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Abstract Now-relative temporal data play an important role in most temporal appli-
cations, and their management has been proved to impact in a crucial way the effi-
ciency of temporal databases. Though several temporal relational approaches have
been developed to deal with now-relative data, none of them has provided a whole
temporal algebra to query them. In this paper we overcome such a limitation, by
proposing a general algebra which is polymorphically adapted to cope with the MAX
“reference” approach, and with our POINT approach (and that is easily adaptable to
cope with other relational approaches to now-relative data in the literature, such as
the NULL and the MIN ones). Besides being general enough to provide a query lan-
guage for several approaches in the literature, our algebra has been designed in such
a way to satisfy several theoretical and practical desiderata: closure with respect to
representation languages, correctness with respect to the “consensus” BCDM seman-
tics, reducibility to the standard non-temporal algebra (which involves interoperabil-
ity with non-temporal relational databases), implementability and efficiency. Indeed,
the experimental evaluation we have drawn on our implementation has shown that
only a slight overhead is added by our treatment of now-relative data (with respect to
an approach in which such data are not present).
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1 Introduction

Temporal data plays an important role in most domains / applications. In such con-
texts, to be meaningfully interpreted, data must be paired with the time when they
occur (valid time henceforth). Additionally, in many applications, also the time when
data are inserted/deleted in the database (transaction time henceforth) must be main-
tained (e.g., for legal purposes). As a consequence, starting from the 1980s, there
is a long tradition of approaches coping with valid and/or transaction time in rela-
tional databases. As a matter of fact, more than twenty years of research in the area
of relational databases have widely demonstrated that the treatment of time in the
relational approach involves the solution of difficult problems, and the adoption of
advanced dedicated techniques. “Two decades of research into temporal databases
have unequivocally shown that a time-varying table, containing certain kinds of
DATE columns, is a completely different animal than its cousin, the table without
such columns. Effectively designing, querying, and modifying time-varying tables re-
quires a different set of approaches and techniques than the traditional ones taught in
database courses and training seminars. Developers are naturally unaware of these
research results (and researchers are often clueless as to the realities of real-world
application development). As such, developers often reinvent concepts and techniques
with little knowledge of the elegant conceptual framework that has evolved and re-
cently consolidated...” in [22], Section “Preface”, Subsection: “A paradigm shift”,
page XVIII). Practical examples of the problems to be faced are presented in Chap-
ter 1 of the TSQL2 book [21]. Given the pervasive character of time, great efforts in
terms of research were made in order to provide once-and-for-all a general solution to
such problems (as opposed to ad-hoc solutions to be independently built in each ap-
plication coping with time). In this spirit, many extensions to the standard relational
model were devised, and more than 2000 papers on temporal databases (TDBs) were
published over the last two decades (cf., the cumulative bibliography in [32], the
section about TDBs in the Springer Encyclopedia of Databases [16], which includes
over 90 entries about TDBs, the entry “Temporal Database” in [16], and the surveys
in [15, 27, 19, 11]).

Despite such a wide range of approaches, some “consensus” has been found by
the TDB community. TSQL2 [21] is a temporal relational approach coping with bi-
temporal data (i.e., with both valid and transaction time) which has been defined
by a significant number of international researchers in the area. BCDM (Bitemporal
Conceptual Data Model) [12] provides a unifying semantics for TSQL2 and several
other approaches in the literature, including [8, 1, 17, 20, 13]. However, several open
issues still have to be addressed. One of them is the treatment of now-relative data.

Among temporal data, now-relative information play an important role. A tem-
poral piece of data (tuple) is now-relative if one of the following conditions (or both)
holds:
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– it is part of the current status of the database (i.e., it has been inserted in the past,
and has not been deleted yet); in such a case, the ending point of its transaction
time is usually set to now, to represent the fact that, in the current status, it is part
of the database;

– it is currently valid (i.e., the fact it describes holds at the current time and its
ending time is unknown); in such a case, the ending point of its valid time is set
to now, to state that it is currently valid.

An efficient treatment of now in temporal databases is very important, since now-
relative facts may be very frequent, and are likely to be accessed more frequently.
As a matter of fact, it has been shown that the choice of the physical value for now
significantly influences the efficiency of accessing temporal data [29].

There are two mainstreams in the treatment of now-relative data in TDBs. In the
first mainstream, variables (e.g., now , until− changed, f orever, ∞, @, and −) are
introduced, leading to Variable databases [3]. However, Variable databases require
a significant departure from the “consensus” relational model (since the domain of
SQL1999 values [18] does not support such variables), which is not likely to occur in
practice, due to the large commercial investments, both in terms of developed code
and expertise (Chapter 1 of [10]). Since we want to adhere to the relational model,
we do not follow such a line of research in our approach. In the second mainstream,

which we follow in our approach, the relational model has been extended. The litera-
ture has concentrated on three basic approaches to denote the value now [29]: firstly
using NULL, secondly using the smallest timestamp (the minimum-value approach
MIN approach) and thirdly using the largest timestamp supported by the particular
RDBMS (MAX approach). It has been shown that the MAX approach outperforms
the NULL and MIN approaches [29], so that it will be taken as a reference approach.
Recently, we have proposed a novel approach (called the POINT approach) to now-
relative data [23] which outperforms the MAX approach as regards the treatment of
range queries.

The problem of querying and updating Variable databases coping with now has
been widely addressed in the literature (consider, e.g., the survey in [16], and the
Concluding section). On the other hand, though the mainstream not using variables
has attracted significant attention, in such a mainstream most approaches have fo-
cused only on the treatment of range (or slice) queries about now-relative data, i.e.,
queries selecting tuples holding in a certain period (range queries) or point (slice
query) in time. On the other hand, as well as for any other data, it is important to
provide an extensive query language also for now-relative data. Specifically, operat-
ing at the “semantic” level, it is important to provide a temporal algebra coping also
with (bitemporal) now-relative data. To the best of our knowledge, such an extended
temporal algebra has not been provided yet by any approach in the literature.

In this paper, we aim to propose a principled approach overcoming such a ma-
jor limitation of the current literature. In particular, instead of proposing a single
temporal algebra, in this paper we propose a polymorphic algebra which, properly
instantiated, copes with both the MAX and the POINT approach (and, possibly, also
with NULL and MIN approaches). Our polymorphic algebra has been designed in
such a way to satisfy several theoretical and practical desiderata:
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– closure: the algebraic operators must be closed with respect to the (POINT or
MAX) representation language (i.e., given some relations in the POINT -or MAX–
approach, the application of any algebraic operator to them still provides as out-
put a relation that can be expressed in the POINT -or MAX– representation lan-
guage);

– correctness: the algebraic operators always provide all and only the correct re-
sults (i.e., the results that are semantically correct, e.g., considering the BCDM
semantics);

– reducibility: the “reducibility” property is a fundamental one, granting that, if
we prune our approach removing the treatment of time (i.e., if we reduce our
approach to the treatment of non-temporal attributes only), our temporal rela-
tional algebraic operators behave exactly as non-temporal relational algebraic
ones. This property grants interoperability with standard non-temporal relational
approaches;

– implementability: of course, although theoretically grounded, our algebra must
be implementable. Notice that the reducibility property is important also to this
respect, since it grants that the temporal algebra can be implemented on top of
current non-temporal approaches. Additionally, to enforce implementability on
top of “standard” non-temporal relational approaches, as discussed above, we do
not operate in the field of Variable databases;

– efficiency: last, but not least, our approach must be efficient. Indeed, in the paper
we also propose an extensive experimental evaluation showing that, both in the
cases of the POINT and of the MAX approach, our temporal algebra does not add
any significant overload with respect to the “ideal” (but unrealistic) approach in
which now-relative data are not present (since one knows the future end time of
all data).

The paper is organized as follows. Section 2 is a preliminary one, in which we
briefly describe the MAX and the POINT approaches to now-relative data, and we
discuss the BCDM semantic model, which we assume as the reference model to deal
with the semantics of our approach, and to prove its correctness. In Section 3 we
provide a first new contribution: we provide the formal semantics of the POINT and
of the MAX approaches, on the basis of BCDM semantic model. Section 4 describes
our algebrae. Specifically, Section 4.1 introduces the basic principles (widely shared
by the TDB community) underlying our algebrae, and Section 4.2 briefly sketches
BCDM reference algebra. Section 4.3 contains the core contributions of our work,
namely the description of the polymorphic algebra for the POINT and the MAX
approaches, and the proof of its properties. In particular, the BCDM semantic model
is used as the basis to prove the semantic correctness of our approach. Finally, in the
absence of a “competitor” in the literature, in Section 4.4 we introduce an efficient
(but unfeasible) approach to now-relative data (called NOT−NOW approach), which
we use as a comparison to study the complexity of our algebrae. Section 5 describes
our extensive experimental evaluation, showing that our approach only adds a slight
overhead to the optimal (but unfeasible) NOT −NOW approach. Finally, Section 6
contains comparisons and conclusions.
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2 Preliminaries

In this section, we set up the stage presenting the background of our approach. The
main goal of our approach is that of providing a (algebraic) query language cop-
ing with the currently-recognised most efficient representations of now in relational
databases without variables, namely the MAX and POINT approaches.

First we introduce the MAX and POINT representations. Then, we introduce
BCDM, a semantic approach which deliberately ignores efficiency issues for the sake
of generality and semantic clarity. In Section 3 we will use BCDM as a semantic ref-
erence for our extensions of the MAX and POINT approaches, to grant that they are
correct, i.e., that (under specific conditions) they provide the same results that would
be obtained (much less efficiently) through the unifying and “consensus” BCDM ap-
proach.

Indeed, the goal of BCDM is deliberately semantic clarity (and not computational
efficiency). Even the first normal form (1-NF) is not respected, since an arbitrarily
large set of bitemporal chronons can be associated with each tuple. Thus, many ap-
proaches, including TSQL2 “consensus” approach, have chosen to provide a more
compact representation by representing a set of bitemporal chronons with a set of
rectangles covering them. A single rectangle can be represented through four times-
tamps (i.e., start and end of transaction and of valid time). 1-NF is then obtained by
using as many value-equivalent tuples as the number of covering rectangles. This is
the approach followed, e.g., by the MAX and POINT approaches.

2.1 MAX and POINT representations

The basic idea of the MAX representation [30] is very simple: the largest database
timestamp (represented by the value max-value henceforth) is used in order to denote
now. Such a value can be used along both (transaction and valid) temporal dimen-
sions.

Example 1 As a trivial example, let us consider a relation Employee, recording em-
ployee identifiers (Id attribute) and departments (Dept attribute). Then, the fact that
John has been employed in the toy department from day 10 to day 12, and that such
a piece of information has been inserted into the bitemporal database at transaction
time 11, and that at the current time cnow = 14 is still present in the database (i.e., it
has not been deleted) is represented in the MAX approach by the tuple

(John, toy|11,max− value,10,13)

where 11, max− value, 10 and 13 are the timestamps denoting the start and end
of the transaction and of the valid times, respectively. Notice that, for the sake of
homogeneity with the POINT approach, we assume that also in the MAX approach
time periods are represented through time intervals closed to the left and open to the
right (so that, in the above example, the end of the valid time is set to 13).

The POINT approach is based on the use of the closed-to-the-left, open-to-the-
right notation to denote the periods representing the transaction and valid time of
tuples [25]. In such a representation, ‘degenerate’ periods in which the starting point
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is equal to the ending point are used as a notational device to represent now along the
transaction-time and/or valid time dimensions.

Example 2 For instance, the piece of information in Example 1 above can be repre-
sented in the POINT approach by the tuple

(John, toy|11,11,10,13)
where the transaction-time period [11,11) is the representation used to deal with

the period [11,now].

Both in the MAX and in the POINT approaches, data may be now-relative in both
temporal dimensions. Additionally, in line with many approaches in the literature
(see [5]), both approaches do not allow now to be the value of the starting point of
the transaction or the valid time (i.e., a period [now,100), with 100 greater than the
current system time is not allowed either along the transaction- or along the valid
time dimensions).

2.2 The BCDM semantic model

In this section, we describe BCDM (Bitemporal Conceptual Data Model) [12, 21], a
unifying semantic data model, which has been developed in order to isolate the core
notions underlying many temporal relational approaches, including the “consensus”
TSQL2 one [21].

BCDM does not face issues such as data representation and storage optimization,
aiming at a “semantic” approach, in the sense discussed in the below citation, quoted
from [21]: “It is our contention that focusing on data presentation (how temporal
data is displayed to the user), on data storage with its requisite demands of regular
structure, and on efficient query evaluation, has complicated the central task of cap-
turing the time-varying semantics of data. [...] We therefore advocate a separation
of concerns. Time-varying semantics is obscured in the representational schemes by
other considerations of presentation and implementation. We feel that the conceptual
data model to be discussed shortly [i.e., BCDM] is the most appropriate basis for
expressing this semantics.”

In BCDM, tuples are associated with valid time and transaction time. For both do-
mains, a limited precision is assumed (the chronon is the basic time unit). Both time
domains are totally ordered and isomorphic to the subsets of the domain of natural
numbers. The domain of valid times DV T is given as a set DV T = {t1, t2, . . . , tk}
of chronons, and the domain of transaction times as DT T = {t ′1, t ′2, . . . , t ′j} ∪ {UC}
(where UC -Until Changed- is a distinguished value). In general, the schema of a
bitemporal conceptual relation R = (A1, . . . , An|T ) consists of an arbitrary number
of non-timestamp attributes A1, . . . , An, encoding some fact, and of a timestamp at-
tribute T, with domain DT T × DV T . Thus, a tuple x= (a1, . . . , an | tb) in a bitemporal
relation r(R) on the schema R consists of a number of attribute values associated with
a set of bitemporal chronons tbi = (cti,cvi), with cti ∈ DT T and cvi ∈ DV T . The in-
tended meaning of a bitemporal BCDM tuple is that the recorded fact is true in the
modeled reality during each valid-time chronon in the set, and is current in the rela-
tion during each transaction-time chronon in the set. Valid time, transaction-time and
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atemporal tuples are special cases, in which either the transaction time, or the valid
time, or none of them are present.

The BCDM model explicitly requires that no two tuples with the same data part
(i.e., value-equivalent tuples [21]) are allowed in the same relation. As a consequence,
in BCDM the full history of a fact is recorded in a single tuple. This choice enhances
the semantic clarity of the model. The special value UC is used to model now along
the transaction-time dimension. A special routine makes explicit the semantics of
the special value UC: as time passes, at each clock tick for each bitemporal chronon
(UC,cv), a new bitemporal chronon (ct ,cv) is added to the set of chronons, where ct
is the new transaction-time value.

Example 3 For instance, the piece of information in Example 1 above can be repre-
sented in BCDM as follows:
(John, toy | {(11, 10), (11, 11), (11, 12), (12, 10), (12, 11), (12, 12), (13, 10),
(13, 11), (13, 12), (14, 10), (14, 11), (14, 12), (UC, 10), (UC, 11), (UC, 12)}

An extension of standard relational algebraic operators has been provided to op-
erate on the BCDM model, and proper insertion and deletion manipulation operations
have been also defined.

In [21] it has been proven that BCDM represents the semantic level underlying
the TSQL2 approach as well as the approaches of Snodgrass, Jensen, Gadia (more
precisely, Gadia-3), McKenzie, and Ben-Zvi [20, 13, 8, 17, 1]. Additionally, it is
also shown that BCDM is reducible and equivalent to the standard relational model.
These two properties are very important: intuitively, they conjunctively grant that
BCDM is a consistent extension of the standard (non-temporal) relational model, and
that it operates in the same way as the standard model when time is disregarded
(inter-operability with the standard relational model is a desirable side effect of these
properties).

It is worth stressing that, in the BCDM model, now is only coped with along
the transaction-time dimension, through the introduction of the UC special symbol.
Moreover, BCDM treatment of now is not feasible in practical implementations: of
course, no approach can update the temporal component of all current tuples (i.e.,
tuples such that the end of the transaction time is set to UC) at each tick of the
system’s clock!

3 Semantics of the MAX and POINT approaches

In this section we introduce a set of functions which relate the MAX and the POINT
representations to the reference BCDM one. Such functions make the underlying se-
mantics of the MAX and the POINT representations explicit, and will be used in the
following sections in order to prove the correctness of our approach. Such functions
are a first original contribution of the approach in this paper.

We aim at providing a polymorphic temporal relational algebra (coping with pos-
sibly now-relative data), which, in particular, can be properly instantiated to cope with
the MAX and with the POINT approach. To obtain such a goal, we have to abstract
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from the specific way that the different approaches (MAX and POINT) use to rep-
resent now-relative data. The functions isNowRelative and setNow in the following
are used exactly in order to enable us to abstract from the specific implementations.
Specifically, the former function takes in input a period (represented by its starting
and ending timestamps) and returns true if the period is now-relative; the latter takes
in input a (now-relative) period (represented by its starting and ending timestamps)
and returns the value used in order represent the value now in the specific approach.
For the MAX approach, the function isNowRelative simply tests whether the ending
point of the time period corresponds to the largest timestamp max− value. Analo-
gously, the function setNow sets max− value as the ending point of the time period.
For the POINT approach, the function isNowRelative tests whether the ending point
of the time period equals its starting point. Analogously, the function setNow sets as
the ending point of the time period its starting point.

Function 1 isNowRelative(Start, End)
case of: POINT approach:
if Start = End then

return true
else

return false
end if
case of: MAX approach:
if End = max− value then

return true
else

return false
end if

Function 2 setNow(Start)
case of: POINT approach:
return Start
case of: MAX approach:
return max− value

In this paper, we prove some properties of our temporal algebrae for MAX and
POINT representations relating them with a reference approach, i.e., BCDM. We
define the function to BCDMcNOW (r), that converts a relation from either the MAX or
the POINT representation to a BCDM representation; it assumes the value cNOW for
now (i.e., cNOW is the timestamp that represents the current time).

In the rest of the paper, we adopt the following notation.
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Notation 1 Given a tuple x defined on the schema R = (A1, . . . , An | T ), we de-
note with A the set of attributes (A1, . . . , An). Then x[A] denotes the values in x of
the attributes in A, x[T ] denotes the values of the temporal attributes of x. In par-
ticular, x[T TS], x[T TE ], x[V TS], x[V TE ] denote the starting and ending points of the
transaction and valid times of tuples.

The to BCDMcNOW (r) function is very similar to snap to conceptual in TSQL2
[21] and basically associates with each tuple in the (POINT or MAX) representation
the set of all the bi-temporal chronons corresponding to the rectangle represented by
its temporal attributes (i.e., start and end of transaction and valid times). To achieve
such a result, it adopts the EXT cNOW function, which only operates on the temporal
component of a tuple. In turn, EXT cNOW is defined on the basis of two functions:
EXT T T cNOW (Start, End) and EXT V T cNOW (Start, End).

EXT T T cNOW (Start, End) operates on transaction times only. It takes in input
the starting and the ending timestamp of a transaction-time period and it returns
the set of transaction-time chronons included in the period. Notice that, since we
assume a representation closed to the left and open to the right, the ending times-
tamp is not included. If the period is now-relative, the transaction-time chronons also
include the chronon cNOW . Moreover, since BCDM supports now-relative transac-
tion time, the proper chronon UC is added to the set of transaction-time chronons.
EXT V T cNOW (Start, End), operating on valid times, is analogous to EXT T T cNOW (Start, End),
and it is not reported. Since BCDM does not support now-relative valid times, EXT V T cNOW (Start, End)
simply “instantiates” now at cNOW .

Function 3 EXT T T cNOW (Start, End)
chronons← /0
if isNowRelative(Start, End) then

endChronon← c NOW + 1
else

endChronon← End
end if
for all chronons chron such that Start ≤ chron < endChronon do

chronons← chronons ∪ {chron}
end for
if isNowRelative(Start, End) then chronons← chronons ∪ {UC}
return chronons

The function EXT cNOW (T TS, T TE , V TS, V TE) takes in input the starting and end-
ing timestamps of a bitemporal period, and returns the corresponding set of bitempo-
ral chronons, which is obtained by performing the cartesian product of the chronons
representing the transaction and the valid times (as obtained through the application
of the EXT T T cNOW and EXT V T cNOW functions).

Finally, to BCDMcNOW (r) iterates the EXT cNOW functions on (the temporal com-
ponents of) all the tuples in the input relation r. It is worth noting that, since BCDM
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Function 4 EXT cNOW (T TS, T TE , V TS, V TE)

return EXT T T cNOW (T TS, T TE) × EXT V T cNOW (V TS, V TE)

does not admit value-equivalent tuples, the to BCDMcNOW function must merge to-
gether (i.e., coalesce [2]) all value-equivalent tuples in the MAX or POINT repre-
sentations, in order to produce one BCDM tuple from each set of value-equivalent
representational tuples.

Function 5 to BCDMcNOW (r)
s ← /0
for all z ∈ r do

x[A] ← z[A]
x[T ] ← EXT cNOW (z[T TS], z[T TE ], z[V TS], z[V TE ])
for all y ∈ r do

if z[A] = y[A] then
r ← r − {y} {Remove y from r so that it will not be considered in the

next iterations.}
x[T ] ← x[T ] ∪ EXT cNOW (y[T TS], y[T TE ], y[V TS], y[V TE ])

end if
end for
s ← s ∪ {x}

end for
return s

Example 4 For instance, applying the to BCDM function to the piece of information
in Example 1 gives as a result the tuple in Example 3.

Example 5 As in Example 1, let us consider a relation Employee. The fact that Alice
is employed in the toy department since day 11 and is currently employed at the cur-
rent time cNOW = 14, that such a piece of information has been inserted into the bitem-
poral database at transaction time 12, and that at the current time it is still present in
the database (i.e., it has not been deleted) is represented in the POINT approach by
the tuple

(Alice, toy | 11, 11, 12, 12).
In the MAX approach it is represented by the tuple
(Alice, toy | 11, max− value, 12, max− value).
Applying the to BCDMcNOW (r) function with cNOW = 14 to a relation consisting

of the above tuple (expressed either with the POINT or MAX approach), gives as a
result a relation consisting of the following tuple

(Alice, toy | {(12, 11), (12, 12), (12, 13), (12, 14), (13, 11), (13, 12), (13, 13),
(13, 14), (14, 11), (14, 12), (14, 13), (14, 14), (UC, 11), (UC, 12), (UC, 13), (UC, 14)}).
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4 Algebra

In this section, we introduce temporal query languages operating on (possibly now-
relative) bitemporal data. For the sake of compactness, generality and clarity, we
operate at the algebraic level. We first sketch the general principles underlying our
extended temporal algebrae, and sketch the algebra of our reference approach (i.e., of
the BCDM semantic approach). Then, the subsection 4.3 is the core of our contribu-
tion, introducing temporal algebraic operators to query data in the POINT and MAX
approaches, and discussing their properties.

4.1 General Principles

Codd designated as complete any query language that was as expressive as his set
of five relational algebraic operators, relational union (∪), relational difference (−),
selection (σP), projection (π), and Cartesian product (×) [4]. In this section we pro-
pose an extension of Codd’s algebraic operators in order to query the data models
introduced in Section 2.1.

Several temporal extensions have been provided to Codd’s operators in the TDB
literature [21], [15]. In many cases, such extensions behave as standard non-temporal
operators on the non-temporal attributes, and involve the application of set operators
on the temporal parts. This approach ensures that the temporal algebrae are a con-
sistent extensions of Codd’s operators and are reducible to them when the temporal
dimension is removed. For instance, in BCDM, temporal Cartesian product involves
pairwise concatenation of the values for non-temporal attributes of tuples and pair-
wise intersection of their temporal values (see Subsection 4.2).

We ground our approach on such a “consensus” background, extending it in order
to cope with the POINT and MAX representations of now-relative data.

Before proceeding to the definitions, we need to introduce a brief digression about
the treatment of value-equivalent tuples. In the temporal relational literature, two tu-
ples are said to be value− equivalent if they have exactly the same values as re-
gards their non-temporal attributes. In the BCDM model, it is agreed that (from the
abstract -semantic- point of view) each tuple should be equipped with all its tempo-
ral information, so that no value-equivalent tuple can coexist in the same relation.
While this is a major source of clarity for the abstract model, the different practi-
cal logical representations adopted in the literature have used different strategies to
cope with value-equivalent tuples (see, e.g., the discussion in the TSQL2 book [21]).
For instance, the “consensus” TSQL2 approach admits value-equivalent tuples at the
logical (representation) level, still retaining the underlying semantics dictated by the
BCDM model. This choice has a strong impact on the definition of relational alge-
braic operators. For instance, in BCDM, and in the logical representations in which
no value-equivalent tuples are admitted, relational union needs to coalesce [2] the
times of value-equivalent tuples deriving from the relations being united; on the other
hand, if value-equivalent tuples are admitted at the representation level, temporal re-
lational union can simply put all the input tuples in the result. However, in order
to maintain the underlying BCDM semantics, in such approaches (such as TSQL2),
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temporal relational difference needs to consider the fact that value-equivalent tuples
may be present in both input relations, so that all their times must be collected before
performing the temporal difference between the temporal components of the tuples.

In the following, we have chosen to follow the line of TSQL2 “consensus” ap-
proach, thus admitting value-equivalent tuples in our models. The main advantage
of such a choice is the fact that temporal projection and union are more efficient
(since no operation needs to be performed on the temporal component of tuples),
while most of the complexity of the treatment of time is demanded to the relational
difference operator.

4.2 BCDM algebra

The temporal algebraic operators in BCDM follow the “consensus” principles dis-
cussed above. Temporal Cartesian product involves pairwise concatenation of the
values for non-temporal attributes of tuples and pairwise intersection of their tempo-
ral values. Relational union, projection and difference behave in a standard way on
non-temporal attributes, and perform union (for relational union and projection) and
difference (for relational difference) on the temporal part of value-equivalent tuples.
(In BCDM, nontemporal selection operates in the standard way on the non-temporal
part, neglecting the temporal part). For instance, temporal Cartesian product is re-
ported in the following. In the definition below, we denote by t[X1, . . . , Xk] the value
of the attributes X1, . . . , Xk in the tuple t.

Definition 1 (Temporal Cartesian product ×B) Given two bitemporal relations r and
s defined over the schemas RB

1 = (A1, . . . , An | T ) and RB
2 = (B1, . . . , Bk | T )

respectively, the temporal Cartesian product r ×B s is a temporal relation q defined
over the schema RB

3 = (A1, . . . , An, B1, . . . , Bk | T ) and is defined as follows:
r × Bs = {t | ∃ tr ∈ r, ∃ ts ∈ s,
t[A1, . . . , An] = tr[A1, . . . , An] ∧
t[B1, . . . , Bk] = ts[B1, . . . , Bk] ∧
t[T ] = tr[T ] ∩ ts[T ] ∧ t[T ] 6= /0 }.

It is worth stressing that, in BCDM, it is highlighted that similar operations can
be defined, operating on temporal relations in which only the transaction time (or
only the valid time) is present. The same consideration also holds as concerns the
temporal algebrae we propose in the following. Therefore, for the sake of brevity, in
the following we only focus on bitemporal relations, with no loss of generality.

4.3 Temporal algebrae

In this section, we describe a temporal extension of Codd’s non-temporal algebraic
operators to cope with time, considering both the MAX and POINT representation
of now-relative data. Instead of proposing two different algebrae (one for the MAX
and one for the POINT approach), we capture the generalities between the two, and
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“hide” the differences through the adoption of the isNowRelative and setNow func-
tions described above. The specific temporal algebra for the MAX (POINT ) approach
can be simply obtained by properly instantiating isNowRelative and setNow.

Our definition of temporal Cartesian product is reported in the following.

Definition 2 (Temporal Cartesian product ×N) Given two bitemporal relations r and
s in the POINT or MAX approaches, defined over the schemas RN

1 = (A1, . . . , An |
T TS, T TE , V TS, V TE) and RN

2 = (B1, . . . , Bk | T TS, T TE , V TS, V TE) respec-
tively, the temporal Cartesian product r ×N s is a temporal relation q defined over
the schema RN

3 = (A1, . . . , An, B1, . . . , Bk | T TS, T TE , V TS, V TE) and is defined
as follows:
r×N s = {t | ∃ tr ∈ r, ∃ ts ∈ s,
t[A1, . . . , An] = tr[A1, . . . , An] ∧
t[B1, . . . , Bk] = ts[B1, . . . , Bk] ∧
if (isNowRelative(tr[T TS], tr[T TE ]) ∧ isNowRelative(ts[T TS], ts[T TE ]))

then t[T TS] = max(tr[T TS], ts[T TS]) ∧ t[T TE ] = setNow(t[T TS])
else if (isNowRelative(tr[T TS], tr[T TE ]) ∧ ¬ isNowRelative(ts[T TS], ts[T TE ]))

then t[T TS] = max(tr[T TS], ts[T TS]) ∧ t[T TE ] = ts[T TE ] ∧ t[T TS] < t[T TE ]
else if (¬ isNowRelative(tr[T TS], tr[T TE ]) ∧ isNowRelative(ts[T TS], ts[T TE ]))

then t[T TS] = max(tr[T TS], ts[T TS]) ∧ t[T TE ] = tr[T TE ] ∧ t[T TS] < t[T TE ]
else if (¬ isNowRelative(tr[T TS], tr[T TE ]) ∧ ¬isNowRelative(ts[T TS], ts[T TE ]))

then t[T TS] = max(tr[T TS], ts[T TS]) ∧ t[T TE ] = min(tr[T TE ], ts[T TE ]) ∧ t[T TS] < t[T TE ]
if (isNowRelative(tr[V TS], tr[V TE ]) ∧ isNowRelative(ts[V TS], ts[V TE ]))

then t[V TS] = max(tr[V TS], ts[V TS]) ∧ t[V TE ] = setNow(t[V TS])
else if (isNowRelative(tr[V TS], tr[V TE ]) ∧ ¬ isNowRelative(ts[V TS], ts[V TE ]))

then t[V TS] = max(tr[V TS], ts[V TS]) ∧ t[V TE ] = min(cNOW + 1, ts[V TE ]) ∧ t[V TS] < t[V TE ]
else if (¬ isNowRelative(tr[V TS], tr[V TE ]) ∧ isNowRelative(ts[V TS], ts[V TE ]))

then t[V TS] = max(tr[V TS], ts[V TS]) ∧ t[V TE ] = min(cNOW + 1, tr[V TE ]) ∧ t[V TS] < t[V TE ]
else if (¬ isNowRelative(tr[V TS], tr[V TE ]) ∧ ¬ isNowRelative(ts[V TS], ts[V TE ]))

then t[V TS] = max(tr[V TS], ts[V TS]) ∧ t[V TE ] = min(tr[V TE ], ts[V TE ]) ∧ t[V TS] < t[V TE ]}.

As can be seen, the result of the Cartesian product is a relation whose schema
contains both the explicit attributes of r and of s. The timestamps of tuples in q cor-
respond to the intersection of timestamps of the corresponding tuples in r and s,
possibly now-relative.

In the definition, the transaction and the valid times of the output tuples are inde-
pendently defined by cases. For instance, the first case states that, in case the trans-
action time of both tr and ts is now-relative, then the output transaction time is still
now-relative along the transaction-time dimension. It is worth stressing that, in all
the cases in which the tests t[T TS] < t[T TE ] or t[V TS] < t[V TE ] fail, the corre-
sponding tuple is not part of the output. For instance, the second case in the definition
states that if the transaction time of tr is now-relative and the transaction time of ts
is not now-relative, then the resulting transaction time is not now-relative (along the
transaction-time dimension) and can be determined as follows: its starting point is
the maximum between the two starting times and its ending point is the minimum
between the two ending times: since the transaction time of tr is now-relative, for the
semantics of transaction time, certainly the transaction time of ts ends before now and
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it is the minimum. However, if the result of such an evaluation is a degenerate period
whose ending point is not after the starting point (which happens just in case there
is no intersection between the two transaction times), then the tuple is not part of the
output.

Temporal relational union takes in input the tuples of two bitemporal relations r
and s, and gives them in output unchanged both in the non-temporal and temporal
part.

Definition 3 (Temporal union ∪N) Given two bitemporal relations r and s in the
POINT or MAX approaches, defined over the same schema RN =(A1, . . . , An | T TS, T TE , V TS, V TE),
the temporal union r ∪N s is a bitemporal relation q defined over the schema RN , and
is defined as follows:

r∪N s = {t | ∃ tr ∈ r, t[A1, . . . , An] = tr[A1, . . . , An] ∧ t[T TS] = tr[T TS] ∧ t[T TE ] =

tr[T TE ] ∧ t[V TS] = tr[V TS] ∧ t[V TE ] = tr[V TE ] ∨∃ ts ∈ s, t[A1, . . . , An] = ts[A1, . . . , An] ∧ t[T TS] =

ts[T TS] ∧ t[T TE ] = ts[T TE ] ∧ t[V TS] = ts[V TS] ∧ t[V TE ] = ts[V TE ]}.

Temporal relational projection simply operates on the non-temporal part of the
input tuples, retaining only the values of the input attributes. The temporal component
of the tuples is left unchanged.

Definition 4 (Temporal projection πN
Ai, ..., A j

) Given a bitemporal relation r in the

POINT or MAX approaches, defined over the schema RN =(A1, . . . , An | T TS, T TE , V TS, V TE),
and given a subset {Ai, . . . , A j} of the set {A1, . . . , An}, temporal projection πN

Ai, ..., A j
(r)

is a bitemporal relation q defined over the schema R′N = (Ai, . . . , A j |T TS, T TE , V TS, V TE),
and is defined as follows:

πN
Ai, ..., A j

(r) = {t | ∃ t ∈ r, t[Ai, . . . , A j] = t ′[Ai, . . . , A j] ∧
t[V TS] = t ′[V TS] ∧ t[V TE ] = t ′[V TE ] ∧ t[T TS] = t ′[T TS] ∧ t[T TE ] = t ′[T TE ]}.

The definition of selection on non-temporal attributes is trivial: only the input
tuples whose non-temporal component satisfy the selection predicate φ are reported
in output, unchanged (both in their temporal and nontemporal parts). Notice that φ is
a predicate regarding non-temporal attributes only.

Definition 5 (Nontemporal selection σN
φ

) Given a bitemporal relation r in the POINT
or MAX approaches, defined over the schema RN = (A1, . . . , An | T TS, T TE , V TS, V TE),
and a predicate φ regarding the non-temporal attributes only, σN

φ
(r) is a bitemporal

relation q defined over the schema RN , and is defined as follows:
σN

φ
(r) = {t | ∃ t ∈ r, φ(t[A1, . . . , An])}.

While the choice of admitting value-equivalent tuples makes the definition of the
union, projection (and non-temporal selection) operators quite easy (and efficient,
since no manipulation on the temporal components is needed), the definition of tem-
poral difference necessarily results to be quite complex, since an unpredictable num-
ber of value-equivalent tuples may be present in the input relations. Intuitively speak-
ing, in the temporal difference r −N s, each tuple t ′ ∈ r which has no value-equivalent
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tuple in s is simply reported unchanged in output. Otherwise, let {t1, . . . , tk} the set
of all and only the tuples in s that are value-equivalent to t ′ (the quantifier ∃! is used
in the definition to denote that they are “all and only”). The time of the resulting tuple
is obtained by removing from the time of t ′ the (union of the) times of t1, . . . , tk. Of
course, if the result of such a removal is empty, the tuple is not part of the output.
Although the basic idea is simple, its realization is technically complex, since:

– as in many temporal representations (including e.g., TSQL2), in the POINT and
MAX representations, times are represented through pairs of periods (start-end
of the valid time, start-end of the transaction time), i.e., as rectangles in the bi-
dimensional space [21], [12];

– additionally, in the POINT approach, point and lines in the bitemporal space are
used to model now-relative data.

In the definition below, which, notably, is quite similar to the definition of difference
in BCDM, the function EXT cNOW (see the definition in Section 3) is used in order
to generate all the bitemporal chronons corresponding to the POINT or MAX repre-
sentations. The (union of the) bitemporal chronons of t1, . . . , tk are subtracted from
the bitemporal chronons of t ′. Finally, the function cover reconverts the resulting set
of bitemporal chronons into the POINT or MAX representations. Specifically, given
a set S of bitemporal chronons, cover(S) provides in output a set of rectangles (i.e.,
(T TS, T TE , V TS, V TE) quadruples) in the POINT or MAX representations, cover-
ing all and only the chronons in S. For each one of such rectangles, a tuple value-
equivalent to t ′ (having such a rectangle as its temporal component) is reported in
output. Obviously, if the difference of bitemporal chronons is empty, cover is applied
to the empty set, and no tuple corresponding to t ′ is reported.

Definition 6 (Temporal difference−N) Given two bitemporal relations r and s in the
POINT or MAX approaches, defined over the same schema RN =(A1, . . . , An | T TS,
T TE , V TS, V TE), and given any value cNOW for now, the temporal difference r−N s
is a bitemporal relation q defined over the schema RN defined as follows:

r −N s = {t | (∃ t ′ ∈ r, t[A1, . . . , An] = t ′[A1, . . . , An] ∧
t[T TS] = t ′[T TS] ∧ t[T TE ] = t ′[T TE ] ∧ t[V TS] = t ′[V TS] ∧ t[V TE ] = t ′[V TE ] ∧
¬ ∃ t ′ ∈ s, t[A1, . . . , An] = t ′[A1, . . . , An]) ∨
(∃ t ′ ∈ r, ∃! t1, . . . , tk ∈ s, t[A1, . . . , An] = t ′[A1, . . . , An] = t1[A1, . . . , An] = . . . =
tk[A1, . . . , An] ∧ t[T TS, T TE , V TS, V TE ] ∈ cover(EXT cNOW (t ′) − (EXT cNOW (t1) ∪ . . .
∪ EXT cNOW (tk)))))}.

Of course, many different implementations of the cover(S) function are possible,
depending on the policy used in order to generate the covering rectangles.

Actually, the above definition of difference has been provided to enhance clarity,
and to stress our adherence to the reference BCDM model. On the other hand, for
the sake of computational efficiency, the translation from POINT or MAX represen-
tations to bitemporal chronons (through the EXT cNOW function) and back (through
the cover function), as well the application of unions and difference to bitemporal
chronons, are not strictly necessary. As a matter of fact, one can more efficiently de-
vise an algorithm that, taken in input a rectangle r (in the POINT or MAX represen-
tations) and a set of rectangles {r1, . . . , rk} (in the POINT or MAX representations),
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directly provides in output a set of rectangles (in the POINT or MAX representations)
covering the whole difference (or the empty set if the difference is empty). In other
words, one may take the above definition of difference as an abstract specification,
and then implement a function to compute cover(EXT cNOW (t ′[T TS, T TE , V TS, V TE ]) −
(EXT cNOW (t1[T TS, T TE , V TS, V TE ]) ∪ . . . ∪ EXT cNOW (tk[T TS, T TE , V TS, V TE ])))
in a more efficient way. This is the strategy we adopt in this paper, proposing the
function di f f erence as a sample implementation of the above computation.

4.3.1 A covering difference algorithm for the POINT and MAX approaches

The algorithm introduced in this section is an extension of the generic algorithm for
computing the difference between sets of rectangles described in [7] to consider also
rectangles bounded by now.

Transac'on 
Time 

Valid 
Time 

Fig. 1 Graphical representation of the difference operation between rectangles r (the biggest rectangle)
and s (the smallest rectangle) with the possible four resulting rectangles (left, right, top, bottom). Some of
such rectangles could be missing, depending on the relative location of r and s.

In the algorithm, the set r contains the minuends, the set s the subtrahends and the
set result the difference. All three sets contain the timestamps of the tuples participat-
ing in the operation. In each iteration of the outer loop, a rectangle of set r is chosen.
Then, for each rectangle in s that intersects with the chosen rectangle, we compute
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Function 6 di f f erence((T TS, T TE , V TS, V TE),{(T T 1
S , T T 1

E , V T 1
S , V T 1

E ), . . . , (T T k
S , T T k

E , V T k
S , V T k

E )})
1: r ← {(T TS, T TE , V TS, V TE)}
2: s ← {(T T 1

S , T T 1
E , V T 1

S , V T 1
E ), . . . , (T T k

S , T T k
E , V T k

S , V T k
E )}

3: result ← /0
4: while r 6= /0 do
5: choose a (T T r

S , T T r
E , V T r

S , V T r
E) ∈ r

6: changed ← false
7: for all (T T s

S , T T s
E , V T s

S , VT s
E ) ∈ s do

8: if intersects((T T r
S , T T r

E , V T r
S , V T r

E), (T T s
S , T T s

E , V T s
S , V T s

E)) then
9: r ← r − {(T T r

S , T T r
E , V T r

S , V T r
E)}

10: if T T r
S < T T s

S then r← r ∪ (T T r
S , T T s

S , V T r
S , V T r

E ){left rectangle}
11: if ¬ isNowRelative(T T r

S , T T r
E) and¬ isNowRelative(T T s

S , T T s
E) and T T r

E > T T s
E then

r ← r ∪ {(T T s
E , T T r

E , V T r
S , V T r

E)}{right rectangle}
12: if isNowRelative(T T r

S , T T r
E ) and ¬ isNowRelative(T T s

S , T T s
E ) then r←

r ∪ (T T s
E , setNow(T T s

E ), V T r
S , V T r

E )
13: if V T r

S < V T s
S then r ← r ∪ {(T T r

S , T T r
E , V T r

S , V T s
S )}{bottom rect-

angle (with possible overlaps with left/right rectangles)}
14: if ¬ isNowRelative(V T r

S , V T r
E) and ¬ isNowRelative(V T s

S , V T s
E) and

V T r
E > V T s

E then r ← r ∪ {(T T r
S , T T r

E , V T s
E , V T r

E)}{top rectangle
(with possible overlaps with left/right rectangles)}

15: if isNowRelative(V T r
S , V T r

E) and ¬ isNowRelative(V T s
S , V T s

E) and
V T s

E ≤ cNOW then r ← r ∪ {(T T r
S , T T r

E , V T s
E , setNow(V T s

E))}
16: if ¬ isNowRelative(V T r

S , V T r
E) and isNowRelative(V T s

S , V T s
E) and

V T r
E > cNOW + 1 then r ← r ∪ {(T T r

S , T T r
E , cNOW + 1, V T r

E)}
17: changed ← true
18: end if
19: end for
20: if changed = false then r← r − (T T r

S , T T r
E , V T r

S , V T r
E );

21: result ← result ∪ (T T r
S , T T r

E , V T r
S , V T r

E )
22: end while
23: return result

Function 7 intersects((T T r
S ,T T r

E ,V T r
S ,V T r

E),(T T s
S ,T T s

E ,V T s
S ,V T s

E))

1: if isNowRelative(T T r
S ,T T r

E) then ttr
E ← cNOW +1 else ttr

E ← T T r
E

2: if isNowRelative(T T s
S ,T T s

E) then tts
E ← cNOW +1 else tts

E ← T T s
E

3: if isNowRelative(V T r
S ,V T r

E) then vtr
E ← cNOW +1 else vtr

E ←V T r
E

4: if isNowRelative(V T s
S ,V T s

E) then vts
E ← cNOW +1 else vts

E ←V T s
E

5: if T T r
S ≥ tts

E or T T s
S ≥ ttr

E or V T r
S ≥ vts

E or V T s
S ≥ vtr

E then
6: return false
7: else
8: return true
9: end if
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the difference, determining the left, right, bottom and top rectangles resulting from
the operation, if they exist (see Figure 1).

As for the Cartesian product, the operation is defined by cases. For instance, re-
garding the right rectangle, the first case (line 11) states that, if the transaction times
of the element of r and of the element of s are not now-relative, the right rectangle
exists if the transaction time of the minuend r ends after the transaction time of the
subtrahend s (i.e., T T r

E > T T s
E ). The transaction time of the right rectangle starts at

T T s
E and ends at T T r

E and its valid time starts at V T r
S and ends at V T r

E .
On the other hand, if the transaction time of r is now-relative and the transaction

time of s is not (line 12), because of the semantics of transaction time, the end of
transaction time of r (i.e., now) is certainly after the end of the transaction time of s
and the transaction time of the resulting rectangle ends at now.

The cases where r is not now-relative and s is now-relative and where both r and
s are now-relative give no right rectangle because the end of the transaction time of s
is certainly not before the end of the transaction time of r.

The bottom and top rectangles are computed in a similar way with a notable
difference: the end of the valid time can be after now. This fact impacts line 16,
where the valid time of r is not now-relative and the valid time of s is now-relative:
differently from the analogous case in line 12, we must test whether the end of valid
time of r is not after now (cNOW is incremented because the valid time period is open
to the right). Moreover, if the valid time of r is now-relative and the valid time of s is
not, the top rectangle exists if the end of valid time of s is not after now.

It is worth noting that in the cases in lines 12 and 16 the result is also now-
relative. However, neither the MAX approach nor the POINT approach admit now-
relative time periods where now is the starting point of the period. Therefore, in the
case where we would obtain now as the starting point (see line 16), we rather set, as
starting time, the current chronon, i.e., cNOW .

The resulting rectangle is then added to r in such a way that in subsequent itera-
tions it will be checked against the other elements of s.

Please notice that, for the sake of easiness of definition, we have chosen to give
as a result possibly overlapping rectangles, but it is possible to define the di f f erence
function in such a way to give as a result non-overlapping rectangles.

4.3.2 Temporal selection operators

Until now, we have taken into account extensions of Codd’s basic operators. However,
Codd’s operators were not originally intended to operate on time, so that no specific
operator was provided in order to query the temporal component of temporal tuples.

Many of such operators have been provided in the literature (consider, e.g., the
TSQL2 “consensus” approach [21]). For the sake of brevity, in this paper we just
focus on temporal selection.

Definition 7 (Temporal selection σN
φ t ) Given a bitemporal relation r in the POINT or

MAX approaches, defined over the schema RN =(A1, . . . , An | T TS, T TE , V TS, V TE)
and a temporal predicate φt regarding the temporal attributes only, σN

φt
(r) is a bitem-

poral relation q defined over the schema RN , and is defined as follows:
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σN
φt
(r) = {t | ∃ t ∈ r, φt (t[T TS, T TE , V TS, V TE ])}

In other words, all and only the tuples in rN whose temporal component satisfy the
selection predicate φt are reported in output. Such a general definition can be further
specified, in order to identify specific temporal selection predicates. In particular,
range queries have been proven to play a major role within TDBs [14]. Range queries
have been already defined for the POINT approach (the interested reader is referred
to [23]).

4.3.3 Properties of the POINT and MAX algebrae

In this subsection, we explore some of the main properties of the temporal relational
algebra for the POINT and MAX approaches.

By definition, the input relations of the POINT (and MAX) algebraic operators
are relations in the POINT (and MAX) approach. The outputs are POINT (and MAX)
relations by construction. This can be easily proved by cases. For instance, the output
of temporal Cartesian product is by definition a relation whose temporal component
consists of the T TS,T TE ,V TS,V TE attributes (as requested by the POINT –and MAX–
models). In turn, the temporal component of each output tuple has, by construction,
values that conform to the POINT (and MAX) models. Therefore the following prop-
erty holds:

Property 1 (Closure) The temporal relational algebra is closed, in the sense that the
algebraic operators, taking in input relations in the POINT (or MAX) model, give in
output relations in the POINT (or MAX) model.

A fundamental property is the correctness of the POINT and MAX algebrae with
respect to the BCDM approach. This means that, although the POINT and MAX ap-
proaches adopt an efficient representation to cope with now-relative data, the BCDM
underlying semantics is still preserved, in that the output of the POINT and MAX
operations is exactly a representation (in the POINT and MAX approaches) of the
output of the corresponding operations in the BCDM semantic approach.

Property 2 (Correctness of the POINT and MAX algebrae) The POINT and MAX
algebrae are correct, since they provide (in the POINT and MAX representations)
all and only the results that would be obtained by the underlying BCDM semantic
approach.

Proof The correctness of the POINT and MAX algebrae is proved by showing that,
given any relations rN and sN and any binary operator OpN in the POINT or MAX ap-
proaches (the proof is analogous when considering unary operators), the application
of the operator in POINT or MAX algebrae gives a result equivalent to the application
of the corresponding operator in the BCDM algebra (indicated by OpB):

to BCDMcNOW (rN OpN sN) = to BCDMcNOW (rN) OpB to BCDMcNOW (sN).
We prove the result for the operation of Cartesian product by proving the two

inclusions, that is we prove that:
to BCDMcNOW (rN ×N sN) ⊆ to BCDMcNOW (rN) ×B to BCDMcNOW (sN)
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and
to BCDMcNOW (rN ×N sN) ⊇ to BCDMcNOW (rN) ×B to BCDMcNOW (sN).
Let x be a BCDM tuple in to BCDMcNOW (rN ×N sN) and let R=(A1, . . . , Aa, B1, . . . , Bb | T )

be the schema of to BCDMcNOW (rN ×N sN). We denote as A the attributes A1, . . . , Aa
and as B the attributes B1, . . . , Bb. Then, by the definition of the to BCDMcNOW func-
tion, there exists a maximal set of (possibly now-relative) tuples {y0, y1, . . . , yk} in
rN×N sN (k ≥ 0) such that x[AB] = y0[AB] = . . . = yk[AB] and that, considering
the rectangles resulting from the extension of their timestamps (with now = cNOW ),
their union corresponds to x[T ], i.e., x[T ] = EXT cNOW (y0[T ]) ∪ . . . ∪ EXT cNOW (yk[T ]).
If such tuples {y0, y1, . . . , yk} belongs to rN × sN , by the definition of ×N , for each
yi ∈ {y0, y1, . . . , yk} there must be a tuple w′i′ ∈ rN and a tuple w′′i′′ ∈ sN such
that x[A] = yi[A] = w′i′ [A], x[B] = yi[B] = w′′i′′ [B] and the bitemporal chronons
of yi correspond to the intersection of the bitemporal chronons of w′i′ and w′′i′′ , i.e.,
EXT cNOW (yi[T ]) = EXT cNOW (w′i′ [T ]) ∩ EXT cNOW (w′′i′′ [T ]). In the following, let
{w′1, . . . , w′l} and {w′′1 , . . . , w′′m} the sets of all and only the tuples in rN and in sN

respectively that generate the above tuples {y0, y1, . . . , yk}.
Let us consider the tuples w′1, . . . , w′l in rN . Applying the to BCDM function,

since these tuples have the same values for the explicit attributes, by definition of
to BCDM, to BCDM returns one BCDM tuple y ∈ to BCDM(rN) such that
y[A] = w′1[A] = . . . = w′l [A] and y[T ] = EXT (w′1[T ]) ∪ . . . ∪ EXT (w′l [T ]).
If we consider the tuples w′′1 , . . . , w′′m in sN , the function to BCDM returns one
BCDM tuple z ∈ to BCDM(sN) such that z[A] = w′′1 [A] = . . . = w′′m[A] and
z[T ] = EXT (w′′1 [T ]) ∪ . . . ∪EXT (w′′m[T ]).

Applying the ×B operator to y and z, by definition of the operator, we obtain a re-
lation on schema R(AB | T ) containing a tuple x′ ∈ to BCDMcNOW (rN) ×B to BCDMcNOW (sN)
such that x′[A] = y[A] = x[A] and x′[B] = z[B] = x[B] and
x′[T ] = y[T ] ∩ z[T ] = (EXT cNOW (w′1[T ]) ∪ . . . ∪
EXT cNOW (w′l [T ])) ∩ (EXT cNOW (w′′1 [T ]) ∪ . . . ∪ EXT cNOW (w′′m[T ])). For the dis-
tributive property of intersection over union,
x′[T ] = (EXT cNOW (w′1[T ]) ∩ EXT cNOW (w′′1 [T ])) ∪ . . . ∪
(EXT cNOW (w′1[T ]) ∩ EXT cNOW (w′′m[T ])) ∪ . . . ∪ (EXT cNOW (w′l [T ]) ∩ EXT cNOW (w′′1 [T ])) ∪ . . . ∪
(EXT cNOW (w′l [T ]) ∩EXT cNOW (w′′m[T ])). Since by construction {w′1, . . . , w′l} and
{w′′1 , . . . , w′′m} are all and only the tuples that generates {y0, y1, . . . , yk}, i.e., such
that for each i, 0 ≤ i ≤ k, x[A] = yi[A] = w′i′ [A], x[B] = yi[B] = w′′i′′ [B] and
EXT cNOW (w′i′) ∩ EXT cNOW (w′′i′′) = EXT cNOW (yi[T ]), we have that
x′[T ] = EXT cNOW (y1[T ]) ∪ . . . ∪ EXT cNOW (yk[T ]) = x[T ]. Therefore, x = x′.

Now we prove the other direction of the inclusion.

Let x′ be a BCDM tuple in to BCDMcNOW (rN) ×B to BCDMcNOW (sN). Then, by
definition of the ×B operator, there exist a tuple y ∈ to BCDMcNOW (rN) and a tuple
z ∈ to BCDMcNOW (sN) such that x′[A] = y[A], x′[B]
= z[B] and x′[T ] = y[T ] ∩ z[T ] 6= /0.

By definition of to BCDM function, if y ∈ to BCDMcNOW (rN) then there exists
a (maximal) set of (possibly now-relative) tuples {w′0, . . . , w′l} that are in rN such that
y[A] = w′0[A] = . . . = w′l [A] and y[T ] = EXT cNOW (w′0[T ]) ∪ . . . ∪ EXT cNOW (w′l [T ]).
The same holds for z: there exists a (maximal) set of (possibly now-relative) tu-
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ples {w′′0 , . . . , w′′m} that are in sN such that z[A] = w′′0 [A] = . . . = w′′m[A] and
z[T ] = EXT cNOW (w′′0 [T ]) ∪ . . . ∪ EXT cNOW (w′′m[T ]).

If we apply the ×N operator to rN and sN , by definition of the operator, because
{w′0, . . . , w′l} ⊆ rN and {w′′0 , . . . , w′′m} ⊆ sN , we obtain, among the other tuples, a
set of (possibly now-relative) tuples {y1, . . . , yk} such that yi[A] = w′i′ [A], yi[B] =
w′′i′′ [B] and EXT cNOW (yi[T ]) = EXT cNOW (w′i′ [T ]) ∩ EXT cNOW (w′′i′′ [T ]). Because
w′i′ [A] = y[A] and w′′i′′ [B] = z[B], the to BCDM function coalesces these tuples in one
BCDM tuple x such that x[A] = y0[A] = . . . = yk[A] = y[A], x[B] = y0[B] = . . . =
yk[B] = z[B] and x[T ] = EXT cNOW (y0[T ]) ∪ . . . ∪ EXT cNOW (yk[T ]). Since for
each i, 0 ≤ i ≤ k, EXT cNOW (yi[T ]) = EXT cNOW (w′i′ [T ]) ∩ EXT cNOW (w′′i′′ [T ]),
x[T ] = EXT cNOW (y0[T ]) ∪ . . . ∪ EXT cNOW (yk[T ]) = (EXT cNOW (w′i′0

[T ])

∩ EXT cNOW (w′′i′′0
[T ])) ∪ . . . ∪ (EXT cNOW (w′i′k

[T ]) ∩ EXT cNOW (w′′i′′k
[T ])).

For the distributive property of union of sets over intersection of sets,
x[T ] = (EXT cNOW (w′i′0

[T ]) ∩ EXT cNOW (w′′i′′0
[T ])) ∪ . . . ∪

(EXT cNOW (w′i′k
[T ]) ∩ EXT cNOW (w′′i′′k

[T ])) = (EXT cNOW (w′1[T ]) ∪ . . . ∪
EXT cNOW (w′l [T ])) ∩ (EXT cNOW (w′′1 [T ]) ∪ . . . ∪ EXT cNOW (w′′m[T ])).
Since y[T ] = EXT cNOW (w′0[T ]) ∪ . . . ∪ EXT cNOW (w′l [T ]) and
z[T ] =EXT cNOW (w′′0 [T ]) ∪ . . . ∪ EXT cNOW (w′′m[T ]), we have that x[T ] = y[T ] ∩ z[T ]
= x′[T ]. Therefore, x = x′.

The proof for the other operators is similar.

4.3.4 Reducibility to the snapshot algebra

An important issue concerning a temporal algebra lies in its compatibility and re-
ducibility to the standard (non-temporal) relational model, in order to grant that, if
time is disregarded, the extended temporal model behaves like the standard model.
These properties are important for temporal approaches, since they grant interoper-
ability with pre-existent non-temporal approaches (and, as a matter of facts, such
properties have been proved for many temporal approaches, such as TSQL2).

Therefore, we prove the reducibility and consistent-extension properties for our
approach. For defining these properties, we first have to introduce transaction- and
valid timeslice operators, which take in input a bitemporal relation and a time value
and give as output, respectively, a valid time and a transaction-time relation, by “slic-
ing” a temporal dimension at the given time value. For instance, the transaction-
timeslice operator takes in input a bitemporal relation r and a time t and gives as
output a valid-time relation r′, containing all and only the tuples in r whose trans-
action time contains t. Only the valid time of such tuples is retained in r′. The valid
timeslice operator is analogous: if any tuple of the bitemporal relation has a valid time
which includes the time value given in input, the relation given in output contains the
explicit values of the tuple and its transaction time.

The transaction-timeslice operator for transaction-time relations and valid times-
lice operator for valid time relations are straightforward special cases.

Definition 8 (Transaction timeslice) Let r a bitemporal relation in the POINT or
MAX approaches, defined over the schema RN = (A1, . . . , An | T TS, T TE , V TS, V TE)
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and cT an arbitrary time value not exceeding current time:
ρN

cT
(r) = {t | ∃ t ′ ∈ r, t[A] = t ′[A] ∧ t[V TS] = t ′[V TS] ∧ t[V TE ] = t ′[V TE ] ∧

ct ∈ EXT cNOW (t ′[T TS], t ′[T TE ])}.
The result of transaction-timeslice operator is a valid time relation, defined over

the schema RN
V = (A1, . . . , An | V TS, V TE).

Definition 9 (Valid timeslice) Let r a bitemporal relation in the POINT or MAX
approaches, defined over the schema RN = (A1, . . . , An | T TS, T TE , V TS, V TE)
and cV an arbitrary time value:
τN

cV
(r) = {t | ∃ t ′ ∈ r, t[A] = t ′[A] ∧ t[T TS] = t ′[T TS] ∧ t[T TE ] = t ′[T TE ] ∧

cv ∈ EXT cNOW (t ′[V TS], t ′[V TE ])}.
The result of valid timeslice operator is a transaction-time relation, defined over

the schema RN
T = (A1, . . . , An | T TS, T TE).

Notice that the combined application to a bitemporal relation r of a transaction
and a valid timeslice operators at times tT T and tV T respectively provides as output a
standard (non-temporal) relation r′, consisting of (the non-temporal part of) all and
only those tuples in r which hold at the bi-temporal chronon (tT T , tV T ). Informally,
r′ is the standard relation capturing the single snapshot (tT T , tV T ) of the bitemporal
relation r.

Property 3 (Reducibility of POINT and MAX algebrae to the standard (non-temporal)
algebra) The MAX and POINT algebrae reduce to the standard algebra, i.e., the
non-temporal relation obtained by applying extended temporal operators to temporal
relations and then taking a snapshot is equivalent to the standard (non-temporal) re-
lation obtained by first taking a snapshot of the temporal relations and then applying
a standard (non-temporal) operator.

More formally, let rN and sN be bitemporal relations defined over a schema
RN = (A1, . . . , An | T TS, T TE ,V TS, V TE), cT an arbitrary time value not ex-
ceeding current time and cV an arbitrary time value,
ρcT (τcV (r

N OpN sN)) = ρcT (τcV (r
N)) OpS ρcT (τcV (s

N)),
where OpN is a temporal operator and OpS is a standard (non-temporal) operator.
The statement is analogous for unary operators.

Proof We prove the property for the operator of Cartesian product. The proofs for
the other operators are analogous.

The equivalence is proved by proving the two inclusions.
First we prove that ρcT (τcV (r

N ×N sN)) ⊆ ρcT (τcV (r
N)) ×S ρcT (τcV (s

N)).
Let R = (A1, . . . , Aa, B1, . . . , Bb | T TS, T TE , V TS, V TE) be the schema

of rN ×N sN . We denote as A the attributes A1, . . . , Aa and as B the attributes
B1, . . . , Bb. Let x ∈ ρcT (τcV (r

N ×N sN)). Then, by definition of slice operators, there
is a tuple x′ ∈ rN × sN such that x′[AB] = x[AB] and (cT , cV ) ∈ EXT cNOW ((rN ×N sN)[T ]).
Therefore, by definition of the×N , there exist a tuple y ∈ rN and a tuple z ∈ sN such
that y[A] = x′[A], z[B] = x′[B], (cT , cV ) ∈ EXT cNOW (y[T ]) and (cT , cV ) ∈ EXT cNOW (z[T ]).
Therefore, by definition of slice operators, there exist a tuple w′ ∈ ρcT (τcV (r

N)) and
a tuple w′′ ∈ ρcT (τcV (s

N)) such that w′ = y[A] = x′[A] and w′′ = z[B] = x′[B].
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By definition of standard Cartesian product, there exists a tuple
x′′ ∈ ρcT (τcV (r

N)) ×S ρcT (τcV (s
N)) such that x′′[A] = w′ = y[A] = x′[A] and

x′′[B] = w′′ = z[B] = x′[B]. Therefore, x = x′′.
Now we prove that ρcT (τcV (r

N ×N sN)) ⊇ ρcT (τcV (r
N)) ×S ρcT (τcV (s

N)).
Let us assume that x′′ ∈ ρcT (τcV (r

N)) ×S ρcT (τcV (s
N)). By definition of ×S

operator, there exist a tuple w′ ∈ ρcT (τcV (r
N)) and a tuple w′′ ∈ ρcT (τcV (s

N))
such that x′′[A] = w′ and x′′[B] = w′′. By definition of the slice operators, there
exist a tuple y ∈ rN and a tuple z ∈ sN such that y[A] = w′, z[B] = w′′,
(cV , cT ) ∈ EXT cNOW (y[T ]) and (cV , cT ) ∈ EXT cNOW (z[T ]).

By definition of ×N operator, there exists a tuple x′ ∈ rN ×N sN such that
x′[A] = y[A], x′[B] = z[B] and (cV , cT ) ∈ EXT cNOW (x′[T ]). By definition of slice
operators, there exists a tuple x ∈ ρcT (τcV (r

N OpN sN)) such that x = x′[AB]; there-
fore, since x[A] = x′[A] = y[A] = w′ = x′′[A] and x[B] = x′[B] = z = w′′ = x′′[B],
we have that x = x′′.

Definition 10 (Temporal transform) Let r be a standard (non-temporal) relation, de-
fined over the schema R1 = (A1, . . . , An) and tt start, tt end, vt start, vt end
timestamps,
trans f orm(r, tt start, tt end, vt start, vt end) = {t | t[A] ∈ r ∧
t[T ] = (tt start, tt end, vt start, vt end)}.

The result of temporal-transform operator is a bitemporal relation, defined over
the schema R2 = (A1, . . . , An | T TS, T TE , V TS, V TE).

The following property grants that queries that are possible when time is not
represented are possible when time is added.

Property 4 (Consistent extension) The temporal algebrae are consistent extensions
of the standard (non-temporal) algebra, i.e., the standard relational operators have a
counterpart in the temporal relational operators.

Proof We have to prove that, let rN and sN be standard (non-temporal) relations de-
fined over a schema R = (A1, . . . ,An) and tt start, tt end, vt start, vt end times-
tamps, trans f orm(r Op s, tt start, tt end, vt start, vt end) =
trans f orm(r, tt start, tt end, vt start, vt end) OpN trans f orm(s, tt start, tt end,
vt start, vt end), where Op is a standard (non-temporal) operator and OpN a tempo-
ral operator. The statement is analogous for unary operators.

We prove the two inclusions separately for the Cartesian product. The proofs for
the other operators are analogous.

Let x ∈ trans f orm(r × s, tt start, tt end, vt start, vt end). Then, by definition
of trans f orm function, x[AB] ∈ r × s and x[T ] = (tt start, tt end, vt start, vt end).
By definition of ×, there exist a tuple y ∈ r and a tuple z ∈ s such that x[A] = y
and x[B] = z. Applying the trans f orm function to y, we obtain a bitemporal tuple y′

such that y′[A] = y and y′[T ] = (tt start, tt end, vt start, vt end). The same holds
for z: applying the trans f orm function to z, we obtain a bitemporal tuple z′ such that
z′[B] = z and z′[T ] = (tt start, tt end, vt start, vt end). By definition of the ×N

operator, there exists a bitemporal tuple x′ such that x′[A] = y′[A], x′[B] = z′[B] and
x′[T ] = (tt start, tt end, vt start, vt end). Then, x = x′.
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Now we assume that x′ ∈ trans f orm(r, tt start, tt end, vt start, vt end) ×N

trans f orm(s, tt start, tt end, vt start, vt end). Then, by definition of ×N , there
exist a tuple y′ ∈ trans f orm(r, tt start, tt end, vt start, vt end) and a tuple z′ ∈
trans f orm(s, tt start, tt end, vt start, vt end) such that x′[A] = y′[A] and x′[B] = z′[B],
and z′[T ] ∩ y′[T ] 6= /0. By definition of the trans f orm function, there exist a tu-
ple y ∈ r and a tuple z ∈ s such that y = y′[A] and z = z′[A], and y[T ] =
(tt start, tt end, vt start, vt end) and z[T ] = (tt start, tt end, vt start, vt end). By
definition of the× operator, there exists a tuple x′′ ∈ r × s such that x′′[A] = y, x′′[B] = z.
By definition of the trans f orm function, there exists a tuple x ∈ trans f orm(r × s,
tt start, tt end, vt start, vt end) such that x[A] = x′′[A] = y′[A] = y = x′[A],
x[B] = x′′[B] = z′[B] = z = x[B] and x[T ] = z′[T ] = y′[T ] = x[T ] =
(tt start, tt end, vt start, vt end).

4.4 NOT −NOW algebra

In the next section, we show some experimental evaluations for the temporal rela-
tional algebrae we have defined. To the best of our knowledge, there are no tempo-
ral relational algebrae in the literature supporting the treatment of now-relative data
without resorting to Variable databases. Therefore, in order to provide a “reference”
comparison term for our MAX and POINT algebrae, in this section we provide a
third approach, that we term “NOT −NOW”. The NOT −NOW approach is the sim-
plest approach to cope with now-relative data. It assumes that the future is known,
so that the ending times (of both valid and transaction times) of all tuples are known
timestamps. Of course, in such a database there is no way to state, e.g., Example 1.
One has to state, e.g., that the transaction time of the tuple starts at 11 and ends at
a specific date. NOT −NOW is an “ideal” approach and it is not feasible in prac-
tice because we cannot know the future. However, such a less-expressive approach
is useful for the sake of our experiments: by comparing the MAX and POINT ap-
proaches to the NOT −NOW one, we can show what is the additional cost of coping
with now-relative data in such approaches. Of course, comparisons will be drawn
by considering corresponding datasets in the three different approaches, in the sense
that now-relative data are represented as discussed in Section 2.1 as regards the MAX
and POINT approaches, and the corresponding data in the NOT −NOW approach
use specific timestamps to cope with the end of now-relative transaction and/or valid
time.

As an example, we show the MAX , POINT and NOT −NOW representation of a
relation EMPLOY EE containing the following information (and assuming the value
25 for now):

– John worked in the toy department from 10 to 20 (inserted at T T = 11, deleted at
T T = 15)

– John worked in the travel department from 10 to 20 (inserted at T T = 16, still
present in the DB)

– John worked in the toy department from 21 to now (inserted at T T = 21, still
present in the DB)
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ID Dept T TS T TE V TS V TE
John toy 11 16 10 21
John travel 16 max− value 10 21
John toy 21 max− value 21 max− value

Table 1 EMPLOY EE relation in the MAX approach.

ID Dept T TS T TE V TS V TE
John toy 11 16 10 21
John travel 16 16 10 21
John toy 21 21 21 21

Table 2 EMPLOY EE relation in the POINT approach.

ID Dept T TS T TE V TS V TE
John toy 11 16 10 21
John travel 16 41 10 21
John toy 21 1001 21 31

Table 3 EMPLOY EE relation in the NOT −NOW approach.

Considering the NOT −NOW approach, we also assume to know that the second
tuple will be deleted at time 40 in the future, that John will stop working in the toy
department at time 30, and that such a tuple will be deleted at T T = 1000.

These information are represented in Tables 1, 2 and 3. Notice that, for the sake
of homogeneity, also in the NOT −NOW approach we have followed the convention
that periods are closed to the left and open to the right.

Interestingly, given the generality of the family of algebrae we have defined in
Section 4.3, also the NOT −NOW algebra can be obtained as a specific instance of
the family (as it is the case for the MAX and for the POINT algebrae). In particular,
the NOT −NOW algebra is a trivial simplification of the above.

For the sake of readability, we report here the Cartesian product operator for the
NOT −NOW approach:

Definition 11 (NOT −NOW Temporal Cartesian product ×NN) Given two bitem-
poral relations r and s in the NOT − NOW approach, defined over the schemas
R1 = (A1, . . . ,An | T TS,T TE ,V TS,V TE) and R2 = (B1, . . . ,Bk | T TS,T TE ,V TS,V TE)
respectively, the NOT −NOW temporal Cartesian product r×NN s is a temporal rela-
tion q defined over the schema R3 = (A1, . . . ,An,B1, . . . ,Bk | T TS,T TE ,V TS,V TE) and
is defined as follows:
r×NN s = {t | ∃ tr ∈ r, ∃ ts ∈ s, t[A1, . . . , An] = tr[A1, . . . , An] ∧
t[B1, . . . , Bk] = ts[B1, . . . , Bk] ∧ t[T TS] = max(tr[T TS], ts[T TS]) ∧
t[T TE ] = min(tr[T TE ], ts[T TE ]) ∧ t[T TS] < t[T TE ] ∧
t[V TS] = max(tr[V TS], ts[V TS]) ∧ t[V TE ] = min(tr[V TE ], ts[V TE ]) ∧ t[V TS] < t[V TE ]}
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5 Experimental evaluation

In this section, we empirically compare the performances of the MAX, the POINT and
the NOT-NOW approaches. We have not considered the approaches modeling now
using variables [3], since we consider approaches which do not require any modifi-
cation of the kernel so that, e.g., off-the-shelf indexing techniques can be used. We
generated the same data set for each approach and then on each relation we per-
formed Temporal Cartesian Product, Temporal Difference, and Temporal Selection
(e.g., range queries).

5.1 Data sets

In absence of real data we have randomly generated data sets with different data
distributions to simulate a real-world scenario. For each approach we generated three
tables differing in the percentage of now-relative data. As suggested in the literature
[28], [25] we considered 10%, 20% and 40% of now-relative data. The structure
of all tables are identical to the sample data shown in Tables 1, 2, and 3, where,
besides the ID and Dept attributes, there are four temporal attributes V Ts, V Te, T Ts,
and T Te representing the start and end of the valid and transaction time. Each table
contains one million tuples. However, for Temporal Cartesian Product and Temporal
Difference, due to the answer size, we considered only one thousand rows in each
table. For the NOT-NOW approach we have replaced now-relative valid time and/or
transaction time ends with randomly generated timestamps in the future.

The starting time of the periods were always uniformly distributed on the time
domain, while the duration and percentage of now-relative data was varied. While
we have chosen a uniform distribution of period starts, we adopted an exponential
distribution of the durations because it reflects most real-world applications where
short periods are more likely to occur than long periods [6].

5.2 Environment

Our implementation has been carried out on a 8 x UltraSparc III @ 900Hz with 8GB
of RAM memory, running Oracle 11 RDBMS, with a database block size of 8K and
size of SGA of 1000MB. The SGA was locked into memory to ensure that paging
does not affect results. To ensure that the logical read of data already in SGA does
not influence the results we flushed the the database buffer cache in SGA before
every particular test. At the time of testing the database server did not have any other
significant load. We used Oracle built-in methods for statistics collection, analytic
SQL functions and the PL/SQL procedural runtime environment. For range queries
we utilised the TD-tree indexing method [24], as it has been shown that the TD-tree
has the best performance, considering the physical disk I/O and the query response
time and at the same time can be employed within the commercial RDBMS [26].
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Approach Now-relative Disk Accesses CPU usage Response time Logic.Reads Answer size
data ratio (10s of milliseconds) (min:sec) (number of tuples)

MAX 10% 16 10,521 1:46.325 1,132,103 104,501
POINT 10% 16 10,338 1:44.393 1,128,668 104,501
NOT −NOW 10% 16 9,113 1:31.672 1,121,456 101,968
MAX 20% 16 12,679 2:13.714 1,240,591 228,466
POINT 20% 16 12,377 2:10.687 1,236,454 228,466
NOT −NOW 20% 16 11,352 2:01.404 1,228,571 226,481
MAX 40% 16 15,990 2:55.695 1,439,416 408,485
POINT 40% 16 15,547 2:51.133 1,429,377 408,485
NOT −NOW 20% 16 14,801 2:37.906 1,418,882 400,766

Table 4 Temporal Cartesian Product

5.3 Results and analysis

In the following, we first present the results concerning the three different types of
queries separately. In all cases, we consider a database containing different ratios
of now-relative data. This is important in order to show to what extent our results
depend on the presence of such data in the database. Both physical disk I/Os and
CPU usage are taken into account in our analysis. It worth stressing that, according
to the analysis in [9], physical disk I/Os is the most important parameter. As a matter
of fact, physical disk accesses are considered to be the bottleneck because CPU time
might be reduced through the introduction of more powerful CPUs, and/or with an
extension of the number of CPUs. However, considering the relatively small number
of records in tables used for evaluations of Temporal Cartesian Product and Temporal
Difference and, since in such cases a full table scan needs to be performed, CPU usage
and response time are useful indicators for such operations.

5.3.1 Temporal Cartesian Product

As can be seen in Table 4, since Cartesian Product requires a full table scan, disk ac-
cesses are the same in all approaches. Also as regards CPU usage and response time,
the POINT, MAX and NOT-NOW approaches provide similar results. Actually, the
NOT-NOW approach, which is the optimal one (since it indeed does not require any
extension to cope with now) but is not practically feasible (since it assumes to know
the future), requires slightly less CPU usage for any percentage of now-relative data
and therefore has the fastest response time. However, it is also important to notice
that this is also due to the fact that, in the NOT-NOW approach, the answer size is
slightly smaller than in the other approaches. In fact, in the NOT-NOW approach, we
have replaced the now-relative data with the random future timestamps, and there-
fore less tuples satisfy the query criteria (i.e., intersection of bitemporal times). Also,
the POINT approach is slightly better than the MAX approach with regard to CPU
usage and has a faster response time (due to the less expensive algorithm of temporal
Cartesian product). This difference is increasing as the percentage of now-relative
data increases, as a result of the increase of the answer size.
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Approach Now-relative Disk Accesses CPU usage Response time Logic.Reads Answer size
data ratio (10s of milliseconds) (min:sec) (number of tuples)

MAX 10% 16 88 0:01.591 4,744 1,007
POINT 10% 16 87 0:01.523 4,742 1,007
NOT −NOW 10% 16 84 0:01.482 4,740 1,007
MAX 20% 16 87 0:01.972 4,736 1,007
POINT 20% 16 86 0:01.875 4,734 1,007
NOT −NOW 20% 16 85 0:01.775 4,730 1,007
MAX 40% 16 89 0:01.749 4,734 1,007
POINT 40% 16 87 0:01.716 4,734 1,007
NOT −NOW 20% 16 84 0:01.664 4,732 1,007

Table 5 Temporal Difference Product

Fig. 2 Range Query - Physical Disk I/O

5.3.2 Temporal Difference

Table 5 shows the results of the POINT, the MAX, and NOT-NOW approaches consid-
ering the physical disk I/Os, CPU usage, and response time for temporal difference.
Notably, there are only slight differences in CPU usage and response time between
the evaluated approaches. Due to the nature of temporal difference (and the possible
dimension of the answer size), we had to consider temporal difference between tables
with only one thousand rows. Since difference requires a full table scan to consider
all the records, physical disk I/O is constant. As it can be seen, both MAX and POINT
approaches are only slightly worse with regard to the CPU usage and response time
than the optimal NOT-NOW approach.

5.3.3 Range Queries

In Figures 2, 3, and 4 we show the results for physical disk I/O, CPU usage, and
query response time for range queries as a factor of the answer size. In these experi-
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Fig. 3 Range Query - CPU Usage

ments, we have considered 20% of now-relative data. However, the results obtained
with 10% and 40% now-relative data are similar. Once again, although the “ideal”
NOT-NOW approach performs slightly better that the POINT and MAX approaches,
differences are minimal.

Thus, experiments clearly show that the performances of the POINT and MAX
algebrae are very close to that of the NOT-NOW one, which is indeed the optimal one
(but which is not practically feasible), since, by assuming that the future end-times of
now-relative data are known, does not actually need to deal with now at all.

Fig. 4 Range Query - Response Time
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6 Comparisons and conclusions

Now-relative temporal data play an important role in most temporal applications. As
a consequence, the treatment of such data has attracted a significant amount of at-
tention in the (temporal) database literature. In the recent Database Encyclopedia by
Springer, Dyreson, Jensen and Snodgrass [16] have pointed out that there are three
different uses of now in databases. The first use of now is as a function within queries,
views, assertions. The second use is as a database variable used as a special timestamp
value associated with tuples or attribute values in TDB instances. The third use of now
is as a database variable with a specified offset. In this paper, we focus on the second
use, i.e., now used as a “special” timestamp in the valid and/or transaction time of
temporal data. Early approaches to now-relative data have been mostly based on the

use of variables (called “variable databases” [16]). The semantics of now variables
have been widely studied [16]. For instance, in [3], the semantics of now variables
has been formalized through the introduction of extensionalization functions, that
map from a database containing variables into an extensional database level which
is fully ground and constitutes its sematics, at a given reference time. A significant
amount of work has also been devoted to the problem of querying (see, e.g., [3]) and
updating (consider, e.g., [31]) variable databases. Considering queries, which is the
main focus of our approach, most researchers have tried to simplify the treatment
of now-relative data by simply augmenting a “standard” temporal query language
with the addition of a binding operator. This operator is used when user-level queries
are mapped to the internal representation. It operates on tuples with variables, and
substitues variables with a ground value (the reference time in [3]), thus setting the
perspective of the user raising the query. Existing query languages usually assume
that, for the sake of simplicity, the reference time is the time when the user starts to
raise the query. More recently, as already discussed in the introduction, a different

mainstream of approaches have tried to deal with now in relational databases with-
out resorting to the use of variables, with the advantage of adhering to the standard
relational model. These approaches include the MIN, MAX, NULL [29] and POINT
[23] approaches. In such approaches, now is not represented by a variable, but by a
“special” ground value (e.g., the maximum possible time in the MAX approach), or
by using degenerate representations of intervals (in the POINT approach). The idea
is that the specific value is used to represent now is not an “actual” value, but just a
“marker” for a variable. Thus, while the representation is still a conventional one (in
which no variable is used), the semantics is similar to the one proposed for “variable
databases”. However, such an intended semantics must be supported also by query
languages. Indeed, to the best of our knowledge, current approaches to now not using
variables have only focused on the treatment of a restricted type of queries: range (or
slice) queries (i.e., queries asking for all data holding at a given time interval or time
point). Indeed, besides supporting such queries, it is important to provide a full query
language, so that also “standard” queries can be asked on data in the MIN, MAX ,
NULL, and/or POINT approaches.

In this paper we overcome such a limitation of the current literature. We focus
on the purely relational approaches (thus neglecting variable databases), and provide
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a general temporal relational algebra which can be polymorphically adapted to act
as the query language not only for the MAX and POINT approaches (as shown in
this paper), but also to the other “non-variables” approaches in the literature (i.e., the
NULL and the MIN ones). Besides generality, our algebra meets also several other
theoretical and practical desiderata: closure with respect to representation languages,
correctness with respect to the “consensus” BCDM semantics, reducibility to the
standard non-temporal algebra (which involves interoperability with non-temporal
relational databases), implementability and efficiency. Indeed, the experimental eval-
uation we have drawn on our implementation has shown that only a slight overhead is
added by our treatment of now-relative data (with respect to an “ideal” but unfeasible
approach in which such data are not present since future is known).

References

1. Ben-Zvi. ”the time relational model.”. PhD. Dissertation. Computer Science
Department, UCLA, 1982.

2. M. H. Bohlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Temporal
Databases. Proc. of the 22nd VLDB Conf, pages 180–190, 1996.

3. J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On
the semantics of “Now” in databases. ACM Transactions on Database Systems
(TODS), 22(2):171–214, 1997.

4. E. F. Codd. Relational completeness of data base sublanguages. In: R. Rustin
(ed.): Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987,
San Jose, California, 1972.

5. C. E. Dyreson, C. S. Jensen, and R. T. Snodgrass. Now in temporal databases.
In L. LIU and M. ZSU, editors, Encyclopedia of Database Systems, pages 1920–
1924. Springer US, 2009.

6. R. Fenk, V. Markl, and R. Bayer. Interval Processing with the UB-Tree. In
Proceedings of the 2002 International Symposium on Database Engineering and
Applications, pages 12–22, 2002.

7. D. S. Franzblau and G. Xenakis. An algorithm for the difference between set
covers. Discrete Appl. Math., 156(10):1623–1632, May 2008.

8. S. K. Gadia. A seamless generic extension of sql for querying temporal data.
Technical Report TR-92-02. Computer Science Department, Iowa State Univer-
sity. May, 1992.

9. J. Hellerstein, E. Koutsupias, and C. Papadimitriou. On the Analysis of Indexing
Schemes. 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1997.

10. C. S. Jensen. Temporal Database Management. PhD thesis, Department of
Computer Science, Aalborg University, 2000.

11. C. S. Jensen and R. Snodgrass. Temporal Data Management. IEEE Transactions
on Knowledge and Data Engineering, 11(1):36–44, 1999.

12. C. S. Jensen and R. T. Snodgrass. Semantics of Time-Varying Information. In-
formation Systems, 21(4):311–352, 1996.



32 Luca Anselma, Bela Stantic, Paolo Terenziani, Abdul Sattar

13. L. M. Jensen, C. S. and N. Roussopoulos. ”incremental implementation model
for relational databases with transaction time.” ieee transactions. IEEE Transac-
tions on Knowledge and Data Engineering, 3(4):461–473, 1991.

14. H. Kriegel, M. Ptke, and T. Seidl. Managing intervals efficiently in object-
relational databases. Proceedings of the 26th International Conference on Very
Large Databases, pages 407–418, 2000.

15. J. L. Edwin McKenzie and R. T. Snodgrass. Evaluation of Relational Alge-
bras Incorporating the Time Dimension in Databases. ACM Computing Surveys
(CSUR), 23(4):501–543, 1991.
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