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Joint distribution of first exit times of a two dimensional
Wiener process with jumps with application to a pair of

coupled neurons

Laura Sacerdote, Cristina Zucca1

Department of Mathematics “G. Peano”, University of Torino, Via Carlo Alberto 10, Turin, Italy

Abstract

Motivated by a neuronal modeling problem, a bivariate Wiener process with two
independent components is considered. Each component evolves independently
until one of them reaches a threshold value. If the first component crosses the
threshold value, it is reset while the dynamics of the other component remains
unchanged. But, if this happens to the second component, the first one has a jump
of constant amplitude; the second component is then reset toits starting value and
its evolution restarts. Both processes evolve once again until one of them reaches
again its boundary. In this work, the coupling of the first exit times of the two
connected processes is studied.

Keywords:
First passage time, Jump diffusion process, Wiener process, Integrate and fire
neuronal model.

1. Introduction

Leaky integrate and Fire (LIF) models describe the membranepotential (MP)
dynamics of single neurons through suitable diffusion processes constrained by a
boundary. The process starts from the resting value of the membrane and evolves
until it reaches, for the first time, a threshold value. Thesemodels assume that the
MP of the neuron increases or decreases due to the arrival from the surrounding
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network of excitatory or inhibitory postsynaptic potentials (PSPs). The neuron
acts as an Integrator for the incoming inputs and the MP spontaneously decays
in the absence of external inputs. When the inputs are of smallamplitude and
highly frequent, the discrete process describing the MP evolution is approximated
by a diffusion process. The Ornstein-Uhlenbeck or the Feller (also known as Cox-
Ingersoll-Ross) processes are the most popular diffusions used in LIF models (cf.
[3, 4, 6, 14, 15, 16, 20]).

The analysis of these models requires the study of the First Exit Time (FET)
problem of the diffusion through a boundary. Indeed the interspike intervals (ISIs)
are identified with the FET of the stochastic process throughthe boundary. After
each spike the membrane potential is reset to its resting value and successive ISIs
are described by independent identically distributed (iid) random variables. The
solution of the FET problem for diffusions is mathematically complex and con-
siderable efforts have been put into its study. The only process for which a closed
form expression of the FET distribution is available is the Wiener process. This
process describes the membrane potential evolution disregarding its spontaneous
decay toward the resting potential in the absence of external inputs. The model
is known as the Integrate and Fire model (IF) and was proposedin a pioneering
paper by Gerstein and Mandelbrot (cf. [8]). Despite its strong simplification, the
IF model has played an important role in the study of single neurons dynamics.
Numerical methods, reliable simulation techniques and approximate solutions are
available for LIF models. However, no closed form solutionshave been devel-
oped (cf. [20]). Hence, in order to develop suitable estimators for the parameters
of the models and to get some insight on the qualitative behavior of LIF models,
the Wiener process was used to test both numerical and simulation tools.

Simultaneous recordings of the spike activity of groups of neurons (the so
called raster displays) are now available. Recent research disregards single neu-
rons behaviors and focuses only on the features characterizing networks of neu-
rons (cf. [2, 18, 24]). Observed dynamics include synchronism phenomena as
well as delayed spikes and appearance of the specific spatio-temporal pattern in
the raster displays (cf. [11]). Mathematical models have been an important tool
for the study of the single neuron code and we expect that theywill contribute
to the understanding of neural networks. However, comparedto single neuron
models, neural networks present increased mathematical difficulties. Often re-
searchers depend on simulations to study networks models. This fact may limit
the interest of mathematical models. Hence the developmentof new mathematical
tools for the study of neural networks is required. This paper is a first attempt in
this direction.
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Different classes of models describe neural networks. In some cases, the
behavior of each neuron of the network is oversimplified and it is represented
through a binary random variable. By contrast, Hodgkin and Huxley type mod-
els consider the most important biophysical features of theneuron but suffer from
the drawback of using non linear systems of partial differential equations (cf. [9]).
They are useful for simulation purpose [13] but their analytical study is discourag-
ing. LIF models of single neurons are a good compromise between a reasonable
realism and mathematical tractability. Hence they are goodcandidates for the
mathematical study of neural networks as well as dependenceproperties of ISIs
of groups of neurons. Some preliminary results in this framecan be found in
[10, 25]. We propose the use of IF models as a first step toward the analytical
study of a couple of neurons.

Mathematical difficulties of joint distributions of ISIs donot change when
two or more neurons are considered. However, when dealing with many units
networks, the notation become heavy. Hence, in this paper welimit ourselves to
the study of two neurons. In Section 2 we consider the two neurons and following
([21, 22]) we model their MP evolution through diffusion processes with jumps.
The dependence between the two neuron dynamics is determined by the jumps
that occur in the MP of a neuron when the other neuron has a spike.

The description of the resulting coupled point processes requires the knowl-
edge of the joint distribution of spike epochs of the two neurons. Unfortunately
this study presents strong mathematical difficulties if theinvolved processes are
the Ornstein Uhlenbeck or the Feller process. Previous research on this model
used simulations but the development of suitable mathematical tools is desirable
to achieve a better comprehension of the neural code. On the basis of the im-
portant role played by the IF models for the description of single neurons, in this
paper we resort to the Wiener process with jumps to describe the MPs evolution.
In Section 3 we introduce the necessary mathematical background and the nota-
tion required to deal with the processes involved in the model. In this frame we
also introduce the forward times which characterize the spike time series. In Sec-
tion 4, we present our results on the joint distribution of these times for the case
of two neurons. Finally, in Section 5 some examples which illustrate the features
of the considered network are discussed.

2. The model

We consider a couple of neurons. In absence of coupling, according to the
IF paradigm, fort > t0, we describe the subthreshold MP evolution of neuron 1
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and 2 through two independent Wiener processes with driftµi ∈ R and diffusion
coefficientσi > 0,

dXi (t) = µidt+σidWi (t) . (1)

with Xi(t0) = x0i, for i = 1,2. HereWi (t) , i = 1,2 are two independent standard
Wiener processes.

Each neuron releases a spike when its MP reaches its threshold bi > x0i . Af-
ter each spike their MP is reset to the resting valuex0i and the MP evolution
restarts. ISIs of neurons are iid random variables. They aredetermined as FET
of the Wiener process through their boundaries. Then we introduce the coupling
between the two neurons dynamics as follows. The spike activity of neuron 2
determines an instantaneous jump, of amplitudeh of the MP of neuron 1. When
neuron 2 is excitatory the jump amplitude is positive while it is negative when
neuron 2 is inhibitory. After the jump the MP of neuron 1 pursues its evolution
as a Wiener processX1(t) until a new jump is determined by a spike of neuron 2
or until it attains its thresholdb1 (cf. Fig. 1). As soon as the MP value of neuron
1 becomes larger than the threshold value, neuron 1 releasesa spike then its MP
is instantaneously reset to its resting value. Then its evolution restarts with a new
jump diffusion process. For neuron 1, the potential betweenspikes satisfies

dX̃1(t) = µ1dt+σ1dW1(t)+hdN(t) (2)

whereN(t) is a renewal process whose inter-event times have an inverseGaussian
distribution. Similar processes were studied in [12]. Neuron 1 and 2 spike simul-
taneously when the release of a spike from neuron 1 is determined by a jump of its
MP. Note that in this model the spike activity of neuron 1 has no effect on neuron
2 but generalizations of this model could include a reciprocal effect of the spikes
of the two neurons.

According to this model, the ISIs of neuron 1 are modeled as successions of
FETs of the considered jump diffusion process from the interval (−∞,b1) while
the ISIs of neuron 2 are a sequence of FETs of the pure diffusion process through
the thresholdb2. ISIs of neuron 1 are independent random variables. However
these random variables are dependent from the spikes epochsof neuron 2. In
order to understand the properties of this dependence we have studied the joint
distribution of specific times characterizing the two spiketrains, specifically the
joint distribution of forward times of the two spike trains (cf. [7]). In [22] sim-
ulations were used to study this distribution for the Ornstein Uhlenbeck process
with jumps. Aiming to obtain analytical and numerical results, in this paper we
limit our interest to the Wiener process with jumps. In the Section 4 we show
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Figure 1: Trajectories of the evolution of the MP of the two neurons, with their
spike times. The first spike time of̃X1 andX̃2 are synchronous due to the jump.

that this choice allows the determination of a closed form expression for this joint
distribution, together with suitable bounds.

A particular instance of interest arises when the two neurons spike simultane-
ously. The proposed model allows the description of both this case and the case
of ISIs which start at different epochs in the two spike trains. Extensions to more
complex processes request further efforts that we will consider in future works.

3. Mathematical background

We consider the processesX(t)= {(X1,X2)(t); t ≥ t0}, X̃(t)= {(X̃1, X̃2)(t); t ≥
t0} andXa(t)= {(Xa

1 ,X
a
2 )(t); t ≥ t0} and a two dimensional boundaryb=(b1,b2)∈

R
2. The first process is a two dimensional Wiener process whose components are

independent and are described by (1). WithX̃(t) we indicate the process obtained
from X(t) by adding jumps to the first component any time the second component
attains its boundary and characterized by instantaneous resetting of the spiking
component, as explained in Section 2. Note that the realizations of the two pro-
cesses are driven by the same Wiener process. FurthermoreXa(t) denotes the
processX(t), with an absorbing boundaryb whose components are

Xa
i (t) =

{
X(t) t < Tbi

bi t ≥ Tbi

(3)
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wherei = 1,2 andb1 > x01 andb2 > x02.
For a general processY we denoteFY(y, t|x,s) = P(Y(t)< y |Y(s) = x) and

fY(y, t|x,s) =
∂ 2

P(Y(t)< y |Y(s) = x)
∂y1∂y2

s< t (4)

the transition probability distribution (pDf) and densityfunction (pdf), respec-
tively. Here we havex = (x1,x2) ∈ R

2 andy = (y1,y2) ∈ R
2. The transition pdf

of Xa
i (t), for x,y∈ (−∞,bi), i = 1,2 is given by [5, 17]

fXa
i
(x, t|y,s) =

1

σi
√

2π(t −s)

[

exp

(

−
(x−y−µi(t −s))2

2σ2
i (t −s)

)

(5)

− exp

(
2µi(bi −y)

σ2
i

−
(x−2bi +y−µi(t −s))2

2σ2
i (t −s)

)]

.

We denote the transition pDf asFXa
i
(x, t|y,s) (cf. [20]).

Each component of̃X attains its boundarybi at timesS̃(k)bi
, k∈N with S̃(0)bi

= 0.
After each crossing the component is instantaneously resetto its initial value and
restarts. Consider thek-th FET T̃(k)

bi
of the jump process̃Xi, that starts inx0i at

time S̃(k−1)
bi

, through the boundarybi for k ∈ N
+. For i = 1,2, k ≥ 2, T̃(k)

bi
is a

random variable whose distribution coincides with the conditional distribution of

inf
{

t − S̃(k−1)
bi

> 0 : X̃i (t)> bi

}

(6)

givenS̃(k−1)
bi

= ρ, whereρ ≥ 0 and

T̃(1)
bi

= inf
{

t > 0 : X̃i (t)> bi
}
. (7)

Similarly, we denote asT(k)
bi

the k-th FET of the diffusion processXi through

the boundarybi for k ∈ N. SinceX̃2(t) coincides withX2(t), we haveT(k)
b2

=

T̃(k)
b2

, where{T(k)
bi

,k ≥ 1} are iid random variables with Inverse Gaussian (IG)

distribution with mean(bi −x0i)/µi and shape parameter(bi −x0i)
2/σ2

i , i.e., using
the spatial homogeneity of the Wiener process, with pdf [5, 17]

f
T(k)

bi−x0i

(t) =
bi −x0i
√

2πσ2
i t3

exp

(

(bi −x0i −µit)
2

2σ2
i t

)

. (8)
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We denote withF
T(k)

bi−x0i

(t) its pDf (cf. [20]).

Since IG distribution is stable (cf. [19], p. 344),S(k)bi
has again IG distribution

with mean(bi −x0i)k/µi and shape parameter(bi −x0i)
2k2/σ2

i . We also note that

the intertimesT̃(k)
b1

, k = 1,2, . . . are not independent random variables, due to the
absence of reset of the second component when the first component exits from its
boundary.

In general, the boundary can be time dependent. We denote theFET of the
Wiener process through the boundaryc(t) asTc(t).

For a given random variableZ we denoteFZ(z) = P(Z ≤ z) and fZ(z)dz=
P(Z ∈ dz) the pDf and pdf, respectively. The pDf and pdf of the two dimen-
sional random variableT = (Tb1,Tb2), representing the FET ofX(t) throughb,
areFT(t) = P(T1 < t1,T2 < t2) and fT(t), respectively. Similar notation hold for
the exit timeT̃.

We want to characterize the dependence between the two pointprocesses de-
termined by the sequence of crossings of the boundary. For this aim we introduce
the forward time (cf. [7], p. 61). For̃S(k)b1

= ρ, with ρ ≥ 0 we define the forward

time Θ(ρ)
b2

as the intertime betweeñS(k)b1
and the epoch, after̃S(k)b1

, whenX̃2 first

crossesb2 (cf. Fig. 2). The study of the joint distribution of(T̃(k+1)
b1

,Θ(ρ)
b2

), given

that S̃(k)b1
= ρ, characterizes the dependence between the two point processes and

its study is the goal of this work.

Figure 2: Scheme for the forward timeΘ(ρ)
b2

.
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4. Joint distribution of the forward times

The process̃X1(t) is not a Markov process due to the absence of resetting of
the second component when the first crosses the boundary and due to the presence
of jumps with intertimes characterized by IG distribution.However, both the bidi-
mensional process̃X(t) and the second componentX̃2(t) are Markov processes.

Using this property we compute the joint pdf of the random variable(T̃(k+1)
b1

,Θ(ρ)
b2

)

conditioned on the event{S̃(k)b1
= ρ}.

This conditioning can then be removed by multiplying the conditioned density
for the pdf f

S̃(k)b2

(ρ), i.e. for the IG distribution, and integrating with respectto all

admissible values ofρ. To simplify the notation, in the following we avoid to
write explicitly the conditioning event, when not necessary.

Theorem 1. Let us choose k∈ N, S(k)b1
= ρ. The joint pDf of(T̃(k+1)

b1
,Θ(ρ)

b2
) is

F
(T̃(k+1)

b1
,Θ(ρ)

b2
)
(u,v) = (9)

=
∫ min{u,v}

0
fTb1

(τ)
∫ v

τ
f
Θ(ρ)

b2

(θ)dθdτ +

+
∫ min{u,v}

0

∫ b1

b1−h
fXa

1
(x,ρ +θ |0,ρ) f

Θ(ρ)
b2

(θ)dxdθ +

+
∫ min{u,v}

0
f
Θ(ρ)

b2

(θ)
∫ u

θ

∞

∑
n=0

∫ ρ+τ

ρ+θ
· · ·
∫ ρ+τ

ρ+θ
︸ ︷︷ ︸

s1<s2<...<sn

f
(S(m)

b2
,...,S(m+n)

b2
,N[ρ+θ ,ρ+τ])

(s1, . . . ,sn,n)

·
∫ b1

−∞
fTcn(t)−ω (τ −θ) fXa

1
(ω,ρ +θ |0,ρ)ds1 . . .dskdωdτdθ .

where

f
Θ(ρ)

b2

(v) =
∫ b2

−∞
fTb2−z(v)

∫ ρ

0
fXa

1
(z,ρ|0,ξ )

∞

∑
k=0

f
S(k)b2

(ξ )dξdz, (10)

f
(S(m)

b2
,...,S(m+n)

b2
,N[ρ+θ ,ρ+τ])

(s1, . . . ,sn,n) (11)

= f
T(m)

b2

(s1) f
T(m+1)

b2

(s2−s1) . . . f
T(m+n)

b2

(sn−sn−1)(1−F
T(m+n+1)

b2

(ρ + τ −sk))
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and

cn(t) =







b1−h t ∈ [0,s1−ρ −θ ]
b1−2h t ∈ (s1−ρ −θ ,s2−ρ −θ ]
. . .
b1−nh t∈ (sn−1−ρ −θ ,sn−ρ −θ ]
b1− (n+1)h t > sn−ρ −θ

(12)

Proof. To simplify the notation we setk= 0 and we writeT̃(1)
b1

= T̃b1. Whenk 6= 0
we have analogous formulae.

We write the joint pDf of(T̃b1,Θ
(ρ)
b2

) as

F
(T̃b1

,Θ(ρ)
b2

)
(u,v) = P(T̃b1 < u,Θ(ρ)

b2
< v, T̃b1 < Θ(ρ)

b2
) (13)

+ P(T̃b1 < u,Θ(ρ)
b2

< v, T̃b1 > Θ(ρ)
b2

)

+ P(T̃b1 < u,Θ(ρ)
b2

< v, T̃b1 = Θ(ρ)
b2

).

We start taking into account the first term in (13). WhenT̃b1 < Θ(ρ)
b2

, the two

components of̃X(t) evolve independently (cf. Figure 3 (b) and (d)). Hence we
haveT̃b1 = Tb1 and

P(T̃b1 < u,Θ(ρ)
b2

< v, T̃b1 < Θ(ρ)
b2

) =
∫ min{u,v}

0
P(τ < Θ(ρ)

b2
< v|T̃b1 = τ) fTb1

(τ)dτ

=
∫ min{u,v}

0
fTb1

(τ)
∫ v

τ
f
Θ(ρ)

b2

(θ)dθdτ. (14)

To compute the distribution ofΘ(ρ)
b2

in (14), we first condition on the position of
the second componentX̃2(ρ) and then on the timeξ whenX̃2 crossedb2 for the
last time beforeρ.

f
Θ(ρ)

b2

(θ)dθ =
∫ b2

−∞
P(Θ(ρ)

b2
∈ dθ |X̃2(ρ) = z)P(X̃2(ρ) ∈ dz) (15)

=
∫ b2

−∞
fTb2−z(θ)

∞

∑
n=0

∫ ρ

0
P(X̃2(ρ) ∈ dz|S̃(n)b2

= ξ ) f
S̃(n)b2

(ξ )dξdθ

=
∫ b2

−∞
fTb2−z(θ)

∞

∑
n=0

∫ ρ

0
fXa

2
(z,ρ|0,ξ ) f

S̃(n)b2

(ξ )dξdzdθ .
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Figure 3: Trajectories of the two components in the caseT̃b1 > Θ(ρ)
b2

((a) and (c))

and in the casẽTb1 < Θ(ρ)
b2

whereT̃b1 = Tb1 ((b) and (d)).

To write the second equality in (15) we used the Markov property and spatial
homogeneity of the Wiener process.

Now we apply a similar procedure to compute the second term of(13). In this
case the two components ofX̃ are not independent, due to the presence of one or
more jumps. SincẽTb1 6= Tb1

P(T̃b1 < u,Θ(ρ)
b2

< v, T̃b1 > Θ(ρ)
b2

) =
∫ min{u,v}

0

∫ u

θ
P(T̃b1 ∈ dτ,Θ(ρ)

b2
∈ dθ) (16)

Conditioning on the position of the process at the time of the first jump afterS̃(ρ)b1
we obtain (cf. Figure 3 (a) and (c))

P(T̃b1 ∈ dτ,Θ(ρ)
b2

∈ dθ) (17)

= P(T̃b1 ∈ dτ|Θ(ρ)
b2

= θ)P(Θ(ρ)
b2

∈ dθ)

=
∫ b1

−∞
P(T̃b1 ∈ dτ|Θ(ρ)

b2
= θ , X̃1(ρ +θ) = ω)

·P(X̃1(ρ +θ) ∈ dω|Θ(ρ)
b2

= θ)P(Θ(ρ)
b2

∈ dθ).

We haveP(X̃1(ρ + θ) ∈ dω|Θ(ρ)
b2 = θ) = fXa

1
(ω,ρ + θ |0,ρ)dω andP(Θ(ρ)

b2
∈

10



dθ) = f
Θ(ρ)

b2
(θ)dθ is given in (15). Letm be the number of spikes of neuron 2

preceding(ρ +θ), m∈ N. The first term in the integral in (17) can be computed
conditioning on the number and on the epochs of the jumps in[ρ +θ ,ρ + τ], that

we denote withN[ρ+θ ,ρ+τ] and(S(m)
b2

, . . . ,S(m+n)
b2

), respectively. We have

P(T̃b1 ∈ dτ|Θ(ρ)
b2

= θ , X̃1(ρ +θ) = ω) (18)

=
∞

∑
n=0

∫ ρ+τ

ρ+θ
· · ·
∫ ρ+τ

ρ+θ
︸ ︷︷ ︸

s1<s2<...<sn

P((S(m)
b2

, . . . ,S(m+n)
b2

) ∈ (ds1, . . . ,dsn),N[ρ+θ ,ρ+τ] = n|Θ(ρ)
b2

= θ , X̃1(ρ +θ) = ω)

·P(T̃b1 ∈ dτ|Θ(ρ)
b2

= θ , X̃1(ρ +θ) = ω,(S(m)
b2

, . . . ,S(m+n)
b2

) = (s1, . . . ,sn),N[ρ+θ ,ρ+τ] = n).

Using the independence and the identical distribution of the intertimesT(k)
b2

we get

P((S(m)
b2

, . . . ,S(m+n)
b2

) ∈ (ds1, . . . ,dsn),N[ρ+θ ,ρ+τ] = n|Θ(ρ)
b2

= θ , X̃1(ρ +θ) = ω) (19)

= P(T(m)
b2

= ds1,T
(m+1)
b2

= d(s2−s1), . . . ,T
(m+n)
b2

= d(sn−sn−1),T
(m+n+1)
b2

> ρ + τ −sn).

= f
T(m)

b2

(s1) f
T(m+1)

b2

(s2−s1), . . . , f
T(m+n)

b2

(sn−sn−1)(1−F
T(m+n+1)

b2

(ρ + τ −sn))ds1 . . .dsn.

The spatial and temporal homogeneity of the Wiener process allows to rewrite the
last term in (18) asfTcn(t)−ω (τ −θ), the FET pdf of a Wiener process through the
time dependent boundarycn(t) (12) (cf. Figure 4 (a)).

The synchronismT̃b1 = Θ(ρ)
b2

is considered in the last term of (13). It arises
when the first component crosses its boundary at a jump epoch,hence

P(T̃b1 < u,Θ(ρ)
b2

< v, T̃b1 = Θ(ρ)
b2

) (20)

=
∫ min{u,v}

0
P(T̃b1 = Θ(ρ)

b2
|Θ(ρ)

b2
= θ)P(Θ(ρ)

b2
∈ dθ)

=
∫ min{u,v}

0
P(X̃1(θ) ∈ [b1−h,b1]|Θ

(ρ)
b2

= θ)P(Θ(ρ)
b2

∈ dθ)

=
∫ min{u,v}

0

∫ b1

b1−h
fXa

1
(x,ρ +θ |0,ρ) f

Θ(ρ)
b2

(θ)dxdθ .

and we get the result.
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Remark 1. Theorem 1 requests the knowledge of the densityfTcn(t)−ω (τ − θ) in
(9). Note that the boundarycn(t) is a step function with jumps at timessi, i =
1, . . . ,n (cf. Figure 4 (a)).

Figure 4: Scheme of: (a) the step boundarycn(t), (b) the two stepwise linear

boundary: the lower boundcα
n (t) (dotted line) and the upper boundcβ

n (t) (solid
line).

This density can be approximated using a result in [26] for a Wiener process
with a stepwise linear boundary. We propose two stepwise linear boundariescα

n (t)

andcβ
n (t) to bound the step functioncn(t) (cf. Figure 4 (b)).

cα
n (t) =







b1−h t ∈ [0,s1−ρ −θ − ε]
h
ε (s1−ρ −θ −x)+(b1−2h) t ∈ (s1−ρ −θ − ε,s1−ρ −θ ]
b1−2h t ∈ (s1−ρ −θ ,s2−ρ −θ − ε]
. . .
b1−nh t∈ (sn−1−ρ −θ ,sn−ρ −θ − ε]
h
ε (sn−ρ −θ −x)+(b1− (n+1)h) t ∈ (sn−ρ −θ − ε,sn−ρ −θ ]
b1− (n+1)h t > sn−ρ −θ

cβ
n (t) =







b1−h t ∈ [0,s1−ρ −θ ]
h
ε (s1−ρ −θ −x)+(b1−h) t ∈ (s1−ρ −θ ,s1−ρ −θ + ε]
b1−2h t ∈ (s1−ρ −θ + ε,s2−ρ −θ ]
. . .
b1−nh t∈ (sn−1−ρ −θ + ε,sn−ρ −θ ]
h
ε (sn−ρ −θ −x)+(b1−nh) t ∈ (sn−ρ −θ ,sn−ρ −θ + ε]
b1− (n+1)h t > sn−ρ −θ + ε

12



Clearlycα
n (t) < cn(t) < cβ

n (t), for eacht > 0. Moreover, ifε is small, the proba-

bility of crossing ofcα
n (t), cβ

n (t) or cn(t) are close.
Consider one of the two bounds, for examplecα

n (t). Consider the time se-
quence{ti , i = 1, . . . ,2n} wheret2 j = sj − (ρ + θ) andt2 j−1 = sj − (ρ + θ)− ε,
for j = 1, . . . ,nand denotes withc= {ci , i = 1, . . . ,2n} the sequence of knots of the
stepwise linear boundary, wherec2 j = b1− ( j +1)h−ω andc2 j−1 = b1− jh−ω,
for j = 1, . . . ,n. Note that, conditioning on the position of the processX̃1 at the
time of the 2n jumpsti, i = 1, . . . ,n and using Markov property and the result in
[26], we get

fTcα
n (t)−ω

(τ −θ) (21)

=
∫ b1−(n+1)h

−∞

[

fTb1−(n+1)h−x
(ρ + τ −sn)E [g(X1(t1), . . . ,X1(t2n);c)]

]

dx

where

g(x1, . . . ,x2n;c) =
2n

∏
j=1

I(x j < c j)

(

1−exp

[

−
2(c j−1−x j−1)(c j −x j)

t j − t j−1

])

. (22)

Remark 2. If the jumpsh are downward, the random variable(T̃b1,Θ
(ρ)
b2

) admits
pdf

f
(T̃(k+1)

b1
,Θ(ρ)

b2
)
(u,v) (23)

=







fTb1
(u) f

Θ(ρ)
b2

(v) u≤ v

f
Θ(ρ)

b2

(v)∑∞
n=0

∫ ρ+u

ρ+v
· · ·
∫ ρ+u

ρ+v
︸ ︷︷ ︸

s1<s2<...<sn

f
(S(m)

b2
,...,S(m+n)

b2
,N[ρ+v,ρ+u])

(s1, . . . ,sn,n) u> v

·
∫ b1
−∞ fTcn(t)−ω (u−v) fXa

1
(ω,ρ +v|0,ρ)ds1 . . .dskdω .

,

where f
Θ(ρ)

b2

(v) is given by (10). On the contrary, for positive jumps, the pdfis

singular.

Remark 3. Note that if T̃(k+1)
b1

< Θ(ρ)
b2

the component̃X1 reaches its boundary
before the component̃X2. It means that there are no jumps and therefore the two
components are independent.

13



A special instance arises after a pair of synchronous crossings of the two com-
ponents. In this case the forward time coincides with the intertime between two
crossings ofX2 throughb2. The following corollary holds

Corollary 2. If X1(0) = X2(0) = 0, the joint pDf of(T̃(1)
b1

,Θ(0)
b2
) is

F
(T̃(1)

b1
,Θ(0)

b2
)
(u,v) = (24)

=
∫ min{u,v}

0
fTb1

(τ)
∫ v

τ
fTb2

(θ)dθdτ +

+
∫ min{u,v}

0

∫ b1

b1−h
fXa

1
(x,θ |0,0) fTb2

(θ)dxdθ +

+
∫ min{u,v}

0
fTb2

(θ)
∫ u

θ

∞

∑
n=0

∫ τ

θ
· · ·
∫ τ

θ
︸ ︷︷ ︸

s1<s2<...<sn

f
(S(m)

b2
,...,S(m+n)

b2
,N[θ ,τ])

(s1, . . . ,sn,n)

∫ b1

−∞
fTcn(t)−ω (τ −θ) fXa

1
(ω,θ |0,0)ds1 . . .dskdωdτdθ .

where f
(S(m)

b2
,...,S(m+n)

b2
,N[ρ+θ ,ρ+τ])

(s1, . . . ,sn,n) is given by (11).

Proof. It is analogous to the proof of Theorem 1.

Since the densityfTcn(t)−ω (τ − θ) requests a strong computational effort, it is

useful to determine alternative bounds for the joint pDf of(T̃(k+1)
b1

,Θ(ρ)
b2

).

Theorem 3. Let us choose k∈N, S(k)b1
= ρ, the joint pDf of(T̃(k+1)

b1
,Θ(ρ)

b2
) satisfies

Fα(
T̃(k+1)

b1
,Θ(ρ)

b2

)(u,v)≤ F(
T̃(k+1)

b1
,Θ(ρ)

b2

)(u,v)≤ Fβ
(

T̃(k+1)
b1

,Θ(ρ)
b2

)(u,v) (25)

where

Fα(
T̃(k+1)

b1
,Θ(ρ)

b2

)(u,v) = (26)

=
∫ min{u,v}

0
fTb1

(τ)
∫ v

τ
f
Θ(ρ)

b2

(θ)dθdτ +

+
∫ min{u,v}

0

∫ b1

b1−h
fXa

1
(x,ρ +θ |0,ρ) f

Θ(ρ)
b2

(θ)dxdθ +

14



+
∫ min{u,v}

0
f
Θ(ρ)

b2

(θ)
∫ u

θ

∞

∑
n=0

[

F
S(n)b2

(τ −θ)−F
S(n+1)

b2

(τ −θ)
]

·
∫ b1

−∞
fTb1−h−ω (τ −θ) fXa

1
(ω,ρ +θ |0,ρ)dωdτdθ .

and

Fβ
(

T̃(k+1)
b1

,Θ(ρ)
b2

)(u,v) = (27)

=
∫ min{u,v}

0
fTb1

(τ)
∫ v

τ
f
Θ(ρ)

b2

(θ)dθdτ +

+
∫ min{u,v}

0

∫ b1

b1−h
fXa

1
(x,ρ +θ |0,ρ) f

Θ(ρ)
b2

(θ)dxdθ +

+
∫ min{u,v}

0
f
Θ(ρ)

b2

(θ)
∫ u

θ

∞

∑
n=0

[

F
S(n)b2

(τ −θ)−F
S(n+1)

b2

(τ −θ)
]

·
∫ b1

−∞
fTb1−h(n+1)−ω (τ −θ) fXa

1
(ω,ρ +θ |0,ρ)dωdτdθ .

where f
Θ(ρ)

b2

(v) is given by (10).

Proof. The ordering of the boundariesb1− h(n+1)−ω ≤ cn(t) ≤ b1− h−ω,
wherecn(t) is given by (12), implies the stochastic ordering of the corresponding
FETs [23]

Tb1−h−ω ≤st Tcn(t)−ω ≤st Tb1−h(n+1)−ω (28)

that, for eacht > 0, implies

FTb1−h(n+1)−ω (t)≤ FTcn(t)
(t)≤ FTb1−h−ω (t) (29)

Applying these inequalities to (9) we get the result.

Remark 4. Similar results can be obtained considering backward timesinstead
of forward times (cf. [7]).

5. Examples

We apply the results proved in Section 4 to some special casesof the couples
of neurons in order to enlighten the dependency between their spiking activity in
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terms of the parameters values. For simplicity we look for the joint distribution
function of (T̃(k+1)

b1
,Θ(ρ)

b2
) under the hypothesis of Corollary 2, i.e. in the case

ρ = 0 andk = 0. We implement the bounds (26) and (27) and the pdf (23) for
negative jumps, noting that all the functions involved are known in closed form
for a Wiener process. The integrals are treated by means of quadrature methods
and the series is truncated.

To interpret the figures of the following examples it is useful to recall that for
u< v, the joint distribution describes the behavior of the MP of two independent
neurons, while foru> v it describes the effect of jumps.

5.1. One jump

Here we hypothesize that only one jump is admissible and thatthe two compo-
nents start simultaneously. When processX̃2 reaches its boundary it is absorbed;
meanwhile,X̃1 has a jump of amplitudeh and then it pursues its evolution inde-
pendently until it reaches its boundary. Under these hypothesis the result (24) is
easily computable in closed form and becomes

F
(T̃(1)

b1
,Θ(0)

b2
)
(u,v) = (30)

=
∫ min{u,v}

0
fTb1

(τ)
∫ v

τ
fTb2

(θ)dθdτ +

+
∫ min{u,v}

0

∫ b1

b1−h
fXa

1
(x,θ |0,0) fTb2

(θ)dxdθ +

+
∫ min{u,v}

0
fTb2

(θ)
∫ u

θ

∫ b1

−∞
fTb1−h−ω (τ −θ) fXa

1
(ω,θ |0,0)dωdτdθ .

In Figure 5 the joint pdf and the corresponding contour plot of (T̃b1, T̃b2) is
shown. The parameters of the process areµ1 = µ2 = 1 mV ms−1, σ1 = σ2 = 1
mV ms−1/2, b1 = b2 = 10 mV and the jumph= 0.5 mV is positive. Even if the
parameters of the two components are the same, the joint pdf is not symmetric.
This is explained by the one-way jumps that break the symmetry of the problem.
Positive jumps, i.e. excitatory neuron 2, increase the probability that T̃b1 ≈ T̃b2.
Indeed positive jumps create a discontinuity in the cDf along the synchronicity
line u= v.

In Figure 6 the joint pdf of(T̃b1, T̃b2) is shown with parametersµ1= µ2= 1 mV
ms−1, σ1 = σ2 = 1 mV ms−1/2, b1 = 10 mV,b2 = 8 mV and positive jumph= 0.5
mV. The difference between the boundaries determines a shift in the location of
the probability mass, with respect to the case of Figure 5. Note thatb1> b2 implies
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faster activity for neuron 2 with respect to neuron 1. However, the excitatory input
from neuron 2 increases the frequency of neuron 1.

In Figure 7 the case of negative jump is described. The parameters of the
process areµ1= µ2= 1 mV ms−1, σ1=σ2= 1 mV ms−1/2, b1= b2= 10 mV, and
the jumph= −2 mV is negative. We note that there is no synchronous activity,
due to the presence of negative jumps. Negative jumps, i.e. inhibitory activity
of neuron 2, determine an increase of the mean of the spike intertimes of neuron
1. Furthermore, the probability mass is divided into two regions. The distance
between these regions is related to the effect of the negative jumps and it increases
as the jumph< 0 decreases (not shown in the figure).
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Figure 5: 1 jump: Joint pDf of(T̃b1, T̃b2) with parametersµ1 = µ2 = 1 mV ms−1,
σ1 = σ2 = 1 mV ms−1/2, b1 = b2 = 10 mV,h= 0.5mV: (a) pDf, (b) contour plot

5.2. n jumps

Here we extend the study performed in the previous subsection to the case of
n jumps.

In Figure 8 the bounds of the joint pDfF(T̃b1
,T̃b2

)(u,v) is shown for different

value ofu. The parameters of the process areµ1 = µ2 = 0.7 mV ms−1, σ1 = σ2 =
1 mV ms−1/2, b1 = b2 = 5 mV, and the jumph = 1 mV is positive. Like in the
one jump case, the presence of an excitatory neuron increases the probability that
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Figure 6: 1 jump: Joint pDf of(T̃b1, T̃b2) with parametersµ1 = µ2 = 1 mV ms−1,
σ1 = σ2 = 1 mV ms−1/2, b1 = 10 mV,b2 = 6 mV,h= 0.5mV: (a) pDf, (b) contour
plot

Figure 7: 1 jump: Joint pdf of(T̃b1, T̃b2) with parametersµ1 = µ2 = 1 mV ms−1,
σ1 = σ2 = 1 mV ms−1/2, b1 = b2 = 10 mV,h=−2 mV: (a) pdf, (b) contour plot
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T̃b1 ≈ T̃b2 as shown by the jump in the distribution. The two bounds are close and
indicate a good approximation.

In Figure 9 the case of negative jump is described. The parameters of the
process areµ1 = µ2 = 1 mV ms−1, σ1 = σ2 = 1 mV ms−1/2, b1 = b2 = 5 mV, and
the jumph= −0.5 mV is negative. In this case we do not observe synchronous
spikes.
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Figure 8: n jumps: Bounds for the joint pDf of(T̃b1, T̃b2) with parametersµ1 =

µ2 = 0.7 mV ms−1, σ1 = σ2 = 1 mV ms−1/2, b1 = b2 = 5 mV,h= 1 mV:(a)u= 7
(dotted line),u= 15 (solid line), (b) contour plot of the upper bound

6. Conclusions

The analysis of the dependence properties of the point processes is of interest
for their application to neuronal networks. This study requests the knowledge of
the joint distribution of the inter- and forward-times. Simulations are the typical
methods for the study of these times. The use of the Wiener process to model the
underlying behavior of the considered network allows an analytical and numer-
ical approach. The proposed model considers a bivariate Wiener process whose
components are linked via jumps and are constrained by boundaries. We derive
a closed form expression of the joint distribution of FET andforward times and
we implement it, performing a numerical study of the involved integrals. This
suggests to pursue in this direction with the analysis of successive intertimes, i.e.
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Figure 9: n jumps: Bounds for the joint pDf of of(T̃b1, T̃b2) with parameters
µ1 = µ2 = 1 mV ms−1, σ1 = σ2 = 1 mV ms−1/2, b1 = b2 = 5 mV, h = −0.5
mV:(a)u= 7 (dotted line),u= 15 (solid line), (b) contour plot of the upper bound

(∑m1
n=0 T̃(n)

b1
,Θ(ρ)

b2
+∑m2

n=k+1 T̃(n)
b2

) for each choice ofk ∈ N, m1 ∈ N andm2 ∈ N,
m2 > k. Other extensions could concern a model with more than two compo-
nents. In this case the procedure is similar but numerics becomes computationally
expensive. Unfortunately, a direct extension of the methodologies to other pro-
cesses is not possible since the method is based on the Markovproperty and on
the spatio-temporal homogeneity of the Wiener process.

The analytical results obtained in this work can be used to improve the statis-
tical results obtained in [22].
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