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Single- and cross-generation natural hedging

of longevity and financial risk

May 14, 2015

Abstract

This paper provides natural hedging strategies for life insurance and an-

nuity businesses written on a single generation or on different generations in

the presence of both longevity and interest rate risks. We obtain closed-form

solutions for delta and gamma hedges against cohort-based longevity risk.

We exploit the correlation between the mortality intensities of different gen-

erations and hedge the longevity risk of one cohort with products on other

cohorts. An application with UK data on survivorship and bond dynamics

shows that hedging is effective, even when rebalancing is infrequent.

Keywords: longevity risk, interest rate risk, delta-gamma hedging, natural

hedging, cross-generation hedging.
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1 Introduction

Longevity risk, i.e., the risk of unexpected changes in survivorship, is now perceived

as an important threat to the safety of insurance companies and pension funds.

Most actors in the financial market are long longevity risk. This has stimulated the

transformation of contracts subject to longevity risk into an asset class, as originally

suggested by Blake and Burrows (2001). The creation of q-forwards, s-forwards,

longevity bonds and swaps represents a step in this direction, but this asset class

is still in its infancy. In the meanwhile, insurance companies can benefit from

natural hedging, i.e., from natural offsetting between the longevity risk exposures

of death benefits and life contracts, such as annuities. The importance of exploiting

this natural offsetting extends beyond theory. Cox and Lin (2007) find empirical

evidence that insurers whose liability portfolios benefit from natural hedging have a

competitive advantage and charge lower premiums. Despite being safe, sound and

comparatively cheap, natural hedging is not trivial in the presence of longevity risk

because the latter is difficult to capture per se in a parsimonious and manageable

way and even more difficult to couple with a satisfactory model of financial risk,

such as interest rate risk. However, the interactions between longevity and financial

risk cannot be avoided from the perspective of immunization in the form of liability

management, as the value of the reserves is subject to interest rate risk, and a

fortiori, from the perspective of asset and liability management (ALM).

Natural hedging of longevity risk without financial risk has been recently addressed

by Cox and Lin (2007), Wang et al. (2010), Gatzert and Wesker (2012) and Gatzert

and Wesker (2013). Cox and Lin (2007), motivated by the empirical evidence

mentioned above, propose the use of mortality swaps between annuity providers and

life insurance writers. Wang et al. (2010) propose an immunization strategy that

matches the duration and convexity of life insurance and annuity benefits. They
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demonstrate that this strategy is effective in reducing longevity risk by calibrating

it to US mortality data. However, they consider only liabilities, while we consider

both assets and liabilities as well as financial risk. Gatzert and Wesker (2012)

use simulations to select portfolios of policies that immunize the insurer’s solvency

against changes in mortality. Gatzert and Wesker (2013) consider the interactions

among systematic, unsystematic, basis risk and adverse selection in determining

the effectiveness of natural hedging.

Natural hedging with financial risk has been studied by Stevens et al. (2011).

They show that financial risk has a clear impact on the overall initial riskiness of

the annuity–life insurance mix. The effect of natural hedging may be overestimated

when financial risk is ignored, affecting hedging possibilities . In their case, financial

risk occurs only from potential losses from assets, while in our case, it affects both

the assets and the fair value of liabilities.

We extend the existing literature in four directions. First, we model longevity and

financial risk at the same time, and we assess their impact on the fair value of the in-

surer’s net liabilities or reserves. We aim at hedging changes in reserves, at the first

and second order approximations (delta and gamma hedging, respectively). The

risk factors to hedge against are the differences between the mortality and interest

rate intensities forecasted today and their actual realizations in the future. Second,

to hedge liabilities, we let the insurer use new sales of insurance contracts, reinsur-

ance and bonds, so we extend previous research by using both assets and liabilities

for immunization. Third, we exploit hedging within a single generation and across

generations (or across genders) to capture the fact that some products may be not

marketed. For instance, death benefits for older generations may not be marketed.

Thus, we develop a cohort-based mortality model, and we split the longevity risk

factor of each generation into common and idiosyncratic parts. Fourth, we provide
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all delta-gamma hedges in closed form. This enhances the computation and com-

prehension of the hedge drivers. Moreover, optimal hedges solve linear systems.

Consequently, assessing whether reserves can be perfectly hedged (up to any chosen

level of accuracy) and whether the mix of assets and/or liabilities that achieves

the hedge is unique is a trivial matter. The framework can accommodate some

important practical aspects, such as self-financing constraints, sales constraints and

limited availability or absent products.

The UK-calibrated application that concludes this paper computes the hedging

portfolios of an annuity. First, this example permits the comparison of the magni-

tudes of first and second order effects, i.e., the deltas and gammas, within a single

type of risk, across risks and across generations. Second, the application illustrates

the straightforward computation of sensitivities and hedges, given closed-form so-

lutions and linear systems. Third, it demonstrates the effectiveness of delta and

gamma hedging, even when the hedge is adjusted discretely in time, as occurs in

practice, rather than renewed continuously. The application is extended to two gen-

erations to demonstrate the effectiveness of delta-gamma intra- and cross-generation

hedging strategies, even in the presence of constraints on the products that can be

sold or reinsured.

The paper is structured as follows: Section 2 reviews the mortality and interest rate

model and examines the pricing and hedging of annuities and life insurance policies.

Section 3 focuses on single-generation natural hedging. Section 4 presents hedging

on a multiple-generation portfolio. Section 5 presents a hedge example calibrated to

UK data. Assessment of hedge effectiveness is also provided. Section 6 concludes.
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2 Longevity and interest rate risks

We place ourselves in a continuous-time framework, as suggested by Cairns et al.

(2006a) and Cairns et al. (2008). In this framework, known as a “stochastic mor-

tality” approach, we use a parsimonious, continuous-time model for cohort-specific

mortality intensity that extends the classic Gompertz law and a benchmark model

for interest rate risk, the Hull and White model. This section introduces the models

for longevity and interest rate risk and delta-gamma hedging for a pure endowment,

as obtained in Luciano et al. (2012).

2.1 Model for longevity risk

We consider the time of death of an individual the first jump time of a Poisson

process with stochastic intensity, i.e., a Cox process. Let us introduce a probability

space (Ω,F,P) equipped with a filtration {Ft : 0 ≤ t ≤ T} that satisfies the usual

properties of right-continuity and completeness.1 Our approach is generation based.

We use x to indicate both the group (generation, cohort or gender) and its age at

time 0. The spot mortality intensity at calendar time t of an age belonging to

generation x is denoted by λx(t). We assume that under the historical P measure,

λx(t) follows an Ornstein-Uhlenbeck process without mean reversion (OU):

dλx(t) = axλx(t)dt+ σxdWx(t), (1)

where ax > 0, σx ≥ 0, and Wx is a standard one-dimensional Brownian motion.

Our choice of the OU process is motivated by its parsimony – very few parameters

must be calibrated – and its appropriateness to fit cohort life tables because of

1This filtration reflects both mortality and financial information. For a discussion of its rela-
tionship to the natural filtration of the mortality intensity and interest rate processes as well as
for the relevant change of measure, see Luciano et al. (2012).
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its lack of mean reversion. It is an affine process for which we can find closed-

form expressions for the survival probability. Moreover, it is a natural, stochastic

extension of the Gompertz model for the force of mortality and is easy to interpret in

light of traditional actuarial practice. Its major drawback is the positive probability

that λx will become negative. However, in each application of our model, we verify

that this probability is negligible and that the survival probability is decreasing

over the duration of human life.2 Together with the spot intensity, we consider the

forward instantaneous intensity, denoted fx(t, T ). This is the best forecast at time t

of the spot intensity at T because it converges to it when the horizon of the forecast

goes to zero, or T → t: fx(t, t) = λx(t). Standard properties of affine processes

allow us to represent the survival probability from time t to T as:

Sx(t, T ) = E
[
exp

(
−
∫ T

t

λx(s)ds

)
| Ft
]

= eαx(T−t)+βx(T−t)λx(t), (2)

αx(t) =
σ2
x

2a2
x

t− σ2
x

a3
x

eaxt +
σ2
x

4a3
x

e2axt +
3σ2

x

4a3
x

, (3)

βx(t) =
1

ax
(1− eaxt). (4)

As due in a stochastic mortality environment, survival probabilities in the future

Sx(t,·), t > 0 are random variables at time 0. Following a hint in Jarrow and

2See Luciano and Vigna (2008). In that paper, the authors argue that the OU model, along
with other non-mean reverting affine processes, meets all the criteria of a good mortality model
developed by Cairns et al. (2006a), with the exception of strictly positive intensity. Indeed, it fits
historical data well; its long-term future dynamics are biologically reasonable; it is convenient for
pricing, valuation and hedging; and its long-term mortality improvements are not mean reverting.
Most importantly for the case at hand, mortality-linked products can be priced using analytical
methods.
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Turnbull (1994), we can write the survival probability as:

Sx(t, T ) =
Sx(0, T )

Sx(0, t)
exp [−Xx(t, T )I(t)− Yx(t, T )] ,

Xx(t, T ) =
exp(ax(T − t))− 1

ax
,

Yx(t, T ) = −σ2
x[1− e2axt]Xx(t, T )2/(4ax),

I(t) = λx(t)− fx(0, t).

The term I(t), the difference between the instantaneous mortality intensity at t

and its forecast at time 0, is the longevity risk factor, i.e., the error in the forecast

that exposes insurance companies and pension funds to longevity risk. At time 0,

this is the only random quantity in future survival probabilities Sx(t, T ). Because

Xx(t, T ) > 0 and I(t) = 0 provides the “base” survival probability curve Sx(t, T ) =

Sx(0,T )
Sx(0,t)

exp [−Yx(t, T )], a positive I(t) implies a survival curve lower than the base

curve and vice versa. Indeed, I(t) is greater than 0 if the realized mortality intensity

is higher than its forecast, and consequently, the survival probability for every

duration T > t is lower than its forecast at time 0. Our hedging technique exploits

the crucial feature that I(·) depends only on t. The same factor affects all survivals

at each horizon T in the future.

2.2 Model for interest rate risk

While in the longevity domain we model spot intensities, in the financial domain

we adopt the standard Heath, Jarrow and Morton framework (Heath et al. (1992))

and directly model the instantaneous forward rate F (t, T ), which is the rate that

applies at instant T , as agreed upon at t < T .

Additionally, we assume that no arbitrages exist, and we start modeling directly
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under the risk neutral measure equivalent to P, which we call Q.3 We assume that

the process for the forward interest rate F (t, T ), defined on the probability space

(Ω,F,Q), is the well-known Hull and White (1990) model with constant parameters:

dF (t, T ) = −gF (t, T )dt+ Σe−g(T−t)dWF (t), (5)

where g > 0,Σ > 0 and WF is a univariate Brownian motion. The limit of the

forward rate when T → t is the short rate that applies instantaneously at t, r(t):

F (t, t) = r(t). The price of a zero-coupon bond issued at time t expiring at time T

is:

B(t, T ) = E
[
exp

(
−
∫ T

t

r(s)ds

)
| Ft
]
.

As with survival probabilities, bond prices at time t are random variables at time

0. They may be written as follows (see Jarrow and Turnbull (1994)):

B(t, T ) =
B(0, T )

B(0, t)
exp

[
−X̄(t, T )K(t)− Ȳ (t, T )

]
,

X̄(t, T ) =
1− exp(−g(T − t))

g
,

Ȳ (t, T ) =
Σ2

4g
[1− exp(−2gt)] X̄2(t, T ),

K(t) = r(t)− F (0, t).

As in the longevity case, the financial risk factor K(t), which is the difference

between the time-t spot and forward rates, is the only source of randomness that

affects bonds. It is the same across all bond maturities T .

3That measure is unique, with one Wiener and one risky bond with non-degenerate volatility.
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2.3 ALM and Greeks

In the presence of both longevity and interest rate risks, the fairly priced future

reserves of every insurance product become stochastic because survival probabilities

and bond prices are stochastic. This generates the need for liability hedging and

opens the way to ALM. If we compute the fair value of the reserves and assume

that insurance companies hedge this value, we implement liability hedging. If we

assume that insurance companies set up a hedged portfolio under a self-financing

constraint (which means that the premiums received for death or life benefits are

used to build the hedge) and may include bonds in the menu of available assets, we

perform asset and liability management.

To compute the fair value of an insurance liability, a change of probability mea-

sure is still needed. We assume that there exists a measure Q that allows the

mortality intensity to remain affine.4 This quite standard choice is equivalent to

fixing a risk premium5 θx(t) = qλx(t)
σx

, q ∈ R, q > −ax. We assume independence

between longevity and financial risks after the change of measure. Thereby, we can

provide expressions for the fair value of insurance liabilities as products of survival

or death probabilities and discount factors.

Consider first a pure endowment contract starting at time 0 and paying one unit

of account if the individual aged x is alive at time T . The fair value of such an

insurance policy at time t ≥ 0 is ZEx(t, T ). Assuming a single premium paid at the

policy issue, ZEx is also the time-t reserve for the policy and the value that must

4With a slight abuse of notation, we also use Q to denote this measure. A more detailed
discussion of the change of measure is provided in Luciano et al.(2012).

5Notice that, given the absence of a rich market for longevity bonds, there are no standard
choices to apply in the choice of θx(t). See, for instance, the extensive discussion in Cairns et al.
(2006b).
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be hedged by the life office. We have:

ZEx(t, T ) = Sx(t, T )B(t, T ) = (6)

= EQ

[
exp

(
−
∫ T

t

λx(s)ds

)
|Ft

]
EQ

[
exp

(
−
∫ T

t

r(u)du

)
|Ft

]
=

=
Sx(0, T )

Sx(0, t)
exp [−Xx(t, T )I(t)− Yx(t, T )]

B(0, T )

B(0, t)
exp

[
−X̄(t, T )K(t)− Ȳ (t, T )

]
,

where the parameter ax in Xx, Yx has become a′x = ax + q > 0 to account for the

measure change. For the sake of simplicity, we suppress the subscript x until Section

4, which introduces multiple cohorts. Using Ito’s lemma, for a given t, we obtain

the dynamics of the reserve ZE as a function of the changes in the risk factors:

dZE = B

(
∆M∆I +

1

2
ΓM∆I2

)
+ S

(
∆F∆K +

1

2
ΓF∆K2

)
,

where

∆M(t, T ) =
∂S

∂I
= −S(t, T )X(t, T ) < 0,

ΓM(t, T ) =
∂2S

∂I2
= S(t, T )X2(t, T ) > 0,

∆F (t, T ) =
∂B

∂K
= −B(t, T )X̄(t, T ) < 0,

ΓF (t, T ) =
∂2B

∂K2
= B(t, T )X̄2(t, T ) > 0.

To simplify the notation, we define the Greeks:

∆M
E (t, T ) = B(t, T )∆M(t, T ) < 0, (7)

ΓME (t, T ) = B(t, T )ΓM(t, T ) > 0, (8)

∆F
E(t, T ) = S(t, T )∆F (t, T ) < 0,

ΓFE(t, T ) = S(t, T )ΓF (t, T ) > 0.
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Using those definitions, the following is the change in the pure endowment:

dZE = ∆M
E ∆I +

1

2
ΓME ∆I2 + ∆F

E∆K +
1

2
ΓFE∆K2.

Let us consider an annuity – with annual installments R – issued at time 0 to an

individual belonging to a certain generation. Assuming the payment of a single

premium at policy inception, we obtain the prospective reserve ZA from t > 0 to

T :6

ZA(t, T ) = R
T−t∑
u=1

Bt,uSt,u,

where we use the short notation Bt,u for B(t, t+ u). We use the same shortcut for

S and the Greeks below. The change in the reserve for given t is straightforward

to compute:

dZA = R

[
∆M
A ∆I +

1

2
ΓMA ∆I2 + ∆F

A∆K +
1

2
ΓFA∆K2

]
,

where

∆M
A (t, T ) = −

T−t∑
u=1

Bt,uSt,uXt,u =
T−t∑
u=1

∆M
E (t, t+ u) < 0,

ΓMA (t, T ) =
T−t∑
u=1

Bt,uSt,u[Xt,u]
2 =

T−t∑
u=1

ΓME (t, t+ u) > 0,

∆F
A(t, T ) = −

T−t∑
u=1

Bt,uSt,uX̄t,u =
T−t∑
u=1

∆F
E(t, t+ u) < 0,

ΓFA(t, T ) =
T−t∑
u=1

Bt,uSt,u[X̄t,u]
2 =

T−t∑
u=1

ΓFE(t, t+ u) > 0.

As expected, deltas are negative and gammas are positive for both risks.

6The horizon T depends on the type of annuity issued, i.e., it is T for an annuity payable for
T years and ω − x for a whole life annuity.
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Let us consider now a life insurance issued at time 0. It has maturity T and

sum assured C, paid at the end of the year of death. If a single premium is paid at

policy inception, the following is the prospective reserve ZD from t > 0 to horizon

T :

ZD(t, T ) = C

T−t∑
u=1

Bt,u(St,u−1 − St,u).

The change in the reserve ZD at time t is:

dZD = C

[
∆M
D ∆I +

1

2
ΓMD ∆I2 + ∆F

D∆K +
1

2
ΓFD∆K2

]
,

where

∆M
D (t, T ) =

T−t∑
u=1

Bt,u(∆
M
t,u−1 −∆M

t,u) > 0, (9)

ΓMD (t, T ) =
T−t∑
u=1

Bt,u(Γ
M
t,u−1 − ΓMt,u) < 0, (10)

∆F
D(t, T ) =

T−t∑
u=1

(St,u−1 − St,u) ∆F
t,u < 0,

ΓFD(t, T ) =
T−t∑
u=1

(St,u−1 − St,u) ΓFt,u > 0.

As intuition would suggest, the Greeks for the longevity risks of life insurance and

annuities have the opposite signs. If the actual mortality intensity is higher than

forecasted (∆I > 0), life insurance contracts increase in value while endowments

decrease, up to the first order. Second order derivatives also have opposite values

because they mitigate the approximation given by the first derivative. The Greeks

of life insurance and annuities with respect to financial risk have the same sign

because they are all present values.

The Greeks with respect to the risk factors provide the exposure to mortality and
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interest rate forecast errors in closed form. However, they do more: they create

the possibility of hedging. If the sole aim is mortality risk hedging, one can create

a hedged portfolio taking only short positions (i.e., issued policies). This is the

case analyzed by Wang et al. (2010). If instead the aim is mortality and financial

risk hedging using solely insurance products, a mix of short and long positions (i.e.,

issued policies and reinsurance purchased) is needed to neutralize the risk exposure.

If the insurer cannot or does not want to buy reinsurance, natural hedging for

mortality risk can be used; after creating a portfolio of issued policies, long and

short positions can be taken in bonds to hedge financial risk. In this case, one

should first hedge the mortality risk and then the interest rate risk because the

insurance products used to hedge mortality risk produce additional interest rate

risk.

3 Natural hedging within a single generation

To implement natural hedging, it is possible to compute the number of offsetting

contracts in closed form. Consider an insurer who has issued m annuities with

rate R and maturity T1 as well as n life insurance policies with face value C and

maturity T2 on the same generation.7 The change in the value of its liabilities ZH(t)

for t < min{T1, T2}, can be written as:

dZH(t) = mdZA(t, T1) + ndZD(t, T2) = (11)

= (Rm∆M
A + Cn∆M

D )∆I(t) +
1

2
(RmΓMA + CnΓMD )∆I2(t) +

+ (Rm∆F
A + Cn∆F

D)∆K(t) +
1

2
(RmΓFA + CnΓFD)∆K2(t),

7Our results also apply when more life insurance contracts with different maturities Ti are
considered, as the calibrated example in Section 5 shows.
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where the coefficients of the changes in the risk factors are simply the weighted

sums of the sensitivities of each liability. This follows from the fact that the risk

factors depend only on t. What differs by product is the first and second order

exposure – i.e., the Greeks.

Natural hedging can be achieved because it is possible to select m and n such that

the coefficients of ∆I and ∆I2 are both equal to 0:

Rm∆M
A + Cn∆M

D = 0,

RmΓMA + CnΓMD = 0.

This is a linear system of two equations with two unknowns m and n. Negative

solutions for m or n indicate that the insurer must take a short position or sell the

contract. Positive solutions indicate long positions, i.e., reinsurance needs. Thus,

longevity risk is hedged according to standard risk management techniques, up

to first and second order approximations. As usual, because the risk factors are

modeled in continuous time, a perfect hedge would require continuous adjustments

of the positions. We show in Section 6 that delta-gamma strategies are quite robust

to discrete implementation under realistic calibrations. The hedge described thus

far entails only liabilities. We could extend it to assets by including bonds, which

we do so in the application. We also consider the case of a self-financing hedge.

4 Natural hedging across generations

Suppose that we must hedge the liability of a pure endowment written on generation

x with that written on another generation y. All generations are subject to the

same financial risk factor because the term structure of interest rate is the same

for all generations. We assume that each generation has its own intensity and,

14



therefore, its own longevity risk factor, but the intensities of two generations are

instantaneously correlated. This captures the idea that the drivers of longevity

risk, while not exactly the same across generations, are all affected by progress in

medicine and improved welfare on the one hand and by possible pandemics on the

other. Using the notation from Section 2, we have:

dλx = a′xλxdt+ σxdWx(t), (12)

dλy = a′yλydt+ σydWy(t), (13)

where the two Brownians have correlation coefficient ρ. Appendix A shows that,

by re-parametrizing the two sources of risk through independent Wieners, one can

isolate the mortality risk that affects generations x and y (the common risk) from the

risk that affects only y (the idiosyncratic risk). We identify the common risk factor

as I(t) and denote the idiosyncratic risk factor describing the y-specific variations

as I ′(t). Obviously, I ′(t) is instantaneously uncorrelated with I(t), and the survival

probability of generation y is affected by both I and I ′. With this parametrization

of the two factors, the Greeks for pure endowments, annuities and life insurance

policies written on generation x, which we derived in the previous sections, still

apply. We now provide the analogous Greeks for generation y. Appendix A shows

that:

dSy(t, T ) =
∂Sy(t, T )

∂t
dt+ ∆M,x

y (t, T )dI + ∆M,y
y (t, T )dI ′ +

+
1

2
ΓM,x
y (t, T )dI2 +

1

2
ΓM,y
y (t, T )dI ′2, (14)
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where

∆M,x
y (t, T ) =

∂Sy(t, T )

∂λy
ρ
σy

σx
= −ρ

σy

σx
Xy(t, T )Sy(t, T ) = ρ

σy

σx
∆M

y (t, T ), (15)

∆M,y
y (t, T ) =

∂Sy(t, T )

∂λy
= −Xy(t, T )Sy(t, T ) = ∆M

y (t, T ), (16)

ΓM,x
y (t, T ) =

(
ρ
σy

σx

)2 ∂2Sy(t, T )

∂2λy
=

(
ρ
σy

σx

)2

X2
y (t, T )Sy(t, T ) =

(
ρ
σy

σx

)2

ΓM
y (t, T ), (17)

ΓM,y
y (t, T ) =

∂2Sy(t, T )

∂2λy
= X2

y (t, T )Sy(t, T ) = ΓM
y (t, T ). (18)

Obviously, the Greeks of generation y with respect to the common risk factor x,

∆M,x
y and ΓM,x

y , depend on ρ. The sign of the first derivative with respect to the

common risk ∆M,x
y is opposite as the sign of the correlation coefficient ρ, while the

derivative with respect to idiosyncratic risk ∆M,y
y is negative, as expected. Both

gamma coefficients are non-negative, as usual. The gamma with respect to the

common risk ΓM,x
y is positive (and equals zero whenever ever ρ equals zero), while

the gamma with respect to idiosyncratic risk ΓM,y
y is strictly positive.

Using notation similar to (7) and (8), the change in the reserve for a pure endowment

on y is:

dZEy = ∆M,x
Ey ∆I +

1

2
ΓM,x
Ey ∆I2 + ∆M,y

Ey ∆I ′ +
1

2
ΓM,y
Ey ∆I ′2 + ∆F

Ey∆K +
1

2
ΓF
Ey∆K2.

The change in the reserve of an annuity on y is:

dZAy = R

[
∆M,x

Ay ∆I +
1

2
ΓM,x
Ay ∆I2 + ∆M,y

Ay ∆I ′ +
1

2
ΓM,y
Ay ∆I ′2 + ∆F

Ay∆K +
1

2
ΓF
Ay∆K2

]
,

∆M,j
Ay (t, T ) =

T−t∑
u=1

∆M,j
Ey (t, t+ u),

ΓM,j
Ay (t, T ) =

T−t∑
u=1

ΓM,j
Ey (t, t+ u) ≥ 0,

with j = x, y. While the sign of ∆M,y
Ay is negative as usual, the sign of ∆M,x

Ay is

opposite the sign of ρ. The gammas are strictly positive, with the exception of

ΓM,x
Ay (t, T ), which is null when ρ = 0.
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The change in the reserve for life insurance is:

dZDy = C

[
∆M,x

Dy ∆I +
1

2
ΓM,x
Dy ∆I2 + ∆M,y

Dy ∆I ′ +
1

2
ΓM,y
Dy ∆I ′2 + ∆F

Dy∆K +
1

2
ΓF
Dy∆K2

]
,

∆M,j
Dy (t, T ) =

T−t∑
u=1

Bt,u(∆M,j
y (t, t+ u− 1)−∆M,j

y (t, t+ u)),

ΓM,j
Dy (t, T ) =

T−t∑
u=1

Bt,u(ΓM,j
y (t, t+ u− 1)− ΓM,j

y (t, t+ u)),

with j = x, y. For positive ρ, the comments on the sign of ∆M,x
Dy (t, T ) are the same

as in (9). The opposite comments apply for negative correlations. Provided that

ρ 6= 0, the comments on the sign of ΓM,x
Dy (t, T ) are the same as in (10). The same

comments as in (9) and (10) hold for the delta and gamma of generation y with

respect to its factors ∆M,y
Dy (t, T ) and ΓM,y

Dy (t, T ).

4.1 Hedging

If the insurer wants to hedge mortality risk on generation x but does not have

enough insurance products on that generation, products on generation y can be used

to offset exposure to the common risk factor. However, coverage of the common

risk factor I implies exposing the portfolio to the idiosyncratic risk I ′ of generation

y unless generations are perfectly correlated. This risk can be evaluated and can be

either traded away by the insurer in a market or reinsured. Imagine an insurer who

has issued nH products on generation x with fair value ZH . He can delta-gamma

hedge his liability by assuming positions in ni units of some other N instruments

with fair value Zi, i = 1, ..., N . The products available for hedging the longevity

risk factor of each cohort can be written either on the same cohort as ZH or on

different ones. To simplify the notation, the index i of each product denotes both

the type of product (i.e., E, A, D) and its maturity. As in the single-generation

case, we interpret negative positions ni < 0 as short positions on the corresponding
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product and positive solutions ni > 0 as reinsurance purchases.8 Hedging portfolios

are obtained by equating to zero ∆M,j
Π , ∆F

Π, ΓM,j
Π , and ΓFΠ, where the subscript Π

refers to the portfolio itself, the superscript M, j refers to the j-th longevity risk

factor, j = 1, ..., J is the cohort on which the product is written,9 and F refers to

the financial risk factor, which is unique across cohorts.

The quantities ni, i = 1, ..., N therefore solve the following system (for a given

nH):



nH∆M,j
H (t, TH) +

N∑
i=1

ni∆
M,j
i (t, Ti) = 0, j = 1, ..., J. (19)

nH∆F
H(t, TH) +

N∑
i=1

ni∆
F
i (t, Ti) = 0, (20)

nHΓM,j
H (t, TH) +

N∑
i=1

niΓ
M,j
i (t, Ti) = 0, j = 1, ..., J. (21)

nHΓFH(t, TH) +
N∑
i=1

niΓ
F
i (t, Ti) = 0. (22)

The expressions for the delta and gamma coefficients take the forms we derived

in the previous sections, depending on the i-th product type (pure endowment,

annuity, life insurance). When we simultaneously solve:

• the J equations (19), we delta hedge longevity risk;

• the J + 1 equations (19) and (20), we delta hedge both risks;

• the 2J equations (19) and (21), we delta-gamma hedge longevity risk;

• all 2+2J equations (19),(20),(21) and (22), we delta-gamma hedge both risks.

8Alternatively, we can interpret positive positions as need for mortality-linked contracts, such
as survivor bonds and other derivatives.

9Notice that the number of longevity risk factors to hedge against is the same as the number
of generations in the portfolio.
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In all cases we perform liability hedging. ALM occurs when we either require

the portfolio to be self-financing or add a bond. In the former case, a further

equation must be added to the system. Because we have assumed that a single fair

premium is paid at policy issuance, self-financing strategies are characterized by

the self-financing constraint:

nHZH +
N∑
i=1

niZi = 0. (23)

The self-financing constraint equates the inflows from sales and the outflows for

asset purchases; it means that the premiums are used to buy hedging instruments.

To include a zero-coupon bond,10 it is sufficient to expand our notation to include

a contract ZN+1 whose value is the discount factor (or to imagine a fake generation

that has a constant survival probability equal to one). Because bonds are unaffected

by mortality risk, their Greeks with respect to mortality are null, and bonds can be

used as hedging instruments for financial risk.

We obtain a unique solution to the system of equations that solves the delta or

delta-gamma hedging problem if the matrix of the ni coefficients is full rank and

the number of hedging instruments equals this rank. This imposes a restriction on

how many life insurance liabilities (and bonds, when they are admitted) are used

for coverage:

• N = J instruments for delta hedging longevity risk;

• N = J + 1 instruments for delta hedging both risks;

• N = 2J instruments for delta-gamma hedging longevity risk;

• N = 2 + 2J instruments for delta-gamma hedging both risks.

10Because any bond can be stripped into zero-coupon bonds, with some additional notation, we
can also include coupon bonds.
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If one accepts multiple solutions, this restriction can be relaxed. A further

instrument is required if the portfolio must be self-financing.

As anticipated in Section 2, one can also implement a two-step procedure that

requires solving two systems of equations sequentially. First, neutralize the Greeks

with respect to mortality using insurance products. Then, given the insurance

portfolio, use bonds to cover the resulting financial risk. In the special case in

which the term structure of interest rates is flat and interest rate risk is absent, one

can obviously omit the second step.

4.2 Practical issues

The delta-gamma hedging procedure proposed in the previous sections appears rel-

atively simple, but its implementation must cope with some important practical

issues. It might be difficult for a life office to sell the exact number of policies re-

quired for hedging purposes and/or to buy the exact amount of reinsurance. If the

desired number of policies does not match the availability of potential customers

in the market, the system of equations (19)–(23) should be accompanied by some

additional constraints. The additional restrictions may imply that the system has

no longer a solution. In this case, it is necessary to include additional hedging in-

struments to obtain at least one solution to the system.

If reinsurance is not available, the delta-gamma hedging procedure should be per-

formed in two steps, as described in Section 2. The two-step procedure provides

more freedom to choose insurance products and may avoid reinsurance. The fol-

lowing simple example illustrates this.

Suppose that a life office sells one annuity written on generation x (nH = −1)

and wants to hedge it with the appropriate number (n1, n2)of life insurance policies

with different maturities issued on the same generation. The numbers that achieve
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delta-gamma hedging solve the following system:

 −∆H + n1∆1 + n2∆2 = 0,

−ΓH + n1Γ1 + n2Γ2 = 0.
(24)

Suppose that we want to avoid reinsurance, i.e., we want both n1 and n2 to be

negative. Assuming that ∆1

Γ1
6= ∆2

Γ2
, it can be proved that the goal is achieved if and

only if the following inequality holds:

min

{
∆1

Γ1

,
∆2

Γ2

}
<

∆H

ΓH
< max

{
∆1

Γ1

,
∆2

Γ2

}
. (25)

This means that the ratio between delta and gamma of the annuity lies between

the corresponding ratios of the life insurance policies. In Section 5.3, we provide

an example in which condition (25) is satisfied, and the quantities n1 and n2 are

negative.

Finally, reinsurance is costly. We should separate two cases: non-self-financing and

self-financing strategies. In the first case, reinsurance premiums do not enter the

system; hence, they do not affect the solution of the system directly. The hedging

strategy does not change, even though its total cost is higher. In the second case,

reinsurance premiums can be introduced into the model by adding the corresponding

loadings to the fair value Zi of the hedging instruments in equation (23). In this

case, the solution to the system is affected, but the method remains valid.

5 UK-calibrated application

In Sections 5.1 and 5.2, we calibrate the model to UK data and present the corre-

sponding hedge ratios. In Section 5.3, we compute the portfolio mix of annuities
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and life insurance contracts within each generation that immunizes the portfolio up

to the first and second order. We also assess the effectiveness of the hedging strate-

gies using Monte Carlo simulation. In Section 5.4, we consider cross-generation

immunization.

5.1 Calibration

In calibrating the model to UK data, we assume that the risk premium on longevity

risk is null: q = 0, so that a′ = a.11 We calibrate the parameters of the mortal-

ity intensity processes using UK cohort tables taken from the Human Mortality

Database. We consider contracts written on the lives of male individuals who were

35 (generation 1973, which we call x), 65 (generation 1943, which we call y) and

75 (generation 1933, which we call z) years old on 31/12/2008. We calibrate the

OU model to the data using a standard least squares method. We denote the set of

n observed survival probabilities for each generation j = x, y, z and different hori-

zons τ = 1, 2, ..., n as τ p̃j. We jointly estimate the parameters and instantaneous

correlations of the three generations. The calibrated values of aj, σj and vector

ρ = [ρxy, ρxz] minimize the error:

∑
j=x,y,z

n∑
τ=1

(τ p̃j − Sj(τ ; aj, σj, ρ))2,

where Sj(τ ; aj, σj, ρ) are the theoretical survival probabilities for τ years. We derive

them following the framework described in Duffie et al. (2000), as explained in

Appendix B. The value of λj(0) is equal to − ln pj. We select twenty years of

observations (n = 20), using 31/12/1988 as the observation starting point. It follows

11This assumption will be easily removed by calibrating the model parameters to actual mortal-
ity derivative prices as soon as a liquid market for them exists. Alternatively, we could parametrize
the results to a hypothetical, positive risk premium.
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Table 1: Calibrated parameters

Mortality intensity
aGEN σGEN λGEN(0) ρx,GEN

GEN : x 0.0809 0.0000325 0.000396 1
GEN : y 0.0801 0.0001987 0.002919 0.9919
GEN : z 0.0750 0.0005970 0.0087 0.9971

Spot interest rate
g Σ θ r(0) Calibration error

0.0244 0.0217 0.2432 0.0153 0.000346101

that the initial ages for generations x, y, and z are 15, 45, and 55, respectively. Table

1 reports the result of our calibration. The overall calibration error is 7.72 ∗ 10−5.

The calibrated parameters satisfy the sufficient condition for biological reason-

ableness for the OU model, as in Luciano and Vigna (2008), and the shape of the

predicted survival curve is reasonable (decreasing up to the terminal age ω = 120).

However, because the model is used to predict survival probabilities that are in the

distant future, survivorship at older ages is forecasted with some degree of uncer-

tainty.12 Although the OU model does not guarantee positive mortality intensity,

we find that the probabilities of negative λx, λy, λz are negligible given the pa-

rameters in Table 1. At the one-year horizon considered in our simulations, the

probability of negative intensity is 10−37 for generation x, 10−53 for generation y

and 10−52 for generation z.

In the application that follows, we consider longevity risk alone as well as longevity

and interest rate risks together. To prepare to introduce interest rate risk, we

calibrate the constant parameter Hull-White model to UK government bonds on

12It is well known that no parsimonious mortality model describes mortality over the whole life
span. Hence, survival probabilities at older ages may not be forecasted properly. The use of a
two-factor model is likely to improve on this point. Alternatively, the calibration of the parameters
ax and σx could be performed using projected mortality tables rather than observed figures, as
in Luciano and Vigna (2008). This would imply calibrating the parameters of the OU mortality
model using data forecasted by other mortality models (those underlying the projected tables).
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Table 2: Greeks for annuities and life insurance policies

Whole life ann. 10-yr LI 12-yr LI 15-yr LI 20-yr LI 25-yr LI

Gen. 1973 (x)

Price 2.52 3.14 4.13 5.98 8.08

∆M
i 6282.31 7793.43 10188.18 14492.64 19154.94

ΓMi -457732.60 -734018.14 -1344487.87 -3114396.87 -6385279.86

∆F
i -13.49 -19.70 -31.50 -58.36 -95.47

ΓFi 87.79 150.17 290.55 683.80 1339.05

Gen. 1943 (y)

Price 12.68 16.60 20.15 25.37 33.43 40.16

∆M
i -1411.54 5153.97 6070.33 7250.65 8532.00 8799.38

ΓMi 479726.3 -365650.98 -553680.14 -915343.48 -1689235.25 - 2505336.59

∆F
i -105.87 -86.49 -122.03 -183.87 -300.95 -418.91

ΓFi 1270.02 553.62 910.38 1644.84 3351.31 5423.88

Gen. 1933 (z)

Price 8.87 36.88 42.81 50.27 58.77 63.07

∆M
i -494.96 3276.24 3525.16 3637.64 3311.63 2742.82

ΓMi 65834.52 -201349.93 -274028.32 -377954.11 -486175.47 -473502.73

∆F
i -57.37 -181.47 -240.85 -328.95 -451.38 -526.27

ΓFi 542.04 1121.42 1716.88 2760.36 4531.13 5837.12

2/1/2009. We use data on the nominal government spot yield curve provided by

the Bank of England. We obtain the zero-coupon prices on that date and calibrate

the parameters of the interest rate dynamics using the least squares method, i.e.,

minimizing the squared differences between observed and fitted bond prices. The

results are presented in Table 1.

5.2 Greeks

We first analyze each generation separately. Consider whole life annuities with a

unit benefit on generations y and z and life insurance policies with different matu-

rities on all three generations. The life insurance contracts (LIs) have sum insured

of C = 100 and maturities of 10, 12, 15, 20, and 25 years. Table 2 summarizes the

reserves and Greeks of the policies.

The table shows that the prices of LIs written on the youngest generation x are

approximately 5 and 10 times smaller than those on y and z, respectively, because
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the death probabilities of generation x are much smaller than the others. The

annuity price of generation z is lower than y because that generation has a shorter

life expectancy at policy inception.

It is evident from the table that, within each generation, the deltas and gammas

with respect to longevity are greater (in absolute value terms) than the Greeks

for financial risk. This happens for every product and maturity and is consistent

with the result in Luciano et al. (2012) for pure endowments. Despite the relative

magnitude of the Greeks, a one standard deviation change in the financial risk

factor has a greater impact than a comparable change in the longevity risk factor,

especially over the short term because the standard deviation of the financial risk

factor is higher than that of the mortality risk factor.13

If we consider a single insurance product and compare the Greeks across gener-

ations we notice the following:

– the sensitivity to mortality risk decreases in absolute value when moving from

younger to older generations;

– the sensitivity to financial risk increases in absolute value when moving from

younger to older generations for LIs and decreases for annuities.

The Greeks with respect to the longevity risks of annuities and LIs have opposite

signs, while the sensitivities with respect to financial risk match in sign. Thus,

there exists no portfolio mix of annuities and life insurance contracts without long

positions that is able to neutralize the exposure against both longevity and interest

13For instance, consider a one-year change in the two risk factors equal to one standard deviation:
∆I = 0.0002 and ∆K = 0.0217. The effect on the value of an annuity written on generation y is

∆M∆I +
1

2
∆I2 + ∆F ∆K +

1

2
∆K2 = −2.57.

The first two terms, which represent the change in annuity value due to mortality risk, sum to
-0.28, while the last two terms, which represent the value change due to interest rate risk, sum
to -2.29. Overall, the effect of mortality risk, though non-negligible, is smaller than that due to
interest rate risk despite the magnitude of the longevity Greeks.
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rate risks –either reinsurance or bonds are needed.

5.3 Intra-generational hedging

Consider an insurer who has issued a whole life annuity with a unit benefit on an

individual belonging to generation y, that is, nH = −1. Using insurance contracts

and bonds, he aims to achieve instantaneous neutrality to longevity and interest

rate shocks. We compute the hedging coefficients, i.e., the positions the insurer

must hold, when he uses LIs on the same cohort y as the annuitant and different

hedging objectives (listed in the first column of Table 3). We assume the existence

of enough instruments to provide a unique solution to the hedging system. The

objectives are specified in the first column of Table 3 and include coverage of the

first or second order of different risks, with or without self-financing. Empty cells

refer to redundant hedging instruments, which are not used in the hedging strategy.

The rest of Table 3 reports the quantities ni needed for hedging. The last column

contains the initial value of the hedged portfolio. This value is the sum of the

premiums collected from the sale of policies net of reinsurance costs, where the

value of self-financing strategies is zero.

Given the set of LIs with maturities ranging from 10 to 25 years, the first row of

the table shows the only case in which a portfolio of policies issued by the insurer is

naturally hedged (without resorting to reinsurance or bonds), which is delta-hedging

of longevity risk only, as in Wang et al. (2010). Delta hedging of the mortality risk

of the annuity is accomplished by issuing 0.27 10-yr LIs. When we create the other

hedging strategies, i.e., we want to neutralize exposure to both sources of risk or

establish self-financing strategies, we must combine short positions with at least one

long position on a contract. This is needed to make the portfolio self-financing or
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Table 3: Hedging strategies for an annuity on generation y

Strategy/Instrument 10-yr LI 12-yr LI 15-yr LI 20-yr LI 25-yr LI Value
D M -0.27 17.22

D MF -7.84 6.43 13.42
DG M 3.36 -3.09 23.25

DG MF -27.04 59.54 -52.09 17.12 5.00
D M SF -34.49 29.05 0

D MF SF 26.25 -36.98 15.40 0
DG M SF 603.32 -807.15 246.70 0

DG MF SF -197.89 322.69 -132.32 -12.02 13.82 0
In the table, D stands for delta hedging, DG for delta-gamma hedging, M for longevity only, MF for both

longevity and financial risk neutralization, and SF for self-financing. Empty cells refer to instruments that are not

used in the strategy; their holding is set to zero. The Value column refers to the fair value of the liability

portfolio, which equals the premiums collected when setting up the position.

to neutralize exposure with respect to financial risk, which increases when adding

the LI policies issued (together with the annuity) to the portfolio. For instance, line

2 of Table 3 reports the delta hedging portfolio for longevity and financial risks.

Reinsurance on 6.43 12-yr LIs is needed to reach the objective. If we consider a

strategy involving 10- and 30-yr LIs, it is possible to design a delta-gamma hedging

strategy for longevity risk without resorting to reinsurance, as described in Section

4.2. Indeed, in this case, condition (25) is satisfied:

∆1

Γ1

= −0.0141 <
∆H

ΓH
= −0.00294 <

∆2

Γ2

= −0.00268.

The delta-gamma non-self-financing hedging strategy (not reported in Table 3)

consists in issuing 0.03 10-yr LIs and 0.15 30-yr LIs.

As explained in Sections 2.3 and 4.1, it is also possible to substitute some hedging

instruments with bonds. The use of bonds in this strategy has the advantage of

not requiring reinsurance on LIs. For instance, delta hedging of both longevity and

financial risks can be achieved by using one LI and one bond from the interest rate

market rather than two LIs. Such a hedging portfolio (not reported in Table 3)
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is made by issuing 0.27 10-yr LIs (as in longevity only delta hedging) and buying

20.60 10-yr zero-coupon bonds. The value of this portfolio, 2.63, is smaller than

that of natural hedging without bonds, 13.42 (line 2 of Table 3).

5.3.1 Hedge effectiveness

This section shows the effectiveness of some of the hedging portfolios reported in

Table 3 in reducing longevity and financial risks. We compare non-hedged, delta

hedged, and delta-gamma hedged portfolios. For illustrative purposes, we consider

the following three portfolios:

1. Portfolio 1 (NH): Non-hedged, self-financing portfolio containing 1 (m = −1)

issued annuity (not reported in Table 3).

2. Portfolio 2 (DH): Self-financing longevity and financial delta-hedged portfolio

containing the annuity and the LIs with the maturities and positions as in

line 6 of Table 3.

3. Portfolio 3 (DGH): Self-financing longevity and financial delta-gamma-hedged

portfolio containing the annuity and the LIs as in line 8 of Table 3.

After the hedge has been established, the approximate value of the change in

the overall reserve (portfolio value) is given by:

dZH =

(
−∆M

A +

N∑
i=1

ni∆
M
i (t, Ti)

)
∆I(t) +

1

2

(
−ΓM

A +

N∑
i=1

niΓ
M
i (t, Ti)

)
∆I(t)2 +

+

(
−∆F

A +

N∑
i=1

ni∆
F
i (t, Ti)

)
∆K(t) +

1

2

(
−ΓF

A +

N∑
i=1

niΓ
F
i (t, Ti)

)
∆K(t)2,

where N is the number of hedging instruments involved in the strategy, which is 0

in the NH, 3 in the DH, 5 in the DGH portfolios.

In the DH portfolio, only the coefficients multiplying ∆I(t) and ∆K(t) are

nullified, while in the DGH portfolio, the coefficients multiplying ∆I(t)2 and ∆K(t)2
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Table 4: Mean and Standard deviation of the hedging error after 3 months and 1
year

Mean (Std Deviation)

Strategy 3-month 1-year

Portfolio 1 (NH) 0.90 (0.69) 1.88 (1.33)

Portfolio 2 (DH) 0.29 (0.32) 0.91 (1.28)

Portfolio 3 (DGH) 0.25 (0.20) 0.83 (0.64)

are set tozero as well. Thus, the approximate instantaneous change of the unhedged

portfolio is:

dZNH
H = −∆M

A ∆I(t)− 1

2
ΓMA ∆I(t)2 −∆F

A∆K(t)− 1

2
ΓFA∆K(t)2,

and the change in the reserve of the DH portfolio is:

dZDH
H =

1

2

(
−ΓM

A +

3∑
i=1

niΓ
M
i (t, Ti)

)
∆I(t)2 +

1

2

(
−ΓF

A +

N∑
i=1

niΓ
F
i (t, Ti)

)
∆K(t)2.

The approximate change of the DGH portfolio is null: dZDGH
H = 0. Hence, we would

expect the change in the reserve of a non-hedged portfolio to be larger than that

of a delta-hedged portfolio, that we obviously expect to be larger than that of a

delta-gamma hedged portfolio, the last being null. To check this, we have simu-

lated 100000 realizations of the stochastic interest rate r(t+ dt) and the stochastic

mortality intensity λ(t+ dt) using the calibrated parameters. In each of the 100000

scenarios, we have computed the change in value of the reserve for the three portfo-

lios over the time horizons of 3 months and 1 year. In Table 4, we collect the means

and standard deviations of the absolute change in their portfolio reserves (hedging

error).

As expected, over both horizons, the means and standard deviations are lowest

when the portfolio is delta-gamma hedged. The reduction in the variability of the
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Table 5: Stress test on the means and standard deviations of hedging error after 1
year

Strategy a σ λ(0)
+10% -10% +10% -10% +10% -10%

Mean (Std Deviation)
Portfolio 1 (NH) 1.88 (1.33) 1.89 (1.33) 1.89 (1.33) 1.88 (1.33) 1.96 (1.30) 1.86 (1.41)

Portfolio 3 (DGH) 0.88 (0.67) 0.79 (0.62) 0.86 (0.69) 0.80 (0.60) 1.66 (0.96) 0.71 (0.72)

position after a 3-month period is substantial (0.69 in the NH portfolio, 0.20 in the

DGH portfolio). The one-year standard deviation of the DGH strategy is 0.64 vs.

1.33 for the unhedged portfolio.

Because we use a continuous-time theoretical model, the results are likely to improve

using a rebalancing interval shorter than 3 months. However, when rebalancing the

strategy at intervals shorter than one year, seasonality effects, which are not cap-

tured by our mortality model, may intervene. The table shows that even if our

strategy performs best when rebalanced at shorter time intervals, it still leads to

relevant hedging gains when rebalanced at longer time spans.

The variability reduction obtained through the DGH portfolio, together with the

lower average hedging error, is robust to calibration error in the mortality model.

Table 5 shows the standard deviation of the strategy when the true value of each

parameter is 10% above or below the value used in computing the strategy. The

strategy is most sensitive to an error in the choice of λ(0), when the true initial

instantaneous mortality intensity is higher than assumed when the hedge is calcu-

lated. Still, even if the error is as high as 10%, the DGH strategy outperforms the

unhedged portfolio.
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Table 6: Hedging strategies for an annuity on generation y using products written
on generation x

Strategy/Instrument 10-yr LIx 12-yr LIx 15-yr LIx 20-yr LIx Value
D M -0.45 15.30

D MF -11.94 4.57 15.44
DG M 18.33 -8.55 17.54

DG MF 2202.73 -3874.76 2007.37 -282-95 17.80
D M SF -233.75 100.73 0

D MF SF 1196.14 -1497.71 533.77 0
In the table, D stands for delta hedging, DG for delta-gamma hedging, M for longevity only, MF for both

longevity and financial risk neutralization, and SF for self-financing. Empty cells refer to instruments that are not

used in the strategy; their holding is set to zero. The Value column refers to the fair value of the liability

portfolio, which equals the premiums collected when setting up the position.

5.4 Cross-generational natural hedging

We now consider the case in which the insurer has a portfolio including products

issued on generations x and y and wants to hedge the longevity risk of the second

generation using exclusively products on the first. In our example, the insurer has

issued an annuity on the older cohort y (nH = −1) and wants to use life insurance

policies with different maturities written on the lives of the younger generation x

as hedging instruments.

Using cross-generational hedging, we exploit the correlation between the dynamics

of the intensities of these two generations to hedge against the common risk factor.

Table 6 reports the optimal hedging strategies to achieve different goals. As in

Section 5.3, we assume that there are enough products to guarantee the existence

and uniqueness of the hedging strategy.

To compare different possibilities associated with the same hedging objective,

we identify and compare three types of hedging portfolios. The common hedging

objective is delta hedging of mortality and financial risk. The first portfolio is

reported in line 2 of Table 3 and includes only products written on the lives of

individuals belonging to generation y. The second portfolio is reported in line
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2 of Table 6 in which the annuity on y is hedged by LIs on x only. The third

portfolio includes products on y and bonds, as described at the end of Section

5.3. Idiosyncratic risk is involved, as the value of the second portfolio is affected

by a change in the risk factor I ′. The first and third portfolios are unaffected by

idiosyncratic risk.

If enough products on generation y are available, namely, 2 LIs, there is no need

to hedge cross-generationally. When no sale or reinsurance on LIs on generation

y is feasible, the insurer can construct a delta hedged portfolio using LIs written

on generation x. He should issue 11.94 10-yr LIs and buy reinsurance on 4.57

20-yr LIs. In this example, the practical application of natural cross-generation

hedging yields a portfolio whose value of liabilities is slightly higher than that of

the intra-generational portfolio (15.44 vs. 13.42). To compare the effectiveness of

the hedges, we compute the value change of the three portfolios after a shock on

the three risk factors as large as their instantaneous volatility (∆I = −0.000198,

∆I ′ = −0.000025, ∆K = −0.0217). Table 7 reports the effects of such changes on

the values of the portfolios and isolates the impact of each risk factor realization.

In particular, the column labeled “effect of ∆I” reports the quantity ∆M,j
Π ∆I +

1
2
ΓM,j

Π ∆I2, where ∆M,j
Π and ΓM,j

Π are the delta and the gamma of the whole portfolio

with respect to changes in I, and so on.

As in Table 4, the difference between unhedged and hedged portfolios is remarkable:

the order of magnitude of the change in portfolio value of the unhedged portfolio is at

least 10 times larger than in the hedged portfolios. In all portfolios, the changes are

non-null because they are delta hedged, and second order terms affect the change of

the reserve. The table highlights that, even if the forecast error on interest rate risk

is the main source of hedging error for the unhedged portfolio, unexpected changes

in mortality rates can contribute substantially to portfolio variability. Realized

32



Table 7: Effect of a realized change in the risk factors on 3 portfolios

Portfolio/Risk factor Effect of ∆I Effect of ∆I ′ Effect of ∆K Total

Unhedged -2.29% 0 -20.48% -22.76%

Single-generation 0.30% 0 0.01% 0.31%

Cross-generation 1.80% -0.46% 1.19% 2.54%

Bond -0.43% 0 -2.11% -2.55%
The table shows the percentage change in the unhedged portfolio and three hedging portfolios

following realized changes in the risk factors equal to

∆I = −0.000198,∆I ′ = −0.000025, and∆K = −0.0217.

mortality intensity is lower than predicted and interest rates decrease, leading to a

substantial and unexpected 22.76% increase in the fair value of the annuity, mainly

(approximately 90%) due to interest rate forecast error. This is the change in the

value of an unhedged position. In contrast, 96% of the variation of the single-

generation portfolio is due to the change ∆I. In the cross-generation portfolio, we

see the effect of idiosyncratic risk: even if correlation is very close to 1, the effect

of the change in I ′ (−0.46%) is notable, being (in absolute terms) nearly one-third

of the change due to I (1.80%). The within-generation strategy performs best, as

the change in the portfolio value is 0.31%. Compared with the unhedged portfolio,

the cross-generation hedging strategy greatly reduces the value change to 2.54%

with respect to the unhedged portfolio. The hedging strategy including the bond

leads to a slightly higher percentage portfolio value change of -2.55%. The increase

in the value of the long position on the bond is indeed offset by a larger increase

in the value of the insurance liabilities. Consequently, it performs worse than the

portfolios that include insurance liabilities only.
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6 Conclusions

In this paper, we have studied the natural hedging of financial and longevity risks

using the delta-gamma technique. We have assumed a continuous-time, cohort-

based model for longevity risk that generalizes the classic Gompertz law and a

standard stochastic interest rate model (Hull-White).

We have extended the existing literature by analyzing financial and longevity risks at

the same time by providing closed-form hedges and by considering intra-generation

as well as cross-generation hedges. We have obtained portfolios that are immunized

to longevity and financial risks up to the second order, and we have clarified the

role of natural hedging between annuities and life insurance policies. Our numer-

ical application to UK data achieves different goals. First, it permits comparison

of financial and longevity sensitivities (the Greeks) within and across generations.

Second, it demonstrates natural hedging up to the second order in closed form.

Third, it allows discussion of intra- and cross-generational hedging. In particular,

we demonstrate how to exploit the fact that survival probabilities of a cohort are

correlated with the longevity risk factors of another cohort; when there are not

enough products written on one generation, products written on other cohorts help

complete the longevity market and make natural hedging feasible. This is particu-

larly important when hedging annuities written on older people, such as pensioners.

Last but not least, we assess the effectiveness of natural hedging strategies; Monte

Carlo simulations show that the change in the reserve of a non-hedged portfolio is

higher than that of a delta- or delta-gamma-hedged portfolio.
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Appendix A

This Appendix obtains the risk factors against which to hedge in the presence of two

correlated Brownian motions that affect the intensities of two generations/genders.

We can write the dynamics of the x and y generations’ intensities in (12) and

(13) in terms of two independent Brownian motions, W̃x and W̃y:

dλx(t) = a′xλx(t)dt+ σxdW̃x(t),

dλy(t) = a′yλy(t)dt+ σy(ρdW̃x(t) +
√

1− ρ2dW̃y(t)).

Because from (26) dW̃x(t) = (dλx(t)− a′xλx(t)dt)/σx, we can rewrite dλy as:

dλy(t) = ρ
σy
σx
dλx(t) + (a′yλy(t)− ρ

σy
σx
a′xλx(t))dt+

√
1− ρ2σydW̃y(t).

The dynamics dλy(t) depend on dλx(t) = dI(t) and on dλ′y(t), defined as:

dλ′y(t) = (a′yλy(t)− ρ
σy
σx
a′xλx(t))dt+

√
1− ρ2σydW̃y(t).

Applying Ito’s lemma and rearranging, we have the following expression for dSy:

dSy(t, T ) =
∂Sy(t, T )

∂t
dt+

∂Sy(t, T )

∂λy
ρ
σy
σx
dλx +

∂Sy(t, T )

∂λy
dλ′y +

+
1

2

(
ρ
σy
σx

)2
∂2Sy(t, T )

∂λ2
y

dλxdλx +
1

2

∂2Sy(t, T )

∂λ2
y

dλ′ydλ
′
y.

Sy depends on the two risk factors identified above: change in the mortality intensity

of cohort x, dλx, and change in the mortality intensity of λy, which is uncorrelated

with the dynamics of the mortality of cohort x, dλ′y. Notice also that dI(t) = dλx(t).

Defining as Greeks the coefficients of the first and second order changes in the risk

factors – according to (15), (16), (17), (18) – and setting dI ′ =dλ′y, we obtain
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dSy(t, T ) as in (14) in the text.

Appendix B

The processes λx(t) and λy(t) can be reparametrized as follows:

dλx(t) = axλx(t)dt+ σxdWx(t),

dλy(t) = ayλy(t)dt+ σxydWx(t) + σyydWy(t).
(26)

Applying the framework of Duffie et al. (2000), it is possible to calculate the survival

probabilities for generations x and y, yielding:

Sx(0, t) = E
[
e−

∫ t
0 λx(s)ds|F0

]
= eα

x(t)+βx
1 (t)λx(0)+βx

2 (t)λy(0),

with 
αx(t) = σ2

x

2a2x

(
t− 2 e

axt−1
ax

+ e2axt−1
2ax

)
,

βx1 (t) = 1−eaxt

ax
,

βx2 (t) = 0,

and

Sy(0, t) = E
[
e−

∫ t
0 λy(s)ds|F0

]
= eα

y(t)+βy
1 (t)λx(0)+βy

2 (t)λy(0),

with 
αy(t) =

σ2
xy+σ2

yy

2a2y

(
t− 2 e

ayt−1
ay

+ e2ayt−1
2ay

)
,

βy1 (t) = 0,

βy2 (t) = 1−eayt

ay
.

Finally, according to (26), the instantaneous correlation between dλx and dλy is

given by:

Corr (dλx(t), dλy(t)) = ρxy =
σxy√

σ2
xy + σ2

yy

.
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