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Joint distribution of first exit times of a two dimensional
Wiener process with jumps with application to a pair of
coupled neurons

Laura Sacerdote, Cristina Zuéca

Department of Mathematics “G. Peano”, University of Torjnda Carlo Alberto 10, Turin, Italy

Abstract

Motivated by a neuronal modeling problem, a bivariate Wigagrecess with two
independent components is considered. Each componemnesvioldependently
until one of them reaches a threshold value. If the first camepo crosses the
threshold value, it is reset while the dynamics of the otl@ngonent remains
unchanged. But, if this happens to the second componentrsheriie has a jump
of constant amplitude; the second component is then registdtarting value and
its evolution restarts. Both processes evolve once agaihomet of them reaches
again its boundary. In this work, the coupling of the firsttdéiknes of the two
connected processes is studied.

Keywords:
First passage time, Jump diffusion process, Wiener prot@sgrate and fire
neuronal model.

1. Introduction

Leaky integrate and Fire (LIF) models describe the membpatential (MP)
dynamics of single neurons through suitable diffusion psses constrained by a
boundary. The process starts from the resting value of thebreme and evolves
until it reaches, for the first time, a threshold value. Thaselels assume that the
MP of the neuron increases or decreases due to the arrivaltfre surrounding
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network of excitatory or inhibitory postsynaptic potefgigPSPs). The neuron
acts as an Integrator for the incoming inputs and the MP sp@atusly decays
in the absence of external inputs. When the inputs are of ssngllitude and

highly frequent, the discrete process describing the MRugeo is approximated

by a diffusion process. The Ornstein-Uhlenbeck or the Fédliso known as Cox-
Ingersoll-Ross) processes are the most popular diffusised un LIF models (cf.

[3, 4, 6, 14, 15, 16, 20]).

The analysis of these models requires the study of the FxistTiEne (FET)
problem of the diffusion through a boundary. Indeed thergide intervals (1SIs)
are identified with the FET of the stochastic process thrahghoundary. After
each spike the membrane potential is reset to its restingg\ald successive ISIs
are described by independent identically distributed (ighdom variables. The
solution of the FET problem for diffusions is mathematigalbmplex and con-
siderable efforts have been put into its study. The only @gsdcor which a closed
form expression of the FET distribution is available is theelér process. This
process describes the membrane potential evolution disii) its spontaneous
decay toward the resting potential in the absence of exterpats. The model
is known as the Integrate and Fire model (IF) and was propwsadioneering
paper by Gerstein and Mandelbrot (cf. [8]). Despite itsrggreimplification, the
IF model has played an important role in the study of singleroles dynamics.
Numerical methods, reliable simulation techniques and@pmate solutions are
available for LIF models. However, no closed form solutitvase been devel-
oped (cf. [20]). Hence, in order to develop suitable estorgafor the parameters
of the models and to get some insight on the qualitative beha¥ LIF models,
the Wiener process was used to test both numerical and diorutaols.

Simultaneous recordings of the spike activity of groups @finons (the so
called raster displays) are now available. Recent reseasobgdrds single neu-
rons behaviors and focuses only on the features charaontenetworks of neu-
rons (cf. [2, 18, 24]). Observed dynamics include synctmwonphenomena as
well as delayed spikes and appearance of the specific deatioeral pattern in
the raster displays (cf. [11]). Mathematical models havenb&n important tool
for the study of the single neuron code and we expect thatwhkygontribute
to the understanding of neural networks. However, comptrezingle neuron
models, neural networks present increased mathematicigutties. Often re-
searchers depend on simulations to study networks modaéis. fact may limit
the interest of mathematical models. Hence the developai@iv mathematical
tools for the study of neural networks is required. This papa first attempt in
this direction.



Different classes of models describe neural networks. mescases, the
behavior of each neuron of the network is oversimplified &nd represented
through a binary random variable. By contrast, Hodgkin andléjutype mod-
els consider the most important biophysical features ohtheon but suffer from
the drawback of using non linear systems of partial difféedequations (cf. [9]).
They are useful for simulation purpose [13] but their anegltstudy is discourag-
ing. LIF models of single neurons are a good compromise letvaereasonable
realism and mathematical tractability. Hence they are granitlidates for the
mathematical study of neural networks as well as dependamgeerties of ISIs
of groups of neurons. Some preliminary results in this frazae be found in
[10, 25]. We propose the use of IF models as a first step towerdmnalytical
study of a couple of neurons.

Mathematical difficulties of joint distributions of ISIs dwot change when
two or more neurons are considered. However, when dealitig wany units
networks, the notation become heavy. Hence, in this papémuiteourselves to
the study of two neurons. In Section 2 we consider the twooreuand following
([21, 22]) we model their MP evolution through diffusion passes with jumps.
The dependence between the two neuron dynamics is detetioynthe jumps
that occur in the MP of a neuron when the other neuron has a.spik

The description of the resulting coupled point processgaires the knowl-
edge of the joint distribution of spike epochs of the two et Unfortunately
this study presents strong mathematical difficulties ifithwlved processes are
the Ornstein Uhlenbeck or the Feller process. Previousareseon this model
used simulations but the development of suitable mathealdbols is desirable
to achieve a better comprehension of the neural code. Onasis bf the im-
portant role played by the IF models for the description nfk neurons, in this
paper we resort to the Wiener process with jumps to desdnbddMPs evolution.
In Section 3 we introduce the necessary mathematical baskgrand the nota-
tion required to deal with the processes involved in the rholtethis frame we
also introduce the forward times which characterize thkesfime series. In Sec-
tion 4, we present our results on the joint distribution efgé times for the case
of two neurons. Finally, in Section 5 some examples whialsitlate the features
of the considered network are discussed.

2. The model

We consider a couple of neurons. In absence of coupling,rdicgpto the
IF paradigm, fort > tp, we describe the subthreshold MP evolution of neuron 1
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and 2 through two independent Wiener processes with @ri#t R and diffusion
coefficientg; > 0,

dX (t) = wdt-+ gidW (t). 1)

with X;(tg) = Xgi, fori =1,2. HereW (t),i = 1,2 are two independent standard
Wiener processes.

Each neuron releases a spike when its MP reaches its thddshelxy . Af-
ter each spike their MP is reset to the resting vatyeand the MP evolution
restarts. ISIs of neurons are iid random variables. Theydatermined as FET
of the Wiener process through their boundaries. Then wedante the coupling
between the two neurons dynamics as follows. The spikeigct¥ neuron 2
determines an instantaneous jump, of amplithad the MP of neuron 1. When
neuron 2 is excitatory the jump amplitude is positive whilésinegative when
neuron 2 is inhibitory. After the jump the MP of neuron 1 pwastuts evolution
as a Wiener proces§ (t) until a new jump is determined by a spike of neuron 2
or until it attains its thresholt; (cf. Fig. 1). As soon as the MP value of neuron
1 becomes larger than the threshold value, neuron 1 releas@g&e then its MP
is instantaneously reset to its resting value. Then itsut\an restarts with a new
jump diffusion process. For neuron 1, the potential betvsgekes satisfies

dXy(t) = prdt+ ordWA(t) +hdN(t) 2)

whereN(t) is a renewal process whose inter-event times have an in@asssian
distribution. Similar processes were studied in [12]. Meut and 2 spike simul-
taneously when the release of a spike from neuron 1 is detedhny a jump of its
MP. Note that in this model the spike activity of neuron 1 hagfiect on neuron
2 but generalizations of this model could include a recipletfect of the spikes
of the two neurons.

According to this model, the ISIs of neuron 1 are modeled asessions of
FETs of the considered jump diffusion process from the vratief—, b1) while
the I1SIs of neuron 2 are a sequence of FETs of the pure difiysiocess through
the thresholdy,. ISIs of neuron 1 are independent random variables. However
these random variables are dependent from the spikes epbcteiron 2. In
order to understand the properties of this dependence we dtadied the joint
distribution of specific times characterizing the two splik@ns, specifically the
joint distribution of forward times of the two spike trainsf.([7]). In [22] sim-
ulations were used to study this distribution for the Orimst¢hlenbeck process
with jumps. Aiming to obtain analytical and numerical reésuln this paper we
limit our interest to the Wiener process with jumps. In theti®® 4 we show
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Figure 1: Trajectories of the evolution of the MP of the twairens, with their
spike times. The first spike time of andX, are synchronous due to the jump.

that this choice allows the determination of a closed forpregsion for this joint
distribution, together with suitable bounds.

A particular instance of interest arises when the two nexispike simultane-
ously. The proposed model allows the description of both thise and the case
of ISIs which start at different epochs in the two spike tsaiBxtensions to more
complex processes request further efforts that we will itamsn future works.

3. Mathematical background

We consider the processét) = {(Xq, X2) (t);t > to}, X (t) = { (X1, Xo) (1);t >
to} andX?@(t) = { (X, X§)(t);t >to} and a two dimensional bounday= (b1, by) €
RR2. The first process is a two dimensional Wiener process whasg@anents are
independent and are described by (1). Vﬁm) we indicate the process obtained
from X (t) by adding jumps to the first component any time the second oosmgt
attains its boundary and characterized by instantaneestireg of the spiking
component, as explained in Section 2. Note that the reelimbf the two pro-
cesses are driven by the same Wiener process. Furthedi¢redenotes the
processX(t), with an absorbing boundaktywhose components are

X2(t) = {ém P 3)
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wherei = 1,2 andb; > Xp; andby > Xgo.
For a general procedswe denotd~ (y,t|x,s) =P (Y (t) <y|Y(s) =x) and

?P(Y(t) <y|Y(s) =x)
dy10ya

the transition probability distribution (pDf) and densitynction (pdf), respec-
tively. Here we havex = (x1,%p) € R? andy = (y1,Y2) € R?. The transition pdf
of XA(t), forx,y € (—oo,by), i = 1,2 is given by [5, 17]

fy(y,t|X,S) = s<t (4)

- 1 (x—y—pi(t—s))?
fxa(xtly,s) = oiT(t—s){exp(_ 202(t — ) ) ©)
2ui(bi —y)  (x—2bj+y— it —s9))?
exp( o?  20%t—s) >]

We denote the transition pDf &a(x,t|y,s) (cf. [20]).

Each component of attains its boundarg; at timeségi(), k € Nwith ég?) =
After each crossing the component is instantaneously tesestinitial value and
restarts. Consider thieth FETf(k) of the jump proces;, that starts inxg at

time Sél Y , through the boundarly; for k € N*. Fori=1,2, k> 2, T( Jis a
random varlable whose distribution coincides with the ¢ooalal dlstrlbutlon of

int{t—§Y>0:% () > b} (6)
givenéé'ffl) = p, wherep > 0 and
WV = inf{t>0:%(t) > b} )

Similarly, we denote aib(ik) the k-th FET of the diffusion procesk; through
the boundaryb; for k € N. SinceX,(t) coincides withXy(t), we haveTb(zk) =

'I~'b(2k), Where{T(ik),k > 1} are iid random variables with Inverse Gaussian (IG)
distribution with meartb; —xq;) /i and shape parametds — xqi)?/ 02, i.e., using
the spatial homogeneity of the Wiener process, with pdf 3, 1

. v )2
fw ()= b eXp<(bl >2<oa|.2tu.t) ) (8)

Tbi —Xoi N 7'[O'i2t3
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We denote withF_ (t) its pDf (cf. [20]).
bi —Xoi
Since 1G distribution is stable (cf. [19], p. 3443(0'?has again IG distribution
with mean(b; — xoi)k/ i and shape parametgs; — xo)2k? /a2, We also note that

the intertimes‘fb(lk), k=1,2,... are not independent random variables, due to the
absence of reset of the second component when the first cempexits from its
boundary.

In general, the boundary can be time dependent. We denoteBheof the
Wiener process through the boundafy) asTy).

For a given random variabl& we denoteF;(z) = P(Z < z) and fz(z)dz=
P(Z € dz) the pDf and pdf, respectively. The pDf and pdf of the two dimen
sional random variabl& = (Tp,, Tp,), representing the FET of(t) throughb,
areFr(t) =P(Ty <t1,Tr < t) and fr(t), respectively. Similar notation hold for
the exit timeT.

We want to characterize the dependence between the twoppoicesses de-
termined by the sequence of crossings of the boundary. ioaitih we introduce

the forward time (cf. [7], p. 61). F(Eg? = p, with p > 0 we define the forward
time G)E)’Z) as the intertime betweeﬁ)'? and the epoch, aftéNBg?, whenX; first
crossedy, (cf. Fig. 2). The study of the joint distribution Qfékﬂ),@ég)), given

1
that%'? = p, characterizes the dependence between the two point gesasd
its study is the goal of this work.

Figure 2. Scheme for the forward tin@,’z).



4. Joint distribution of the forward times

The proces¥(t) is not a Markov process due to the absence of resetting of
the second component when the first crosses the boundaryarnd the presence
of jumps with intertimes characterized by IG distributittowever, both the bidi-
mensional procesk(t) and the second componeXi(t) are Markov processes.

Using this property we compute the joint pdf of the randormahie(Ték”) @l()’z))

conditioned on the even{lS(U'i =p}.
This conditioning can then be removed by multiplying thedibaned density
for the pdf fsfnk , 1.e. for the IG distribution, and integrating with respezll

admissible values gb. To simplify the notation, in the following we avoid to
write explicitly the conditioning event, when not necegsar

k+1)

Theorem 1. Let us choose k N, Sg = p. The joint pDf of(T, ( G)l(fz’)) is

F(f(k+1> olP ))(U,V) = (9)

by
min{u,v} v
:/ fTbl(T)/ foyp (6)d0dT +
2

min{uyv} ,bp
+/ / g (4,04 610.) oy (6 +
by_h

min{u, v} p+r p+r
_|_/ / / / %van (817"'73'17n)
b2 p p+9 p+r

q<$< <Sh
by
| Tgo(T— 0) fxp(w,p + 60, p)ds; ... dsdaodTd.

where

by 0
fop W= [ 1,0 [ 50@p0.8) S fgo(E)dedz  (10)

by K=0

f(sém Sém+n (317 R 73’1; n) (11)

[p+6, p+r

= frm (S0) frmen (2= 51) - Fpimieny (S0 = S1-2) (1= Frmencny (0 + T — 8))

b 2 by by



and

b1 —h te[0,59—p— 0]
by —2h te(ss—p—6,5—p— 0]

Calt) = (12)
b, —nh te (sh-1—p—06,5n—p—06]

bi—(n+1h t>s5,—p-—0

Proof. To simplify the notation we sé¢= 0 and we write‘fb(ll) = Tp,. Whenk # 0
we have analogous formulae.

We write the joint pDf of( T, , @Efz’ )) as
Fi o) (Y = P(To, <u,0 <vTy, <) (13)
+ P(Ty, < u,@ff;) <V, Ty, > @Efz’))
+ P(Th, < u,@é‘;) <v, Ty, = @é‘;)).
We start taking into account the first term in (13). Wh‘é@ < @Efz’ ), the two
components oK (t) evolve independently (cf. Figure 3 (b) and (d)). Hence we
haveTy, =Ty, and
P(Ty, <u,0f <v T, <o) = mm{UV}IP’(T <0 <y, = 1)f (1)dr
bl ) b2 ) bl b2 - 0 b2 bl - Tbl
min{u,v} v
_ / fr. (r)/ f o (0)dodr.  (14)
0 1 t b,

To compute the distribution cﬁ)lg’;’) in (14), we first condition on the position of

the second componef(tg(p) and then on the timé& whenX, crossed, for the
last time beforep.

fop (00 = [ B(Olf) < dole(p) = 2 (Relp) € 02 (15)
- /bszbzz Zz/ P(%(p) € d2§)) = §)dgdo
by
_ / fr,, (0 %/ fxe(z,p[0,€) Sg()dédzde

9



(@ {b)

v Ty =pt vl =Ty =pte
) i @

€p p+ & p+0

Figure 3: Trajectories of the two components in the c'a§e> O ((a) and (c))
and in the casél?b1 < @éz) whereTb1 =Ty, ((b) and (d)).

To write the second equality in (15) we used the Markov priypand spatial
homogeneity of the Wiener process.

Now we apply a similar procedure to compute the second terfb3)f In this
case the two components Xfare not independent, due to the presence of one or
more jumps. Sincéy, # T,

N (0) min{u,v} (o)
P(fy, <u,0f < T, >0 / / P(fy, € dr,0f) € d6) (16)

Conditioning on the position of the process at the time of trst jump afteréfz
we obtain (cf. Figure 3 (a) and (c))

P(To, € dr.0f) € d6) (17)
=P(Ty, ed1jof) = 6)P(6  d6)

:/ P(Ti, € dTj0f) = 6,%u(p+6) = w)
P(%u(p+6) € dw|Of = 8)P(O € dB).
We haveP(Xy(p + 0) € dw|@ég) = 0) = fxa(w,p + 6|0,p)dw and P(@é’z) €

10



de) = fe(p)(e)de is given in (15). Letm be the number of spikes of neuron 2
b2

preceding(p + 6), me N. The first term in the integral in (17) can be computed
conditioning on the number and on the epochs of the jumfis#0, p + 1], that

we denote WitiN(,, g . 7] and(Sf)rzn), N .,Sf)r:Jrn)), respectively. We have

<fb1 cd1|of) =0,%(p+6) = w) (18)

/P+T /p—i—r
p

&<%< <s
ng-|—n (dsi,...,ds),Np i1 = n\@é’j) = 6,%1(p+6) = w)

P<fb1 € dT|G)b2 = G,Xl(p+ 9) =W, (%rzn), .. 7%[’211—&-[’])) = (S]_7 .. 7Sn>’N[P+9,p+T] = n).

(k)

Using the independence and the identical distribution efrtkertimesT,, * we get

Sy ) €Ay d5) N oo =110 = 8, %u(p+6) =) (19)
_IP( () =ds, T(m“):d(sQ s)o T =d(sh—so1) T Y > p T sy).
—fTb ( 1) Frmin (S2—51), - m+n<Sn S-1)(1-F, m+n+1(p+r $))ds;...ds,.
2

by 2

The spatial and temporal homogeneity of the Wiener prodésssato rewrite the
last term in (18) aszCnm_w(r — 0), the FET pdf of a Wiener process through the

time dependent boundagy(t) (12) (cf. Figure 4 (a)).
The synchronisnfb1 = @Efz’) is considered in the last term of (13). It arises
when the first component crosses its boundary at a jump epecge
P(Ty, <u,0f) <v T, =06 (20)
min{uyv}  _
_ / P(Ty, =010} = 6)P(0} < d6)
min{uyv}  _ (0)
= [ B(a(0) € i~ h.byeff) = 0)P(©ff  do)
min{u,v}
_/ /b fig .0+ 610, ) fyp (0)cxcl.

and we get the result. O
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Remark 1. Theorem 1 requests the knowledge of the denfity, (T —6) in
(9). Note that the boundarg(t) is a step function with jumps at times i =
1,...,n(cf. Figure 4 (a)).

(a)

(b}

b, — by——
— ) :
o |
= | ,
| o | ;
p+o i S 53 p+e S 53

Figure 4: Scheme of: (a) the step boundagit), (b) the two stepwise linear

boundary: the lower bouncf (t) (dotted line) and the upper bounﬁ(t) (solid
line).

n

This density can be approximated using a result in [26] forian&t process
with a stepwise linear boundary. We propose two stepwisaliboundaries? (t)

andcﬁ(t) to bound the step functioty(t) (cf. Figure 4 (b)).

(

by —h
D(st—p—60—x)+ (b —2n)

by —2h

b.]_.—l’lh
Dsi—p—0-x+ (b — (n+1)h)
b1 —(n+1)h

bi—h
Msi—p—0-X)+(br—h)
b, — 2h

bl—nh

Msh—p—60—x) +(br—nh)
by — (n+1)h

12

te[0,s—p—0—¢
te(s—p—0-¢€5—p—0
te(si—p-0,—p—0—¢

te (s-1—-p—60,5—p—6—¢
te(sm—p-0-€5—p—0
t>s,—p—06

te[0,5—p— 0]
te(ss—p—6,51—p—0+¢]
te(si—p-0+¢&5—p—10]

te(sh1—p—0+e,s—p—6)
te(sh—p—06,sn—p—0+¢]
t>sp—p—0+¢



Clearlycq (t) < cy(t) < cﬁ(t), for eacht > 0. Moreover, ife is small, the proba-
bility of crossing ofc? (t), cﬁ(t) or cy(t) are close.

Consider one of the two bounds, for exampfdt). Consider the time se-
quenceft,i = 1,...,2n} wherety; =s; — (p+ 0) andtyj_1 =sj — (p+6) — ¢,
for j=1,...,nand denotes witb= {c;,i =1,...,2n} the sequence of knots of the
stepwise linear boundary, whesg = b; — (j+1)h—wandcyj_1 = by — jh— w,
for j = 1,...,n. Note that, conditioning on the position of the proc¥ssat the
time of the 21 jumpst;, i = 1,...,n and using Markov property and the result in
[26], we get

( o 6) (21)
bi—(n+1)h
- /_oo |:fTb1*(n+1)hfx(p +T—s)E[g(Xe(te); - ,Xl(tzn);c)]] dx

where

9(X1,. .., Xon;C) = Iz_n| 1(xj < ¢j) (1—exp[—2<ci_l_xj_l>(cj _XJ)D . (22)

=1 tj—tj1

Remark 2. If the jumpsh are downward, the random variatﬁréjl,eég)) admits
pdf

f(Tt)(:H) 7@&;)) (u,v) (23)
( fr,, (u )f@gm (v) usv
p+u p+u
= V) S o/ / Sf)ern (1,...,3“,n) u>v ,
p p+ p+vp+u]
S1<52< <5
: ff)%o fTCn(t),w(u_V) fo(w7p +V|07p)dsl . dS(dw

where f@<p> (v) is given by (10). On the contrary, for positive jumps, the df
by

singular.

Remark 3. Note that if'I~'b(lk+1) < @,(0’2’) the componenk; reaches its boundary

before the componené. It means that there are no jumps and therefore the two
components are independent.
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A special instance arises after a pair of synchronous ergssif the two com-
ponents. In this case the forward time coincides with thertimhe between two
crossings oK, throughb,. The following corollary holds

Corollary 2. If X1(0) = X2(0) = 0, the joint pDf of('féll),eég)) is

F(Tb<1> o° >)(U V) = (24)
min{u,v} %
—/ bl(r)/r fr,, (6)d6dt +

min{uyv} rby
+/ / fya(x. 0]0.0) fr._(6)dxdo +
0 bi—h Xl( 0,0) sz( )

min{u,v} u ® T T
+/ f e/ /---/fm N
0 T (6) 0 nZO o Jo <i2)7---7§02‘*)7N[eﬂ>( boee Sl

<H<...<
b
l 00 (T — 6) fxa(w, 6]0,0)ds; . . . dsdwdTd6.

—00

where fsém Sémm (s1,...,%,N) is given by (11).

p+9 p+r])
Proof. Itis analogous to the proof of Theorem 1. m

Since the densityr, on(t)— ,(T—08) requests a strong computational effort, it is

useful to determine alternative bounds for the joint pD('EEﬁkJrl bp))
2

Theorem 3. Let us choose k N, Sf) = p, the joint pDf of( T (k) @Efz’)) satisfies

F€T<k+1> o) (u,v) < F<T<k+1> of) (uv) < F<BT 1) gp ))(U,V) (25)

by by by b by
where
FO (u,v) = (26)
(1570) "

min{u,v} v
:/ fTbl(r)/ foyp (6)d6dT +
2

min{u,v}
+/ / fxa(x, P+ 610, ) (6)dxdd +

2
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min{u,v}f 0 u o 0
Foin (T — 0) — Foguys) (T —
+f @@( ) 3[R r=0)-Fga(r=0)
/ i, 1 o(T— ) fxa(. p + 6|0, p)daxd7d6.

and
B

F (u,v) =
(15 0)

min{u,v} v
:/ fr, (r)/ f e (6)d6dT +
b2

min{uyv} ,by
+/ / fxa(x P+ 610, ) (6)dxdd +
b

b2

+/mln{u v} " / [ —0)— F%r;l) (T—96)

by
. / s o (T = 0) xz(@.p + 610, p)dwd 6.

(27)

where g ) is given by (10).

Proof. The ordering of the boundaridg —h(n+ 1) — w < ¢cy(t) < b; —h— w,
wherec,(t) is given by (12), implies the stochastic ordering of the esponding
FETs [23]

Toy—h-w <st Teyt)—w st Toy—h(n+1)-w (28)

that, for each > 0O, implies

Py nin -0t < Fro o () < Py o (1) (29)

1~

Applying these inequalities to (9) we get the result. O

Remark 4. Similar results can be obtained considering backward timstgad
of forward times (cf. [7]).

5. Examples

We apply the results proved in Section 4 to some special cdgbe couples
of neurons in order to enlighten the dependency betweengpiing activity in
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terms of the parameters values. For simplicity we look fer jtiint distribution

function of ('féﬁ”,@é’?) under the hypothesis of Corollary 2, i.e. in the case
p = 0 andk = 0. We implement the bounds (26) and (27) and the pdf (23) for
negative jumps, noting that all the functions involved anewn in closed form
for a Wiener process. The integrals are treated by meansaafrgture methods
and the series is truncated.

To interpret the figures of the following examples it is useédurecall that for
u < v, the joint distribution describes the behavior of the MPvad independent
neurons, while fou > v it describes the effect of jumps.

5.1. One jump

Here we hypothesize that only one jump is admissible andhleatvo compo-
nents start simultaneously. When proc¥sseaches its boundary it is absorbed:;
meanwhile X; has a jump of amplituda and then it pursues its evolution inde-
pendently until it reaches its boundary. Under these hygssithe result (24) is
easily computable in closed form and becomes

F(fb<11> 0@ (V) = (30)

7b2

min{u,v} v
:/0 fTbl(r)/T fr,, (6)d6dT +
MR (%,6]0.0) fr (8)dxd8
a(X,08(0,0 X
|/ /bl_h x5(x, 8]0,0) fr, (6)dxd +
min{u,v} u rbg
+/0 fTb2<e)/e/ o, o o(T— 6) (e, 610, 0)daxird.

In Figure 5 the joint pdf and the corresponding contour pl‘o('fgl,'f’bz) is
shown. The parameters of the processare= lp =1 mV ms?t oy =0, =1
mV ms %2, b; = b, = 10 mV and the jumfh = 0.5 mV is positive. Even if the
parameters of the two components are the same, the joinspaitisymmetric.
This is explained by the one-way jumps that break the symnoétihe problem.
Positive jumps, i.e. excitatory neuron 2, increase the gindity that'ﬁDl ~ 'sz.
Indeed positive jumps create a discontinuity in the cDf gltime synchronicity
lineu=v.

In Figure 6 the joint pdf of Ty, , T, ) is shown with parameteyg = pi, = 1 mV
ms 1, 01=0,=1mVms Y2 b; = 10 mV,b, = 8 mV and positive jumi = 0.5
mV. The difference between the boundaries determines aishtie location of
the probability mass, with respect to the case of Figure %e Wath;, > by implies
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faster activity for neuron 2 with respect to neuron 1. Howgtlee excitatory input
from neuron 2 increases the frequency of neuron 1.

In Figure 7 the case of negative jump is described. The pasamef the
processargy = tp=1mvVms? oi=0,=1mVms /2 b, =b,=10mV, and
the jumph = —2 mV is negative. We note that there is no synchronous agtivit
due to the presence of negative jumps. Negative jumps, nlebitory activity
of neuron 2, determine an increase of the mean of the spikgtimes of neuron
1. Furthermore, the probability mass is divided into twoisag. The distance
between these regions is related to the effect of the negjaitmps and it increases
as the jumph < 0 decreases (not shown in the figure).

(b)

515 AN

0 10 20 30

Figure 5: 1 jump: Joint pDf o(‘fbl,sz) with parameterg; = tp = 1 mV ms1,
o1=0,=1mVms Y2 b; =by, =10 mV,h= 0.5mV: (a) pDf, (b) contour plot

5.2. njumps

Here we extend the study performed in the previous subsetdithe case of
njumps.

In Figure 8 the bounds of the joint pﬁfbljbz)(u,v) is shown for different
value ofu. The parameters of the process gfe= t, =0.7mVms 1, oy =0y =
1 mV ms /2 b; = by, =5 mV, and the jumfh = 1 mV is positive. Like in the
one jump case, the presence of an excitatory neuron ing#as@robability that
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(b)

5 15

0 10 20 30

Figure 6: 1 jump: Joint pDf o(‘fbl,sz) with parameterg; = tp = 1 mV ms 1,
o1=0,=1mVms Y2 b; =10 mV,b, = 6 mV,h=0.5mV: (a) pDf, (b) contour
plot

002,
0015 ).
001

0.005{

20

Figure 7: 1 jump: Joint pdf ofTy, , Ty,) with parametergy; = p = 1 mV ms 2,
01=0>=1mVms?2 by =bhy, =10 mV,h=—2mV: (a) pdf, (b) contour plot
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'Tbl ~ sz as shown by the jump in the distribution. The two bounds arsechnd
indicate a good approximation.

In Figure 9 the case of negative jump is described. The pasamef the
process argly = tp =1mvVms 1, 01 =0,=1mVms Y2 b; =b,=5mV, and
the jumph = —0.5 mV is negative. In this case we do not observe synchronous
spikes.

0.8
0.6 PR
0.4 I

0.2 ly

Figure 8: n jumps: Bounds for the joint pDf bel,'f'bz) with parametergs, =
=07mVmsloi=c=1mVms?¥2 b =by=5mV,h=1mV:(@u=7
(dotted line),u = 15 (solid line), (b) contour plot of the upper bound

6. Conclusions

The analysis of the dependence properties of the point psesds of interest
for their application to neuronal networks. This study resps the knowledge of
the joint distribution of the inter- and forward-times. Silations are the typical
methods for the study of these times. The use of the Wieneepsito model the
underlying behavior of the considered network allows anydical and numer-
ical approach. The proposed model considers a bivariateétigrocess whose
components are linked via jumps and are constrained by lzoiesd We derive
a closed form expression of the joint distribution of FET dodvard times and
we implement it, performing a numerical study of the invalvategrals. This
suggests to pursue in this direction with the analysis ofsssive intertimes, i.e.
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0.4

0.2

Figure 9: n jumps: Bounds for the joint pDf of @fi,, Tp,) with parameters
= =1mvmst oo=c=1mvVms?¥2 b=b,=5mV,h=-05
mV:(a)u= 7 (dotted line)u = 15 (solid line), (b) contour plot of the upper bound

(anoTbl 0P 4 PRDIER] Tn )) for each choice ok € N, m € N andm, € N,
mp > k. Other extensmns “could concern a model with more than twopoe
nents. In this case the procedure is similar but numericsrhes computationally
expensive. Unfortunately, a direct extension of the methmygles to other pro-
cesses is not possible since the method is based on the Margpegrty and on
the spatio-temporal homogeneity of the Wiener process.

The analytical results obtained in this work can be used fwave the statis-
tical results obtained in [22].
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