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MOTIVIC GALOIS GROUPS OF 1-MOTIVES: A SURVEY

CRISTIANA BERTOLIN

Abstract. We investigate the structure of the motivic Galois groups of 1-
motives defined over a field of characteristic 0.

In this note we review the main results of [B03] and [B04].
Let k be a field of characteristic 0 and let k be its algebraic closure. Let T be a

Tannakian category over k. The tensor product of T allows us to define the notion
of Hopf algebras in the category IndT of Ind-objects of T . The category of affine
group T -schemes is the opposite of the category of Hopf algebras in IndT .

The fundamental group π(T ) of T is the affine group T -scheme Sp(Λ), whose
Hopf algebra Λ is endowed for each object X of T with a morphism X −→ Λ⊗X
functorial in X, and is universal for these properties. Those morphisms {X −→
Λ ⊗X}X∈T define an action of the fundamental group π(T ) on each object of T .
For each fibre functor ω of T over a k-scheme S, ωπ(T ) is the affine group S-
scheme Aut⊗S (ω) which represents the functor which associates to each S-scheme
T , u : T −→ S, the group of automorphisms of ⊗-functors of the functor u∗ω.

If T (k) is a Tannakian category generated by motives defined over k (in an ap-
propriate category of mixed realizations), the fundamental group π(T (k)) is called
the motivic Galois group Gmot(T (k)) of T (k) and for each embedding σ : k −→ C,
the fibre functor ωσ “Hodge realization” furnishes the Q -algebraic group

ωσGmot(T ) = Spec
(
ωσ(Λ)

)
= Aut⊗Q (ωσ)

which is the Hodge realization of the motivic Galois group of T (k).

EXAMPLES:

(1) From the main theorem on neutral Tannakian categories, we know that the
Tannakian category Vec(k) of finite dimensional k-vector spaces is equiva-
lent to the category of finite-dimensional k-representations of Spec (k). In
this case, affine group T -schemes are affine group k-schemes and π(Vec(k))
is Spec (k).

(2) Let T = Repk(G) be the Tannakian category of k-representations of an
affine group k-scheme G. The affine group T -schemes are affine k-schemes
endowed with an action of G and the fundamental group π(T ) of T is G
endowed with its action on itself by inner automorphisms (see [D89] 6.3).

(3) Let T0(k) be the Tannakian category of Artin motives over k, i.e. the
Tannakian sub-category of the Tannakian category of mixed realizations
for absolute Hodge cycles (see [J90] I 2.1) generated by pure realizations
of 0-dimensional varieties over k. The motivic Galois group Gmot(T0(k)) of
T0(k) is the affine group Q -scheme Gal(k/k) endowed with its action on
itself by inner automorphisms. We denote it by GAL(k/k). In particular,
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2 CRISTIANA BERTOLIN

for any fibre functor ω over Spec (Q) of T0(k), the affine group scheme
ω(GAL(k/k)) = Aut⊗Spec (Q)(ω) is canonically isomorphic to Gal(k/k).

(4) The motivic Galois group Gmot(Z(0)) of the unit object Z(0) of T0(k) is the
affine group 〈Z(0)〉⊗-scheme Sp(Z(0)). For each fibre functor “Hodge real-
ization” ωσ, we have that ωσ

(
Gmot(Z(0))

)
:= Spec

(
ωσ(Z(0))

)
= Spec(Q),

which is the Mumford-Tate group of Tσ(Z(0)).
(5) Let 〈Z(1)〉⊗ be the Tannakian category over Q defined by the k-torus Z(1).

The motivic Galois group Gmot(Z(1)) of the torus Z(1) is the affine group
〈Z(1)〉⊗-scheme Gm defined by the Q -scheme Gm/Q. For each fibre func-
tor “Hodge realization” ωσ, we have that ωσ

(
Gm

)
= Gm/Q, which is the

Mumford-Tate group of Tσ(Z(1)).
(6) If k is algebraically closed, the motivic Galois group of motives of CM-type

over k is the Serre group (cf. [M94] 4.8).
(7) The Tannakian category T1(k) of 1-motives over k is the Tannakian sub-

category of the Tannakian category of mixed realizations (for absolute
Hodge cycles) generated by mixed realizations of 1-motives over k. Re-
call that a 1-motive M = [X u−→G] over k consists of
• a group scheme X over k, which is locally for the étale topology, a

constant group scheme defined by a finitely generated free Z-module,
• a semi-abelian variety G defined over k, i.e. an extention of an abelian

variety A by a torus Y (1), which cocharacter group Y ,
• a morphism u : X −→ G of group schemes over k.
1-motives are mixed motives of level ≤ 1: the weight filtration W∗ on M

is Wi(M) = M for each i ≥ 0, W−1(M) = G,W−2(M) = Y (1), Wj(M) = 0
for each j ≤ −3. If GrWn = Wn/Wn−1, we have the quotients GrW0 (M) =
X,GrW−1(M) = A and GrW−2(M) = Y (1). We will denote by W−1T1(k)
(resp. GrW0 T1(k), ...) the Tannakian sub-category of T1(k) generated by all
W−1M (resp. GrW0 M , ...) with M a 1-motive. With this notation we can
easily compute the following motivic Galois groups
• Gmot(GrW0 T1(k)) = GAL(k/k),
• Gmot(GrW−2T1(k)) = GAL(k/k)×Gm.
• Gmot(GrW0 T1(k)) = Gmot(T0(k)) = Sp(Z(0))
• Gmot(GrW−2T1(k)) = Gm

1. Motivic Galois theory

For each Tannakian sub-category T ′ of T , let HT (T ′) be the kernel of the faith-
fully flat morphism of group T -schemes I : π(T ) −→ iπ(T ′) corresponding to the
inclusion functor i : T ′ −→ T . In particular we have the short exact sequence of
group π(T )-schemes

0 −→ HT (T ′) −→ π(T ) −→ iπ(T ′) −→ 0.

In [D89] 6.6, Deligne proves that the Tannakian category T ′ is equivalent, as tensor
category, to the sub-category of T generated by those objects on which the action
of π(T ) induces a trivial action of HT (T ′). In particular, this implies that the
fundamental group π(T ′) of T ′ is isomorphic to the group T -scheme π(T )/HT (T ′).
The group T -scheme HT (T ′) characterizes the Tannakian sub-category T ′. In fact
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we have a clear dictionary between Tannakian sub-categories of T and normal affine
group sub-T -schemes of the fundamental group π(T ) of T :

Theorem 1.0.1. There is bijection between the Tannakian sub-categories of T and
the normal affine group sub-T -schemes of π(T ), which associates

- to each Tannakian sub-category T ′ of T , the kernel HT (T ′) of the morphism
of T -schemes I : π(T ) −→ iπ(T ′) corresponding to the inclusion i : T ′ −→ T ;

- to each normal affine group sub-T -scheme H of π(T ), the Tannakian sub-
category T (H) of objects of T on which the action of π(T ) induces a trivial action
of H.

2. The case of motives of level ≤ 1

In order to study the category T1(k) of motives of level ≤ 1, in [B04] we have
applied the above theorem to some sub-categories of T1(k). The weight filtration
W∗ of 1-motives induces an increasing filtration W∗ of 3 steps on the motivic
Galois group Gmot(T1(k)) which we describe through the action of Gmot(T1(k)) on
the generators of T1(k) : For each 1-motive M over k, we have that

• W0(Gmot(T1(k))) = Gmot(T1(k))
• W−1(Gmot(T1(k))) = {g ∈ Gmot(T1(k)) | (g − id)M ⊆W−1(M),

(g − id)W−1(M) ⊆W−2(M), (g − id)W−2(M) = 0},
• W−2(Gmot(T1(k))) = {g ∈ Gmot(T1(k)) | (g − id)M ⊆W−2(M),

(g − id)W−1(M) = 0},
• W−3(Gmot(T1(k))) = 0.

According to the motivic analogue of [Br83] §2.2, GrW0 (Gmot(T1(k))) is a reduc-
tive group sub-T1(k)-scheme of Gmot(T1(k)) and W−1(Gmot(T1(k))) is the unipotent
radical of Gmot(T1(k)). Each of these 3 steps W−i(Gmot(T1(k))) (i = 0, 1, 2) can be
reconstructed as intersection of group sub-T1(k)-schemes of Gmot(T1(k)) associated
to Tannakian sub-categories of T1(k) through the bijection 1.0.1:

Lemma 2.0.2. (1) W−1(Gmot(T1(k))) = ∩i=−1,−2HT1(k)(GrWi T1(k)),
(2) W−2(Gmot(T1(k))) = HT1(k)(W−1T1(k)) = HT1(k)(W0/W−2T1(k)).

The explicit computation of these group sub-T1(k)-schemes involved in the above
lemma will provide four exact short sequences of group sub-T1(k)-schemes of
Gmot(T1(k)) :

Theorem 2.0.3. We have the following diagram of affine group T1(k)-schemes

0 → Resk/kGmot(T1(k)) → Gmot(T1(k)) → GAL(k/k) → 0

↑ || ↑
0 → Resk/kHT1(k)(〈Z(1)〉⊗) → Gmot(T1(k)) → GAL(k/k)×Gm → 0

↑ || ↑
0 → W−1Gmot(T1(k)) → Gmot(T1(k)) → Gmot(GrW

∗ T1(k)) → 0

↑ || ↑
0 → W−2Gmot(T1(k)) → Gmot(T1(k)) → Gmot(W−1T1(k)) → 0

where all horizontal short sequences are exact and where the vertical arrows on the
left are inclusions and those on the right are surjections.
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3. The case of a 1-motive

Let M = [X u−→G] be a 1-motive defined over k. The motivic Galois group
Gmot(M) of M is the fundamental group of the Tannakian sub-category 〈M〉⊗ of
T1(k) generated by M i.e. the affine group 〈M〉⊗-scheme Sp(Λ), where Λ is the
Hopf algebra of 〈M〉⊗ universal for the following property: for each object X of
〈M〉⊗, there is a morphism λX : X∨ ⊗X −→ Λ functorial in X. The morphisms
{λX}, which can be rewritten in the form X −→ X ⊗ Λ, define an action of the
group Gmot(M) on each object X of 〈M〉⊗, and in particular on itself. The main
result of [B03] is that

Theorem 3.0.4. The unipotent radical W−1(LieGmot(M)) of the Lie algebra of
Gmot(M) is the semi-abelian variety defined by the adjoint action of the graded
GrW∗ (W−1LieGmot(M)) on itself.

The idea of the proof is as followed: Before recall that according to [D75]
(10.2.14), to have M is equivalent to have the 7-uplet (X,Y ∨, A,A∗, v, v∗, ψ) where

• X and Y ∨ are two group k-schemes, which are locally for the étale topology,
constant group schemes defined by a finitely generated free Z-module;
• A and A∗ are two abelian varieties defined over k, dual to each other;
• v : X −→ A and v∗ : Y ∨ −→ A∗ are two morphisms of group k-schemes;
• ψ is a trivialization of the pull-back (v, v∗)∗PA by (v, v∗) of the Poincaré

biextension PA of (A,A∗).
Observe that the 4-uplet (X,Y ∨, A,A∗) corresponds to the pure part of the 1-
motive, i.e. it defines the pure motives underlying M , and the 3-uplet (v, v∗, ψ)
represents the “mixity” of M .

Consider the motive E = W−1(End(GrW∗ M)) : it is a split 1-motive of weight
-1 and -2 obtained from the endomorphisms of the graded GrW∗ M of M . The
composition of endomorphisms endowed E with a Lie algebra structure (E, [ , ]),
whose crochet [ , ] corresponds to a Σ−X∨ ⊗ Y (1)-torsor B living over A⊗X∨ +
A∗ ⊗ Y. The action of E on the motive GrW∗ (M) is described by a morphism

E ⊗GrW∗ (M) −→ GrW∗ (M)

which endowed the motive GrW∗ (M) with a structure of (E, [ , ])-module.
Denote by b = (b1, b2) the k-rational point b = (b1, b2) of the abelian variety

A ⊗X∨ + A∗ ⊗ Y defining the morphisms v : X −→ A and v∗ : Y ∨ −→ A∗. Let
B be the smallest abelian sub-variety of X∨ ⊗ A + A∗ ⊗ Y containing this point
b = (b1, b2). The restriction i∗B of the Σ − X∨ ⊗ Y (1)-torsor B by the inclusion
i : B −→ X∨ ⊗ A × A∗ ⊗ Y is a Σ − X∨ ⊗ Y (1)-torsor over B. Denote by Z1

the smallest Gal(k/k)-module of X∨⊗Y such that the torus Z1(1), that it defines,
contains the image of the restriction [ , ] : B⊗B −→ X∨⊗Y (1) of the Lie crochet to
B ⊗B. The direct image p∗i∗B of the Σ−X∨ ⊗ Y (1)-torsor i∗B by the projection
p : X∨ ⊗ Y (1) −→ (X∨ ⊗ Y/Z1)(1) is a trivial Σ − (X∨ ⊗ Y/Z1)(1)-torsor over
B. We denote by π : p∗i∗B −→ (X∨ ⊗ Y/Z1)(1) the canonical projection. The
morphism u : X −→ G defines a point b̃ in the fibre of B over b. We denote
again by b̃ the points of i∗B and of p∗i∗B over the point b of B. Let Z be the
smallest sub-Gal(k/k)-module of X∨ ⊗ Y, containing Z1 and such that the sub-
torus (Z/Z1)(1) of (X∨ ⊗ Y/Z1)(1) contains π(̃b). If we put Z2 = Z/Z1, we have
that Z(1) = Z1(1)× Z2(1).
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With these notations, the unipotent radical W−1(LieGmot(M)) of the Lie algebra
of Gmot(M) is the extension of the abelian variety B by the torus Z(1) defined by
the adjoint action of (B + Z(1), [ , ]) on itself. Since in the construction of B and
Z(1) are involved only the parameters v, v∗ and u, the computation of the unipotent
radical W−1(LieGmot(M)) of the Lie algebra of Gmot(M) depends only on the 3-uplet
(v, v∗, ψ), i.e. on the “mixity” of the 1-motive M .

EXAMPLES:
(1) Let M be the split 1-motive Z ⊕ A ⊕ Gm. In this case all is trivial:

W−1(LieGmot(M)) = B = Z(1) = 0.
(2) Let M = [Z u−→E ] be a 1-motive over k defined by u(1) = P with P a

non-torsion k-rational point of the elliptic curve E . We have that the torus
Z(1) is trivial and the unipotent radical W−1(LieGmot(M)) is the elliptic
curve B = E .

(3) Let M = [Z u−→G3
m×A] be a 1-motive over k defined by u(1) = (q1, q2, 1, 0)

with q1, q2 two elements of Gm(k)− µ∞ multiplicatively independents
(µ∞ is the group of roots of the unity in k). In this example the abelian
variety B is trivial and the unipotent radical W−1(LieGmot(M)) is the torus
Z(1) = G2

m.

With the above notations we have also that

Proposition 3.0.5. The derived group of the unipotent radical W−1(LieGmot(M))
of the Lie algebra of Gmot(M) is the torus Z1(1).

Proposition 3.0.6.

dim LieGmot(M) = dimB + dimZ(1) + dim LieGmot(GrW∗ M).
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