

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Motivic Galois groups of 1-motives: a survey

This is a pre print version of the following article:
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/138510 since 2018-03-24T20:29:38Z
Publisher:
Yuri Tschinkel
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

MOTIVIC GALOIS GROUPS OF 1-MOTIVES: A SURVEY

CRISTIANA BERTOLIN

ABSTRACT. We investigate the structure of the motivic Galois groups of 1-motives defined over a field of characteristic 0.

In this note we review the main results of [B03] and [B04].

Let k be a field of characteristic 0 and let \overline{k} be its algebraic closure. Let \mathcal{T} be a Tannakian category over k. The tensor product of \mathcal{T} allows us to define the notion of Hopf algebras in the category $\operatorname{Ind}\mathcal{T}$ of Ind-objects of \mathcal{T} . The category of affine group \mathcal{T} -schemes is the opposite of the category of Hopf algebras in $\operatorname{Ind}\mathcal{T}$.

The fundamental group $\pi(\mathcal{T})$ of \mathcal{T} is the affine group \mathcal{T} -scheme $\operatorname{Sp}(\Lambda)$, whose Hopf algebra Λ is endowed for each object X of \mathcal{T} with a morphism $X \longrightarrow \Lambda \otimes X$ functorial in X, and is universal for these properties. Those morphisms $\{X \longrightarrow \Lambda \otimes X\}_{X \in \mathcal{T}}$ define an action of the fundamental group $\pi(\mathcal{T})$ on each object of \mathcal{T} . For each fibre functor ω of \mathcal{T} over a k-scheme S, $\omega\pi(\mathcal{T})$ is the affine group S-scheme $\underline{\operatorname{Aut}}_{S}^{\otimes}(\omega)$ which represents the functor which associates to each S-scheme $T, u: T \longrightarrow S$, the group of automorphisms of \otimes -functors of the functor $u^*\omega$.

If $\mathcal{T}(k)$ is a Tannakian category generated by motives defined over k (in an appropriate category of mixed realizations), the fundamental group $\pi(\mathcal{T}(k))$ is called the *motivic Galois group* $\mathcal{G}_{mot}(\mathcal{T}(k))$ of $\mathcal{T}(k)$ and for each embedding $\sigma: k \longrightarrow \mathbb{C}$, the fibre functor ω_{σ} "Hodge realization" furnishes the \mathbb{Q} -algebraic group

$$\omega_{\sigma}\mathcal{G}_{\mathrm{mot}}(\mathcal{T}) = \operatorname{Spec}\left(\omega_{\sigma}(\Lambda)\right) = \underline{\operatorname{Aut}}_{\mathbb{O}}^{\otimes}(\omega_{\sigma})$$

which is the Hodge realization of the motivic Galois group of $\mathcal{T}(k)$.

EXAMPLES:

- (1) From the main theorem on neutral Tannakian categories, we know that the Tannakian category $\operatorname{Vec}(k)$ of finite dimensional k-vector spaces is equivalent to the category of finite-dimensional k-representations of $\operatorname{Spec}(k)$. In this case, affine group \mathcal{T} -schemes are affine group k-schemes and $\pi(\operatorname{Vec}(k))$ is $\operatorname{Spec}(k)$.
- (2) Let $\mathcal{T} = \operatorname{Rep}_k(G)$ be the Tannakian category of k-representations of an affine group k-scheme G. The affine group \mathcal{T} -schemes are affine k-schemes endowed with an action of G and the fundamental group $\pi(\mathcal{T})$ of \mathcal{T} is G endowed with its action on itself by inner automorphisms (see [D89] 6.3).
- (3) Let $\mathcal{T}_0(k)$ be the Tannakian category of Artin motives over k, i.e. the Tannakian sub-category of the Tannakian category of mixed realizations for absolute Hodge cycles (see [J90] I 2.1) generated by pure realizations of 0-dimensional varieties over k. The motivic Galois group $\mathcal{G}_{\text{mot}}(\mathcal{T}_0(k))$ of $\mathcal{T}_0(k)$ is the affine group \mathbb{Q} -scheme $\text{Gal}(\overline{k}/k)$ endowed with its action on itself by inner automorphisms. We denote it by $\mathcal{GAL}(\overline{k}/k)$. In particular,

CRISTIANA BERTOLIN

for any fibre functor ω over Spec (\mathbb{Q}) of $\mathcal{T}_0(k)$, the affine group scheme $\omega(\mathcal{GAL}(\overline{k}/k)) = \underline{\operatorname{Aut}}_{\operatorname{Spec}(\mathbb{Q})}^{\otimes}(\omega) \text{ is canonically isomorphic to } \operatorname{Gal}(\overline{k}/k).$

- (4) The motivic Galois group $\mathcal{G}_{mot}(\mathbb{Z}(0))$ of the unit object $\mathbb{Z}(0)$ of $\mathcal{T}_0(k)$ is the affine group $\langle \mathbb{Z}(0) \rangle^{\otimes}$ -scheme Sp($\mathbb{Z}(0)$). For each fibre functor "Hodge realization" ω_{σ} , we have that $\omega_{\sigma}(\mathcal{G}_{\text{mot}}(\mathbb{Z}(0))) := \operatorname{Spec}(\omega_{\sigma}(\mathbb{Z}(0))) = \operatorname{Spec}(\mathbb{Q}),$ which is the Mumford-Tate group of $T_{\sigma}(\mathbb{Z}(0))$.
- (5) Let $\langle \mathbb{Z}(1) \rangle^{\otimes}$ be the Tannakian category over \mathbb{Q} defined by the k-torus $\mathbb{Z}(1)$. The motivic Galois group $\mathcal{G}_{mot}(\mathbb{Z}(1))$ of the torus $\mathbb{Z}(1)$ is the affine group $(\mathbb{Z}(1))^{\otimes}$ -scheme \mathbb{G}_m defined by the \mathbb{Q} -scheme $\mathbb{G}_{m/\mathbb{Q}}$. For each fibre functor "Hodge realization" ω_{σ} , we have that $\omega_{\sigma}(\mathbb{G}_m) = \mathbb{G}_{m/\mathbb{Q}}$, which is the Mumford-Tate group of $T_{\sigma}(\mathbb{Z}(1))$.
- (6) If k is algebraically closed, the motivic Galois group of motives of CM-type over k is the Serre group (cf. [M94] 4.8).
- (7) The Tannakian category $\mathcal{T}_1(k)$ of 1-motives over k is the Tannakian subcategory of the Tannakian category of mixed realizations (for absolute Hodge cycles) generated by mixed realizations of 1-motives over k. Recall that a 1-motive $M = [X \xrightarrow{u} G]$ over k consists of
 - a group scheme X over k, which is locally for the étale topology, a constant group scheme defined by a finitely generated free Z-module,
 - a semi-abelian variety G defined over k, i.e. an extention of an abelian • variety A by a torus Y(1), which cocharacter group Y,
 - a morphism $u: X \longrightarrow G$ of group schemes over k.

1-motives are mixed motives of level ≤ 1 : the weight filtration W_{*} on M is $W_i(M) = M$ for each $i \ge 0$, $W_{-1}(M) = G$, $W_{-2}(M) = Y(1)$, $W_j(M) = 0$ for each $j \le -3$. If $\operatorname{Gr}_n^W = W_n/W_{n-1}$, we have the quotients $\operatorname{Gr}_0^W(M) = X$, $\operatorname{Gr}_{-1}^W(M) = A$ and $\operatorname{Gr}_{-2}^W(M) = Y(1)$. We will denote by $W_{-1}\mathcal{T}_1(k)$ (resp. $\operatorname{Gr}_0^W \mathcal{T}_1(k), \ldots$) the Tannakian sub-category of $\mathcal{T}_1(k)$ generated by all $W_{-1}M$ (resp. $\operatorname{Gr}_0^W M$, ...) with M a 1-motive. With this notation we can easily compute the following motivic Galois groups

- $\mathcal{G}_{mot}(\operatorname{Gr}_{0}^{W}\mathcal{T}_{1}(k)) = \mathcal{GAL}(\overline{k}/k),$ $\mathcal{G}_{mot}(\operatorname{Gr}_{-2}^{W}\mathcal{T}_{1}(k)) = \mathcal{GAL}(\overline{k}/k) \times \mathbb{G}_{m}.$ $\mathcal{G}_{mot}(\operatorname{Gr}_{0}^{W}\mathcal{T}_{1}(\overline{k})) = \mathcal{G}_{mot}(\mathcal{T}_{0}(\overline{k})) = \operatorname{Sp}(\mathbb{Z}(0))$ $\mathcal{G}_{mot}(\operatorname{Gr}_{-2}^{W}\mathcal{T}_{1}(\overline{k})) = \mathbb{G}_{m}$

1. MOTIVIC GALOIS THEORY

For each Tannakian sub-category \mathcal{T}' of \mathcal{T} , let $H_{\mathcal{T}}(\mathcal{T}')$ be the kernel of the faithfully flat morphism of group \mathcal{T} -schemes $I: \pi(\mathcal{T}) \longrightarrow i\pi(\mathcal{T}')$ corresponding to the inclusion functor $i: \mathcal{T}' \longrightarrow \mathcal{T}$. In particular we have the short exact sequence of group $\pi(\mathcal{T})$ -schemes

$$0 \longrightarrow H_{\mathcal{T}}(\mathcal{T}') \longrightarrow \pi(\mathcal{T}) \longrightarrow i\pi(\mathcal{T}') \longrightarrow 0.$$

In [D89] 6.6, Deligne proves that the Tannakian category \mathcal{T}' is equivalent, as tensor category, to the sub-category of \mathcal{T} generated by those objects on which the action of $\pi(\mathcal{T})$ induces a trivial action of $H_{\mathcal{T}}(\mathcal{T}')$. In particular, this implies that the fundamental group $\pi(\mathcal{T}')$ of \mathcal{T}' is isomorphic to the group \mathcal{T} -scheme $\pi(\mathcal{T})/H_{\mathcal{T}}(\mathcal{T}')$. The group \mathcal{T} -scheme $H_{\mathcal{T}}(\mathcal{T}')$ characterizes the Tannakian sub-category \mathcal{T}' . In fact

we have a clear dictionary between Tannakian sub-categories of \mathcal{T} and normal affine group sub- \mathcal{T} -schemes of the fundamental group $\pi(\mathcal{T})$ of \mathcal{T} :

Theorem 1.0.1. There is bijection between the Tannakian sub-categories of \mathcal{T} and the normal affine group sub- \mathcal{T} -schemes of $\pi(\mathcal{T})$, which associates

- to each Tannakian sub-category \mathcal{T}' of \mathcal{T} , the kernel $H_{\mathcal{T}}(\mathcal{T}')$ of the morphism of \mathcal{T} -schemes $I : \pi(\mathcal{T}) \longrightarrow i\pi(\mathcal{T}')$ corresponding to the inclusion $i : \mathcal{T}' \longrightarrow \mathcal{T}$;

- to each normal affine group sub- \mathcal{T} -scheme H of $\pi(\mathcal{T})$, the Tannakian subcategory $\mathcal{T}(H)$ of objects of \mathcal{T} on which the action of $\pi(\mathcal{T})$ induces a trivial action of H.

2. The case of motives of level ≤ 1

In order to study the category $\mathcal{T}_1(k)$ of motives of level ≤ 1 , in [B04] we have applied the above theorem to some sub-categories of $\mathcal{T}_1(k)$. The weight filtration W_* of 1-motives induces an increasing filtration W_* of 3 steps on the motivic Galois group $\mathcal{G}_{\text{mot}}(\mathcal{T}_1(k))$ which we describe through the action of $\mathcal{G}_{\text{mot}}(\mathcal{T}_1(k))$ on the generators of $\mathcal{T}_1(k)$: For each 1-motive M over k, we have that

- $W_0(\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_1(k))) = \mathcal{G}_{\mathrm{mot}}(\mathcal{T}_1(k))$
- $W_{-1}(\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_1(k))) = \{g \in \mathcal{G}_{\mathrm{mot}}(\mathcal{T}_1(k)) \mid (g id)M \subseteq W_{-1}(M), (M) \in W_{-1}(M)\}$
- $(g id)W_{-1}(M) \subseteq W_{-2}(M), (g id)W_{-2}(M) = 0\},$
- $W_{-2}(\mathcal{G}_{\text{mot}}(\mathcal{T}_1(k))) = \{g \in \mathcal{G}_{\text{mot}}(\mathcal{T}_1(k)) \mid (g id)M \subseteq W_{-2}(M), (g id)W_{-1}(M) = 0\},\$
- $W_{-3}(\mathcal{G}_{\text{mot}}(\mathcal{T}_1(k))) = 0.$

According to the motivic analogue of [Br83] §2.2, $\operatorname{Gr}_{0}^{W}(\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_{1}(k)))$ is a reductive group sub- $\mathcal{T}_{1}(k)$ -scheme of $\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_{1}(k))$ and $W_{-1}(\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_{1}(k)))$ is the unipotent radical of $\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_{1}(k))$. Each of these 3 steps $W_{-i}(\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_{1}(k)))$ (i = 0, 1, 2) can be reconstructed as intersection of group sub- $\mathcal{T}_{1}(k)$ -schemes of $\mathcal{G}_{\mathrm{mot}}(\mathcal{T}_{1}(k))$ associated to Tannakian sub-categories of $\mathcal{T}_{1}(k)$ through the bijection 1.0.1:

Lemma 2.0.2. (1)
$$W_{-1}(\mathcal{G}_{\text{mot}}(\mathcal{T}_{1}(k))) = \bigcap_{i=-1,-2} H_{\mathcal{T}_{1}(k)}(\text{Gr}_{i}^{W}\mathcal{T}_{1}(k)),$$

(2) $W_{-2}(\mathcal{G}_{\text{mot}}(\mathcal{T}_{1}(k))) = H_{\mathcal{T}_{1}(k)}(W_{-1}\mathcal{T}_{1}(k)) = H_{\mathcal{T}_{1}(k)}(W_{0}/W_{-2}\mathcal{T}_{1}(k)).$

The explicit computation of these group sub- $\mathcal{T}_1(k)$ -schemes involved in the above lemma will provide four exact short sequences of group sub- $\mathcal{T}_1(k)$ -schemes of $\mathcal{G}_{\text{mot}}(\mathcal{T}_1(k))$:

Theorem 2.0.3. We have the following diagram of affine group $T_1(k)$ -schemes

where all horizontal short sequences are exact and where the vertical arrows on the left are inclusions and those on the right are surjections.

CRISTIANA BERTOLIN

3. The case of a 1-motive

Let $M = [X \xrightarrow{u} G]$ be a 1-motive defined over k. The motivic Galois group $\mathcal{G}_{\text{mot}}(M)$ of M is the fundamental group of the Tannakian sub-category $\langle M \rangle^{\otimes}$ of $\mathcal{T}_1(k)$ generated by M i.e. the affine group $\langle M \rangle^{\otimes}$ -scheme Sp(Λ), where Λ is the Hopf algebra of $\langle M \rangle^{\otimes}$ universal for the following property: for each object X of $\langle M \rangle^{\otimes}$, there is a morphism $\lambda_X : X^{\vee} \otimes X \longrightarrow \Lambda$ functorial in X. The morphisms $\{\lambda_X\}$, which can be rewritten in the form $X \longrightarrow X \otimes \Lambda$, define an action of the group $\mathcal{G}_{\text{mot}}(M)$ on each object X of $\langle M \rangle^{\otimes}$, and in particular on itself. The main result of [B03] is that

Theorem 3.0.4. The unipotent radical $W_{-1}(\text{Lie }\mathcal{G}_{\text{mot}}(M))$ of the Lie algebra of $\mathcal{G}_{\text{mot}}(M)$ is the semi-abelian variety defined by the adjoint action of the graded $\operatorname{Gr}^W_*(W_{-1}\text{Lie }\mathcal{G}_{\text{mot}}(M))$ on itself.

The idea of the proof is as followed: Before recall that according to [D75] (10.2.14), to have M is equivalent to have the 7-uplet $(X, Y^{\vee}, A, A^*, v, v^*, \psi)$ where

- X and Y[∨] are two group k-schemes, which are locally for the étale topology, constant group schemes defined by a finitely generated free Z-module;
- A and A* are two abelian varieties defined over k, dual to each other;
 v : X → A and v* : Y[∨] → A* are two morphisms of group k-schemes;
- ψ is a trivialization of the pull-back $(v, v^*)^* \mathcal{P}_A$ by (v, v^*) of the Poincaré biextension \mathcal{P}_A of (A, A^*) .

Observe that the 4-uplet (X, Y^{\vee}, A, A^*) corresponds to the pure part of the 1motive, i.e. it defines the pure motives underlying M, and the 3-uplet (v, v^*, ψ) represents the "mixity" of M.

Consider the motive $E = W_{-1}(\underline{\operatorname{End}}(\operatorname{Gr}^W_* M))$: it is a split 1-motive of weight -1 and -2 obtained from the endomorphisms of the graded $\operatorname{Gr}^W_* M$ of M. The composition of endomorphisms endowed E with a Lie algebra structure (E, [,]), whose crochet [,] corresponds to a $\Sigma - X^{\vee} \otimes Y(1)$ -torsor \mathcal{B} living over $A \otimes X^{\vee} + A^* \otimes Y$. The action of E on the motive $\operatorname{Gr}^W_*(M)$ is described by a morphism

$$E \otimes \operatorname{Gr}^W_*(M) \longrightarrow \operatorname{Gr}^W_*(M)$$

which endowed the motive $\operatorname{Gr}^W_*(M)$ with a structure of (E, [,])-module.

Denote by $b = (b_1, b_2)$ the k-rational point $b = (b_1, b_2)$ of the abelian variety $A \otimes X^{\vee} + A^* \otimes Y$ defining the morphisms $v: X \longrightarrow A$ and $v^*: Y^{\vee} \longrightarrow A^*$. Let B be the smallest abelian sub-variety of $X^{\vee} \otimes A + A^* \otimes Y$ containing this point $b = (b_1, b_2)$. The restriction $i^*\mathcal{B}$ of the $\Sigma - X^{\vee} \otimes Y(1)$ -torsor \mathcal{B} by the inclusion $i: B \longrightarrow X^{\vee} \otimes A \times A^* \otimes Y$ is a $\Sigma - X^{\vee} \otimes Y(1)$ -torsor over B. Denote by Z_1 the smallest $\operatorname{Gal}(\overline{k}/k)$ -module of $X^{\vee} \otimes Y$ such that the torus $Z_1(1)$, that it defines, contains the image of the restriction $[,]: B \otimes B \longrightarrow X^{\vee} \otimes Y(1)$ of the Lie crochet to $B \otimes B$. The direct image $p_*i^*\mathcal{B}$ of the $\Sigma - X^{\vee} \otimes Y(1)$ -torsor $i^*\mathcal{B}$ by the projection $p: X^{\vee} \otimes Y(1) \longrightarrow (X^{\vee} \otimes Y/Z_1)(1)$ is a trivial $\Sigma - (X^{\vee} \otimes Y/Z_1)(1)$ -torsor over B. We denote by $\pi: p_*i^*\mathcal{B} \longrightarrow (X^{\vee} \otimes Y/Z_1)(1)$ the canonical projection. The morphism $u: X \longrightarrow G$ defines a point \tilde{b} in the fibre of \mathcal{B} over b. We denote again by \tilde{b} the points of $i^*\mathcal{B}$ and of $p_*i^*\mathcal{B}$ over the point b of B. Let Z be the smallest sub-Gal (\overline{k}/k) -module of $X^{\vee} \otimes Y$, containing Z_1 and such that the subtorus $(Z/Z_1)(1)$ of $(X^{\vee} \otimes Y/Z_1)(1)$ contains $\pi(\tilde{b})$. If we put $Z_2 = Z/Z_1$, we have that $Z(1) = Z_1(1) \times Z_2(1)$.

With these notations, the unipotent radical $W_{-1}(\text{Lie}\,\mathcal{G}_{\text{mot}}(M))$ of the Lie algebra of $\mathcal{G}_{\text{mot}}(M)$ is the extension of the abelian variety B by the torus Z(1) defined by the adjoint action of (B + Z(1), [,]) on itself. Since in the construction of B and Z(1) are involved only the parameters v, v^* and u, the computation of the unipotent radical $W_{-1}(\text{Lie}\,\mathcal{G}_{\text{mot}}(M))$ of the Lie algebra of $\mathcal{G}_{\text{mot}}(M)$ depends only on the 3-uplet (v, v^*, ψ) , i.e. on the "mixity" of the 1-motive M.

EXAMPLES:

- (1) Let M be the split 1-motive $\mathbb{Z} \oplus A \oplus \mathbb{G}_m$. In this case all is trivial: $W_{-1}(\text{Lie}\,\mathcal{G}_{\text{mot}}(M)) = B = Z(1) = 0.$
- (2) Let $M = [\mathbb{Z} \xrightarrow{u} \mathcal{E}]$ be a 1-motive over k defined by u(1) = P with P a non-torsion k-rational point of the elliptic curve \mathcal{E} . We have that the torus Z(1) is trivial and the unipotent radical $W_{-1}(\text{Lie }\mathcal{G}_{\text{mot}}(M))$ is the elliptic curve $B = \mathcal{E}$.
- (3) Let $M = [\mathbb{Z} \xrightarrow{u} \mathbb{G}_m^3 \times A]$ be a 1-motive over k defined by $u(1) = (q_1, q_2, 1, 0)$ with q_1, q_2 two elements of $\mathbb{G}_m(k) - \mu_\infty$ multiplicatively independents $(\mu_\infty \text{ is the group of roots of the unity in } \overline{k})$. In this example the abelian variety B is trivial and the unipotent radical $W_{-1}(\text{Lie } \mathcal{G}_{\text{mot}}(M))$ is the torus $Z(1) = \mathbb{G}_m^2$.

With the above notations we have also that

Proposition 3.0.5. The derived group of the unipotent radical $W_{-1}(\text{Lie }\mathcal{G}_{\text{mot}}(M))$ of the Lie algebra of $\mathcal{G}_{\text{mot}}(M)$ is the torus $Z_1(1)$.

Proposition 3.0.6.

 $\dim \operatorname{Lie} \mathcal{G}_{\mathrm{mot}}(M) = \dim B + \dim Z(1) + \dim \operatorname{Lie} \mathcal{G}_{\mathrm{mot}}(\operatorname{Gr}^W_* M).$

References

- [B03] C. Bertolin, Le radical unipotent du groupe de Galois motivique d'un 1-motif, Math. Ann. 327 (2003).
- [B04] C. Bertolin, Motivic Galois theory for motives of level ≤ 1 , submitted (2004).
- [Br83] Brylinski J.-L., 1-motifs et formes automorphes (théorie arithmétique des domaines de Siegel), Publ. Math. Univ. Paris VII, 15, (1983).
- [D75] P. Deligne, Théorie de Hodge III, Pub. Math. de l'I.H.E.S 44 (1975).
 [D89] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois group
 - over Q, Math. Sci. Res. Inst. Pub. 16 (1989).

[J90] U. Jannsen, Mixed motives and algebraic K-theory, LN 1400 (1990).

[M94] J.S. Milne, Motives over finite fields, Motives, Proc. of Symp. in Pure Math. 55 (1994).

D-MATH HG G 33.4, ETHZ-ZENTRUM, CH-8092 ZÜRICH *E-mail address*: bertolin@math.ethz.ch