
11 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Compositional Type Checking of Delta-Oriented Software Product Lines

Published version:

DOI:10.1007/s00236-012-0173-z

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/140382 since 2016-06-29T11:46:32Z

This is an author version of the contribution published on:

Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer
Compositional Type Checking of Delta-Oriented Software Product Lines

ACTA INFORMATICA (2013) 50
DOI: 10.1007/s00236-012-0173-z

The definitive version is available at:
http://link.springer.com/content/pdf/10.1007/s00236-012-0173-z

http://link.springer.com/content/pdf/10.1007/s00236-012-0173-z

Noname manuscript No.
(will be inserted by the editor)

Compositional Type Checking of Delta-Oriented Software
Product Lines

Lorenzo Bettini · Ferruccio Damiani · Ina
Schaefer

Received: date / Accepted: date

Abstract Delta-oriented programming is a compositional approach to flexibly im-
plementing software product lines. A product line is represented by a code base and a
product line declaration. The code base consists of a set of delta modules specifying
modifications to object-oriented programs. A particular product in a delta-oriented
product line is generated by applying the modifications contained in the suitable
delta modules to the empty program. The product-line declaration provides the con-
nection of the delta modules with the product features. This separation increases the
reusability of delta modules. In this paper, we provide a foundation for compositional
type checking of delta-oriented product lines of JAVA programs by presenting a min-
imal core calculus for delta-oriented programming. The calculus is equipped with a
constraint-based type system that allows analyzing each delta module in isolation,
such that the results of the analysis can be reused. By relying only on the analysis
results for the delta modules and on the product line declaration, it is possible to es-
tablish whether all the products of the product line are well typed according to the
fragment of the JAVA type system modeled by the calculus.

Keywords Java · Software Product Line · Type System

The authors of this paper are listed in alphabetical order. This work has been partially supported by the
Deutsche Forschungsgemeinschaft (DFG), the Italian MIUR project PRIN 2008 DISCO, the German-
Italian University Centre (Vigoni program) and the EU project FP7-231620 HATS.

L. Bettini, F. Damiani
Università di Torino, Dipartimento di Informatica
C.so Svizzera, 185 - 10149 Torino, Italy
E-mail: {lorenzo.bettini,ferruccio.damiani}@unito.it
Tel.: +39-011-670-6719
Fax: +39-011-751603

I. Schaefer
Technische Universität Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
E-mail: i.schaefer@tu-braunschweig.de
Tel.: +49-531-391-2275
Fax: +49-531-391-2277

2 Lorenzo Bettini et al.

1 Introduction

Delta-oriented programming (DOP) [42,44] is a flexible compositional approach for
implementing software product lines [12]. The implementation of a product line in
DOP is organized into a code base and a product line declaration. The code base
consists of a set of delta modules that comprise modifications of object-oriented pro-
grams. A delta module can add classes, remove classes or modify classes by changing
the class structure. A particular product in a delta-oriented product line is generated
by applying the modifications contained in the suitable delta modules to the empty
program. The product line declaration provides the connection between the delta
modules and the variabilities of the products defined in terms of product features and
describes the set of valid feature configurations [28]. For each delta module, an ap-
plication condition over the product features is specified, and an application ordering
for the delta modules is fixed. The separation between delta modules and product line
declaration increases the reusability of delta modules, making it possible to develop
different product lines by reusing the same delta modules.

Delta-oriented programming is an extension of feature-oriented programming
(FOP) [6], a compositional approach for implementing software product lines (cf. [44]
for a straightforward embedding of FOP into DOP). The code base of a feature-
oriented product line contains a set of feature modules that correspond directly to
product features. Hence, the product line declaration for a feature-oriented product
line only provides the set of valid feature configurations and a composition ordering
of the feature modules. A feature module can be understood as a delta module without
remove operations such that product line development always starts from base fea-
ture modules comprising the mandatory product features. In DOP, any product can
be chosen as a base (delta) module. Hence, DOP supports proactive product line de-
velopment, where all possible products are planned in advance, as well as extractive
product line development [34] which starts from existing product implementations.
Moreover, the application conditions associated with delta modules, in the product
line declaration, allow handling combinations of features explicitly. This provides an
elegant way to counter the optional-feature problem [31] where two optional features
require additional glue code to cooperate properly. However, the additional flexibility
provided by DOP makes it more challenging than in FOP to efficiently check that for
every valid feature configuration a unique product can be generated and that all the
products of the product line are well typed.

Product line analysis techniques can be classified into three main categories [49]:
Product-based analyses consider each product variant separately; Family-based anal-
yses check the complete code base of the product line in a single run to obtain a result
about all possible variants; Feature-based analyses consider the building blocks of
the different product variants (the feature modules in FOP and the delta modules in
DOP) in isolation to derive results on all variants.

In this paper, we provide a foundation for compositional type checking of delta-
oriented product lines by presenting a constraint-based type system that supports
a feature-based analysis phase and a final product-based analysis phase by relying
on an abstraction of product generation. The concepts of this approach are demon-
strated for IF∆ J (IMPERATIVE FEATHERWEIGHT DELTA JAVA), a core calculus for

Compositional Type Checking of Delta-Oriented Software Product Lines 3

delta-oriented product lines of JAVA programs. IF∆ J is based on IFJ (IMPERATIVE
FEATHERWEIGHT JAVA), an imperative variant of FJ (FEATHERWEIGHT JAVA) [26],
that is used to implement the products. In the feature-based analysis phase the constraint-
based type system is used to analyze each delta module in isolation. The analysis
result for a delta module is called the type abstraction of the delta module. In the
product-based analysis phase, by relying only on the type abstractions of the delta
modules and on the product line declaration, it is possible to establish whether all the
products of the product line are well typed according to the IFJ type system. The type
abstraction of a delta module represents the provides/requires interface of the mod-
ule. A novelty with respect to provide/requires interfaces of feature modules used
by compositional type checking for FOP product lines [19] is that (during the final
product-based analysis phase) the type abstraction of delta modules are composed in
a delta-oriented manner.

The paper is organized as follows. Section 2 introduces DOP by an example.
Section 3 is an overview on the proposed approach for designing a type system for
DOP. Section 4 introduces IFJ, the underlying calculus for implementing products.
Section 5 presents the syntax and semantics of IF∆ J. Sections 6 and 7 describe the
constraint-based type system for IFJ and IF∆ J, respectively. Section 8 discusses how
to enhance early error recognition in delta modules. Related work is discussed in
Section 9. We conclude by summarizing the paper and outlining some directions for
future work in Section 10. The appendices contain the proofs of the main results.

A preliminary version of the material presented in this paper appeared in [43].
This paper contains more detailed explanations and examples, an improved version
of the IF∆ J calculus (including a more faithful formalization of the original con-
struct, which a modified method can use to access the old implementation), a more
detailed presentation of the IFJ and IF∆ J calculi, and the proofs of the main results.

2 Delta-oriented Programming

In order to illustrate the main concepts of DOP, we use a variant of the expression
product line (EPL) as described in [36]. The EPL is based on the expression prob-
lem [50], an extensibility problem that has been proposed as a benchmark for data
abstractions’ capability to support new data representations and operations. We con-
sider the following grammar:
Exp ::= Lit | Add | Neg
Lit ::= <non−negative integers>
Add ::= Exp "+" Exp
Neg ::= "-" Exp

Two different operations can be performed on the expressions described by this gram-
mar: printing, which returns the expression as a string, and evaluating, which returns
the value of the expression. The products in the EPL can be described by two feature
sets, the ones concerned with the data — Lit, Add, Neg — and the ones concerned
with the operations — Eval and Print. Lit and Print are mandatory features. The fea-
tures Add, Neg and Eval are optional. Figure 1 shows the feature model [28] of the
EPL.

4 Lorenzo Bettini et al.

EPL

Data

Lit Add Neg

Operations

Print Eval

Legend:

Mandatory
Optional
And

Fig. 1 Feature model for the Expression Product Line

The example aims at illustrating the constructs of the IF∆ J calculus presented in
Section 5, rather than to provide an elegant implementation of the EPL. Although the
example uses a more general syntax (including the primitive type int, the shortcut
syntax for operations on strings, and the sequential composition) than the syntax of
the IFJ calculus presented in Section 4, the encoding in IFJ is straightforward. We
refer to [44] for examples of programming the EPL in DOP that exploit the full JAVA
syntax.

2.1 Delta Modules

The main concept of DOP are delta modules which are containers of modification op-
erations to an object-oriented program. The modifications may add, remove or mod-
ify classes. Modifying a class means changing the super class, adding or removing
fields or methods or modifying methods. The modification of a method can either re-
place the method body by another implementation, or wrap the existing method using
the original construct (similar to the Super construct in AHEAD [6], and to the
proceed construct of AOP, see also Section 9). The call original(· · ·) expresses
a call to the method with the same name before the modifications and is bound at
the time the product is generated. Other statements can be introduced before and af-
ter a call original(· · ·), wrapping the existing method implementation. This makes
original different both from super in JAVA-like languages (used in a subclass over-
ridden method declaration to access the superclass implementation) and from inner

in the GBETA language [21] (used in a superclass to invoke possible customizations
in subclasses); in fact, original, in the resulting generated product, is not a dispatch
to a method in another class: it is actually the invocation of the old method which is
copied in the generated class.

DOP supports extractive product line development [34] which starts from exist-
ing products (called legacy products) and turns them into a product line. Listing 1
contains a delta module for introducing an existing product, realizing the features
Lit, Add and Print. Listing 2 contains the delta modules for adding the evaluation
functionality to the classes Lit and Add. Listing 3 contains the delta modules for
incorporating the Neg feature by adding and modifying the class Neg and for adding

Compositional Type Checking of Delta-Oriented Software Product Lines 5

delta DLitAddPrint{
adds class Exp extends Object { // only used as a type

String toString() { return ""; }
}
adds class Lit extends Exp {

int value;
Lit setLit(int n) { value = n; return this; }
String toString() { return value + ""; }
}
adds class Add extends Exp {

Exp expr1;
Exp expr2;
Add setAdd(Exp a, Exp b) { expr1 = a; expr2 = b; return this; }
String toString() { return expr1.toString() + " + " + expr2.toString(); }
}
}

Listing 1: Delta module introducing a legacy product

delta DLitEval {
modifies Exp {

adds int eval() { return 0; }
}
modifies Lit {

adds int eval() { return value; }
}
}

delta DAddEval {
modifies Add {

adds int eval() { return expr1.eval() + expr2.eval(); }
}
}

Listing 2: Delta modules for the Eval feature

glue code required by the two optional features Add and Neg to cooperate properly.
Listing 4 contains the delta module for removing the Add feature from the legacy
product.

2.2 Delta-oriented Product Lines

A delta-oriented product line consists of a code base and a product line declaration.
The code base contains a set of delta modules, while the product line declaration
creates the connection to the product line variability specified in terms of product
features. The product line captures the configuration knowledge [14] of the product
line. Listing 5 shows a product line declaration for the EPL. The product line decla-
ration:

– Lists the product features.
– Describes the set of valid feature configurations described by the feature model.

In the examples, the valid feature configurations are represented by a proposi-
tional formula over the set of features. We refer to [5] for a discussion on other
possible representations.

6 Lorenzo Bettini et al.

delta DNeg {
adds class Neg extends Exp {

Exp expr;
Neg setNeg(Exp a) { expr = a; return this; }
}
}

delta DNegPrint {
modifies Neg {

adds String toString() { return "-" + expr.toString(); }
}
}

delta DNegEval{
modifies Neg {

adds int eval() { return (−1) ∗ expr.eval(); }
}
}

delta DOptionalPrint {
modifies Add {

modifies String toString() { return "(" + original() + ")"; }
}
}

Listing 3: Delta modules for Neg, Print and Eval features

delta DremAdd {
removes Add
}

Listing 4: Delta module removing the Add feature

– Attaches to each delta module an application condition specifying for which fea-
ture configurations the delta module has to be applied. In the examples, the ap-
plication condition is represented by a propositional constraint over the set of
features, given in a when clause. Since only feature configurations that are valid
according to the feature model are used for product generation, the application
conditions are understood as a conjunction with the formula describing the set of
valid feature configurations.

– Fixes the possible application orders of the delta modules by defining a total or-
der on the sets of a partition of the delta modules. Deltas in the same set of the
partition can be applied in any order, but the order of the sets must be obeyed.
The ordering captures semantic requires-relations that are necessary for the ap-
plicability of the delta modules. In the examples, the ordering is represented by
writing an ordered list of the delta module sets which are enclosed by { .. }
after the keyword deltas.

2.3 Product Generation

A product is valid if it corresponds to a valid feature configuration. In order to ob-
tain a product for a particular feature configuration, the operations specified in the

Compositional Type Checking of Delta-Oriented Software Product Lines 7

features Lit, Add, Neg, Print, Eval
configurations Lit & Print
deltas
{ DLitAddPrint,

DNeg when Neg }

{ DremAdd when !Add }

{ DLitEval when Eval,
DAddEval when (Add & Eval),
DNegEval when (Neg & Eval),
DNegPrint when Neg,
DOptionalPrint when (Add & Neg) }

Listing 5: Declaration of the EPL

delta modules with satisfied application conditions are applied incrementally to the
empty program. Namely, the generation of a product for a given feature configuration
consists of two steps, performed automatically:

1. Find all delta modules with a satisfied application condition.
2. Apply the selected delta modules in any linear ordering that respects the total

order on the partition of the delta modules. The first delta module is applied to
the empty program, the second delta module is applied to the outcome of the
application of the first delta module, and so on.

The operations of a delta module are applicable to a program if each class to be
removed or modified exists and, for every modified class, if each method or field to
be removed exists, if each method to be modified exists and has the same header as
the modified method, and if each class, method or field to be added does not exist.
During the generation of a product, the selected delta modules must be applicable in
the given order, otherwise the generation of the product fails. In particular, the first
delta module that is applied can only contain additions. The fresh name for the new
method introduced by the application of a delta module of name δ that wraps an
existing method of name m by using the original construct is denoted by m$δ .

Listing 6 depicts the product generated when the Lit, Add, Neg, Print and Eval
features are selected. Note that in the generated class Add the new method toString-
$DOptionalPrint has been introduced to implement the call of original: it has
the same body as the original version of the method toString and it is called by the
modified version of the method toString.

The flexibility supported by specifying (via the ordered partition of the delta mod-
ules) a set of possible application orders (instead of a single application order) can be
exploited to optimize both product type-checking and product generation. This issue,
not further discussed in this paper, is investigated in [17].

2.4 Strongly-Unambiguous Delta-oriented Product Lines

If two delta modules add, remove or modify the same class, the ordering in which
the delta modules are applied may influence the resulting product. However, for a

8 Lorenzo Bettini et al.

class Exp extends Object {
String toString() { return ""; }
int eval() { return 0; }
}
class Lit extends Exp {

int value;
Lit setLit(int n) { value = n; return this; }
String toString() { return value.toString(); }
int eval() { return value; }
}
class Add extends Exp {

Exp expr1;
Exp expr2:
Add setAdd(Exp a, Exp b) { expr1 = a; expr2= b; return this; }
String toString$DOptionalPrint() { return expr1.toString() + " + " + expr2.toString(); }
String toString() { return "(" + toString$DOptionalPrint() + ")"; }
int eval() { return expr1.eval() + expr2.eval(); }
}
class Neg extends Exp {

Exp expr;
Neg setNeg(Exp a) { expr = a; return this; }
String toString() { return "-" + expr.toString(); }
int eval() { return (−1) ∗ expr.eval(); }
}

Listing 6: Generated code for Lit, Add, Neg, Print and Eval features

product-line implementation, it is essential to guarantee that the product line is un-
ambiguous, i.e, for every valid feature configuration exactly one product is generated.
A product line is strongly unambiguous if each set in the partition of the delta mod-
ules specified in the product-line declaration is consistent, that is, if one delta module
in a set adds or removes a class, no other delta module in the same set may add, re-
move or modify the same class, and the modifications of the same class in different
delta modules in the same set have to be disjoint. A strongly unambiguous product
line is also unambiguous.

The product line in Listing 5 is strongly unambiguous. Note that the property of
being strongly unambiguous is modular, since in order to check it only the consis-
tency of each set in the partition of the delta modules specified by the product-line
declaration has to be checked.

2.5 Evolution of Delta-oriented Product Lines

DOP also supports reactive product line development [34], starting with an existing
product line that is evolved in order to deal with new customer requirements. Consider
the example depicted in Listing 5 as the initial product line. Assume now that a new
feature Sub needs to be introduced for representing subtraction expressions. In the
new product line, the Sub feature becomes an alternative to the Neg feature (i.e.,
they cannot be both present in the same product). Additionally, the Print feature
should become optional and the Eval feature mandatory. The feature model [28] for
the evolved product line is given in Figure 2.

The declaration for the evolved EPL is shown in Listing 7, where the operator
choose1(P1, . . . ,Pn) means at most one of the propositions P1, . . . ,Pn is true (see [5]).

Compositional Type Checking of Delta-Oriented Software Product Lines 9

���

�	�	

��� ��� ��	�������
���

�� ��

����	�����

����� ��	�

Legend:

Mandatory
Optional
Alternative
And

Fig. 2 Feature model for the evolved Expression Product Line

features Lit, Add, Neg, Sub, Print, Eval
configurations Lit & Eval & choose1(Neg,Sub)
deltas
{ DLitAddPrint,

DNeg when Neg,
DSub when Sub /∗ new delta module ∗/ }

{ DremAdd when !Add }

{ DremPrintLit when !Print, /∗ new delta module ∗/
DremPrintAdd when (!Print & Add) /∗ new delta module ∗/ }

{ DLitEval when Eval,
DAddEval when Add,
DNegEval when Neg,
DSubEval when Sub, /∗ new delta module ∗/
DNegPrint when (Neg & Print),
DSubPrint when (Sub & Print), /∗ new delta module ∗/
DOptionalPrint when (Add & (Neg | Sub) & Print) }

Listing 7: Declaration of the evolved EPL

The same is captured in the feature diagram (cf. Figure 2) by introducing the addi-
tional (abstract) feature NegativeNumbers to encapsulate the alternative between the
features Neg and Sub. The eight delta modules of the EPL (cf. Listing 5) are reused
for the evolved EPL. Moreover, in order to realize the new Sub feature, we have to de-
fine delta modules that introduce the corresponding data structure for subtraction and
the associated print and the evaluation functionalities. The respective delta modules
are shown in Listing 8. We also have to define delta modules for removing the Print
feature, shown in Listing 9, since printing is now optional. Note that the evolved EPL
is strongly unambiguous.

Listing 10 depicts the product generated when the Lit, Sub and Eval features are
selected. This example shows that DOP supports product line evolution by reusing ex-
isting delta modules, by adding new delta modules to implement new product features
or to deal with new feature combinations, and by reconfiguring the application condi-

10 Lorenzo Bettini et al.

delta DSub {
adds class Sub extends Exp {
Exp expr1;
Exp expr2:
Sub setSub(Exp a, Exp b) { expr1 = a; expr2= b; return this; }
}
}

delta DSubPrint {
modifies Sub {

adds String toString() { return "(" + expr1.toString() + " - " + expr2.toString() + ")"; }
}
}

delta DSubEval{
modifies Sub {

adds int eval() { return expr1.eval() − expr2.eval(); }
}
}

Listing 8: Delta modules for Sub feature

delta DremPrintLit {
modifies Exp { removes toString }
modifies Lit { removes toString }
}

delta DremPrintAdd {
modifies Add { removes toString }
}

Listing 9: Delta modules removing the Print feature

class Exp extends Object {
int eval() { return 0; }
}
class Lit extends Exp {

int value;
Lit setLit(int n) { value = n; return this; }
int eval() { return value; }
}
class Sub extends Exp {

Exp expr1;
Exp expr2:
Sub setSub(Exp a, Exp b) { expr1 = a; expr2= b; return this; }
int eval() { return expr1.eval() − expr2.eval(); }
}

Listing 10: Generated code for Lit, Sub and Eval features

tions and the delta module order in the product line declaration to capture changes in
the feature model. Since delta modules can be reused across different product lines,
a type system for DOP should support the reuse across different product lines of the
types inferred for the delta modules.

Compositional Type Checking of Delta-Oriented Software Product Lines 11

3 Type Safety and Compositional Type-checking of DOP Product Lines

An SPL is type safe if all valid products can be generated and are well-typed pro-
grams according to the type system of the target programming language. The analysis
techniques to ensure that a product line is type safe can be classified in three main
categories [49]:

1. Product-based analyses consider each product variant separately. Product-based
analyses can use any standard analysis technique for single products. These anal-
yses work well when relatively few products are generated (as it happens in many
practical cases), but are in general infeasible when many products are generated
(the number of products of a product line may be exponential in the number of
features). According to the product-based approach, the type safety of an SPL
could be checked by generating all products and type checking each of them sep-
arately. Without a suitable tool support, it can be difficult to trace the source of
typing errors in composed code to the originating delta modules.

2. Family-based analyses check the complete code base of the product line in a
single run to obtain a result about all possible variants. A family-based product
line analysis which relies on a monolithic model of the product line for checking
the type safety of FOP product lines has been proposed in [2].

3. Feature-based analyses consider the building blocks of the different product vari-
ants (i.e., the feature modules in FOP and the delta modules in DOP) in isola-
tion to derive results on all variants. The results of the analysis of each building
block can be reused across different product lines, like the associated building
blocks can (cf. Section 2.5). Feature-based analyses usually only work for feature-
compositional properties, such as syntax checking, or require a final product-
based or family-based analysis phase in addition to the feature-based analysis
phase. For instance, in the type safety of FOP product lines presented in [19]
the feature-based phase generates constraints for every feature module in isola-
tion and the family-based phase checks these constraints for the whole product
family.

In this paper, we present a compositional type system for delta-oriented product
lines that supports a feature-based phase and a final product-based phase by relying
on an abstraction of product generation. The concepts of this approach are demon-
strated for IF∆ J (IMPERATIVE FEATHERWEIGHT DELTA JAVA), a core calculus for
delta-oriented product lines of JAVA programs based on IFJ (IMPERATIVE FEATH-
ERWEIGHT JAVA), an imperative version of FJ (FEATHERWEIGHT JAVA) [26]. An
IFJ program consists of a class table CT, i.e., a mapping from class names to class
definitions. The approach consists of two technical means:

1. A constraint-based type system for IFJ that infers a set of class constraints C
for an IFJ program. A set of class constraints can be understood as a requires
interface for a program. The class signature table of CT is a representation of the
program without method bodies. It can be understood as a provides interface for
a program. The pair 〈signature(CT),C 〉 is the type abstraction of the program
CT. The type abstraction of a program can be understood as its provides/requires
interface. A checking procedure for the program type abstraction can check the

12 Lorenzo Bettini et al.

inferred constraints against the class signature table of CT in order to establish
whether CT is a well-typed IFJ program.

2. A constraint-based type system for IF∆ J that infers a set of class-constraint op-
erations Dδ for each delta module δ by considering each delta module separately.
A set of class-constraint operations can be understood as a requires interface for
a delta module. The signature of a delta module is a representation of the delta
module without method bodies (the analogue of the class signature table). It can
be understood as a provides interface for a delta module. The type abstraction of
a delta module δ is the pair 〈signature(δ),Dδ 〉. The type abstraction of a delta
module can be understood as its provides/requires interface. The type abstraction
of each product can be generated by composing in a delta oriented manner the
type abstractions of the delta modules that would be used to generate the product.
Namely:

– The signature of the product (that is, its class signature table) can be generated
by composing the signatures of the delta modules. The generation succeeds if
and only if the generation of the corresponding product would succeed.

– The set of class constraints of the product can be generated by composing the
sets of class-constraint operations of the delta modules.

According to the above explanations, the type safety of each product can be estab-
lished by relying only on the type abstractions of the delta modules and the product
line declaration, by generating and checking the type abstraction of the product (with-
out generating the product).

– The generation of the type abstractions of all the delta modules is a feature-based
analysis phase.

– The generation and the checking of the type abstractions of all the products is a
product-based analysis phase.

We expect that generating and checking the abstractions of all the products as illus-
trated above will take less time than generating the implementations of the products
and checking them by a JAVA compiler.

4 IFJ

In this section we introduce the syntax and the type system of IFJ (IMPERATIVE
FEATHERWEIGHT JAVA), a minimal imperative calculus for JAVA that we use as the
underlying calculus to implement single products. The operational semantics and the
type soundness of IFJ are given in Appendix A.

IFJ is a variant of FJ [26] that supports modification of fields by field assignment
expressions and does not require all the fields to be initialized in a single constructor
call. This makes IFJ more suitable than FJ for the formalization of SPLs of JAVA
programs, since (as already pointed out in [19]) the fact that FJ requires all the fields
to be initialized in a single constructor call, whose parameters have to match the
field declarations, makes it difficult to deal with product transformations that add
(or remove) fields. The notations and definitions introduced in this section will be
intensively used through the rest of the paper.

Compositional Type Checking of Delta-Oriented Software Product Lines 13

CD ::= class C extends C { FD; MD } classes
FD ::= C f fields
MD ::= C m (C̄ x̄){return e;} methods
e ::= x

∣∣ e.f ∣∣ e.m(ē) ∣∣ new C() ∣∣ (C)e ∣∣ e.f= e
∣∣ null expressions

Fig. 3 IFJ: Syntax of classes (C ∈ class names, f ∈ field names, m ∈ method names, x ∈ variable names)

4.1 IFJ Syntax

The abstract syntax of the IFJ constructs is given in Figure 3. Following [26], we
use the overline notation for possibly empty sequences. For instance, we write “ē” as
short for a possibly empty sequence of expressions “e1, . . . ,en” and “MD” as short for a
possibly empty sequence of method definitions “MD1 . . .MDn” (without commas). The
empty sequence is denoted by •. We abbreviate operations on sequences of pairs in
similar way, e.g., we write “C̄ f̄” as short for “C1 f1, . . . ,Cn fn” and “C̄ f̄;” as short for
“C1 f1; . . .Cn fn;”. Sequences of named elements (field, method or parameter names,
field, method or class definitions,..) are assumed to contain no duplicate names (that
is, the names of the elements of the sequence must be distinct). The set of variables in-
cludes the special variable this (implicitly bound in any method declaration), which
cannot be used as the name of a method’s formal parameter.

A class definition class C extends D { FD; MD } consists of its name C, its super-
class D (which must always be specified, even if it is Object), a list of field definitions
FD and a list of method definitions MD. The fields declared in C are added to the ones
declared in D and its superclasses and are assumed to have distinct names (i.e., there
is no field shadowing). All fields and methods are public. Each class is assumed to
have an implicit constructor that initializes all instance variables to null.

A class table CT is a mapping from class names to class definitions. The subtyping
relation <: on classes (types) is the reflexive and transitive closure of the immediate
extends relation (the immediate subclass relation, given by the extends clauses in
CT). The class Object has no members and its definition does not appear in CT. In
the rest of this section, we assume that a class table CT satisfies the following sanity
conditions:

(i) CT(C) = class C . . . for every C ∈ dom(CT);
(ii) for every class name C (except Object) appearing anywhere in CT, we have

C ∈ dom(CT);
(iii) there are no cycles in the transitive closure of the immediate extends relation.

An IFJ program is a class table CT.1 A class definition CD can be understood as
a mapping from the keyword extends to a superclass name and from field/method
names to field/method definitions. We use the metavariable a to range over field-
/method names, and the metavariable AD to range over field/method definitions. The
lookup of the definition of a field/method a in class C is denoted by aDef(C)(a). For
every class C in dom(CT), the function aDef(C) is defined as follows:

aDef(C)(a) =
{
CT(C)(a) if a ∈ dom(CT(C))
aDef(D)(a) if a 6∈ dom(CT(C)) and CT(C)(extends) = D

1 In FJ [26], a program is a pair (CT,e) of a class table and an expression e. We can encode it by adding
to CT a class class Main { C main() { return e; } }, where e is of type C.

14 Lorenzo Bettini et al.

Given a field definition FD = C f and a method definition MD = C m(C̄ x̄){· · ·}, we
write signature(FD) to denote the type C of the field f and signature(MD) to denote
the type C̄→ C of the method m.

The following example illustrates the IFJ encoding of the EPL product for Lit,
Add, Neg, Print and Eval features given in Listing 6 of Section 2.3.

Example 1 The sequential composition of two expressions, “e1;e2”, which is not part
of the IFJ syntax, can be encoded as follows. Introduce an auxiliary class Encode

defining a method sc2C

C sc2C(Object x1, C x2) { return x2; }

where “sc” is short for “sequential composition”, “2” is the number of expressions
to be composed, and “C” is the type of e2. Then “e1;e2” is encoded as

new Encode().sc2C(e1,e2)

In the following, we assume that the class Encode defines suitable methods sc2Lit
(for the sequential composition of two expressions, where the second one has type
Lit), sc3Add (for the sequential composition of three expressions, where the third
one has type Add), etc. We also assume a class Int for integers, with suitable methods
sum, subtract, etc. The class String has the method concat for concatenation.
The distinction between different String literals is immaterial for the purpose of
type checking, therefore the occurrences of string values (like "(", "+", etc.) can be
encoded without loss of generality by the expression new String(). Similarly, the
occurrences of integer literals can be encoded by new Int().

According to the above conventions, the classes Exp, Lit, Add and Neg in List-
ing 6 of Section 2.3 can be encoded in IFJ as in Listing 11.

4.2 IFJ Typing

A class signature CS is a class definition deprived of the bodies of its methods. The
abstract syntax is as follows:

CS ::= class C extends C { FD; MH } class signatures
MH ::= C m (C̄ x̄) method headers

A class signature table CST is a mapping from class names to class signatures. We
write signature(CT) to denote the class signature table consisting of the signatures of
the classes in the class table CT. The lookup of the type of a field/method a in the
signature of the class C is denoted by aType(C)(a). For every class C in dom(CST),
the function aType(C) is defined as follows:

aType(C)(a) =
{
CST(C)(a) if a ∈ dom(CST(C))
aType(D)(a) if a 6∈ dom(CST(C)) and CST(C)(extends) = D

It is possible to check that there are no cycles in the transitive closure of the extends
relation by inspection of the class signature table. Moreover, by inspecting a class

Compositional Type Checking of Delta-Oriented Software Product Lines 15

class Exp extends Object {
String toString() { return new String(); }
Int eval() { return new Int(); }
}
class Lit extends Exp {

Int value;
Lit setLit(Int n) { return new Encode().sc2Lit(this.value = n, this); }
String toString() { return this.value.toString(); }
Int eval() { return this.value; }
}
class Add extends Exp {

Exp expr1;
Exp expr2:
Add setAdd(Exp a, Exp b) { return new Encode().sc3Add(this.expr1=a, this.expr2=b, this); }
String toString$DOptionalPrint()
{ return this.expr1.toString().concat(new String()).concat(this.expr2.toString()); }

String toString()
{ return (new String()).concat(this.toString$DOptionalPrint()).concat(new String()); }

Int eval() { return this.expr1.eval().sum(this.expr2.eval()); }
}
class Neg extends Exp {

Exp expr;
Neg setNeg(Exp a) { return new Encode().sc2Neg(this.expr = a, this); }
String toString() { return (new String()).concat(this.expr.toString()); }
Int eval() { return (new Int()).multiply(this.expr.eval()); }
}

Listing 11: IFJ encoding of the product for Lit, Add, Neg, Print and Eval features

signature table, it is possible to check, for every class C in dom(CST), that the names
of the fields defined in C are distinct from the names of the fields inherited from its
superclasses, and that the type of each method defined in C is equal to the type of
any method with the same name defined in any of the superclasses of C. Therefore, in
the following we can safely assume that a class signature table satisfies the following
sanity conditions:

(i) CS(C) = class C . . . for every C ∈ dom(CS);
(ii) for every class name C (except Object) appearing anywhere in CS, we have

C ∈ dom(CS);
(iii) the transitive closure of the immediate extends relation is acyclic;
(iv) C1 <: C2 implies that, for all method names m, if aType(C2)(m) is defined then

aType(C1)(m) = aType(C2)(m); and
(v) C1 <: C2 and C1 6= C2 imply that, for all field names f, if f ∈ dom(CST(C2)) then

f 6∈ dom(CST(C1)).

In order to type the null value (which is not considered in FJ [26]), the IFJ type
system uses the special type⊥, that is not a class name, cannot occur in IFJ programs
and is a subtype of any other type. We use the metavariable T to denote either a class
name or ⊥.

The IFJ typing rules are given in Figure 4. A type environment Γ is a mapping
from variables (including this) to class names, written x̄ : C̄. The empty environment
will is denoted by •. The rules for variable (T-VAR), field selection (T-FIELD), method
invocation (T-INVK), object creation (T-NEW), upcast (T-UCAST), downcast (T-DCAST),
method definition (T-METHOD) and class definition (T-CLASS) are analogous to the cor-
responding rules for FJ given in [26]. However, the presentation is slightly different

16 Lorenzo Bettini et al.

Expression typing Γ ` e : T

Γ ` x : Γ (x) (T-VAR)

Γ ` e : C aType(C)(f) = A

Γ ` e.f : A
(T-FIELD)

Γ ` e0 : C0 aType(C0)(m) = A1 · · ·An→ B Γ ` ei : T (i∈1..n)
i Ti <: A (i∈1..n)

i
Γ ` e0.m(ē) : B

(T-INVK)

C ∈ dom(CST)

Γ ` new C() : C
(T-NEW)

Γ ` e : T T<: C
Γ ` (C)e : C

(T-UCAST)

Γ ` e : B C<: B C 6= B

Γ ` (C)e : C
(T-DCAST)

Γ ` null :⊥ (T-NULL)

Γ ` e0.f : C Γ ` e1 : T T<: C
Γ ` e0.f= e1 : C

(T-ASSIG)

Method definition typing this : C ` MD OK

this : C, x̄ : Ā ` e : T T<: B
this : C ` B m (Ā x̄){return e;} OK

(T-METHOD)

Class definition typing ` CD OK

this : C ` MD OK
` class C extends D { FD; MD } OK

(T-CLASS)

Program typing ` CT OK

signature(CT) satisfies the sanity conditions ` CT(C) OK (C∈dom(CT))

` CT OK
(T-PROGRAM)

Fig. 4 IFJ: Typing rules for expressions, methods, classes and program CT (where CST denotes the class
signature table signature(CT), and T denotes either a class name or ⊥)

since our rules refer to the class signature table of the program rather than to the
class table. In particular, the rule for typing the definition of a method m in a class C,
(T-METHOD), relies on the fact that, according to the sanity condition (iv) of the class
signature table, any definition of a method with name m in a superclass of C must
have the same type. We also have a rule for null and a rule for field assignment
(not contained in FJ) and a rule for typing the whole program (left implicit in FJ).
Note that, if ` CTOK holds, then CT satisfies the sanity conditions for class tables (cf.
Section 4.1).

Expressions like (C)e where the type of e is not a subtype of C (called stupid
casts in [26]) or null.f and null.m(· · ·) (that we call stupid selections) are ill-typed.
Note that, at runtime, an expression without stupid casts and stupid selections may

Compositional Type Checking of Delta-Oriented Software Product Lines 17

DMD ::= delta δ {CO} delta modules
CO ::= adds CD | removes C | modifies C [extending C] { AO } class operations
AO ::= adds FD | adds MD | removes a | modifies MD attribute operations

Fig. 5 IF∆ J: Syntax of delta modules (where δ ∈ delta module names)

reduce to an expression containing either a stupid cast or a stupid selection. Therefore,
the type system for runtime expressions (given in Appendix A in order to formulate
the type soundness by using standard technique of subject reduction and progress
theorems for a small step semantics) contains a rule for typing stupid casts and a rule
for assigning any type T to the value null (so that stupid selection can be typed).

Following [26], we say that a well-typed IFJ program is cast safe to mean that it
can be typed without using the rule for downcast. Every well-typed IFJ program is
literally a well-typed JAVA program.

5 IF∆J

In this section, we introduce the syntax and the semantics of IF∆ J (IMPERATIVE
FEATHERWEIGHT DELTA JAVA), a core calculus for DOP of product lines of JAVA
programs based on IFJ.

5.1 IF∆ J Syntax

The abstract syntax of the IF∆ J constructs is given in Figure 5. The constructs for
class definitions CD, field definitions FD and method definitions MD are those of IFJ,
given in Figure 3. The metavariable δ ranges over delta module names.

A delta module definition DMD (see Figure 5) can be understood as a pair formed
by the name δ of the delta module and a mapping from class names to class op-
erations. A class operation CO can specify the addition, removal or modification of
a class. The adds-domain, the removes-domain and the modifies-domain of a delta
module definition DMD are defined as follows:

addsDom(DMD) = {C | DMD(C) = adds class C · · ·}
removesDom(DMD) = {C | DMD(C) = removes C}
modifiesDom(DMD) = {C | DMD(C) = modifies C · · ·}

A class-modify operation is defined by possibly changing the super class and by
listing a sequence of attribute operations AO defining modifications of methods and
additions/removals of fields and methods. A class-modify operation CO can be un-
derstood as a mapping from the keyword extending to an empty or singleton set of
class names and from field/method names to attribute operations. The adds-, removes-
and modifies-domain of a class-modify operation CO are defined as follows:

addsDom(CO) = {a | CO(a) = adds · · · a · · ·}
removesDom(CO) = {a | CO(a) = removes a}
modifiesDom(CO) = {m | CO(m) = modifies · · · m · · ·}

18 Lorenzo Bettini et al.

A method-modify operation can either replace the method body by another imple-
mentation, or wrap the existing method using the original construct. In both cases,
the modified method must have the same header as the unmodified method. The call
this.original(ē), which may only occur in the body of the method MD provided
by a method-modify operation modifies MD, expresses a call to the method with the
same name before the modifications and is bound at the time the product is generated.

After we have defined the notion of delta modules over IFJ, we can formalize
IF∆ J product lines. We use the metavariables ϕ and ψ to range over feature names.
We write ψ as short for the set {ψ}, i.e., the feature configuration containing the
features ψ . A delta module table DMT is a mapping from delta module names to delta
module definitions. An IF∆ J SPL is a 5-tuple L = (ϕ,Φ ,DMT,∆ ,Π) consisting of:

1. the features ϕ of the SPL,
2. the set of the valid feature configurations Φ ⊆P(ϕ),2

3. a delta module table DMT containing the delta modules,
4. a mapping ∆ : Φ →P(dom(DMT)) determining for which feature configurations

a delta module must be applied (which is denoted by the when clause in the
concrete examples),

5. a totally ordered partition Π of dom(DMT), determining the order of delta module
application.

The 4-tuple (ϕ,Φ ,∆ ,Π) represents the product line declaration, while the delta mod-
ule table DMT represents the code base. To simplify notation, in the following we
always assume a fixed SPL L = (ϕ,Φ ,DMT,∆ ,Π).

In the following, we write dom(δ) as short for dom(DMT(δ)), and we write δ (C)
as short for DMT(δ)(C).

Example 2 Consider the EPL example introduced in Section 2. Listing 12 illustrates
the IF∆ J encoding (according to the conventions introduced in Example 1 of Sec-
tion 4.1) of the delta modules: DLitAddPrint from Listing 1; DLitEval and DAd-
dEval from Listing 2; and DNeg, DNegEval, DNegPrint and DOptionalPrint from
Listing 3. These are the delta modules that must be applied when the feature config-
uration Lit,Add,Neg,Print,Eval is selected.

5.2 IF∆ J Product Generation

A delta module is applicable to a class table CT if each class to be removed or mod-
ified exists and, for every class-modify operation, if each method or field to be re-
moved exists, if each method to be modified exists and has the same header specified
in the method-modify operation, and if each class, method or field to be added does
not exist.

Given a delta module δ and a class table CT such that δ is applicable to CT, the
application of δ to CT, denoted by APPLY(δ ,CT), is the class table CT′ defined as
follows:

2 The calculus abstracts from the concrete representation of the feature model.

Compositional Type Checking of Delta-Oriented Software Product Lines 19

delta DLitAddPrint {
adds class Exp extends Object {

String toString() { return new String(); }
}
adds class Lit extends Exp {

Int value;
Lit setLit(Int n) { return new Encode().sc2Lit(this.value = n, this); }
String toString() { return this.value.toString(); }
}
adds class Add extends Exp {

Exp expr1;
Exp expr2:
String toString() { return this.expr1.toString().concat(new String()).concat(this.expr2.toString()); }

}
}

delta DNeg {
adds class Neg extends Exp {

Exp expr;
Neg setNeg(Exp a) { return new Encode().sc2Neg(this.expr = a, this); }
}
}

delta DLitEval {
modifies Exp {

adds Int eval() { return new Int(); }
}
modifies Lit {

adds Int eval() { return this.value; }
}
}

delta DAddEval {
modifies Add {

adds Int eval() { return this.expr1.eval().sum(this.expr2.eval()); }
}
}

delta DNegEval{
modifies Neg {

adds Int eval() { return (new Int()).multiply(this.expr.eval()); }
}
}

delta DNegPrint {
modifies Neg {

adds String toString() { return (new String()).concat(this.expr.toString());
}
}

delta DOptionalPrint {
modifies Add {

modifies String toString() { return (new String()).concat(this.original()).concat(new String()); }
}
}

Listing 12: IF∆ J encoding of the delta modules for the feature configuration
Lit,Add,Neg,Print,Eval

20 Lorenzo Bettini et al.

CT′(C) =

CD if δ (C) = adds CD

undefined if δ (C) = removes C

APPLYδ (δ (C),CT(C)) if C ∈ modifiesDom(δ)
CT(C) otherwise

where APPLYδ (δ (C),CT(C)), the application of the class-modify operation δ (C) = CO
to the class definition CT(C) = CD, is the class definition CD′ defined as follows (recall
that the metavariable AD denotes either a field definition FD or a method definition
MD):

CD′(extends) =

{
CD(extends) if CO(extending) = /0
C′ if CO(extending) = {C′}

CD′(a) =

AD if CO(a) = adds AD

undefined if CO(a) = removes a

MD[a$δ/original] if CO(a) = modifies MD

A a(Ā x̄){return e;} if a= m$δ for some m such that CO(m) = modifies MD,
original ∈ MD and CD(m) = A m(Ā x̄){return e;}

undefined if a= m$ · · · for some m such that
CO(m) = removes m or (CO(m) = modifies MD and original 6∈ MD)

CD(a) otherwise

The semantics of the original construct is modeled by the third-to-last, the second-
to-last and the first-to-last cases of the definition of CD′:

– The third-to-last case specifies that the body of the method m is replaced with the
body obtained from the body in the method-modify operation by replacing all the
occurrences of the keyword original with the name, denoted but m$δ (where
δ is the name of the delta module containing the method-modify operation), of a
new method with the original body of the method m.

– The second-to-last case specifies that, if the method body in the method-modify
operation contains at least one occurrence of the keyword original, then a new
method with the same body of the original method and with name m$δ is intro-
duced.

– The first-to-last case ensures that, if a method m is removed or modified without
using the original construct, then also the auxiliary methods m$ · · · that might
have been introduced by previously applied delta modules are removed.

An application order for the IF∆ J SPL L is a total order of its delta modules that
is compatible with the ordered partition Π . An application order defines a product
generation mapping. That is, a partial mapping from each feature configuration ψ

in Φ to the class table of the product that is obtained by applying the delta modules
∆(ψ) to the empty class table according to the given order. The product generation
mapping can be partial since a non-applicable delta module may be encountered dur-
ing product generation such that the resulting product is undefined. The product line
is unambiguous if all application orders define the same product generation map-
ping. In an unambiguous SPL, for every feature configuration at most one product
implementation is generated.

We write CTψ to denote the class table generated for the feature configuration ψ

and write <:ψ and aDefψ to denote the subtype relation and the field/method lookup
function associated with the class table CTψ , respectively.

Compositional Type Checking of Delta-Oriented Software Product Lines 21

Example 3 The application to the empty class table of the delta modules in Listing 12
(in the order in which they appear) generates the class table CTLit,Add,Neg,Print,Eval
containing the classes given in Listing 11 of Section 4.1.

5.3 Well-formed IF∆ J Product Lines

In this section we formalize in the context of IF∆ J the notion of strongly-unambiguous
SPL (informally introduced in Section 2.4) and the notion of type-safe SPL (infor-
mally introduced in Section 3).

An IF∆ J SPL is strongly unambiguous if every set S of delta modules in Π is
consistent. That is, if no class added or removed in a delta module of S is added,
removed or modified in another delta module of S, and for every class modified in
more than one delta module of S, its direct superclass is changed at most by one delta
clause and the fields and methods added, modified or removed are distinct.

Consistency of a set of delta modules can be inferred by only considering delta
module signatures that can be obtained by a straightforward inspection of each delta
module in isolation. A delta module signature DMS is the analogue of a class signature
for a delta module. The abstract syntax of delta module signatures is obtained from
the syntax of delta modules, in Fig. 5, by replacing class definitions (CD) with class
signatures (CS) and by replacing method definitions (MD) with method headers (MH).
We write signature(δ) to denote the signature of the delta module δ .

If a product line is strongly unambiguous, then it is also unambiguous. In a
strongly unambiguous product line, two delta modules that modify the same method
cannot be placed in the same set of the partition even if they are never applied to-
gether. The property of being a strongly-unambiguous product line is modular. It can
be efficiently checked by only relying on delta module signatures and the partition Π

and it is preserved by: signature preserving alterations to the delta modules, shrink-
ing of the partition Π , changes to the application conditions and changes to the set of
valid feature configurations.

An IF∆ J SPL is well formed if the following conditions hold:

1. it is strongly unambiguous, and
2. it is type safe, that is, all valid products are well-typed IFJ programs (this implies

that the product generation mapping is total).

6 Constraint-based Type System for IFJ

In this section, we present a constraint-based type system for IFJ that is equivalent
to the type system presented in Section 4. The constraint-based type system for IFJ
infers a class constraint for each class definition in the program being typed. The set
of class constraints inferred for a program CT can then be checked against the class
signature table signature(CT) in order to establish whether CT is a well-typed IFJ
program.

The constraint-based type system for IFJ extracts from a program CT the informa-
tion relevant to typing that is not present in its class signature table signature(CT) and

22 Lorenzo Bettini et al.

Class constraints
(a class constraint is denoted by cc, a set of class constraints is denoted by C):

C with M class C has the set of method constraints M

Method constraints
(a method constraint is denoted by mc, a set of method constraints is denoted by M):

m with E method m has the set of expression constraints E

Fig. 6 IFJ: Syntax of class constraints

encodes them by constraints. The encoding is quite straightforward. Note that the
constraints and the constraint-based typing rules have been designed to be directly
embedded in the constraint-based type system IF∆J (in Section 7). Namely:

– The inferred constraints are organized in a two-level hierarchy, corresponding to
the structure of the class table of the IFJ program:
1. each class constraint consists of the name of the respective class C and of a

set of method constraints inferred for the methods defined in the class, and
2. each method constraint consists of the name of the respective method and of

the set of expression constraints inferred for the body of the method.
The hierarchical organization of the constraints for a program supports the gener-
ation of the constraint of a product starting from the constraints operation inferred
(by the constraint-based type system for IF∆J) for the delta modules that would
be used to generate the product (cf. Section 3).

– The typing rule for classes generate each class constraint by analyzing each class
in isolation from the other classes in the program, and the rule for methods gener-
ate each method constraint by analyzing each method in isolation from the other
methods in the class.

6.1 Constraints and Expression Constraints Checking

The syntax of class constraints and method constraints is given in Figure 6. A set
of class constraints C can be understood as a mapping from class names to class
constraints, and a set of method constraint M can be understood as a mapping from
method names to method constraints. The hierarchical organization of the constraints
is immaterial for checking their satisfaction (i.e, only expression constraints have to
be checked).

The syntax of expression constraints is given in Figure 7. Expression constraints
involve the type ⊥, class names and type variables. Type variables, ranged over by
α , β and γ , will be instantiated to class names when checking the constraints. The
metavariable η denotes either a class name or a type variable, while the metavari-
able τ denotes either the type ⊥, or a class name, or a type variable. We say that a
constraint is ground to mean that it does not contain type variables.

The checking judgment for expression constraints is CST |= E ⇒ s, to be read
“the constraints in the set of expression constraints E are satisfied with respect to
the class signature table CST modulo the substitution s”. We write CST |= E to mean

Compositional Type Checking of Delta-Oriented Software Product Lines 23

Expression constraints (a set of expression constraints is denoted by E):

class(C) class C must be defined
subtype(τ,η) τ must be a subtype of η

cast(C,τ) type τ must be castable to C

field(η ,f,α) class η must define or inherit field f of type α

meth(η ,m,α → β) class η must define or inherit method m of type α → β

Fig. 7 IFJ: Syntax and (informal) meaning of expression constraints, where: α and β denote type vari-
ables; η denotes either a class name or a type variable; and τ denotes either the type ⊥, or a class name,
or a type variable

CST |= /0⇒ []
C ∈ dom(CST) CST |= E ⇒ s
CST |= {class(C)}]E ⇒ s

T<: C CST |= E ⇒ s
CST |= subtype(T,C)]E ⇒ s

T<: C CST |= E ⇒ s
CST |= {cast(C,T)}]E ⇒ s

C<: T C 6= T CST |= E ⇒ s
CST |= {cast(C,T)}]E ⇒ s

aType(C)(f) = A CST |= E [A/α]⇒ s
CST |= {field(C,f,α)}]E ⇒ s◦ [A/α]

aType(C)(m) = A1 · · ·An→ A0 CST |= E [A0 · · ·An/α0 · · ·αn]⇒ s
CST |= {meth(C,m,α1 · · ·αn→ α0)}]E ⇒ s◦ [A0 · · ·An/α0 · · ·αn]

Fig. 8 IFJ: Checking rules for satisfaction of expression constraints w.r.t. a class signature table

that CST |= E ⇒ s holds for some substitution s. The associated rules are given in
Figure 8 where] denotes the disjoint union of sets of constraints and ◦ denotes the
composition of substitutions. The rules are almost self-explanatory, according to the
informal meaning of the expression constraints given in Figure 7. The checking of
a constraint of the form subtype(· · ·, · · ·) or cast(· · ·, · · ·) can be performed only
when the constraint is ground. Note that there are two rules for checking a constraint
of the form cast(·, ·) corresponding to an upcast and to a downcast, respectively.
The checking of a constraint of the form field(·, ·, ·) or meth(·, ·, ·) can be performed
only when the first argument is a class name and the third argument contains type
variables only. It causes the instantiation of all the type variables occurring in the
third argument.

We say that a set of expression constraints is cast safe with respect to a class
signature table CST to mean that it can be checked without using the rule associated
with downcast.

6.2 Constraint-based Typing Rules for IFJ

The constraint-based typing judgment for programs is ` CT : C , to be read “program
CT has the class constraints C ”. The constraint-based typing rules for IFJ expres-
sions, methods, classes and programs are given in Figure 9. The rules (CT-FIELD) and
(CT-INVK) are the only rules that create type variables. The type variables α created by
rule (CT-FIELD) occur in the third argument of the expression constraint field(η ,f,α),
and the type variables α1, ...,αn,β created by rule (CT-INVK) occur in the third argu-

24 Lorenzo Bettini et al.

Expression typing Γ ` e : τ | E

Γ ` x : Γ (x) | /0 (CT-VAR)

Γ ` e : η | E α fresh
Γ ` e.f : α | E ∪{field(η ,f,α)} (CT-FIELD)

Γ ` e0 : η | E0 α1, ...,αn,β fresh Γ ` ei : τi | E (i∈1..n)
i

E = {meth(η ,m,α1 · · ·αn→ β),subtype(τ1,α1), . . . ,subtype(τn,αn)}
this : C, x1 : A1, . . . ,xp : Ap ` e0.m(e1, ...,en) : β | (∪i∈{0,...,n}Ei)∪E

(CT-INVK)

Γ ` new C() : C | {class(C)} (CT-NEW)

Γ ` e : τ | E
Γ ` (C)e : C | E ∪{cast(C,τ)} (CT-CAST)

Γ ` null :⊥ | /0 (CT-NULL)

Γ ` e0.f : η | E0 Γ ` e1 : τ | E1

Γ ` e0.f= e1 : η | E0 ∪E1 ∪{subtype(τ,η)} (CT-ASSIG)

Method definition typing this : C ` MD : mc

this : C, x̄ : Ā ` e : τ | E
this : C ` B m (Ā x̄){return e;} : m with (E ∪{subtype(τ,B)}) (CT-METHOD)

Class definition typing ` CD : cc

this : C ` MDi : {mi with Ei} (i∈1..q)

` class C extends D { FD; MD1 · · ·MDq } : C with {m1 with E1, ...,mq with Eq}
(CT-CLASS)

Program typing ` CT : C

dom(CT) = {C1, ...,Cn}(n≥ 1) ` CT(Ci) : Ci with M
(i∈1..n)

i
` CT : {C1 with M1, ...,Cn with Mn}

(CT-PROGRAM)

Fig. 9 IFJ: Constraint-based typing rules for expressions, methods, classes and programs

ment of the expression constraint meth(η ,m,α1 · · ·αn→ β). Therefore, the checking
rules for expression constraints (given in Section 6.1) can be applied by considering
the constraints in the order in which they are created. Recall that: (i) the check of the
constraints field(·, ·, ·) and meth(·, ·, ·) can be performed only when their first argu-
ments are class names and their third arguments contain type variables only; and (ii)
performing the check causes the instantiation of all the type variables occurring in
the constraint. It is worth observing that trying to check the constraints in a different
order cannot cause a different instantiation of any type variable.

Some expressions are recognized as ill-typed during constraint generation. In par-
ticular, occurrences of variables x that are not declared as method parameters (ac-
cording to rules (CT-METHOD) and (CT-VAR)) and stupid selections, i.e., expressions like
null.f and null.m(· · ·) (according to rules (CT-NULL), (CT-FIELD) and (CT-INVK)). More-
over, during constraint generation it could be possible to detect type errors related to
the use of classes not belonging to the product-line (and used by the products). In

Compositional Type Checking of Delta-Oriented Software Product Lines 25

particular, in a full-fledged language, the type errors related to the use of primitive
types (like int) or standard library classes (like String).

The following example illustrates the constraint-based type system by consider-
ing the class Add in Listing 11 (see Example 1 of Section 4.1).

Example 4 The constraint inferred for the method setAdd of class Add in Listing 11

Add setAdd(Exp a, Exp b) { return new Encode().sc3Add(this.expr1=a, this.expr2=b, this); }

is

setAdd with

class(Encode), meth(Encode,sc3C,(Object,Object,Add→ Add)),

field(Add,expr1,α1), subtype(Exp,α1), subtype(α1,Object),
field(Add,expr2,α2), subtype(Exp,α2), subtype(α2,Object),
subtype(Add,Add)

Some optimizations (not considered in this paper) are possible. Constraints like

subtype(...,Object) and subtype(Add,Add) can be dropped. Information about
standard library classes, like Encode, that cannot be modified by the delta modules,
can be exploited to infer simpler constraints. For example, the following simpler con-
straints could be inferred:

setAdd with
{

field(Add,expr1,α1), subtype(Exp,α1),
field(Add,expr2,α2), subtype(Exp,α2)

}
The constraint inferred for the method eval of class Add in Listing 11

Int eval() { return this.expr1.eval().sum(this.expr2.eval()); }

is

eval with

field(Add,expr1,α ′), meth(α ′,eval,(•→ β ′)),
meth(β ′,sum,(β ′′′→ β)),

field(Add,expr2,α ′′), meth(α ′′,eval,(•→ β ′′)), subtype(β ′′,β ′′′)
subtype(β ,Int)

Assuming that Int is a standard library final class, it would be possible to infer a
simpler constraint (namely, replace β by Int and drop subtype(β ,Int)). Further
optimizations are possible in the presence of primitive types (not formalized in IFJ).
For instance, given the version of method eval of class Add in Listing 6 (that uses
the primitive type int)

int eval() { return this.expr1.eval() + this.expr2.eval(); }

it would be possible to infer the simpler method constraint

eval with
{

field(Add,expr1,α ′), meth(α ′,eval,(•→ int)),
field(Add,expr2,α ′′), meth(α ′′,eval,(•→ int))

}
The constraint inferred for the method toString$DOptionalPrint() of class

Add in Listing 11

String toString$DOptionalPrint() {
return this.expr1.toString().concat(new String()).concat(this.expr2.toString()); }

26 Lorenzo Bettini et al.

Exp with /0

Lit with

 setLit with
{

field(Lit,value,int)
}

toString with
{

field(Lit,value,int)
}

eval with
{

field(Lit,value,int)
}

Add with

setAdd with

{
field(Add,expr1,α1), subtype(Exp,α1),
field(Add,expr2,α2), subtype(Exp,α2)

}
toString$DOptionalPrint with

{
field(Add,expr1,γ1),field(Add,expr2,γ2)

}
toString with

{
meth(Add,toString$DOptionalPrint,(•→ String))

}
eval with

{
field(Add,expr1,α ′), meth(α ′,eval,(•→ int)),
field(Add,expr2,α ′′), meth(α ′′,eval,(•→ int))

}

Neg with

 setNeg with
{

field(Neg,expr,β1), subtype(Exp,β1),
}

toString with
{

field(Neg,expr,β2),
}

eval with
{

field(Neg,expr,β ′), meth(β ′,eval,(•→ int)),
}

Fig. 10 Constraints inferred for the classes in Listing 11

is

toString$DOptionalPrint with

field(Add,expr1,γ1), meth(γ1,toString,(•→ σ1)),
meth(σ1,concat,(σ2→ σ3)),

class(String), subtype(String,σ2),
meth(σ3,concat,(σ4→ σ5)),

field(Add,expr2,γ2), meth(γ2,toString,(•→ σ6)), subtype(σ6,σ4),
subtype(σ5,String)

Assuming that String is a standard library final class and that every class has a
method toString with type • → String, it would be possible to infer the simpler
constraint

toString$DOptionalPrint with
{

field(Add,expr1,γ1),field(Add,expr2,γ2)
}

The constraint inferred for the method toString of class Add in Listing 11

String toString() {
return (new String()).concat(this.toString$DOptionalPrint()).concat(new String()); }

is

toString with

class(String), meth(String,concat,(σ ′→ σ ′′)),

meth(Add,toString$DOptionalPrint,(•→ σ)), subtype(σ ,σ ′),
meth(σ ′′,concat,(σ ′′′→ σ ′′′′)),

subtype(String,σ ′′′),
subtype(σ ′′′′,String)

Assuming that String is a standard library final class and that every class has a
method toString with type • → String, it would be possible to infer the simpler
constraint

toString with
{

meth(Add,toString$DOptionalPrint,(•→ String))
}

Figure 10 shows the constraints inferred for the classes in Listing 11 (for the sake
of readability, the simplified version of the constraints is used).

Compositional Type Checking of Delta-Oriented Software Product Lines 27

6.3 Properties

The hierarchical organization of the constraints derived for a product is immaterial for
checking their satisfaction. The function FLAT transforms a set of class-constraints C
into a set of expression constraints FLAT(C). It is defined as follows.

FLAT({C1 with M1, ...,Cn with Mn}) = ∪i∈{1,...,n}FLAT(Mi)
FLAT({m1 with E1, ...,mn with En}) = ∪i∈{1,...,n}Ei

The following theorem states that the constraint-based type system is sound and com-
plete with respect to the IFJ type system given in Section 4. The proof is given in
Appendix B.

Theorem 1 (Soundness and completeness of IFJ constraint-based typing) Let CT
be a IFJ program and CST= signature(CT).

(Soundness) Let CST satisfy the sanity conditions for class signature tables, ` CT : C
and CST |= FLAT(C). Then
1. ` CT OK, and
2. if FLAT(C) is cast-safe with respect to CST, then CT is cast-safe.

(Completeness) Let ` CT OK. Then there exists C such that:
1. ` CT : C and CST |= FLAT(C), and
2. if CT is cast-safe, then FLAT(C) is cast-safe with respect to CST.

The constraint-based type system for IFJ is not interesting in its own (cf. Sec-
tion 3). However, it soundness and completeness plays an important role in the proof
of soundness and completeness of the constraint-based type system for IF∆ J.

7 Constraint-based Type System for IF∆J

The constraint-based type system for IF∆ J analyzes each delta module in isolation.
The results of the analysis can be combined with the product line declaration in order
to check whether all the products that can be generated are well-typed.

For each valid feature configuration ψ , the class signature table CSTψ of the prod-
uct CTψ can be generated by applying the signature of the delta modules in ∆(ψ) to
the empty class signature table according to the given order (similarly to product
generation). The constraint-based type system infers, for each delta module, a set
of class-constraint operations D . For each valid feature configuration ψ , the set of
class constraints Cψ of the product CTψ can be generated by applying the sets of
class-constraint operations inferred for the delta modules in ∆(ψ) to the empty set
of class constraints. Therefore, the type safety of a product line can be established
(by relying only on the signatures of the delta modules, the sets of class-constraint
operations inferred for the delta modules, and the product line declaration) without
reinspecting the delta modules and without generating the products.

28 Lorenzo Bettini et al.

Class-constraints operations
(a class-constraint operation is denoted by cco, a set of class-constraint operations is denoted by D):

adds C with M add the constraint “C with M ”
removes C remove constraint “C with · · ·”
modifies C with O change the constraint “C with M ” by applying to it “modifiesC with O”

Method-constraint operations
(a method-constraint operation is denoted by mco,
a set of method-constraint operations is denoted by O ,
a singleton or empty set of method-constraint operations is denoted by S):

adds m with E add the constraint “m with · · ·”
removes m remove constraint “m with · · ·”
replaces m with E ′ change constraint “m with E ” into “m with E ′”
wraps m with E ′ change constraint “m with E ” into “m with E ′[m$δ/original]”

and add constraint “m$δ with E ”
(where δ is the delta module containing the clause for which the constraint has been inferred)

Fig. 11 IF∆ J: Syntax of class-constraint operations

7.1 Constraint-based Typing Rules for Delta Modules

The typing rules infer for a delta module a set of class-constraints operations D ,
namely a class-constraint operation for each class operation in the delta module. The
syntax of the class-constraint operations is given in Figure 11. A class-constraint
operation can be an add, a remove or a modify operation. A class-constraint-add op-
eration consists of the keyword adds followed by a class constraint (defined in Fig-
ure 6). A class-constraint-remove operation is a class-remove operation removes C.
Each class-constraint-modify operation consists of the name of the subject class C

and of a set of method-constraint operations. A method-constraint operation can be
an add, a remove, a replace or a wrap operation, described as follows.

– A method-constraint-add operation consists of the keyword adds followed by a
method constraint (defined in Figure 6).

– A method-constraint-remove operation is a method-remove operation removes m.
– A method-constraint-wrap/replace operation consists of the keyword
replaces/wraps followed by a method constraint (defined in Figure 6). Method-
constraint-wrap operations are inferred for method-modify operations containing
original, while method-constraint-replace operations are inferred for method-
modify operations not containing original.

Thus, a set of class-constraint operations D can be understood as a mapping from
class names to class-constraint operations, and a class-constraint-modify operation
can be understood as a mapping from method names to method-constraint operations.

The constraint-based typing judgment for a delta module is ` delta δ · · · : D , to
be read as “the delta module δ has class-constraints operations D”. The constraint-
based typing rules for IF∆ J attribute operations, class operations and delta modules
are given in Figure 12. Most of the rules are self-explanatory, according to the mean-
ing of method-constraint operations and class-constraint operations illustrated above.
The rules for the attribute operations for adding and removing a field ((CT-S-ADDF)
and (CT-S-REMF), respectively) generate the empty set of constraint operations, since

Compositional Type Checking of Delta-Oriented Software Product Lines 29

Method-operation typing this : C ` AO : S

this : C ` adds Df : /0 (CT-S-ADDF)

this : C ` MD : m with E original 6∈ MD
this : C ` adds MD : {adds m with E } (CT-S-ADDM)

this : C ` removes f : /0 (CT-S-REMF)

this : C ` removes m : {removes m} (CT-S-REMM)

this : C ` MD : m with E original 6∈ MD
this : C ` modifies MD : {replaces m with E } (CT-S-REPM)

this : C ` MD : m with E original ∈ MD
this : C ` modifies MD : {wraps m with E } (CT-S-WRAM)

Class-operation typing ` CO : cco

` CD : C with M

` adds CD : adds C with M
(CT-C-ADDC)

` removes C : removes C (CT-C-REMC)

∀i ∈ 1..q, this : C ` AOi : Si

` modifies C [extending D] { AO1 . . .AOq } : modifies C with (∪i∈{1,...,q}Si)
(CT-C-MODC)

Delta-module typing ` DMD : D

∀i ∈ 1..n, ` COi : ccoi

` delta δ {CO1 . . .COn} : {cco1, ...,ccon}
(CT-DELTA)

Fig. 12 IF∆ J: Constraint-based typing rules for method operations, class operations and delta modules

the checks associated to field declarations in a product are encompassed by the san-
ity conditions of the class signature table of the product. The rules (CT-S-ADDM),
(CT-S-REPM), (CT-S-WRAM) and (CT-C-ADDC) rely on the rules (CT-METHOD) and (CT-CLASS)
in Figure 9. The rule (CT-C-MODC) has an optional part (enclosed in square brackets) to
cope with the fact that the extending part of a class-modify operation is optional.

Example 5 Figure 13 shows the constraints inferred for the delta modules in List-
ing 12. For sake of readability, we use the version of the constraints simplified ac-
cording to the explanation given in Example 4.

7.2 Generation of the Class Signature Tables and the Class Constraints of the
Products

The application of a delta module signature to a class signature table, denoted by
SIGNAPPLY(DMS,CST), performs the alterations specified in DMS to CST. We do not
present the formal definition of SIGNAPPLY(DMS,CST) since it is a straightforward
abstraction of the application of a delta module to a class table presented in Sec-
tion 5.2. A delta module signature is applicable to a class signature table if each class

30 Lorenzo Bettini et al.

DDLitAddPrint =

adds Exp with /0,

adds Lit with

 setLit with
{

field(Lit,value,int)
}
,

toString with
{

field(Lit,value,int)
}
,

eval with
{

field(Lit,value,int)
}

 ,

adds Add with
{
toString with

{
field(Add,expr1,γ1),field(Add,expr2,γ2)

} }

DDNeg =

{
adds Neg with

{
setNeg with

{
field(Neg,expr,β1), subtype(Exp,β1)

} } }
DDLitEval =

{
modifies Exp with

{
adds eval with /0

}
,

modifies Lit with
{
adds eval with

{
field(Lit,value,int)

} }}

DDAddEval =

{
modifies Add with

{
adds eval with

{
field(Add,expr1,α ′), meth(α ′,eval,(•→ int)),
field(Add,expr2,α ′′), meth(α ′′,eval,(•→ int))

}}}
DDNegEval =

{
modifies Neg with

{
adds eval with

{
field(Neg,expr,β ′), meth(β ′,eval,(•→ int))

} } }
DDNegPrint =

{
modifies Neg with

{
adds toString with

{
field(Neg,expr,β2)

} } }
DDOptionalPrint =

{
modifies Add with

{
wraps toString with

{
meth(Add,original,(•→ String))

} } }
Fig. 13 Sets of class-constraints operations inferred for the delta modules in Listing 12

signature to be removed or modified exists and, for every class-modify operation, if
each method header or field to be removed exists, if the header of each method to
be modified exists and is the same header specified in the method-modify operation,
and if each class signature, method header or field to be added does not exist (cf.
the definition of delta module applicable to a class table, given at the beginning of
Section 5.2).

The following proposition states that, given a delta module δ and a class table
CT, the signature of the class table APPLY(δ ,CT) can be computed directly from
signature(δ) and signature(CT). The proof is straightforward, by case distinction on
the definitions of delta module applicable to a class table, delta module signature ap-
plicable to a class table signature, and on the definitions of the functions signature,
SIGNAPPLY and APPLY.

Proposition 1 1. The delta module δ is applicable to the class table CT if and only
if signature(δ) is applicable to signature(CT).

2. If the delta module δ is applicable to the class table CT, then
SIGNAPPLY(signature(δ),signature(CT)) = signature(APPLY(δ ,CT)).

For each valid feature configuration ψ of a strongly unambiguous product line, we
write CSTψ to denote the class signature table obtained by applying the signatures of
the delta modules ∆(ψ) to the empty class signature table in any linear ordering that
respects the total order on the partition of the delta modules specified in the product
line declaration. The following corollary states that CSTψ is indeed the class signature
table of the product CTψ .

Corollary 1 (of Proposition 1) Let L be a strongly unambiguous IF∆ J SPL and
ψ ∈Φ .

Compositional Type Checking of Delta-Oriented Software Product Lines 31

1. The product CTψ is defined if and only if the class signature table CSTψ is defined.
2. CSTψ = signature(CTψ).

Therefore, the class signature table of any product can be generated without generat-
ing the product.

Given a delta module δ and a class table CT such that δ is applicable to CT, the
result of the application of the set of class-constraint operations D of δ to the set of
class constraints C of CT such that, denoted by CONSAPPLYδ (D ,C), is the set of
class constraints C ′ defined as follows:

C ′(C) =

cc if D(C) = adds cc
undefined if D(C) = removes C

CONSAPPLYδ (D(C),C (C)) if D(C) = modifies C · · ·
C (C) otherwise

where the application of the class-constraint-modify operation cco= modifiesCwith O =
D(C) to the class-constraint cc= Cwith M =C (C), denoted by CONSAPPLYδ (cco,cc),
is the class-constraint cc′ = C with M ′ defined as follows:

cc′(m) =

mc if cco(m) = adds mc or cco(m) = replaces mc
undefined if cco(m) = removes m

m with (E [m$δ/original]) if cco(m) = wraps m with E
m with E if m= m′$δ for some m′ such that

cco(m′) = wraps m′ with E ′ and cc(m′) = m′ with E
undefined if m= m′$ · · · for some m′ such that

cco(m′) = removes m′ or cco(m′) = replaces · · ·
cc(m) otherwise

The application of a set of class-constraint operations to a set of class constraints
mimics the application of a delta module to class table. The semantics of the original
construct is modeled by the the third, the fourth and the fifth cases of the definition
of cc′:

– The third case specifies that the method constraint for the original method is re-
placed with the method constraint obtained from the method constraint in the
method-constraint-wrap operation by replacing all the occurrences of the key-
word original with the name, denoted by m$δ (where m is the name of the
method that has to be wrapped and δ is the name of the delta module containing
the method-constraint-wrap operation), of a new method with the original body
of the method m.

– The fourth case specifies that a method constraint for the method with name m$δ ,
with the same expression constraints of the method constraint for the original
method, is introduced.

– The fifth case specifies that, if a constraint for a method m is removed or replaced,
then also the constraints m$ · · · with · · · that might have been introduced by pre-
viously applied class-constraint operations are removed.

The following proposition states that the class-constraint operations application
defined above indeed allows computing the class constraints for the class table
APPLY(δ ,CT) directly from the class-constraint operations for δ and the class con-
straints for CT. The proof is given in Appendix C.1.

32 Lorenzo Bettini et al.

Proposition 2 For every delta module δ ∈ dom(DMT) and for every class table CT

such that δ is applicable to CT, if ` DMT(δ) : D and ` CT : C , then ` APPLY(δ ,CT) :
CONSAPPLYδ (D ,C).

For each valid feature configuration ψ of a strongly unambiguous product line, we
write Cψ to denote the set of class constraints obtained by applying the sets of class-
constraint operations inferred for the delta modules ∆(ψ) to the empty set of class
constraints in any linear ordering that respects the total order on the partition of the
delta modules specified in the product line declaration. The following corollary states
that Cψ is indeed the set of class constraints of of the product CTψ .

Corollary 2 (of Proposition 2) Let L be a strongly unambiguous IF∆ J SPL and
ψ ∈ Φ . If the class signature table CSTψ is defined and ` delta δ · · · : Dδ (for all
δ ∈ ∆(ψ)), then ` CTψ : Cψ .

Therefore, the class constraints of any product can be generated without generating
the product.

Example 6 The application of the sets of class-constraint operations in Figure 13 to
the empty set of class constraints generates the class constraints given in Figure 10.

7.3 Properties

The IF∆ J constraint-based type system enables checking the well-typedness of all
possible products by analyzing the delta modules in isolation, generating the con-
straints for the products, and checking the constraints obtained for each product
against the class signature table of that product. The following theorem states that
the IF∆ J constraint-based type system is sound and complete with respect to the IFJ
type system. The proof is given in Appendix C.2.

Theorem 2 (Soundness and completeness of IF∆ J constraint-based typing) Let
L be a strongly unambiguous IF∆ J SPL and ψ ∈Φ .

(Soundness) If CSTψ is defined and satisfies the sanity conditions for class signature
tables,3 ` delta δ · · · : Dδ for all δ ∈ ∆(ψ), and CSTψ |= FLAT(Cψ), then:
1. ` CTψ OK, and
2. if FLAT(Cψ) is cast-safe with respect to CSTψ , then CTψ is cast-safe.

(Completeness) Let ` CTψ OK.
1. If for all δ ∈ ∆(ψ) there exists Dδ such that ` delta δ · · · : Dδ , then

(a) CSTψ |= FLAT(Cψ), and
(b) if CTψ is cast-safe then FLAT(Cψ) is cast-safe with respect to CSTψ .

2. If there exists δ ∈ ∆(ψ) such that δ is not `-typable, then the body of the
method-add/modify operation in δ that is ill typed is not included in the prod-
uct CTψ .

3 Cf. Section 4.2.

Compositional Type Checking of Delta-Oriented Software Product Lines 33

8 Enhancing Early Error Recognition in Delta Modules

This section briefly discusses the issue of detecting as many type errors as possible
in the code of the delta modules before performing the final product-based analysis
phase that generates the type abstractions of the products (cf. Section 3).

In Section 6.2, we pointed out that the constraint-based typing rules for IFJ in
Figure 9 are able to recognize some ill-typed expressions during constraint genera-
tion. When these rules are used by the typing rules for IF∆ J in Figure 9, it is safe to
assume, without loss of generality, that no method with name original is defined.
So, rule (CT-INVK) in Figure 9 can be enhanced to detect more type errors when it is
used to type the method-modify operations in the premise of rule (CT-S-WRAM) from
Figure 12. Namely, it can type calls to this.original(ē) by using for original
the type of m, A1 · · ·Ap → C, instead of the type α1 · · ·αn → β (thus ensuring that
original is called with the right number of parameters and avoiding to introduce
the fresh variables α1, . . . ,αn,β).

The family class signature FCS of a class C maps the keyword extends to a non-
empty set of class names and maps field/method names to a non-empty finite set of
types such that:

– FCS(extends) contains a given class D if and only if the D is the direct superclass
of C in some valid product, and

– for each field/method name a, the set FCS(a) contains a given type if and only if
the field/method a is defined with that type in the class C in some valid product.

The family class signature table FCST of a delta-oriented product line is a mapping
from class names to family class signatures. It can be straightforwardly generated
by composing the signatures of all delta modules of the product line by ignoring
the removes operations. Many type errors could be detected by checking the set
of class-constraint operations inferred for a delta module against the family class
signature table of the product line. If in a table each set in the domain of the family
class signature is a singleton and the subclassing relation is acyclic, then the only type
errors in the products of the product line that cannot be detected by performing these
checks are those due to fact that in some product some required field, method, class
or subclass is missing. A smart implementation of the constraint-based type system
could annotate each generated constraint with the location of the associated code in
delta module. This would make it possible to trace the source of typing errors that
are detected when checking constraints back to the originating delta modules. These
checks should be able to provide for delta modules the same guarantees provided for
feature modules by the lightweight global consistency checks illustrated in [48].

9 Related Work

Delta-oriented programming [42,44] is an extension of feature-oriented program-
ming [6]. In [42], the general ideas of DOP are presented and compared conceptually
and empirically to FOP. The presentation in [42] uses the notion of a core product, that
is a designated product of the product line and the starting point of product genera-
tion. In [44], the notion of the core product is dropped so that product generation only

34 Lorenzo Bettini et al.

relies on delta modules. This makes DOP even more flexible to support proactive, ex-
tractive and reactive product line engineering [34]. Proactive product line engineering
aims at developing the product line from scratch, extractive product line engineering
turns existing products into a product line, and proactive product line engineering
stepwise evolves an initial set of product variants. Furthermore, DOP without the no-
tion of a core product [44] allows a direct embedding of FOP into DOP. In this paper,
we use the notion of DOP as presented in [44] in order to provide a compositional
approach for type checking delta-oriented product lines of JAVA programs.

DOP and FOP are compositional approaches [30] for implementing SPLs in
which code fragments are associated with product features and assembled to im-
plement a particular feature configuration. Other compositional approaches use as-
pects [29,4], mixins [45], hyperslices [47] or traits [20,7] to implement product line
variability (see [36] for a discussion of some of them with respect to FOP).

Feature-oriented Programming. Various approaches to ensure the type safety of feature-
oriented product lines can be found in literature [48,3,19,2,35]. The type system of
LIGHTWEIGHT FEATURE JAVA (LFJ) [19] is the closest to our proposal. The calcu-
lus LFJ, based on LJ (LIGHTWEIGHT JAVA) [46], provides a formalization of FOP
as implemented in AHEAD [6], together with a constraint-based type system that
supports a feature-based phase and a final family-based phase (cf. Section 3). The
approach consists of three technical concepts:

1. A constraint-based type system for LJ that infers a set of constraints for a given LJ
program. The constraints can be checked against the program in order to establish
whether the program is well-typed according to the standard LJ type system.

2. A constraint-based type system for LFJ that analyzes each feature module in iso-
lation and infers a set of constraints for each feature module. The inferred con-
straints are divided into structural constraints (constraints of the same form as in
the LJ constraint-based type system) and composition and uniqueness constraints
that are imposed by the introduction and refinement operations of the feature
modules. The constraints can be checked against the set of feature modules corre-
sponding to a valid feature configuration in order to establish whether: (i) product
generation succeeds, and (ii) the corresponding product is a well-typed LJ type
program. Successful product generation requires that the classes/methods/fields
introduced by a feature module are not introduced by another feature module
earlier in the composition and that the classes and methods refined by a feature
module are introduced by another feature module earlier in the composition.

3. A procedure for translating the product line declaration and the constraints in-
ferred for the feature modules to propositional formulas from which a formula is
constructed whose satisfiability implies the type safety of the whole product line.

Checking the type safety of the product line by a product-based analysis phase rely-
ing directly on the constraints for the feature modules (as done in the present paper)
requires an explicit iteration on the valid feature configurations. Checking the satis-
fiability of the propositional formula may be exponential in the number of features.
However, the structure of the generated formula is suitable for fast analysis by mod-
ern SAT solvers and has been shown to scale well in practice [19]. If the formula is

Compositional Type Checking of Delta-Oriented Software Product Lines 35

not satisfiable, it is not straightforward to trace the error back to the feature module
that causes the error.

Due to the additional flexibility provided by DOP, there is currently no analogue
of the third concept of FOP type-checking available for DOP type-checking. The
main issues are the flexible association between delta modules and features (pro-
vided by the when clauses) and the class/method/field removal operations that are not
supported in FOP.

The original construct of IF∆ J is similar to the Super construct of AHEAD.
LFJ formalizes a simplified version of the Super construct. Namely, a call Super()
represents a call to the unmodified method where the formal parameters of the modi-
fied method are passed implicitly as arguments and the body of the modified method
is built by replacing the occurrence of Super() with the body of the original method.

The LFJ and the IF∆ J type systems have similarities with a type system proposed
in [1] to type-check, compile and link code fragments. A code fragment is formal-
ized as a set of JAVA classes. Similarly to feature/delta modules, code fragments can
reference definitions provided in other code fragments. The purpose of the type sys-
tem presented in [1] is to ensure that linking code fragments compiled in isolation
produces the same bytecode as the one that would be generated by the global com-
pilation process performed by a standard JAVA compiler. The key idea is to define a
polymorphic form of bytecode containing type variables (ranging over class names)
and equipped with a set of constraints involving type variables. Polymorphic byte-
code, which is generated by compiling each code fragment in isolation, provides a
representation for all the (standard) bytecode that can be obtained by replacing type
variables with classes satisfying the associated constraints. During the linking phase,
constraints are solved causing the instantiation of the type variables (thus transform-
ing polymorphic bytecode into standard bytecode.)

The FEATHERWEIGHT FEATURE JAVA for Product Lines (FFJPL) calculus [2]
proposes an independently developed type checking approach for feature-oriented
product lines. FFJPL relies on FFJ [3], a calculus for stepwise-refinement, that is
not explicitly bound to implementing SPLs. FFJ is based on FJ (FEATHERWEIGHT
JAVA) [26]. The main differences between FFJPL and LFJ are the following: (i) In
FFJPL, feature-oriented mechanisms, such as class/method refinements, are modeled
directly by the dynamic semantics of the language instead of by a translation into
JAVA code; (ii) The FFJPL typing rules do not generate constraints, but directly con-
sult the feature model, thus making it possible to straightforwardly identify the loca-
tion of an error in the code; and (iii) FFJPL does not support modular type-checking
(each feature module is analyzed during a family-based phase by relying on informa-
tion of the complete product line).

Aspect-oriented Programming. Both delta-oriented and aspect-oriented programming
(AOP) [33] combine code taken from different sources. In AOP, cross-cutting features
(such as logging services or concurrency primitives) are factored out into aspects
instead of scattering them in the application code. In DOP, deltas modules are the
building blocks used to generate code implementing desired product features. As-
pects refer to parts of a program at join-points, specified by point-cut expressions.
By advice, the execution of the code at join-points can be modified. Advice can be

36 Lorenzo Bettini et al.

defined to be executed after, before or around the “intercepted” join-point. In par-
ticular, an around-advice replaces the original code. The intercepted join-point can
be executed using proceed, which corresponds to the original construct in DOP.
The join-points can be of different nature, starting from the invocation of a specific
method on an object of a specific class, to control-flow based execution points.

ASPECTJ [32], an extension of JAVA with aspects, provides a compiler generating
standard JAVA code by applying aspects to JAVA classes. This process (aspect weav-
ing) ensures that aspect and non-aspect code run together in the expected way. Aspect
weaving, in ASPECTJ, is mostly carried out at compile time, reducing run-time over-
head. For instance, most of the code inserted to intercept join-points by execution of
advice is realized by an additional method invocation. Since such an invocation is
typically a static or final method, it can be inlined by most JVMs. This means that the
detection of most join-points according to the specified point-cuts can be performed
statically by the ASPECTJ compiler. However, join-points can also have a dynamic
nature, e.g., based on the dynamic type of objects referred to in the point-cuts, or
based on the control-flow of the program, such as the first execution instance of a
recursive method. Hence, aspects also allow the programmer to intercept most exe-
cution statements in a program, based on the dynamic control flow or the run-time
type of objects.

The modification operations that can be specified in delta modules are sufficient to
express before, after and around advice considered in AOP. Additionally, delta mod-
ules can change the superclass, change method implementations, and even remove
methods, etc, while aspects cannot change types in a program statically. The partial
ordering of delta modules provided by DOP product line declarations resembles the
precedence order on advice in AOP. Delta modules do not comprise a specification
formalism for modifications to be carried out at several places of a program. Instead,
delta modules are statically connected to the product features, since delta application
is performed at compile-time only. However, adding a flexible point-cut specification
technique to delta modules is an interesting issue and a subject of future work.

Another difference between AOP and DOP is that in DOP, a set of delta modules
and a product line declaration defines a set of products. On the contrary, in AOP, the
combination of aspects with a base program usually defines a single aspect-oriented
program. An exception is the case when there are multiple ASPECTJ aspects without
defined precedence. Then, the ASPECTJ compiler non-deterministically chooses one
program to compile, such that a set of possible “woven” programs is defined. In order
to use AOP to implement SPLs it might be useful to provide a product-line declaration
with when clauses for aspects.

The A calculus [25] aims at providing a core language as foundation of AOP.
It solves the problem that type soundness in the presence of some around advice
definitions breaks which also exists in the ASPECTJ implementation. The solution
uses a flexible notion of proceed, by representing it with a simple term variable that
denotes a closure. The notion of proceed in the A calculus is more flexible than other
formalizations (see, e.g., [18,13]), by relying on type ranges (while guaranteeing
type soundness). In DOP, the original construct is similar to proceed. However,
the modification of a method by a delta module does not change the signature, thus
original can be used to implement a wrapper method with the original signature.

Compositional Type Checking of Delta-Oriented Software Product Lines 37

The original construct is, thus, typed with the same type as the return type of the
original method (cf. Section 5).

Class Composition Mechanisms as a Language Construct. The language GBETA [21,
22] provides a mechanism for combining mixin-based classes and methods with prop-
agation (i.e., combining classes and methods can imply an implicit propagation of
class or method combinations). The whole approach is statically typed. The language
supports inheritance between virtual classes [37], allowing to implement higher-order
hierarchies [23]. These mechanisms are used in [24] to present a solution of the ex-
pression problem [50] which consists of classes and methods to be added to a given
class family.

In [51] mixin class composition mechanisms of SCALA [38] are used to show
other solutions to the expression problem. The mixin class composition in SCALA
borrows both from the mixin construct presented in [11] and the trait composition
mechanism presented in [20]. Since SCALA does not provide a direct language mech-
anism to perform deep mixin composition (which basically corresponds to GBETA’s
propagation illustrated above), some more code is required for solving some parts of
the expression problem compared to the approach in GBETA [24].

The “meta” and “generative” flavor of IF∆ J shares with GBETA’s higher-order
hierarchies [23] that class hierarchies are not modified (as in AOP): different separate
copies are created. However, although in GBETA a new root in a class hierarchy as
well as a new intermediate class can be introduced, still the inheritance relations must
be kept. Thus, it is not possible to completely change the superclass of an existing
class, like in IF∆ J with the extending clause. Moreover, in IF∆ J, besides extend-
ing existing classes, it is also possible to remove parts of the classes, e.g., removing
methods and fields.

The main differences between IF∆ J and the class composition mechanisms above
is that the former provides two levels in the language: one for specifying the execution
parts of the program, and one for manipulating and composing the code blocks to
build new products.

HYPER/J [39] implements multi-dimensional separation of concerns [47] for JAVA.
Once the concerns of an application are identified, HYPER/J provides mechanisms to
specify modules (hyperslices) in terms of those concerns, and to synthesize compo-
nents by integrating those modules. Starting from standard JAVA class files, it pro-
duces new JAVA class files. Specifications of concerns and the relationships among
them to be used for the actual compositions are provided in a control file. The declar-
ative completeness requirement of hyperslices (i.e., an hyperslice declares everything
to which it refers) is intended to decouple hyperslices from each other. These explicit
declarations might become a burden for the programmer; in IF∆ J the constraints are
instead inferred by the type system and this should make delta modules easier to reuse
and should fit better the context of SPL development.

The design of the constraint-based type system for IF∆ J involves issues similar
to those considered in type-checking of dynamic classes [27]. Dynamic classes per-
form run-time updates of object-oriented systems by adding or refining classes (in a
type-safe manner) or by removing redundant program parts. Each dynamic class is
statically typed with a set of constraints (similar to the ones used for DOP) which

38 Lorenzo Bettini et al.

are evaluated at run-time to ensure that the system is still well-typed after the update
is carried out. Since dynamic classes are applied at run-time, only removals of re-
dundant information are permitted in order to locally check applicability at run-time.
DOP is a generative programming approach where variability is resolved at compile-
time, allowing more flexible removals.

10 Conclusions and Future Work

We have provided a foundation for compositional type checking of delta-oriented
product lines that supports a feature-based analysis phase and a final product-based
analysis phase by relying on an abstraction of product generation. During the feature-
based analysis phase each delta module is analyzed in in isolation such that the anal-
ysis results can be re-used across different product lines.

The initial ideas of DOP presented in [42] (see Section 9 for a comparison with
the approach of this paper) have been implemented as an Eclipse IDE and a stan-
dalone compiler, which can be found at http://deltaj.sourceforge.net. At
the same site, a new implementation of DOP based on the approach presented in this
paper, is also available. This implementation is still in a development stage, though it
implements most of the features of IF∆ J. In particular, besides the language of delta
modules and product-line declarations, we also have a DSL for the constraints: the
IF∆ J compiler, in addition to generating Java code for the products, also generates
the textual constraints; this way we can easily show to the programmer possible er-
rors due to configurations which violate constraints. All these features are integrated
in Eclipse.

In future work, we would like to investigate the possibility of enhancing the pro-
posed type checking mechanism for DOP with the third concept of the type checking
approach pursued for LFJ (cf. Section 9). Another interesting future research direc-
tion is to extend DOP to express the change of the feature configuration of a product
at run-time [40,41]. A first attempt in this direction has been presented in [16] with
the formal foundations being laid out in [15]. To achieve this goal, it might be useful
to equip IF∆ J with a direct semantics as done for FFJPL [2].

The concept of DOP is not bound to a particular programming language. For
future work, we are aiming to consider other languages for the underlying product
implementations following the ideas behind FEATUREHOUSE. A starting point is the
trait-based prototypical programming language TRAITRECORDJ [7,8] (see also [9,
10]). In TRAITRECORDJ, classes are assembled from interfaces, records (provid-
ing fields) and traits [20] (providing methods) that can be directly manipulated by
designated composition operations. These operations make TRAITRECORDJ a good
candidate for enhancing the flexibility of delta modules and providing further support
for code reuse.

Acknowledgements We are grateful to the anonymous referees of Acta Informatica for insightful com-
ments, suggestions for improving the presentation and pointers to related work. We also thank Luca
Padovani and Shmuel Tyszberowicz for useful comments on a preliminary version of this paper.

Compositional Type Checking of Delta-Oriented Software Product Lines 39

Computation rules:

H (ι) = 〈C, f̄= v〉
H , ι .fi −→H ,vi

(R-FIELD)

H (ι) = 〈C, . . .〉 mbody(m,C) = (x̄,e0)

H , ι .m(v)−→H , [x̄← v,this← ι]e0
(R-INVK)

ι 6∈ dom(H) fields(C) = C̄ f̄

H ,new C()−→H ∪{ι 7→ 〈C, f̄= null〉}, ι
(R-NEW)

H (ι) = 〈C, f̄= v〉
H , ι .fi = v−→H [ι 7→ 〈C, . . . ,fi = v, . . .〉],v

(R-ASSIGN)

H (ι) = 〈C, f̄= v〉 C<: D
H ,(D) ι −→H , ι

(R-CAST)

H ,(D) null−→H ,null (R-CASTN)

Congruence rules:

H ,e−→H ′,e′

H ,e.f−→H ′,e′.f
H ,e−→H ′,e′

H ,e.m(ē)−→H ′,e′.m(ē)

H ,ei −→H ′,e′i
H ,v.m(v̄,ei, ē)−→H ′,v.m(v̄,e′i, ē)

H ,e−→H ′,e′

H ,e.f= e0 −→H ′,e′.f= e0

H ,e−→H ′,e′

H ,v.f= e−→H ′,v.f= e′
H ,e−→H ′,e′

H ,(C) e−→H ′,(C) e′

Fig. 14 IFJ: Operational semantics

A IFJ Reduction and Type Soundness

The length of a sequence ē is denoted by #(ē).

A.1 IFJ Reduction

In order to properly model imperative features of IFJ, we introduce the concepts of address and heap.
Addresses, ranged over by the metavariable ι , are the elements of the denumerable set I. Values, ranged
over by the metavariable v are either addresses or null. Objects are denoted by 〈C, f̄= v〉, where C is the
class of the object, f̄ are the name of the fields and v̄ are the values of the fields. A heap H is a mapping
from addresses to objects. The empty heap will be denoted by /0. Runtime expressions are obtained from
expressions by replacing all the variables (including this) by addresses. We will use e to denote runtime
expressions.

The states of a computation are represented by means of configurations. A configuration is a pair
consisting of a heap and a runtime expression, written H ,e. The reduction relation has the form H ,e−→
H ′,e′, to read “the configuration H ,e reduces to the configuration H ′,e′ in one step”. The initial con-
figuration associated to a program CT is /0,e (where e is the body of method main of class Main).

The reduction rules shown in Figure 14, using the standard notions of computation rules and congru-
ence rules, ensure that the computation is carried on according to a call-by-value reduction strategy.

The operational semantics uses the auxiliary functions mbody and fields, which are defined in Fig-
ure 15.

40 Lorenzo Bettini et al.

Field lookup:

fields(Object) = •

class C extends D { C̄ f̄; MD } fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Method body lookup:

aDef(C)(m) = B m (B x̄){return e;}
mbody(m,C) = (x̄,e)

Fig. 15 IFJ: auxiliary functions

A.2 IFJ Type Soundness

In order to be able to formulate the type soundness of IFJ as a subject reduction theorem and a progress
theorem for the small-step semantics, we need to formulate a type system for runtime expressions. Ex-
pressions containing either a stupid cast (a notion introduced in [26]), i.e., a cast where the subject and the
target are unrelated, or a stupid selection, i.e., a field selection null.f or a method invocation null.m(· · ·),
are not well typed according to the IFJ (source level) type system. However, a runtime expression without
stupid casts and stupid selections may reduce to a runtime expression containing either a stupid cast or a
stupid selection. The type system for runtime expressions contains a rule for typing stupid casts, and a rule
for assigning any type T to the value null (so that stupid selection can be typed).

Typing rules for runtime expressions are shown in Figure 16; these rules use the environment Σ , which
is a finite (possibly empty) mapping from addresses to class names, and they are of the form Σ `′ e : T. In
Figure 16 we also present the notion of well-formed heap and of well-formed configuration. The notion of
well-formed heap ensures that the environment Σ maps all the addresses in the heap into the type of the
corresponding object and that for every object stored in the heap, the fields of the object contain appropriate
values.

Type soundness can be proved by using the standard technique of subject reduction and progress
theorems.

Lemma 1 If aType(C0)(m) = D̄→ D and mbody(C0,m) = (x̄,e) then for some D0 and some T<: D we have
C0 <: D0 and this : D0, x̄ : D̄ ` e : T.

Proof By straightforward induction on the derivation of mbody(C0,m), that is, on aDef(C0)(m).

Lemma 2 (Substitution) If

1. Σ `′ ι .m(v) : D where Σ(ι) = C0 for some Σ , C0 and D,
2. aType(C0)(m) = Ā→ D, and
3. mbody(C0,m) = (x̄,e),

then for some C′ <: D we have Σ `′ [x̄← v,this← ι]e : C′.

Proof By hypothesis 1. and 2. and by Lemma 1, for some C and some T <: D, we have C0 <: C and
this : C, x̄ : Ā ` e : T.

The proof then proceeds by structural induction on the derivation of this : C, x̄ : Ā ` e : T. We present
only a few interesting cases (the cases for casts are the same as in FJ, in particular, for (T-DCAST) we can
use (RT-SCAST)). Note that, by rule (RT-INVK), Σ `′ v : C̄ for some C̄ such that C̄<: Ā (in particular, Ci = Ai
when vi = null by rule (RT-NULL)).

Case (T-VAR) In this case e = xi for some xi ∈ x̄; [x̄← v,this← ι]xi = vi and Σ `′ vi : Ci for some Ci
such that Ci <: Ai; letting Ci = C′ finishes the case.

Case (T-FIELD) In this case e= e′.f. By rule (T-FIELD) we have this : C, x̄ : Ā` e′ : C′ and aType(C′)(f) =
A. By the induction hypothesis, Σ `′ [x̄← v,this← ι]e′ : C′′ for some C′′ <: C′. The thesis follows
from aType(C′′)(f) = aType(C′)(f) = A.

Compositional Type Checking of Delta-Oriented Software Product Lines 41

Runtime expression typing Σ `′ e : T

Σ `′ ι : Σ(ι) (RT-ADDR)

Σ `′ e : C aType(C)(f) = A

Σ `′ e.f : A
(RT-FIELD)

Σ `′ e : C aType(C)(m) = Ā→ B Σ `′ ē : T T<: Ā
Σ `′ e.m(ē) : B

(RT-INVK)

C ∈ dom(CST)

Σ `′ new C() : C
(RT-NEW)

Σ `′ e : T T<: C
Σ `′ (C) e : C

(RT-UCAST)

Σ `′ e : B C<: B C 6= B

Σ `′ (C) e : C
(RT-DCAST)

Σ `′ e : T C 6<: T T 6<: C stupid warning
Σ `′ (C) e : C

(RT-SCAST)

Σ `′ null : T T ∈ {⊥}∪{Object}∪dom(CST) (RT-NULL)

Σ `′ e0.f : C Σ `′ e1 : T T<: C
Σ `′ e0.f= e1 : C

(RT-ASSIGN)

Well-formed heap Σ H

dom(H) = dom(Σ)
∀ι ∈ dom(H),

H (ι) = 〈C,f1 = v1, . . . ,fn = vn〉 implies

 Σ(ι) = C

fields(C) = C1 f1, . . . ,Cn fn
∀i ∈ 1..n, Σ `′ vi : Ti Ti <: Ci

Σ H

(WF-HEAP)

Well-typed configuration Σ `′ H ,e : T

Σ `′ e : T Σ H

Σ `′ H ,e : T
(WF-CONF)

Fig. 16 IFJ: typing rules for runtime expressions and heaps

Case (T-INVK) In this case e= e′.m(ē). Similar to the previous case, using the induction hypothesis on e′

and ē, and using the fact that aType(C′′)(m) = aType(C′)(m) if C′′ <: C′.
Case (T-ASSIG) In this case e is of the form e0.f = e1. By (T-ASSIG) we have this : C, x̄ : Ā ` e0.f : A,

this : C, x̄ : Ā ` e1 : T1 for some T1 <: A. The thesis follows from the induction hypothesis and the
transitivity of <:.

Lemma 3 (Weakening) If Σ `′ e : T then Σ , ι : C `′ e : T.

Proof Straightforward induction on the derivation of Σ `′ e : T.

Theorem 3 (Subject reduction) If Σ H , Σ `′ e : T and H ,e−→H ′,e′ then there exists Σ ′ ⊇ Σ such
that Σ ′ H ′, Σ ′ `′ e′ : T′ for some T′ <: T.

42 Lorenzo Bettini et al.

Proof The proof is by induction on a derivation of H ,e−→H ′,e′, with a case analysis on the reduction
rule used. We show only the most interesting cases for computation rules; for congruence rules simply use
the induction hypothesis (using Lemma 3).

Case (R-FIELD) The last applied rule is H , ι .fi −→H ,vi where H (ι) = 〈C, f̄= v〉. By hypothesis Σ `′
ι .fi : Ti. and by (WF-HEAP) we have Σ `′ vi : T′i for some T′i <: Ci. Thus we have the thesis.

Case (R-INVK) The last applied rule is
H (ι) = 〈C, f̄= v〉 mbody(m,C) = (x̄,e0)

H , ι .m(v)−→H , [x̄← v,this← ι]e0

By hypothesis Σ `′ ι .m(v) : T. Since the last applied typing rule must be (RT-INVK), we have T= B for
some B. Then the thesis follows by applying Lemma 2.

Case (R-NEW) Let Σ ′ = Σ ∪{ι : C}. By hypothesis Σ H , and by applying (WF-HEAP) we also have
Σ ′ H ∪{ι 7→ 〈C, f̄= null〉}. Σ ′ `′ ι : C follows from (RT-ADDR).

Case (R-ASSIGN) By rule (RT-ASSIGN) we have that Σ `′ v : T′ and T′ <: T for some T′. By hypothesis
Σ H , and by applying (WF-HEAP) we also have Σ H [H (ι) 7→ 〈C, . . . ,fi = v, . . .〉].

Lemma 4 Let H ,e be a well-typed configuration.

1. If e = ι .f then H (ι) = 〈C, · · ·〉 with aType(C)(f) = A for some class name A.
2. If e = ι .m(ē) then H (ι) = 〈C, · · ·〉 with aType(C)(m) = Ā→ B and](Ā) =](ē).

Proof Straightforward.

In order to formulate in a compact way the statement of the progress theorem we introduce the notion of
evaluation context for IFJ runtime expressions. The set of evaluation context for IFJ runtime expressions
is defined as follows:

E ::= []
∣∣ E.f

∣∣ E.m(ē)
∣∣ v.m(v̄,E.ē)

∣∣ (C)E
∣∣ v.f= E

Theorem 4 (Progress) Let H ,e be a well-typed normal form. Then

1. either e is a value, or
2. for some evaluation context E we can express e as

(a) either E[(A)ι] such that H (ι) = 〈B, · · ·〉 with B 6<: A, or
(b) E[null.f] for some f, or
(c) E[null.m(v̄)] for some m and v̄, or
(d) E[null.f= v] for some f and v.

Proof Straightforward induction on typing derivations using Lemma 4.

Lemma 5 If • ` e : T then • `′ e : T.

Proof Straightforward induction on typing derivations.

Theorem 5 (Type Soundness) If ` CT OK, CT(Main) = class Main { C main() { return e; } }, • `
e : T and /0,e−→? H ,e′ with H ,e′ a normal form. Then e′ is

1. either null,
2. or an address ι such that H (ι) = 〈C, · · ·〉 with C<: T,
3. or an expression containing (A)ι such that H (ι) = 〈B, · · ·〉 with B 6<: A,
4. or an expression containing either null.f or null.m(v̄) for some f, m and v̄.

Proof Follows from Lemma 5, Theorem 3 and Theorem 4.

Compositional Type Checking of Delta-Oriented Software Product Lines 43

B Soundness and Completeness of IFJ Constraint-based Typing

Lemma 6 Let CT be a IFJ program, C ∈ dom(CT), m ∈ dom(C), CST = signature(CT), CST satisfy the
sanity conditions for class signature tables, CT(C)(m) = B m (Ā x̄){return e′;} and e be a subexpression
of e′.

(Soundness) Let this : C, x̄ : Ā ` e : τ | E and CST |= E ⇒ s. Then this : C, x̄ : Ā ` e : s(τ).
(Completeness) Let this : C, x̄ : Ā ` e : T. Then there exist τ , E and s such that: this : C, x̄ : Ā ` e : τ | E ,

CST |= E ⇒ s and s(τ) = T.

Proof (Soundness) By structural induction on the derivations in the constraint-based type system for
expressions in Figure 9, exploiting the rules in Figure 8.
The cases (CT-VAR), (CT-NULL) and (CT-NEW) are immediate by rules (T-VAR), (T-NULL) and (T-NEW),

respectively. For rule (CT-NEW) observe that CST |= {class(C)} implies C ∈ dom(CST).
Case (CT-INVK). Assume this : C, x1 : A1, . . . ,xp : Ap ` e0.m(e1, ...,en) : β | (∪i∈{0,...,n}Ei)∪E and

CST |= E ∪ (∪i∈{0,...,n}Ei)⇒ s. From the premises of rule (CT-INVK) we have that:
– Γ ` e0 : η | E0,
– Γ ` ei : τi | E (i∈1..n)

i ,
– α1, ...,αn,β fresh, and
– E = {meth(η ,m,α1 · · ·αn→ β),subtype(τ1,α1), . . . ,subtype(τn,αn)}.

Assume (without loss of generality) that for all i 6= j ∈ 0..n the set of the type variables in {τi}∪Ei
and the set of the type variables in {τ j}∪E j (with τ0 = η) are pairwise disjoint. From the rules
in Figure 8 we have that s = s′ ◦ sn ◦ · · · ◦ s0 for some s′,sn, . . . ,s0 such that:

– CST |= E0⇒ s0 and s0(η) = C0, for some C0,
– (for all i ∈ 1..n) CST |= Ei⇒ si and si(τi) = Ti, for some Ti,
– CST |= sn ◦· · ·◦s0(E)⇒ s′ where s′ = [BA1 · · ·An/βα1 · · ·αn], aType(C0)(m) = A1 · · ·An→ B

and Ti <: A (i∈1..n)
i .

By induction we have that:
– Γ ` e0 : C0,
– Γ ` ei : T (i∈1..n)

i .
Then, by rule (T-INVK), we get Γ ` e0.m(e1, . . . ,en) : B.

The remaing cases (T-FIELD), (T-INVK), (T-NEW), (T-ASSIG),(T-CAST) are similar to the previous case.
(Completeness) By structural induction on the derivations in the type system for expressions in Figure 4,

exploiting the rules in Figure 8.
The cases (T-VAR), (T-NULL) and (T-NEW) are immediate by rules (CT-VAR), (CT-NULL) and (T-NEW),

respectively. For rule (T-NEW) observe that C ∈ dom(CST) implies CST |= {class(C)}.
Case (T-INVK). Assume Γ ` e0.m(e1, . . . ,en) : B. From the premises of (T-INVK) we have that:

– Γ ` e0 : C0,
– Γ ` ei : T (i∈1..n)

i ,
– aType(C0)(m) = A1 · · ·An→ B, and
– Ti <: A (i∈1..n)

i .
By induction we have that:

– Γ ` e0 : η | E0 and CST |= E0⇒ s0 with s0(η) = C0, and
– Γ ` ei : τi | E (i∈1..n)

i and for all i ∈ 1..n: CST |= Ei⇒ si with si(τi) = Ti,
where, for all i 6= j ∈ 0..n, the set of the type variables in {τi}∪Ei and the set of the type variables
in {τ j}∪E j (with τ0 = η) are pairwise disjoint. Consider

– α1, ...,αn,β fresh, and
– E = {meth(η ,m,α1 · · ·αn→ β),subtype(τ1,α1), . . . ,subtype(τn,αn)}.

From the rules in Figure 8 we have that:
– CST |= sn ◦ · · · ◦ s0(E)⇒ s′ where s′ = [BA1 · · ·An/βα1 · · ·αn].

Then, by rule (CT-INVK), we get this : C, x1 : A1, . . . ,xp : Ap ` e0.m(e1, ...,en) : β | (∪i∈{0,...,n}Ei)∪
E and CST |= E ∪ (∪i∈{0,...,n}Ei)⇒ s′ ◦ sn ◦ · · · ◦ s0.

Cases (T-FIELD), (T-ASSIG), (T-UCAST), (T-DCAST) are similar to the previous case.

Lemma 7 Let CT be a IFJ program, C ∈ dom(CT), m ∈ dom(C), CST= signature(CT) and CST satisfy the
sanity conditions for class signature tables.

(Soundness) Let this : C ` CT(C)(m) : m with E and CST |= E . Then this : C ` CT(C)(m) OK.

44 Lorenzo Bettini et al.

(Completeness) Let this : C` CT(C)(m)OK. Then there exists E such that: this : C` CT(C)(m) : mwith E
and CST |= E .

Proof Straightforward by Lemma 6.

Lemma 8 Let CT be a IFJ program, C ∈ dom(CT), CST= signature(CT) and CST satisfy the sanity condi-
tions for class signature tables.

(Soundness) Let ` CT(C) : C with M and CST |= FLAT(M). Then ` CT(C) OK.
(Completeness) Let ` CT(C)OK. Then there exists M such that: ` CT(C) : Cwith M and CST |= FLAT(M).

Proof Straightforward by Lemma 7.

Restatement of Theorem 1 (Soundness and completeness of IFJ constraint-based typing) Let CT be
a IFJ program and CST= signature(CT).

(Soundness) Let CST satisfy the sanity conditions for class signature tables, ` CT : C and CST |= FLAT(C).
Then

1. ` CT OK, and
2. if FLAT(C) is cast-safe with respect to CST, then CT is cast-safe.

(Completeness) Let ` CT OK. Then there exists C such that:
1. ` CT : C and CST |= FLAT(C), and
2. if CT is cast-safe, then FLAT(C) is cast-safe with respect to CST.

Proof (Soundness) 1. Straightforward by Lemma 8 (Soundness).
2. If FLAT(C) is cast safe w.r.t. CST, then (T-DCAST) is not used.

(Completeness) 1. Straightforward by Lemma 8 (Completeness).
2. Observe that, if (T-DCAST) is not used, then FLAT(C) is cast safe w.r.t. CST.

C Soundness and Completeness of IF∆J Constraint-based Typing

C.1 Proof of Proposition 2

Lemma 9 For every delta module δ and for every class table CT such that δ is applicable to CT, and for
every class C ∈ dom(δ)∩dom(CT) such that ` δ (C) : cco and ` CT(C) : cc it holds that

1. for every method m ∈ dom(δ (C))∩dom(CT(C)) if
– this : C ` δ (C)(m) : {mco}, and
– this : C ` CT(C)(m) : m with E ,

then
(a) (δ (C)(m) = modifies · ·· and (mco = replaces · ·· or mco = wraps · ··)) or (δ (C)(m) =

removes · ·· and mco = removes · ··),
(b) mco = replaces m with E ′ implies that

i. this : C ` APPLYδ (δ (C),CT(C))(m) : m with E ′,
ii. m$ · · · 6∈ dom(CONSAPPLYδ (cco,cc)),

(c) mco = wraps m with E ′ implies that
i. this : C ` APPLYδ (δ (C),CT(C))(m) : m with E ′[m$δ/original],

ii. this : C ` APPLYδ (δ (C),CT(C))(m$δ) : m$δ with E where cc(m) = m with E ,
(d) mco= removes m implies that m 6∈ dom(CONSAPPLYδ (cco,cc)) and m$ · · · 6∈ dom(CONSAPPLYδ (cco,cc));

2. for every method m ∈ dom(δ (C))−dom(CT(C)) if
– this : C ` δ (C)(m) : {mco},

then
(a) δ (C)(m) = adds · ·· and mco = adds · ··,
(b) mco = adds m with E ′ implies this : C ` APPLY(δ ,CT)(C)(m) : m with E ′.

Proof Both points 1 and 2 follow straightforwardly by the definition of APPLY(δ ,δ (C))CT(C) (given in
Section 5.2) and the definition of CONSAPPLYδ (cco,cc) (given in Section 7.2). By observing that rules
(CT-S-ADDM), (CT-S-REPM) and (CT-S-WRAM) in Figure 12 rely on rule (CT-METHOD) in Figure 9.

Compositional Type Checking of Delta-Oriented Software Product Lines 45

Lemma 10 For every delta module δ and for every class table CT such that δ is applicable to CT, `
delta δ · · · : D , and ` CT : C it holds that

1. for every class C ∈ dom(δ)∩dom(CT) if
– ` δ (C) : cco, and
– ` CT(C) : C with M ,

then
(a) (δ (C)= modifies · ·· and cco= modifies · ··) or (δ (C)= removes · ·· and cco= removes · ··),
(b) cco= modifies Cwith O implies that ` APPLYδ (δ (C),CT(C)) : CONSAPPLYδ (modifies Cwith O,Cwith M),
(c) cco = removes C implies that C 6∈ dom(CONSAPPLYδ (D ,C));

2. for every class C ∈ dom(δ)−dom(CT) if
– ` δ (C) : cco

then
(a) δ (C) = adds · ·· and cco = adds · ··,
(b) cco = adds cc implies ` APPLY(δ ,CT)(C) : cc.

Proof Both points 1 and 2 follow straightforwardly by the definition of APPLYδ (δ (C),CT(C)) (given in
Section 5.2), the definition of CONSAPPLYδ (cco,cc) (given in Section 7.2) and Lemma 9. By observing
that rule (CT-C-ADDC) in Figure 12 relies on rule (CT-CLASS) in Figure 9, and rule (CT-C-MODC) relies on
rules (CT-S-ADDM), (CT-S-REPM) and (CT-S-WRAM) in Figure 12.

Restatement of Proposition 2 For every delta module δ ∈ dom(DMT) and for every class table CT such
that δ is applicable to CT, if ` DMT(δ) : D and ` CT : C , then ` APPLY(δ ,CT) : CONSAPPLYδ (D ,C).

Proof Straightforward by the definition of APPLY(δ ,CT) (given in Section 5.2), the definition of CONSAPPLYδ (D ,C)
(given in Section 7.2) and Lemma 10. By observing that rule (CT-DELTA) in Figure 12 relies on rules
(CT-C-ADDC) and (CT-C-MODC) in Figure 12.

C.2 Proof of Theorem 2

Restatement of Theorem 2 (Soundness and completeness of IF∆ J constraint-based typing) Let L be
a strongly unambiguous IF∆ J SPL and ψ ∈Φ .

(Soundness) If CSTψ is defined and satisfies the sanity conditions for class signature tables, ` delta δ · · · :
Dδ for all δ ∈ ∆(ψ), and CSTψ |= FLAT(Cψ), then:

1. ` CTψ OK, and
2. if FLAT(Cψ) is cast-safe with respect to CSTψ , then CTψ is cast-safe.

(Completeness) Let ` CTψ OK.
1. If for all δ ∈ ∆(ψ) there exists Dδ such that ` delta δ · · · : Dδ , then

(a) CSTψ |= FLAT(Cψ), and
(b) if CTψ is cast-safe then FLAT(Cψ) is cast-safe with respect to CSTψ .

2. If there exists δ ∈ ∆(ψ) such that δ is not `-typable, then the body of the method-add/modify
operation in δ that is ill typed is not included in the product CTψ .

Proof (Soundness) Immediate by Corollary 2 and Theorem 1(Soundness).
(Completeness) 1. Immediate by Corollary 2 and Theorem 1(Completeness).

2. If the body of a method-add/modify operation in δ is ill typed, then it contains either an occur-
rence of a variable that is not a formal parameter of the method, or a stupid selection expression.
Therefore, the inclusion of a method with a body containing either an occurrence of a variable
that is not a formal parameter of the method or a stupid selection expression would contradict the
assumption that ` CTψ OK.

46 Lorenzo Bettini et al.

References

1. Ancona, D., Damiani, F., Drossopoulou, S., Zucca, E.: Polymorphic bytecode: compositional com-
pilation for java-like languages. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’05, pp. 26–37. ACM, New York, NY, USA (2005).
DOI 10.1145/1040305.1040308

2. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-oriented product lines.
Automated Software Engineering 17(3), 251–300 (2010). DOI 10.1007/s10515-010-0066-8

3. Apel, S., Kästner, C., Lengauer, C.: Feature featherweight java: a calculus for feature-oriented pro-
gramming and stepwise refinement. In: Proceedings of the 7th international conference on Genera-
tive programming and component engineering, GPCE ’08, pp. 101–112. ACM, New York, NY, USA
(2008). DOI 10.1145/1449913.1449931

4. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An Overview of CaesarJ 3880, 135–173 (2006).
DOI 10.1007/11687061 5

5. Batory, D.: Feature models, grammars, and propositional formulas. In: H. Obbink, K. Pohl (eds.) Soft-
ware Product Lines (SPLC 2005), Lecture Notes in Computer Science, vol. 3714, pp. 7–20. Springer
(2005). DOI 10.1007/11554844 3

6. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Transactions on
Software Engineering 30, 355–371 (2004). DOI 10.1109/TSE.2004.23

7. Bettini, L., Damiani, F., Schaefer, I.: Implementing software product lines using traits. In: Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC ’10, pp. 2096–2102. ACM, New York,
NY, USA (2010). DOI 10.1145/1774088.1774530

8. Bettini, L., Damiani, F., Schaefer, I., Strocco, F.: TRAITRECORDJ: A programming language with
traits and records. Science of Computer Programming (2011). DOI 10.1016/j.scico.2011.06.007

9. Bono, V., Damiani, F., Giachino, E.: Separating Type, Behavior, and State to Achieve Very Fine-
grained Reuse. In: Electronic proceedings of FTfJP (2007)

10. Bono, V., Damiani, F., Giachino, E.: On Traits and Types in a Java-like Setting. In: G. Ausiello,
J. Karhumki, G. Mauri, L. Ong (eds.) Fifth Ifip International Conference On Theoretical Computer
Science — Tcs 2008, IFIP International Federation for Information Processing, vol. 273, pp. 367–
382. Springer (2008). DOI 10.1007/978-0-387-09680-3 25

11. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proceedings of the European conference on
object-oriented programming on Object-oriented programming systems, languages, and applications,
OOPSLA/ECOOP ’90, pp. 303–311. ACM, New York, NY, USA (1990). DOI 10.1145/97945.97982

12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison Wesley Longman
(2001)

13. Clifton, C., Leavens, G.T.: MiniMAO1: Investigating the Semantics of Proceed. Science of Computer
Programming 63(3), 321–374 (2006). DOI 10.1016/j.scico.2006.02.009

14. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

15. Damiani, F., Padovani, L., Schaefer, I.: A formal foundation for dynamic delta-oriented software
product lines. In: Proceedings of the 11th International Conference on Generative Programming and
Component Engineering, GPCE ’12, pp. 1–10. ACM, New York, NY, USA (2012). DOI 10.1145/
2371401.2371403

16. Damiani, F., Schaefer, I.: Dynamic delta-oriented programming. In: Proceedings of the 15th Interna-
tional Software Product Line Conference, Volume 2, SPLC ’11, pp. 34:1–34:8. ACM, New York, NY,
USA (2011). DOI 10.1145/2019136.2019175

17. Damiani, F., Schaefer, I.: Family-based analysis of type safety for delta-oriented software product
lines. In: T. Margaria, B. Steffen (eds.) Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change, Lecture Notes in Computer Science, vol. 7609, pp.
193–207. Springer (2012). DOI 10.1007/978-3-642-34026-0 15

18. De Fraine, B., Südholt, M., Jonckers, V.: Strongaspectj: flexible and safe pointcut/advice bindings.
In: Proceedings of the 7th international conference on Aspect-oriented software development, AOSD
’08, pp. 60–71. ACM, New York, NY, USA (2008). DOI 10.1145/1353482.1353491

19. Delaware, B., Cook, W., Batory, D.: A machine-checked model of safe composition. In: Proceedings
of the 2009 workshop on Foundations of aspect-oriented languages, FOAL ’09, pp. 31–35. ACM,
New York, NY, USA (2009). DOI 10.1145/1509837.1509846

20. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.: Traits: A mechanism for fine-grained
reuse. ACM TOPLAS 28(2), 331–388 (2006). DOI 10.1145/1119479.1119483

Compositional Type Checking of Delta-Oriented Software Product Lines 47

21. Ernst, E.: gbeta – a language with virtual attributes, block structure, and propagating, dynamic inher-
itance. Ph.D. thesis, Department of Computer Science, University of Århus, Denmark (1999). URL
http://www.daimi.au.dk/~eernst/gbeta/

22. Ernst, E.: Propagating Class and Method Combination. In: R. Guerraoui (ed.) ECOOP 1999 —
Object-Oriented Programming, Lecture Notes in Computer Science, vol. 1628, pp. 67–91. Springer
(1999). DOI 10.1007/3-540-48743-3 4

23. Ernst, E.: Higher-Order Hierarchies. In: L. Cardelli (ed.) ECOOP 2003 — Object-Oriented Pro-
gramming, Lecture Notes in Computer Science, vol. 2743, pp. 303–328. Springer (2003). DOI
10.1007/978-3-540-45070-2 14

24. Ernst, E.: The expression problem, Scandinavian style. In: MASPEGHI (2004). URL http://www.

i3s.unice.fr/maspeghi2004/final-version/e_ernst.pdf

25. Fraine, B., Ernst, E., Sdholt, M.: Essential AOP: The A Calculus. In: T. DHondt (ed.) ECOOP 2010 —
Object-Oriented Programming, Lecture Notes in Computer Science, vol. 6183, pp. 101–125. Springer
(2010). DOI 10.1007/978-3-642-14107-2 6

26. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and GJ.
ACM TOPLAS 23(3), 396–450 (2001). DOI 10.1145/503502.503505

27. Johnsen, E., Kyas, M., Yu, I.: Dynamic classes: Modular asynchronous evolution of distributed
concurrent objects. In: A. Cavalcanti, D. Dams (eds.) FM 2009: Formal Methods, Lecture Notes
in Computer Science, vol. 5850, pp. 596–611. Springer Berlin Heidelberg (2009). DOI 10.1007/
978-3-642-05089-3 38

28. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Tech. rep., Carnegie Mellon Software Engineering Institute (1990)

29. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features Using AspectJ. In: Software
Product Line Conference (SPLC 2007), pp. 223–232. IEEE, Los Alamitos, CA, USA (2007). DOI
10.1109/SPLINE.2007.12

30. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In: Proceedings of the
30th international conference on Software engineering, ICSE ’08, pp. 311–320. ACM, New York, NY,
USA (2008). DOI 10.1145/1368088.1368131

31. Kästner, C., Apel, S., ur Rahman, S.S., Rosenmüller, M., Batory, D., Saake, G.: On the impact of the
optional feature problem: analysis and case studies. In: Proceedings of the 13th International Software
Product Line Conference, SPLC ’09, pp. 181–190. Carnegie Mellon University, Pittsburgh, PA, USA
(2009). DOI 10.1145/1753235.1753261

32. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview of As-
pectJ. In: ECOOP 2001— Object-Oriented Programming, Lecture Notes in Computer Science, vol.
2072, pp. 327–354. Springer (2001). DOI 10.1007/3-540-45337-7 18

33. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: Aspect-
oriented programming. In: ECOOP 1997 — Object-Oriented Programming, Lecture Notes in Com-
puter Science, vol. 1241, pp. 220–242. Springer (1997). DOI 10.1007/BFb0053381

34. Krueger, C.: Eliminating the Adoption Barrier. IEEE Software 19(4), 29–31 (2002). DOI 10.1109/
MS.2002.1020284

35. Kuhlemann, M., Batory, D., Kästner, C.: Safe composition of non-monotonic features. In: Proceedings
of the eighth international conference on Generative programming and component engineering, GPCE
’09, pp. 177–186. ACM, New York, NY, USA (2009). DOI 10.1145/1621607.1621634

36. Lopez-Herrejon, R., Batory, D., Cook, W.: Evaluating Support for Features in Advanced Modulariza-
tion Technologies. In: A.P. Black (ed.) ECOOP 2005 - Object-Oriented Programming, Lecture Notes
in Computer Science, vol. 3586, pp. 169–194. Springer (2005). DOI 10.1007/11531142 8

37. Madsen, O.L., Møller-Pedersen, B.: Virtual classes: A powerful mechanism in object-oriented pro-
gramming. In: Conference proceedings on Object-oriented programming systems, languages and
applications, OOPSLA ’89, pp. 397–406. ACM, New York, NY, USA (1989). DOI 10.1145/74877.
74919

38. Odersky, M.: The Scala Language Specification, version 2.4. Tech. rep., Programming Methods Lab-
oratory, EPFL (2007)

39. Ossher, H., Tarr, P.: Hyper/J: multi-dimensional separation of concerns for Java. In: Proceedings of
the 22nd international conference on Software engineering, ICSE ’00, pp. 734–737. ACM, New York,
NY, USA (2000). DOI 10.1145/337180.337618

40. Ostermann, K.: Dynamically Composable Collaborations with Delegation Layers. In: B. Magnusson
(ed.) ECOOP 2002 — Object-Oriented Programming, Lecture Notes in Computer Science, vol. 2374,
pp. 89–110. Springer (2002). DOI 10.1007/3-540-47993-7 4

48 Lorenzo Bettini et al.

41. Rosenmüller, M., Siegmund, N., Saake, G., Apel, S.: Code generation to support static and dynamic
composition of software product lines. In: Proceedings of the 7th international conference on Gen-
erative programming and component engineering, GPCE ’08, pp. 3–12. ACM, New York, NY, USA
(2008). DOI 10.1145/1449913.1449917

42. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented Programming of
Software Product Lines. In: J. Bosch, J. Lee (eds.) Software Product Lines: Going Beyond
(SPLC 2010), Lecture Notes in Computer Science, vol. 6287, pp. 77–91. Springer (2010). DOI
10.1007/978-3-642-15579-6 6

43. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-oriented programming.
In: Proceedings of the tenth international conference on Aspect-oriented software development,
AOSD ’11, pp. 43–56. ACM, New York, NY, USA (2011). DOI 10.1145/1960275.1960283

44. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings of the 2nd International
Workshop on Feature-Oriented Software Development, FOSD ’10, pp. 49–56. ACM, New York, NY,
USA (2010). DOI 10.1145/1868688.1868696

45. Smaragdakis, Y., Batory, D.: Mixin layers: an object-oriented implementation technique for refine-
ments and collaboration-based designs. ACM Trans. Softw. Eng. Methodol. 11(2), 215–255 (2002).
DOI 10.1145/505145.505148

46. Strniša, R., Sewell, P., Parkinson, M.: The java module system: core design and semantic definition.
In: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, OOPSLA ’07, pp. 499–514. ACM, New York, NY, USA (2007). DOI
10.1145/1297027.1297064

47. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N degrees of separation: multi-dimensional separa-
tion of concerns. In: Proceedings of the 21st international conference on Software engineering, ICSE
’99, pp. 107–119. ACM, New York, NY, USA (1999). DOI 10.1145/302405.302457

48. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines. In: Proceedings of
the 6th international conference on Generative programming and component engineering, GPCE ’07,
pp. 95–104. ACM, New York, NY, USA (2007). DOI 10.1145/1289971.1289989

49. Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., Saake, G.: Analysis Strategies for Soft-
ware Product Lines. Tech. Rep. FIN-004-2012, School of Computer Science, University of Magde-
burg, Germany (2012). URL http://www.cs.uni-magdeburg.de/inf_media/downloads/

forschung/technical_reports_und_preprints/2012/04_2012.pdf

50. Torgersen, M.: The Expression Problem Revisited. In: M. Odersky (ed.) ECOOP 2004 — Object-
Oriented Programming, Lecture Notes in Computer Science, vol. 3086, pp. 123–146. Springer (2004).
DOI 10.1007/978-3-540-24851-4 6

51. Zenger, M., Odersky, M.: Independently extensible solutions to the expression problem. In: FOOL
(2005)

