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Abstract 

Medical therapy for Cushing’s disease (CD) is currently based on agents mainly targeting adrenocortical function. Lately, pituitary-directed 

drugs have been developed, with limited efficacy. Mitotane, a potent adrenolytic drug, has been recently investigated for the treatment of 

CD, but the direct pituitary effects have not been clarified so far. The aim of our study was to investigate whether mitotane may affect 

corticotroph function and cell survival in the mouse pituitary cell line AtT20/D16v-F2 and in the primary cultures of human ACTHsecreting 

pituitary adenomas, as an in vitro model of pituitary corticotrophs. We found that in the AtT20/D16v-F2 cell line and in primary cultures, 

mitotane reduces cell viability by inducing caspase-mediated apoptosis and reduces ACTH secretion. In the AtT20/D16v-F2 cell 

line, mitotane reduces Pomc expression and blocks the stimulatory effects of corticotropin releasing hormone on cell viability, ACTH 

secretion, and Pomc expression. These effects were apparent at mitotane doses greater than those usually necessary for reducing cortisol 

secretion in Cushing’s syndrome, but still in the therapeutic window for adrenocortical carcinoma treatment. In conclusion, our results 

demonstrate that mitotane affects cell viability and function of human and mouse ACTH-secreting pituitary adenoma cells. 

These data indicate that mitotane could have direct pituitary effects on corticotroph cells. 
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Introduction 

Cushing’s disease (CD), characterized by hypercortisolism due to excessive secretion of ACTH by the pituitary gland, is a rare 

disease with an incidence between 0.7 and 2.4 cases per million per year (Patil et al. 2008). Currently, the treatment of choice for 

patients with CD is surgery, but late recurrence occurs in 5–20% of patients (Atkinson et al. 2005). Although a variety of treatments 

are available, pituitary irradiation is a good option for aggressive CD that fails to respond to surgery, invades the cavernous sinus, or 

relapses following an initial remission, but the treatment is associated with important side effects (Mahmoud-Ahmed & Suh 2002). 

Laparoscopic bilateral adrenalectomy can be safely and effectively employed to treat CD but needs permanent glucocorticoid 
supplementation (Porpiglia et al. 2004). Several medical therapies, including steroidogenic inhibitors, centrally acting agents, and 

glucocorticoid receptor inhibitors, are currently being used or investigated as a potential treatment for CD (Biller et al. 2008, Feelders 

et al. 2010), but their efficacy was found to be unpredictable (Tritos & Biller 2012). Recently, a retrospective study has highlighted 

the efficacy of mitotane therapy in CD treatment (Baudry et al. 2012). Mitotane (o,p0-DDD), a derivative of the insecticide  

dichlorodiphenyltrichloroethane, has been widely used for treatment of advanced (unresectable, metastatic, or relapsed) 

adrenocortical carcinoma (ACC; Bergenstal et al. 1960, Young et al. 1973, Hogan et al. 1978, Lughezzani et al. 2010) and is 

increasingly used in adjuvant settings (Fassnacht et al. 2012). Mitotane concentrations are associated with both efficacy and 

toxicity (Haak et al. 1994, Terzolo et al. 2000) and blood levels R14 mg/l predict ACC tumor response (Haak et al. 1994, Hermsen et 

al. 2011). A concentration range between 14 and 20 mg/l (corresponding to 44–62 mM) is considered as the ACC therapeutic 

window (Terzolo et al. 2000, Lee 2007, Hermsen et al. 2011), while lower doses of mitotane have been demonstrated to control 

hypercortisolism in the settings of CD (Baudry et al. 2012). The latter effect is usually ascribed to the adrenolytic action of 

mitotane, but a central inhibitory action on corticotrophs has never been investigated. We previously demonstrated that mitotane 

reduces both secretory activity and cell viability of pituitary TSH-secreting mouse cells (Zatelli et al. 2010), suggesting a possible 

direct effect on pituitary cells. Therefore, the aim of our study was to investigate whether mitotane may affect corticotroph function 

and cell survival in vitro. 

  



 

Materials and methods 

Reagents 

Mitotane (Supelco, Bellefonte, PA, USA) was resuspended 

in absolute ethanol. Therefore, control cells have been 

incubated in culture medium containing 0.1% ethanol in 

all experiments. All reagents were purchased from Sigma if 

not otherwise indicated. 

Cell culture 

The mouse ACTH-secreting pituitary adenoma cell line, 

AtT20/D16v-F2, was obtained from the American Type 

Culture Collection (ATCC, Manassas, VA, USA). The cell 

line was maintained in DMEM (Invitrogen) supplemented 

with 10% horse serum (HS) (LGC Standards, Milano, Italy) 

and antibiotic antimycotic (EuroClone, Milano, Italy) at 

37 8C in 5% CO2, as described previously (Gentilin et al. 

2013). Before each experiment, cells were incubated in 

0.5% HS medium for 48 h followed by a 24-h incubation in 

10% HS medium. 

The human thyroid follicular epithelial cell line, 

Nthy-ori 3-1 (ECACC, Salisbury, UK), was maintained in 

RPMI-1640 medium (Invitrogen) supplemented with 

10% fetal bovine serum (FBS) (LGC Standards) and 

antibiotic antimycotic (EuroClone) as described previously 

(Caselli et al. 2012). 

The human endometrial stromal cell line, T-HESC 

(ATCC),wasmaintained inDMEM/F12 (Invitrogen) supplemented 

with 1.5 g/l sodium bicarbonate, 1% ITSCPremix, 

500 ng/ml puromycin, and 10% charcoal/dextran-treated 

FBS (LGC Standards). 

The human kidney cell line, 4/5 (generously provided 

by Dr Gianluca Aguiari, Department of Biomedical and 

Specialty Surgical Sciences, University of Ferrara), was 



maintained in DMEM (Invitrogen) supplemented with 

10% FBS (LGC Standards) and antibiotic antimycotic 

(EuroClone). 

Tissue collection and primary culture 

The liver sample was derived from a patient diagnosed 

with liver hyperplasia and operated on at the University 

of Ferrara (Section of Endocrinology and Institute of 

Surgery). The pituitary adenoma samples derived from 

five patients were operated on for ACTH-secreting 

pituitary adenomas at the Department of Neurosurgery, 

Ospedale Maggiore – Bellaria, Bologna, Italy. Tissues were 

collected following the guidelines of the local committee 

on human research and immediately minced in RPMI- 

1640 medium (Invitrogen) under sterile conditions. 

Primary cultures were then prepared as described 

previously (Zatelli et al. 2006, Martı´nez-Fuentes et al. 

2011). Informed consent of the patients was obtained 

for disclosing clinical investigation and performing the 

in vitro study. 

Viable cell number assessment 

Variations in cell number were assessed by the ATPlite 

assay (PerkinElmer, Waltham, MA, USA), as described 

previously (Zatelli et al. 2007). Briefly, the cells were seeded 

at 9!103 cells/well in 96-well white plates and then 

exposed to test substances. After incubation time, substrate 

solution was added directly to the cell culture plates 

at room temperature. The plates were shaken at 700 r.p.m. 

for 2 min and then measured for luminescent output 

(relative light units (RLU)) by Victor3 1420 Multilabel 

Counter (PerkinElmer). Results are expressed as mean 

valueGS.E.M. percent cell viability vs vehicle-treated control 

cells in five independent experiments in six replicates. 

Caspase activity 



Caspase activity was measured using the Caspase-Glo 3/7 

assay (Promega) following the manufacturer’s instruction 

as described previously (Tagliati et al. 2010). Results are 

expressed as mean valueGS.E.M. percent RLU vs vehicletreated 

control cells in five independent experiments in 

six replicates. 

ACTH secretion 

ACTH secretion was evaluated by measuring mouse ACTH 

immunoreactivity in the conditioned culture medium 

with the ACTH ‘Ultra Sensitive’ lumELISA kit (Calbiotech, 

Spring Valley, CA, USA). Hormone assays were performed 

in duplicate after appropriate sample dilutions. The 

sensitivity was !1 pg/ml at the 95% confidence limit. 

Intra- and interassay CV were 6 and 8.7% respectively. 

The assay results were normalized by cell number, as 

determined from the ATPlite assay. Results are expressed 

as the mean valueGS.E.M. percent ACTH concentration vs 

vehicle control cells in seven experiments in duplicate. 

Pomc gene expression 

Total RNA from treated cells was extracted with TRIzol 

reagent (Invitrogen) and treated with RNase-free DNase 

(Promega), as previously reported (Minoia et al. 2012). The 

Experion automated electrophoresis system (Bio-Rad) was 

used to determine the concentration and integrity of RNA 

samples. Only samples with RNA quality index O9 were 

reverse transcribed using the first-strand cDNA synthesis 

kit (Invitrogen) following the manufacturer’s instructions. 

Pomc expression evaluation was performed by relative 

quantitative real-time PCR (QRT-PCR). All QRT-PCRs were 

conducted with the TaqMan gene expression assay 

(Applied Biosystems), run on Applied Biosystems 7700 

ABI Prism thermal cycler, and analyzed with the SDS 1.9 

Software (Applied Biosystems). Glyceraldehyde 3-phosphate 



dehydrogenase was identified as the most stable 

reference gene from a set of five tested candidate housekeeping 

genes (Table 1) by the geNorm software, version 

3.4 (Vandesompele et al. 2002). Relative expression ratio of 

Pomc mRNA (assay ID Mm00435874_m1; Applied Biosystems) 

was calculated by applying the method described by 

Pfaffl (2001). Results are expressed as mean valueGS.E.M. 

percent Pomc expression vs vehicle-treated control cells 

from at least five independent experiments in five 

replicates. 

Statistical analysis 

Results were expressed asGS.E.M. and analyzed statistically 

using Student’s t-tests to evaluate individual differences 

between means. Differences were considered significant 

at P!0.05. 

Results 

Effects of mitotane on basal and corticotropin-releasing 

hormone-induced AtT20/D16v-F2 cell viability 

In order to determine the effects of mitotane on corticotroph 

cell viability, the latter was assessed in AtT20/D16v- 

F2 after 6- and 24-h treatment without or with increasing 

mitotane concentrations (10–100 mM, corresponding to 

plasma levels of 3.2–32 mg/l). As shown in Fig. 1A, after 

6 h, mitotane significantly reduced cell viability at 100 mM 

(K29%; P!0.01); after 24 h, mitotane significantly 

Table 1 Primers and probe for candidate housekeeping genes 

Gene Primers and probe 

Cyclophilin Primer reverse 50-AAACAGCTCGAAGGAGACGC-30 

Primer forward 50-ACCGTGTTCTTCGACATCACG-30 

Probe 50-60FAM-ATGACGAGCCCTTGGG-MGB-30 

Ribosomal L37 Primer reverse 50-CAGCTGCCCTCTTGGGTTT-30 

Primer forward 50-CCGCAGATTCAGACATGGATT-30 

Probe 50-60FAM-TGAGGGAACAACGCC-MGB-30 



18S 4319413E TaqMan endogenous control; Applied Biosystems 

Gadph 4352339E TaqMan endogenous control; Applied Biosystems 

b-Actin 4352341E TaqMan endogenous control; Applied Biosystems 

reduced cell viability at concentrations R40 mM, from 8% 

(P!0.05) to 45% vs control (P!0.01). 

Time-course experiments showed that treatment with 

100 nM corticotropin-releasing hormone (CRH) significantly 

induced cell viability after incubation up to 6 h 

by w20% (P!0.05; data not shown). No effect was 

observed for longer incubation intervals. As the cells 

were incubated with CRH without any treatment renewal, 

we hypothesized that CRH will be degraded at long 

exposure time; therefore, experiments employing CRH 

were performed with a 6-h incubation time. 

To investigate whether mitotane may influence CRHinduced 

AtT20/D16v-F2 cell viability, the latter was 

measured after a 6-h incubation with CRH alone or in 

combination with increasing mitotane concentrations 

(10–100 mM). As shown in Fig. 1B, CRH induced a 

significant (P!0.05) increase in AtT20/D16v-F2 cell 

viability (C25%), which was significantly reduced by 

mitotane at all concentrations (from 12 to 50% when 

compared with CRH-treated cells). 

Effects of mitotane on human ACTH-secreting pituitary 

adenoma cell viability 

In order to determine the effects of mitotane on human 

ACTH-secreting pituitary adenoma cell viability, the latter 

was assessed in human primary cultures from ACTHsecreting 

pituitary adenomas after 24-h treatment without 

or with increasing mitotane concentrations (10–100 mM, 

corresponding to plasma levels of 3.2–32 mg/l). As shown 

in Fig. 1C, after 24 h, mitotane significantly reduced cell 

viability at concentrations R40 mM, from 15% (P!0.01) 



to 55% vs control (P!0.01). 

Effects of mitotane on cell viability of thyroid, 

endometrial, renal, and liver cells 

In order to determine the specificity ofmitotane effects, cell 

viabilitywas assessedinNTHY-ori 3-1, T-HESC,4/5cell lines, 

and in a liver primary culture after 24-h treatment without 

or with increasing mitotane concentrations (10–100 mM, 

corresponding to plasma levels of 3.2–32mg/l). As shown 

in Fig. 2,mitotane did not significantlymodify the viability 

of any investigated cell line. 

Effects of mitotane on AtT20/D16v-F2 apoptosis and 

CRH influence 

To investigate whether mitotane reduces cell viability by 

activating apoptosis, caspase 3/7 activity was measured in 

AtT20/D16v-F2 cells incubated for 6 and 24 h in 

the presence of increasing mitotane concentrations 

(10–100 mM). As shown in Fig. 3A, mitotane significantly 

induced apoptosis at 40–100 mMafter both 6 h (from 48 to 

434%; P!0.01) and 24 h (from C83 to C763%; P!0.01) 

when compared with vehicle-treated control cells. We 

observed that, after 6 h, at concentrations !100 mM 

mitotane significantly induced caspase activation but did 

not affect cell viability, suggesting that a short exposure 

time does not compromise the viability of corticotroph 

cells but commits them to apoptosis. 

To investigate the influence of CRH on mitotaneinduced 

apoptosis, caspase 3/7 activity was measured in 

AtT20/D16v-F2 cells incubated for 6 h with CRH alone or 

in combination with increasing mitotane concentrations. 

As shown in Fig. 3B, CRH did not significantly affect basal 

caspase 3/7 activity but completely blocked the proapoptotic 

effects of mitotane at 40 mM. However, the 

inhibitory effect of CRH on mitotane-induced caspase 



activation was lost partially at 60 mM and completely at 

100 mM mitotane. 

Effects of mitotane on human ACTH-secreting pituitary 

adenoma primary culture apoptosis 

To investigate whether mitotane reduces cell viability in 

human ACTH-secreting pituitary adenoma primary cultures 

by activating apoptosis, caspase 3/7 activity was 

measured after incubation for 24 h in the presence of 

increasing mitotane concentrations (10–100 mM). As 

shown in Fig. 3C, mitotane significantly induced apoptosis 

at 40–100 mM (from C60 to C620%; P!0.01) when 

compared with vehicle-treated control cells. 

Effects of mitotane on basal ACTH secretion 

To determine the effects of mitotane on ACTH secretion, 

ACTH levels were assessed in conditioned medium from 

AtT20/D16v-F2 cells treated for 6 and 24 h with increasing 

mitotane concentrations (10–100 mM). As shown in Fig. 4A, 

mitotane significantly reduced basal ACTH secretion after a 

6-h treatment at both 80 and 100 mM (K65 and K87% 

respectively; P!0.01). After 24 h, mitotane significantly 

reduced ACTH secretion at R60 mM (from 40 to 96%). 

ACTH levels were also assessed in conditioned 

medium from human ACTH-secreting pituitary adenoma 

primary cultures treated for 24 h with increasing mitotane 

concentrations (10–100 mM). As shown in Fig. 4B, mitotane 

significantly reduced basal ACTH secretion at 

R60 mM (from 35 to 94%; P!0.01). 

Effects of mitotane on CRH-stimulated ACTH secretion 

To evaluate ACTH secretory response to CRH in vitro, 

AtT20/D16v-F2 cells were incubated for 0, 2, 5, 10, 15, and 

30 min with CRH at 100 nM, a concentration at which 

CRH is known to induce ACTH secretion in these cells 

(Strowski et al. 2002). ACTH was then assayed in the 



condition medium. As shown in Fig. 5A, CRH significantly 

induced ACTH secretion up to 15 min, reaching the peak 

value after 2 min (C80%; P!0.01 vs time point 0). 

To determine whether mitotane affects CRH-induced 

ACTH secretion by AtT20/D16v-F2 cells, the cells were 

treated with 10–100 mM mitotane for 6 and 24 h. The 

medium was then removed and cells were stimulated with 

100 nM CRH or vehicle for 2 min; then, ACTH concentration 

was evaluated. As shown in Fig. 5B, basal and CRHinduced 

ACTH secretion was higher after 6 h when 

compared with 24-h vehicle incubation. Pre-incubation 

for 6 h with mitotane at R40 mM significantly reduced 

both basal and CRH-induced ACTH secretion, which was 

completely suppressed atR80 mMmitotane. Pre-incubation 

for 24 h with mitotane at R10 mM significantly reduced 

both basal and CRH-induced ACTH secretion, which was 

completely suppressed at R80 mM mitotane. 

To determine whether mitotane affects CRH-induced 

ACTH secretion by human ACTH-secreting pituitary 

adenoma primary cultures, the cells were treated with 

40–60 mM mitotane for 24 h and then stimulated with 

100 nM CRH or vehicle for 2 min; then, ACTH 

concentration was evaluated. As shown in Fig. 5C, CRH 

induced ACTH secretion by primary cultured cells (C40%; 

P!0.01); pre-incubation with mitotane at 40–60 mM 

significantly (P!0.01) reduced both basal and 

CRH-induced ACTH secretion. 

Effects of mitotane on Pomc mRNA expression and 

CRH influence 

To determine the effects of mitotane on Pomc mRNA 

expression, Pomc mRNA levels were assessed in AtT20/ 

D16v-F2 cells treated for 6 h with 10–100 mM mitotane. As 

shown in Fig. 6, mitotane significantly (P!0.01) reduced 



basal Pomc mRNA expression by w70% at all concentrations 

tested. On the contrary, 100 nM CRH significantly 

(P!0.01) induced Pomc mRNA expression (C100% 

vs vehicle control cells), an effect completely counteracted 

by mitotane at all concentrations tested. 

Discussion 

Our study provides for the first time evidence that 

mitotane has a direct and important action on human 

ACTH-secreting pituitary adenoma primary cultures and 

on the AtT20/D16v-F2 cell line, whose function may be 

greatly and quickly compromised. This inhibitory effect is, 

at least in part, due to direct inhibition of corticotroph cell 

viability, which is reduced by mitotane already after 6 h at 

high doses in AtT20/D16v-F2 cells and after 24 h at the 

concentrations corresponding to the ACC therapeutic 

window in both mouse and human corticotroph cells. 

These data indicate that exposure time may have a 

differential impact on corticotroph viability, in agreement 

with a previous report indicating that mitotane reduces 

cell viability of a TSH-secreting pituitary cell line in a 

similar fashion (Zatelli et al. 2010). In addition, the 

evidence that caspase activation precedes cell viability 

reduction after mitotane treatment, supports the 

hypothesis that mitotane rapidly commits corticotroph 

cells to apoptosis which, in turn, after a long exposure 

time, results in cell viability reduction. On the other hand, 

mitotane does not affect cell viability of the endocrine cell 

line NTHY-ori 3-1, indicating that mitotane cytotoxic 

effects are not generalized to endocrine cells. Moreover, 

the viability of non-endocrine cells, such as T-HESC and 

4/5 cell lines and liver primary culture, is not influenced 

by the drug, supporting the hypothesis that mitotane acts 

rapidly with a specific effect at the pituitary level. 



Previous clinical reports showed that in CD patients, 

mitotane, owing to its adrenolytic action, is highly 

effective in the long-term suppression of hypercortisolism 

(Luton et al. 1979, Schteingart et al. 1980), at concentrations 

lower that those employed for ACC treatment 

(Gross et al. 2007, Murao et al. 2010, Baudry et al. 2012), 

but central inhibitory actions have been overlooked. 

Recently, Baudry et al. (2012) reported that in 24.5% of 

CD patients treated with mitotane as first-line treatment 

and with initial negative magnetic resonance imaging, a 

pituitary adenoma became apparent during or at the end 

of the treatment. These results may be explained by the 

anti-cortisolic effects exerted by mitotane at the doses 

employed in this study, corresponding to w20–30 mM, 

which are approximately twofold lower than those 

employed in our experiments. Indeed, in their hands, 

mitotane significantly lowered cortisol levels in the 

majority of patients, with a consequent disappearance of 

negative feedback at the pituitary level. The latter allowed 

the increase in ACTH plasma levels and the visualization 

of a pituitary adenoma in 12 patients (Baudry et al. 2012), 

similar to what happens in Nelson’s syndrome. Of these 

patients, ten had been operated on, but the authors do not 

disclose pathological characteristics of the adenomas, 

such as ki-67 (Fusco et al. 2008), which may be helpful in 

understanding the direct effects of mitotane at pituitary 

level. By contrast, in our experimental settings, we 

observed a reduction in corticotroph function and cell 

viability at higher mitotane concentrations (R40 mM), 

suggesting that direct pituitary effects may become 

apparent only in the presence of drug concentrations in 

the ACC therapeutic window. This hypothesis is further 

strengthened by the evidence that, upon (low-dose) 



mitotane withdrawal, w70% of patients showed recurrence 

of hypercortisolism (Baudry et al. 2012), suggesting 

a lack of central effect when mitotane plasma level is 

!40 mM. Our data show that higher mitotane doses 

impair corticotroph function and viability and therefore 

might be effective in controlling the disease at the 

pituitary level and in preventing recurrence after withdrawal. 

Clinical studies are necessary to clarify this issue. 

The hypophysiotropic hormone CRH (Florio et al. 

2007) has been previously demonstrated to significantly 

stimulate AtT20/D16v cell proliferation (van Wijk et al. 

1995). Our results show that CRH induces cell viability 

only in the short term, suggesting a protective rather than 

a proliferative effect of this peptide on corticotroph cells. 

In keeping with our results, Lezoualc’h et al. (2000) 

indicated CRH as an endogenous protective neuropeptide 

against oxidative cell death in addition to its function in 

the HPA system. In addition, our data show that mitotane 

dose dependently reduced the stimulatory effects of 

CRH on mouse corticotroph cell viability. These data 

suggest that ACTH-secreting cells may become refractory 

to physiological stimuli, such as CRH, after exposure to 

mitotane. Moreover, we observed that the inhibitory 

effects of mitotane on human and mouse ACTH-secreting 

pituitary adenoma cell viability are, at least in part, due to 

apoptosis induction, as previously reported in other 

experimental models (Pushkarev et al. 2007, Zatelli et al. 

2010). In our settings, caspase activation is prompted 

quickly and persists for at least 24 h. We also observed 

that, after 6 h, at concentrations !100 mM, mitotane 

significantly induced caspase activation but did not affect 

cell viability, suggesting that a very short exposure time 

does not compromise the viability of corticotroph cells but 



commits them to apoptosis. 

As already noted, mitotane, at concentrations lower 

than those reached in vivo, is able to reduce steroids and 

TSH secretion in adrenocortical and pituitary TSHsecreting 

cell lines respectively (Stigliano et al. 2008, 

Zatelli et al. 2010). Our findings support the evidence 

that mitotane affects pituitary function, also reducing the 

secretory activity of corticotroph cells. Mitotane inhibits 

ACTH secretion at high concentrations (80–100 mM) after 

6 h of incubation in AtT20/D16v-F2 cells and at R60 mM 

after 24 h of exposure in human and mouse ACTHsecreting 

pituitary adenoma cells. This indicates, as 

previously suggested, that mitotane has a toxic effect on 

corticotroph function, providing further support to the 

use of this drug for persistent and refractory CD (Kawai 

Journal of Endocrinology et al. 1999, Baudry et al. 2012). A recent study reported that 

plasma mitotane concentrations O8.5 mg/l (corresponding 

to 24 mM) are sufficient to achieve CD control 

(Baudry et al. 2012). On the contrary, in our settings, 

mitotane reduced ACTH secretion at a concentration 

of 60 mM, suggesting that a greater exposure time may be 

needed to affect pituitary hormonal secretion. 

In patients treated with adjuvant mitotane following 

complete ACC removal, ACTH levels are often nonsignificantly 

increased as it should be expected by 

mitotane-induced inhibition of adrenal steroidogenesis 

(Daffara et al. 2008). Furthermore, both Takamatsu et al. 

(1981) and Kawai et al. (1999) suggested that mitotane 

had an effect on corticotrophs, reporting that mitotane 

maintenance therapy may be a good treatment option for 

persistent and intractable CD. These findings support the 

hypothesis that mitotane impairs ACTH secretion and has 

a direct action on corticotroph cells when employed at 



high concentrations (i.e. those used for ACC). 

Our results also show that AtT20/D16v-F2 cells 

respond to CRH stimulation with a rapid and significant 

increase in ACTH secretion. The stimulatory effect of CRH, 

however, is completely blunted by concentrations of 

mitotane R40 mM after 6 h of exposure and at lower 

concentrations after 24 h. These data indicate that 

mitotane rapidly affects the capability of adrenocorticotroph 

cells to respond to physiological stimuli, in keeping 

with the results obtained on cell viability. The antisecretory 

effects of mitotane on corticotroph cells are 

further supported by data from primary cultures, wherein 

CRH stimulatory effect is completely abolished by 

mitotane at the concentrations corresponding to the 

ACC therapeutic window. These results are in line with 

evidence that mitotane strongly inhibits TRH-induced 

TSH secretion, supporting the hypothesis that this drug 

acts rapidly and profoundly with a generalized effect at 

the pituitary level. This hypothesis is further strengthened 

by evidence that, after 6 h, mitotane reduces Pomc 

expression independently of the concentration and 

regardless of CRH stimulation. Indeed, in keeping with 

the report by Aoki et al. (1997), CRH significantly induces 

Pomc expression, but, in our hands, it is not capable of 

rescuing cell function from mitotane toxic effects. Our 

data indicate that the effects of mitotane on ACTH 

secretion are not completely dependent on the effects on 

Pomc expression. Incubation with mitotane reduces shortterm 

ACTH spontaneous release, suggesting that mitotane, 

besides affecting Pomc gene transcription, may 

impair ACTH release, also influencing secretory 

mechanisms. 

In conclusion, our results demonstrate that mitotane 



reduces cell viability and function of mouse and human 

pituitary ACTH-secreting adenoma cells, suggesting a 

direct pituitary effect of mitotane. In addition, we provide 

evidence for a higher sensitivity of corticotroph cells to 

mitotane, as other cell lines originating from tissues 

different from pituitary (and also of non-endocrine lineage) 

are not sensitive to the inhibitory effects of mitotane 

during short-time exposure. 

However, the promising in vitro data showing efficacy 

of mitotane in CD at the doses used for ACC within 24 h 

must be confirmed in vivo for a longer period of time in 

clinical trials, balancing the efficacy of ACTH secretion 

reduction with the development of side effects. 
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