summed up afterwards [15]. In this paper, we propose to extend the KED
model to the case of functional data by means of a three-step procedure allow-
ing for the introduction of exogenous variables, both scalar and functional, in a
functional drift. We focus on the air quality monitoring, and in particular on par-
ticulate matter that is the most problematic pollutant for health and has only
decreased slightly over the last decade in Europe1, despite primary PM emissions
from transport have been reduced (but emissions of primary PM from commercial,
institutional and households fuel combustion have increased). [6]. In the Po Valley
the limit values fixed by the European and national directives (EU Council Direc-
tive 1999/30/EC) are usually not met, especially in urban areas and during the
winter season. In this context, particulate matter concentration spatial prediction
is useful for assessing air quality and health risk also where no monitoring sta-
tions are displaced, and an effective prediction can be reached only by taking into
account meteorological and orographical covariates. Since air quality pollutants
and meteorological variables are gathered along time, with a certain frequency,
we consider their underlying functional form and treat the observed time series as
functional data. Then, by including meteorological and orographical information
in the external drift, we carry out the proposed Functional Kriging with External
Drift (FKED) to predict curves of particulate matter concentration. The dataset
of our case study has already been considered by Cameletti et al. (2011 [2] and
2012 [3]). In [2] six hierarchical models are compared: they share a common large-
scale component whereas the residual detrended process is modeled by specifying
certain spatio-temporal covariance functions with increasing complexity. The au-
thors conclude that the model named “A1”, whose residual process has a purely
spatial covariance function, is preferable because of good performance at a reason-
able computational cost (models are fitted by MCMC); while the model called “C”
has a slightly better prediction capability but a larger computational cost (since a
spatial process evolving in time according to an AR(1) equation is involved). Such
computational cost can be reduced by implementing a Stochastic Partial Differen-
tial Equations (SPDE) approach with the INLA algorithm, as done in Cameletti
et al. [3] where predictions at the same validation sites are obtained with slightly
worst performance but quite smaller computational time.
Here, with the same dataset, we adopt a functional data approach such that the
temporal component is hidden in the data domain. Since the issue of which ap-
proach - between functional and space-time geostatistics - should be used is still
open, we aim to compare the spatial prediction capability of our proposal at the
same validation sites by means of some performance indexes (also used in [2]).
However, when many observations per functional data are collected and there is
interest in prediction of a whole function - and not a single value - at an unvisited

1 The European Environmental Agency has designated 2013 as the Year of Air (see
http://www.eea.europa.eu/highlights/2013-kicking-off-the-2018year).
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site, geostatistics for functional data should be the natural approach. Even more
if the functional data domain is not temporal.

The paper is organized as follows. In Section 2 we propose a methodology to
carry out Kriging with External Drift for functional data and suggest a criterion
to choose the smoothing parameters and find a preferable kriging predictor among
three different alternatives. Then we apply Functional KED to predict curves of
particulate matter concentration in Section 3, where results of a cross-validation
analysis are presented and an application on a validation dataset allows to assess
its spatial prediction capability. In Section 4, we use the real dataset as a basis to
simulate curves spatially correlated and explore the large sample behavior of the
proposed procedure. A discussion with insights on further developments follows in
Section 5.

2 Kriging with External Drift for functional data

2.1 Notations and assumptions

Let Υs = {Ys(t); t ∈ T} be a functional random variable (f.r.v.) observed at loca-
tion s ∈ D ⊆ Rd, whose realization is a function of t ∈ T - that is a functional
data - where T is a compact subset of R [8]. Assume that we observe a sample of
curves Υsi , for si ∈ D, i = 1, . . . , n, that take values in a separable Hilbert space of
square integrable functions. The set {Υs, s ∈ D} constitutes a functional random
field or a spatial functional process as defined in [5], that can be non-stationary
and whose elements are supposed to follow the model

Υs = µs + εs. (1)

The term µs is interpreted as a drift describing a spatial trend while εs represents
a residual random field that is zero-mean, second-order stationary and isotropic,
so that

i) E(Υs) = µs, s ∈ D;
ii) E(εs) = 0, s ∈ D;
iii) Cov(εsi , εsj ) = C(h), ∀si, sj ∈ D with h = ‖si − sj‖.

At the generic site si, i = 1, . . . , n, and at point t model (1) can be rewritten
as a functional concurrent linear model [26]

Ysi(t) = µsi(t) + εsi(t) (2)

with the drift

µsi(t) = α(t) +
∑
p

γp(t)Cp,i +
∑
q

βq(t)Xq,i(t) (3)

where α(t) is a functional intercept, Cp,i is the p-th scalar covariate and Xq,i(t)
is the q-th functional covariate at site si, γp(t) and βq(t) are the covariate coeffi-
cients. In the drift (3) both scalar and functional covariates are included, and the
coefficients γp(t) and βq(t) are also of a functional nature, allowing to estimate
nonlinear effects of a covariate.
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2.2 Functional kriging

In order to predict a curve at an unmonitored site s0, taking into account exoge-
nous variables in the drift, we propose a three-step procedure. At the first step
the functional regression model (2) with functional response and scalar and func-
tional covariates is fitted by Generalized Cross-Validation (GCV) as specified in
Section 2.4, in order to estimate the drift coefficients and obtain the functional
residuals

esi(t) = Ysi(t)− µ̂si(t) = Ysi(t)−

[
α̂(t) +

∑
p

γ̂p(t)Cp,i +
∑
q

β̂q(t)Xq,i(t)

]
.

At the second step the residual curve prediction at the unmonitored site s0
can be obtained by ordinary kriging for functional data (OKFD) [13], according
to which

ês0(t) =
n∑
i=1

λiesi(t)

where the kriging coefficients λi ∈ R are constant, so that the predicted curve is a
linear combination of data residual curves. The weights λi are determined as the
solution of a linear system written to solve the optimization problem

min
λ1,...,λn

∫
T

V ar (ês0(t)− es0(t)) dt, s.t.
n∑
i=1

λi = 1,

where, similarly to classical geostatistics, some semivariogram values need to be
known. In particular, the kriging coefficients λi depend on the so-called trace-
semivariogram defined for a zero-mean weakly-stationary process as υ(h) =

∫
T
υh(t)dt

where υh(t) = 1
2V ar

(
esi(t)− esj (t)

)
with the Euclidean distance h = ‖si − sj‖.

This is estimated by (for further details see [13])

υ̂(h) =
1

2 |N(h)|
∑

i,j∈N(h)

∫
T

(
esi(t)− esj (t)

)2
dt

where N(h) = {(si, sj) : ‖si − sj‖ = h} and |N(h)| is the number of distinct
elements in N(h). Once the trace-semivariogram is estimated for a sequence of G
values hg, a classical parametric model (exponential or Matérn for example) can
be fitted to the points (hg, υ̂(hg)), g = 1, . . . , G, as in classical geostatistics.
As an alternative to the ordinary kriging, we can consider “continuous time-varying
kriging” for functional data (CTKFD) [11], providing

ês0(t) =
n∑
i=1

λi(t)esi(t),

where the kriging coefficients depend on t. This predictor is a hybrid between
ordinary kriging and the functional linear concurrent (point-wise) model such as
shown in [26]. The estimation of the functional parameters λi(t), i = 1, . . . , n, is
carried out by using an approach based on the use of Nb basis functions. The
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curves and the functional parameters are represented in terms of basis functions,
that is

esi(t) =
Nb∑
l=1

ailBl(t) and λi(t) =
Nb∑
l=1

bilBl(t). (4)

The coefficients ail are assumed to form a multivariable random field {αl}Nbl=1

with αl = (a1l, . . . , anl) and multivariate geostatistics, such as a Linear Model
of Coregionalization (LMC) [37], is applied to estimate cross-covariances. Then
an optimization problem is solved to have a BLUP so that bil are estimated (for
further details see [11]).
Another option is considering the so-called “functional kriging total model” (FKTM)
[10], [21] where the kriging coefficients are defined on T × T and the prediction at
t is obtained integrating over T , that is

ês0(t) =
n∑
i=1

∫
T

λi(τ, t)esi(τ)dτ.

Again the curves and the functional parameters λi(τ, t) i = 1, . . . , n are expanded
in terms of Nb basis functions, as

esi(t) =
Nb∑
l=1

ailBl(t) and λi(τ, t) =
Nb∑
j=1

Nb∑
l=1

cijlBj(τ)Bl(t)

and again a LMC is fitted in order to give a solution to the problem of estimating
the functional parameters λi(τ, t) through the estimation of cijl.

Finally, at the third step we get the prediction at the unmonitored site s0 by
adding - as in the classical regression kriging - the two terms, that is

Ŷs0(t) = µ̂s0(t) + ês0(t)

where µ̂s0(t) = α̂(t) +
∑
p γ̂p(t)Cp,0 +

∑
q β̂q(t)Xq,0(t) depends on the covariate

values Cp,0 and Xq,0(·) at the site s0.

2.3 Choosing the smoothing parameters and evaluating kriging predictors

Despite the functional framework, data are usually gathered as a finite discrete
set of pairs (tj , yij), tj ∈ T, j = 1, . . . ,M , i = 1, . . . , n, and (unless there is no
observational noise)

yij = Ysi(tj) + δij

where δij represents a measurement error and Ysi(·) is a continuous function that
corresponds to a realization of the functional random field {Υs, s ∈ D} at the site
si. The set of points {tj}Mj=1 ⊂ T can be considered the same for all functions in
a functional dataset, and often these points are evenly spaced in T . We make here
these assumptions but in general the set of points where a curve is observed could
vary from site to site. In the latter case, more attention needs to be paid when
converting discrete data to functional data (by using for example free knots for
the splines smoothing introduced below).
The conversion from discrete data to curves involves smoothing, and linear com-
binations of B-spline functions Bl(t) (spline functions are constructed by joining
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polynomials of degree d together at points called “knots”) are used since they are
flexible and appropriate for use in general environmental variables, while Fourier
basis functions are appropriate when in presence of periodic data [26].
Then, for all t the curve Ysi(t) is estimated by

Ỹsi(t) =

K+d+1∑
l=1

ĉilBl(t) (5)

where d is the spline degree (in the following d = 3 so that we have cubic splines)
and K the number of interior knots in the domain T = (a, b) of the function Ysi .
Note that the number of basis functions in (5) is now Nb = K+d+1 and smoothed
data Ỹsi(tj) will be used to fit Model (2) in the case study presented in Section 3,
since we assume to have observational noise.
Spline coefficients ci = (ci1, . . . , c

i
K+d+1) are estimated, for each i, by adopting a

penalized least squares criterion

PENSSE(ci) =
∑
j

(yij − Ysi(tj))
2 + η

∫
T

[D2Ysi(t)]
2dt (6)

where Ysi(t) =
∑K+d+1
l=1 cilBl(t), η is the penalty parameter, D2 denotes the second

derivative and the penalty term is chosen as the integrated square of the second
derivative that quantifies the total curvature of the function (and hence its rough-
ness). The parameter η controls the trade-off between the fit to the observed data
and the smoothness of the fitted curve, so that when η is large the fitted curve is
smoother but the data fits worse. In order to estimate spline coefficients by mini-
mizing PENSSE we need to fix a value for η and, in addition, we need to choose
a sequence of K interior knots ξ = (ξ1, ξ2, . . . , ξK). By taking equally spaced knots
in T = (a, b) we need only to fix the number of knots K, besides η, while d = 3 is
fixed.
Since the aim here is to predict a whole function Ys0(t) at an unmonitored site
s0, we adopt a choice criterion based on leave-one-out cross-validation (as intro-
duced in [13] and [11]). Data gathered at each site si is temporarily removed
from the dataset and a smoothed function is predicted at this location using
a functional kriging predictor based on the remaining smoothed functions, for
K ∈ [Kmin,Kmax] and η ∈ [ηmin, ηmax]. Then the optimal values (K∗, η∗) are
those minimizing the function

FCV r(K, η) =
n∑
i=1

SSE(i) =
n∑
i=1

M∑
j=1

(
yij − Ŷsi(tj)

(i)
)2

(7)

where Ŷsi(tj)
(i) is the prediction at si evaluated at tj , by leaving si data out of

the sample. In [13] and [11] a similar procedure has been called functional cross-
valildation and the objective function FCV contains squared differences between
smoothed data and predictions. Here we call the function FCV r - where r stands
for raw - to stress the fact that raw data yij are compared to the predicted val-
ues Ŷsi(tj)

(i) when evaluating SSE at each site. This is motivated by the fact
that using smoothed data Ỹsi(tj) instead of raw data yij in (7) would provide a
minimum value when K is small and η large (we have observed this in our case
study); in that case the smoothed functions Ỹsi(t) would be close to the overall
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mean function and the predictions would be easier to obtain - with SSE smaller -
but they would be too smooth in the air quality context, where we want to predict
concentration peaks that people breaths (removing only the observational noise).

Besides the choice of the smoothing parameters, the function FCV r allows to
compare the three alternatives OKFD, CTKFD and FKTM at the second step of
the procedure proposed in this paper (also by looking in detail SSE(i) values).
Moreover, in order to compare our proposal to competitors, such as Bayesian hi-
erarchical models in [2] (for which cross-validation is computationally unfeasible),
we use 10 validation sites and some prediction capability indexes in Section 3.3.

2.4 Implementation details

To implement our proposal all computations are coded in R [24]. First of all, the
conversion to functional data is realized by using the fda package [28] that also
contains the funtion fRegress for fitting a concurrent functional linear model, as
shown in [27] (Chapter 10). However, only univariate independent variables are
currently allowed and indeed the case of a functional response prediction in practice
remains largely unexplored. Then to implement the first step of our procedure we
need to figure out how to estimate the covariate coefficients in the drift (3) in an
alternative way. In classical geostatistics, µs is seen as a deterministic large scale
component and when it is supposed to depend on exogenuous variables the related
coefficients are estimated by least squares criteria. In the functional framework,
where the covariate coefficients are also functional, we follow Ivanescu et al. [17]
who propose a general framework for smooth regression of a functional response
on one or multiple functional predictors by re-writing a functional linear model as
a standard additive model. In particular in our model the functional coefficients
in (3) are assumed to be expandable as

α(t) =

k0∑
l=1

A0,l(t)c0,l, γp(t) =

kp∑
l=1

ap,l(t)cp,l and βq(t) =

kq∑
l=1

aq,l(t)cq,l

where A0,l(t), ap,l(t) and aq,l(t) are known basis functions, while c0,l, cp,l and cq,l
are the related coefficients (to be estimated). Then we can write

γp(t)Cp,i =

kp∑
l=1

ap,l(t)Cp,icp,l =

kp∑
l=1

Ap,l,i(t)cp,l,

and

βq(t)Xq,i(t) =

kq∑
l=1

aq,l(t)Xq,i(t)cq,l =

kq∑
l=1

Aq,l,i(t)cq,l

so that the functional linear model (2) can be re-written as a standard additive
model

Ysi(t) =

k0∑
l=1

A0,l(t)c0,l +
∑
p

kp∑
l=1

Ap,l,i(t)cp,l +
∑
q

kq∑
l=1

Aq,l,i(t)cq,l + εsi(t)
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where Ap,l,i(t) = ap,l(t)Cp,i and Aq,l,i(t) = aq,l(t)Xq,i(t) are known because Cp,i
and Xq,i(t) are “observed” without noise. This representation makes it possible to
fit a concurrent functional linear model by means of the robust mgcv package [40],
where the underlying representation and estimation of the models is based on a
penalized regression spline approach, with automatic smoothness selection by using
the Generalized Cross Validation (GCV) criterion (see [38] and [39]). This entails
that k0, kp and kq are chosen as very large inside the GCV procedure and penalties
are designed to suppress excessive roughness of the functional parameters.

Then, at the second step, we apply kriging for functional data in three alterna-
tive ways to the functional residuals in order to get predictions at the temporarily
out of sample site in cross-validation or at the 10 validation sites. The first method
OKFD is implemented by means of the geofd package [12] that includes the auto-
matic choice of a model (in a list) for a trace-variogram, by minimizing the SSE
between the theoretical variogram and the empirical one. Instead CTKFD and
FKTM are carried out by our own R code (available upon request) that takes
advantage of the package gstat [22] when fitting a linear coregionalization model.
By adding predicted drifts and residuals, at the third step, we obtain predicted
curves of the response variable that are compared with the observed time series
later.

3 Spatial prediction of PM10 curves

3.1 Data

Our case study considers daily PM10 concentrations (in µg/m3) measured from
October 2005 to March 2006 (so that M = 182) by the monitoring network of
Piemonte region (Italy) in 24 sites (red triangles in Figure 1). For model perfor-
mance assessing we have 10 extra validation stations (blue dots in Figure 1) as in
[2] and [3], where the same dataset is considered. We carry out a cross-validation
analysis in the following section, but the set of validation sites allows us to compare
our results with those in [2]. The exogenous variables in the trend term are: (i)
coordinates (UTMX and UTMY, in km) and altitude (A, in m), that are scalar;
(ii) daily maximum mixing height (HMIX, in m), daily total precipitation (PREC,
in mm), daily mean wind speed (WS, m/s), daily mean temperature (TEMP, in
◦K) and daily emission rates of primary aerosols (EMI, in g/s), that are func-
tional. Note that the time-varying variables are obtained from a nested system of
deterministic computer-based models implemented by the environmental agency
ARPA Piemonte [9]. For a complete description and preliminary analysis of the
data we refer to [2]. In order to stabilize the within-station variances and mak-
ing the marginal distribution of PM10 data approximately normal, we also choose
to transform data by the logarithm; Figure 2 shows the curves of log(PM10),
obtained by using cubic splines, at the 24 monitoring sites. Moreover, since the
ranges of the covariates are quite different, a standardization procedure is applied
subtracting the mean and dividing by the standard error computed considering
the 24 monitoring stations (note that functional covariates are standardized after
the smoothing step).
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Fig. 1 Locations of the 24 PM10 monitoring sites - red triangles - and 10 validation stations
- blue dots.

Fig. 2 Smoothed time series of log(PM10) at the 24 monitoring sites (color changes with
sites).

3.2 Cross-validation

The leave-one-out cross-validation procedure described in Section 2.3 is applied
to find the optimal smoothing parameters (K∗ and η∗) and to compare the three
alternatives for kriging functional residuals. For the number of interior knots K
we fix the set of possible values {25, 51, 77, 90, 103, 116, 129, 142, 155}, such that
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Fig. 3 FCV r surface for OKFD (left) and FCV r(K, 0) profiles in the three kriging cases
(right).

there are from 1 to 6 knots per week (in the dataset we have 26 weeks). Note
that K + 4 = Nb is the number of spline coefficients to be estimated - see (5)
- that is also equal to the number of considered basis functions. Instead for the
penalty parameter η we take - since it is usual to explore η values for a few log
units [27] - the set of possible values {0, 10, 102, 103, 104}, defined as a power of
10 and visualized on a logarithmic scale. Clearly, when η = 0 the criterion (6) is
not penalized and the fitted curve could be very close to data, as much as possible
with the selected basis functions (cubic splines here). When OKFD is applied,
an automated algorithm chooses the exponential model for the trace-variogram
almost always (sometime a spherical one is chosen during the cross-validation).
For CTKFD and FKTM, based on a preliminary exploration of the dataset, an
exponential model was used for all direct variograms and cross-variograms for the
LMC.

Figure 3 (left) shows the countour plot of the function FCV r(K, η) in case of
OKFD at the second step, using a logarithmic scale for η. The FCV r surfaces for
the alternatives CTKFD and FKTM - not reported here - are very similar although
their values are generally sligthly larger, while for a few values of (K, η) - as for
example (155, 0) in the CTKFD case - FCV r becomes very large or impossible to
evaluate for singularity problems; i.e. for some sites SSE is missing or too large (and
so FCVr is not plotted in the profiles in Figure 3, right). This fact occurs when the
number of interior knots K is large, making large the number Nb of “variables”
in the LMC to fit in CTKFD and FKTM procedures and small the functional
residuals to krige. 2 Anyway, in all the three cases, FCV r is smaller when η = 0.
Hence, to compare the cases of minimum FCV r, the profiles FCV r(K, 0) are
shown in Figure 3 (right). It is evident that FCV r decreases sharply until K = 77,
then the rate of decrease is smaller but in the OKFD case we can observe a small
increasing for the largest K. It is also clear that, among the three methods, OKFD
is preferable in terms of FCV r and Table 1 shows values of the 24 SSE(i) for the
three cases (OKFD, CTKFD and FKTM) when K = 116 and η = 0. Overall,
SSE(i) values are very close in the CTKFD and FKTM cases. In a few cases (see
numbers in italic font) OKFD has slightly larger values but there is only one case

2 Note that when we apply CTKFD and FKTM to the whole dataset (24 sites for fitting
and 10 sites for validation) in Section 3.3 this kind of numerical problems does not occur.



12 Rosaria Ignaccolo et al.

Table 1 SSE(i) over 24 fitting sites (red triangles in Figure 1) for FKED with the three al-
ternative second steps: OKFD 116 0, CTKFD 116 0 and FKTM 116 0 corresponds to OKFD,
CTKFD and FKTM respectively with K = 116 and η = 0.

Site OKFD 116 0 CTKFD 116 0 FKTM 116 0

1 AL - Piazza D’Annunzio 23.694 27.047 27.176
2 Alba 35.044 41.409 42.075
3 Arquata Scrivia 25.578 29.711 30.387
4 AT - Scuola D’Acquisto 23.885 25.055 25.028
5 BI - Via Don Sturzo 14.476 13.831 13.853
6 Borgaro 19.306 19.162 18.931
7 Borgomanero 17.488 17.928 17.916
8 Borgosesia 9.866 10.238 10.333
9 Buttigliera Alta 17.932 20.806 20.936

10 Buttigliera d’Asti 19.431 20.555 20.688
11 Carmagnola 24.827 30.201 30.385
12 Casale Monferrato 50.689 53.424 53.690
13 Cerano 25.436 28.552 28.857
14 CN - Piazza II Regg. Alpini 93.106 71.544 70.611
15 Cossato 9.625 10.960 11.074
16 Druento La Mandria 24.846 26.701 27.024
17 NO - Viale Verdi 16.778 18.217 18.321
18 Novi Ligure 20.868 21.143 21.247
19 Pinerolo 17.068 18.997 19.109
20 TO - Lingotto 30.988 31.367 31.525
21 TO - Via Consolata 14.614 14.374 14.183
22 Tortona 22.645 23.191 23.568
23 VC - Corso Gastaldi 19.185 21.048 21.072
24 Verbania 118.944 127.802 129.053

FCVr 696.319 723.263 727.042

that worths to be noted, that is site 14 CN - Piazza II Regg. Alpini, where SSE is
quite larger for OKFD. However this site is outside the spatial domain when it is
left out in cross-validation, and the same happens to site 24 Verbania where the
worst perfomance occurs.

Moreover OKFD is preferable because CTKFD and FKTM could be numeri-
cally instable and involve the fitting of a Linear Coregionalization Model that is
highly computational time demanding (while OKFD is fast). To apply OKFD in
our case study, we observe in Figure 3 (right) that the values minimizing FCV r
are K∗ = 142 and η∗ = 0, although (116, 0) and (129, 0) give very close results.
In fact Figure 4 shows very similar predicted curves at the 24 sites (when left out
one at a time) obtained by OKFD at the second step and the couple (K, η) equal
to (116, 0) and (142, 0).

3.3 Prediction at the validation sites

Following the results of the cross-validation, we apply our proposal with OKFD
at the second step and (K, η) = (142, 0). Let us note that the number of interior
knots K, related to the number of basis functions Nb = K + 4, has to be fixed at
the beginning of the application (for the smoothing step and for fitting a FLM to
the smoothed data) so that the first step results change if K changes.
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Fig. 4 Cross-validation results: 24 predicted curves when K = 116 (left) and K = 142 (right),
η = 0, with OKFD at the second step.

The functional intercept in (3) is decomposed as α(t) = α1 +α2(t), since in fit-
ting an additive model the smooth terms are subject to sum-to-zero identifiability
constraints [38]. The estimated scalar intercept is α̂1 = 3.93 on the log scale, that
corresponds to an average pollution level of about 50.9µg/m3 while α̂2(t) is shown
in Figure 5, where we can observe that it changes in time mostly at the beginning
and end of the considered winter semester. The estimated functional coefficients
γ̂p(t) of the scalar covariates UTMX, UTMY and A, and β̂q(t) of the functional
covariates HMIX, PREC, WS, TEMP and EMI are also shown in Figure 5. All
covariates are significant (p-values for the smooth terms are obtained as discussed
in [41]) as they were in [2], but now we can observe how they vary with time. In
fact, for all the six models considered in [2] the estimated covariate coefficients
- that are scalar - are negative except the one for the emissions (EMI). Instead
our results show estimated functional coefficients varying with time with different
behaviours, although they are negative in most of the t domain except for HMIX
and TEMP - that change sign in time - and EMI that has a positive relationship
with PM10, as expected. Hence the importance of meteorological variables on air
quality is confirmed, as well as the significant effect of altitude (A) in reducing
PM10 concentration.

By applying the second and third step of the proposed FKED, we get predic-
tions in the 10 validation sites (blue dots in Figure 1). To have a detailed example,
Figure 6 shows raw data yij , smoothed data Ỹsi(t), the predicted drift µ̂si(t) and
the predicted curve Ŷsi(t) at the sites 25 Biella - Largo Lamarmora and 30 Sal-
iceto. The contribution of kriging residuals is clear at site 25, where the predicted
curve has a local (in time) variability that the predicted drift does not reach. In-
stead at site 30, where we have the worst results, the predicted drift is - for the
most part of time - not close to the observed data and the contribute of kriging
does not compensate enough because this site is the farthest from the 24 sites used
to fit the model.

In order to assess the spatial prediction capability of FKED, we compare ob-
served and predicted data at the 10 validation sites, by evaluating performance
indexes as in [2] (a simple residual analysis is also performed in [3]). Since we eval-
uate different predictors, we take as observed data the raw data yij , despite their
observational noise, also because smoothed data change with (K, η). We consider
four indicators based on the differences between predicted and observed data: the
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Fig. 5 Estimated functional coefficients. First row: α̂2(t), γ̂UTMX(t), γ̂UTMY (t). Second row:

γ̂A(t), β̂HMIX(t), β̂PREC(t). Third row: β̂WS(t), β̂TEMP (t), β̂EMI(t).

Fig. 6 Prediction at 25 Biella - Largo Lamarmora (top) and 30 Saliceto (bottom). Black:

raw data yij , blue: smoothed data Ỹsi (t), green: predicted drift µ̂si (t) and red: predicted curve

Ŷsi (t).
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Table 2 Performance indexes over 10 validation sites (blue dots in Figure 1) of FKED with
OKFD at the second step and (K, η) = (142, 0), called “OKFD 142 0”.

Site NMBF RMSE WNNR ρ

25 BI - Largo Lamarmora -0.020 0.196 0.003 0.943
26 Borgo San Dalmazzo -0.048 0.460 0.018 0.762
27 Bra -0.059 0.313 0.006 0.922
28 Chivasso - Edipower 0.004 0.250 0.004 0.885
29 Ivrea -0.058 0.331 0.008 0.914
30 Saliceto -0.130 0.719 0.055 0.612
31 Serravalle Scrivia 0.038 0.463 0.012 0.793
32 Susa 0.005 0.481 0.016 0.785
33 TO - Piazza Rivoli -0.005 0.199 0.002 0.940
34 TO - Via Gaidano -0.015 0.267 0.004 0.903

usual root mean square error (RMSE) and the correlation coefficient ρ, together
with the Normalized Mean Bias Factor (NMBF) [42] and the Weighted Normal-
ized mean square error of the Normalized Ratios [23]. For a fixed location si, let

zj and ẑj be the observed and predicted time series (in our case yij and Ŷsi(tj))
respectively, with j = 1, . . . ,M and let z̄ and ¯̂z be the corresponding mean values.
The Normalized Mean Bias Factor is defined on R by

NMBF =


∑

j ẑj∑
j zj
− 1 if ¯̂z ≥ z̄

1−
∑

j zj∑
j ẑj

if ¯̂z < z̄
.

and has the advantage of both avoiding inflation due to low values of observations
and overcoming the asymmetry problem between overestimation and underesti-
mation, as discussed in [42]. The Weighted Normalized mean square error of the
Normalized Ratios is defined by

WNNR =

∑
j s

2
j (1− kj)2∑
j sjkj

,

where sj = zj/z̄ is the weight and kj = exp (−| ln(ẑj/zj)|) is the Normalized ratio.
WNNR is positive and has the advantage of taking properly into account the peaks
of observed data (see the discussion in [23]).

Table 2 shows values of the four indexes in the case of FKED with OKFD at
the second step and (K, η) = (142, 0), called “OKFD 142 0” in the following (and
in Figure 7). Predictions are generally good, with a slight underestimation in 7
out of 10 sites (see NMBF). Correlations between predicted and observed data
is above 0.75, except for the site 30-Saliceto where we get the worst results in
terms of prediction performance for all the four indexes, as expected by looking at
Figure 6 (bottom). That figure also shows one of the sites where FKED performs
better, that are 25 and 33 : for both of them the kriging predictor takes advantage
of information given by very close neighbours.

A summary of Table 2 can be seen in Figure 7 by looking at the indexes
distribution boxplots for OKFD 142 0. Figure 7 also shows boxplots synthetizing
the four indexes at the 10 validation sites for OKFD with (K, η) = (116, 0) and
(K, η) = (129, 0), as well as for CTKFD and FKTM with K = 116, 129, 142 and
η = 0 (called by “name K η”). We apply the proposed FKED to obtain predictions
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Fig. 7 Boxplots of the performance measure distributions computed for each model over the
10 validation stations (blue dots in Figure 1). Models are FKED with the three alternative
second steps (OKFD, CTKFD and FKTM), K = 116, 129, 142 and η = 0, and Model A1 in
[2]. OKFD 116 0 corresponds to OKFD with (K, η) = (116, 0) and so on.

at the 10 validation sites also with CTKFD and FKTM and some values of K in
order to confirm the cross-validation results in comparing the three alternatives.
Indeed, leave-one-out cross-validation is sometimes criticized in spatial modeling
because the estimated spatial structure could change every time that a site is left
out and, in addition, we experienced numerical problems during cross-validation
with CTKFD and FKTM. By considering the whole dataset and predicting at the
10 validation sites, we obtain performance index values that allow us to compare
OKFD, CTKFD and FKTM.

Moreover, a table similar to Table 2 for Model A1 in [2] is summarized through
the last boxplots, where Model A1 is a spatio-temporal hierarchical model with a
purely spatial covariance function (the residual spatio-temporal process is serially
independent) fitted by MCMC on the same dataset. Note that cross-validation
requires re-fitting the model for each left-out datum and becomes practically un-
feasible when a model is fitted by MCMC; this is why here we compare FKED
models and Model A1 on the 10 validation sites.

Boxplots in Figure 7 confirm that results with a number of knots equal to
116, 129 and 142 (and so 120, 133 and 146 basis functions) are very similar for
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OKFD, with a light better performance when K = 142 as known from the cross-
validation results in Section 3.2. Note that RMSE is just a transformation of
FCV r, so that they are equivalent preference criteria. Also in the case of CTKFD
the number K = 142 seems to be preferable, whereas it does not for FKTM
(see e.g. Pearson boxplots). In comparing the three second step alternatives, this
analysis with 10 validation sites confirms that OKFD is generally preferable, as
seen by means of FCV r in Section 3.2. Only NMBF seems to say that it is overall
worst but the only difference is at site 30 with NMBF ∼= −0.13 not highlighted as
outlier, whereas NMBF ∼= −0.16 for CTKFD and FKTM.

With the same data, and hence the same 10 validation sites, six different hi-
erarchical models are compared in [2]: Model A1 is suggested as preferable for
its good performance at a reasonable cost because Model C has a better predic-
tion performance but requires additional computational costs, since it includes an
autoregressive component (as already said in Section 1). By looking at boxplots
in Figure 7 we can compare FKED models with Model A1 and see that perfor-
mances are not so different. In fact, if we exclude the “critical” site 30 Saliceto
model OKFD 142 0 has RMSE ranging from 0.196 to 0.481 while for Model A1
RMSE’s range is (0.215, 0.527). Analogously, without site 30 Pearson correlation
ranges are (0.762, 0.943) and (0.779, 0.958) for OKFD 142 0 and A1, respectively;
as well as WNNR ranges are (0.002, 0.018) and (0.003, 0.013). Moreover, for both
models |NMFB| > 0.05 in 3 out of 10 sites. Hence overall OKFD 142 0 perfor-
mance is comparable to A1’s one except that for site 30 and for its ability to
predict observed peaks. However a worst WNNR was expected since observed raw
data are smoothed when converted to functional data, so that a part of observed
peaks is smoothed away as observational noise.
To give another bit of comparison, let us note that with the same dataset Cameletti
et al. (2012) [3] consider a spatio-temporal model with an autoregressive compo-
nent (very similar to Model C in [2]), approximated by a Gaussian Markov Random
Field and fitted by adopting the INLA algorithm, and obtain a global RMSE equal
to 0.5328 and the correlation coefficient equal to 0.7015 when the 10 validation
sites are taken altogether.

4 Large sample behaviour

The asymptotic theory for spatial prediction has been object of study during the
last decades. Prediction based on kriging has been scrutinized in a number of pa-
pers. In the mid eighties, Molnar (1985) [20] shows some mathematical properties
of the classical and universal Kriging method investigating certain conditions for
the convergence of these methods as the number of observation points tends to
infinite. Lahiri et al. (2002) [19] consider the least-squares approach for estimat-
ing parameters of a spatial variogram and establish consistency and asymptotic
normality of these estimators under general conditions. Large-sample distributions
are also established under a spatial regression model where the sampling design
possibly has an infill sampling component. Crujeiras and Van Keilegom (2010) [4]
study the asymptotic and finite sample properties of an estimator of a nonlin-
ear regression function when errors are spatially correlated, and when the spatial
dependence structure is unknown. Vazquez and Bect (2010) [35] and Sakata et
al. (2010) [32] deal with several issues related to the pointwise consistency of the
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kriging predictor when the mean and the covariance functions are known. These
questions are of general importance in the context of computer experiments. The
analysis is based on the properties of approximations in reproducing kernel Hilbert
spaces.
When we look at the more complete picture of the spatio-temporal context, we can
hardly find information on kriging asymptotics. For example, Zhang and Zheng
(2012) [43] study the asymptotic properties of maximum likelihood estimates un-
der a general asymptotic framework for spatial-temporal linear models. Finally,
we should add that the mixed field of functional and spatio-temporal prediction is
completely open to asymptotic properties. At the best of our knowledge nothing
can be found in this line. This would be object of a completely new paper focused
on this topic. Thus we have preferred to show some light in this regard based on
simulations.

Hence, in order to explore the large sample behavior of the proposed three-steps
predictor, we carry out a simulation study where the real dataset - described in
Section 3 - is used as a basis for generating realistic simulated data. First of all, we
consider Piemonte region as the spatial domain where we randomly select spatial
sites whose coordinates belong to a regular grid with resolution 4km× 4km that
covers Piemonte, neighbor Italian regions and parts of foreign countries (4032
grid points). Such a regular grid defines the spatial support of the output of a
numerical model implemented by the environmental agency ARPA Piemonte (as
already said in Section 3.1) that provides us with time-varying, meteorological and
emission, covariates. The grid points on Piemonte region are 1587 and among them
we randomly select 200 sites, in total, and we then consider different sample sizes:
25, 50, 100 and 200. Figure 8 (left column) shows the selected sites, increasing
from 25 to 200, and the 10 validation sites from the real dataset in the previous
section.

To obtain realistic data from a non-stationary spatial functional process, fol-
lowing the model (1), we simulate separately a drift and a stationary residual
process. The drift functions are created by means of Equation (3) with functional
coefficients equal to those estimated from the real dataset and shown in Figure 5,
whereas the scalar and functional covariates are known. Instead, to obtain real-
izations of a functional random field we apply Equation (4)-left, with the spline
coefficients simulated as realizations of a multivariable random field. This last one
is simulated by means of predict.gstat in gstat package [22] and its variograms and
cross-variograms are those estimated for the real dataset, when a LMC is fitted to
apply CTKFD or FKTM, with K = 142. The four (nested) functional dataset are
shown in Figure 8 (right column).

Therefore we apply our proposal with OKFD at the second step (since in
Section 3 we have seen that it has a better performance at a lower computational
cost) and we obtain predictions at the 10 validation sites (blue points in Figures 1
and 8). When comparing predicted functions with the observed raw data at these
10 sites, we get values of the four performance indexes described in Section 3.3
that are summarized by boxplots in Figure 9 for all the considered sample sizes.
It is evident that the larger the sample size, the lower the variability of the four
measures reflected in the green boxplots (for n = 200), except for the Pearson case
that is not that clear. Indeed, the median values of RMSE and WNNR obtained
with n = 200 are lower than those obtained from other sample sizes, while the
Pearson median for n = 200 is the highest one.
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Fig. 8 Left: locations of n randomly selected sites - red triangles - and 10 real validation sta-
tions - blue dots. Right: simulated functional dataset at n sites. Sample size n = 25, 50, 100, 200
from top to bottom.
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Fig. 9 Boxplots of the performance measure distributions computed for each sample size over
the 10 validation stations (blue dots in Figure 1 and 8). Predictions are obtained with OKFD
at the second step and (K, η) = (142, 0).

5 Discussion

We can obtain in practice realizations of a multivariate functional random field
{Ys(t), s ∈ D ⊂ Rd, t ∈ T}. Given si ∈ D, i = 1, · · · , n, and p functional variables,
we have the realization

Ys(t) = [(Ys1,1(t), · · · , Ysn,1(t)), · · · , (Ys1,p(t), · · · , Ysn,p(t))]T

= [Ysi,1(t), · · · ,Ysi,p(t)]T .

In this case we could be interested in predicting simultaneously the vector of ran-
dom functions Ys0(t) = (Ys0,1(t), · · · , Ys0,p(t)), based on all the information of
Ys(t) available. For example suppose that we have several pollutants curves at
each sampling site si, i = 1, · · · , n and we want to predict them at unmonitored
sites. This scenario is the natural extension of multivariate geostatistics [36] to the
multivariate functional geostatistics. In addition, if we consider scalar and func-
tional covariates we would have the multivariate functional kriging with external
drift. By extending (2) to the multivariate functional context, we have the model

Ysi(t) = µsi(t) + εsi(t),

with µsi(t) = (µsi,1(t), · · · , µsi,p(t))T , and εsi(t) = (εsi,1(t), · · · , εsi,p(t))T , i =
1, · · · , n. Following the same idea proposed in this work, if we want to predict
simultaneously a random vector of functional variables at the unmonitored site
s0, we need to estimate initially the vector of functional residuals es(t) = Ys(t)−
µs(t) and then, in a second step, carry out prediction of a vector of functional
residuals ês0(t) = (ês0,1(t), · · · , ês0,p(t)). Two problems must be solved to fulfill
these tasks. First a multivariate functional regression model must be estimated
and posteriorly a multivariate functional kriging predictor used for predicting the
vector of functional residuals. At the best of our knowledge these topics have not
been studied and are open research problems.We think that a possible solution
could be obtained by using basis functions for smoothing the set of curves Ysi(t).
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Thus, we can propose a classical multivariate regression model with the responses
corresponding to the coefficients estimated from the smoothing process. In this
case we would obtain a matrix of residuals which could be predicted by using
multivariate geostatistics. This approach looks reasonable from a technical point
of view. However the estimation of the covariance structure by means of a LMC (or
any other method) is restrictive in practice even with a small number of responses
and basis functions. This alternative deserves special attention.

In this work, we propose Kriging with External Drift for functional data that
are curves along time. Thus, we have an alternative to spatio-temporal model-
ing capable to predict a whole curve and providing covariate nonlinear effects’
estimates straightforwardly. Moreover covariates - and response too - can be ob-
served with different time frequency, so that treating time series data as functional
data can be advantageous because a possible time misalignment problem can be
avoided.

Our proposal is not necessarily an alternative to spatio-temporal modeling and
indeed it can be applied to functional data that do not vary in time, as for ex-
ample PM vertical profiles measured along height by an instrument deployed on
a tethered balloon or climate variables measured by means of high technology
radiosondes launched in the atmosphere. It is relevant to mention that in these
cases a multivariate kriging approach could be also considered for predicting es0(t).
With this approach the vector (esi(t1), . . . , esi(tM )), with t1, · · · , tM correspond-
ing to discrete values of the domain T , is the observation of a M dimensional
random variable at site si, i = 1, . . . , n. Then a cokriging predictor [36] could be
applied to predict the random vector (ês0(t1), . . . , ês0(tM )) at the unmonitored
site s0. Then a parametric or nonparametric model could be fitted to these val-
ues for reconstructing a whole function ês0(t). This approach is restrictive when
M is large (the common situation in functional data analysis) and the methods
based on OKFD, CTKFD, and FKTM, which involve the use of basis functions
for smoothing the data, are a better option from a practical point of view.

For estimating the functional spatial trend we propose a functional regression
model but other alternatives such as functional nonparametric models [7] could
be considered. On the other hand, we take advantage of additive models theory to
carry out variable selection (if the need arises, in our case study covariates were
previuosly selected [2]). Gromenko and Kokoszka (2013) [14] derive a test to de-
termine the significance of the regression coefficients when the mean function is a
linear combination of known covariate functions and depends only on time. Fur-
ther research to develop inference for drift model selection for spatially correlated
functional data is necessary.

For kriging functional residuals we use and compare three alternatives, namely
OKFD, CTKFD and FKTM. In our case study, both cross-validation results and
good predictions on the validation sites suggest to choose the simplest version
where kriging coefficient are constant. Nevertheless, the desirable application of
these methods to other datasets could reveal different performances.

Finally, it would be convenient to provide confidence bands for the predicted
curves and, to this goal, a resampling procedure to evaluate the prediction uncer-
tainty is part of our ongoing research.
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