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Università degli Studi di Torino

Dipartimento di Matematica

Scuola di Dottorato in Scienza ed Alta Tecnologia

Ciclo XXVI

Neural dependency structures:

mathematical models and
statistical methods

Elisa Benedetto

Advisor: Prof. Laura Sacerdote

Anni Accademici: 2011–2013

Settore Scientifico-disciplinare di afferenza: MAT/06
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Abstract

Neural information processing is a challenging topic. Mathematicians, physicists, biologists

and computer scientists have devoted important efforts to the study of this subject since the

second half of the last century. However, despite important improvements in our knowledge,

we are still far from a complete comprehension of the problem.

Many experimental data show that one of the primary ingredients of neural information

processing is the dependency structure between the involved variables. However many clas-

sical mathematical neural models and the associated statistical tools for their analysis are

typically based on independence assumptions. Actually the independence hypothesis often

makes a model simpler and mathematically tractable, but also farther from the real nature

of the problem.

To improve our knowledge of the features related to dependency properties, new models

should be proposed. Furthermore specific methods for the study of dependency between the

variables involved should be developed. The aim of this thesis is to give a contribution to

this subject. In particular we consider a two-compartment neural model. It accounts for

the interaction between different parts of the nerve cell and seems to be a good compromise

between mathematical tractability and an improved realism. Then we develop suitable math-

ematical methods for the statistical analysis of this model as well as a method to estimate

the neural firing rate in the presence of dependence.
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Introduction

Independence assumptions are typical of many stochastic models. They are often due

more to convenience than to the nature of the problem at hand. However, there are

situations where neglecting dependence effects can affect the realism of a model. In-

deed the introduction of statistical positive or negative dependence leads to a better

understanding of the structure of multivariate distributions and multivariate models,

arising in many applications.

An important scientific field, where the study of dependency structures is becoming

more and more important, is computational neuroscience. It is an interdisciplinary

science that links cognitive science, psychology, electrical engineering, computer sci-

ence, physics and mathematics to model brain function in terms of neural information

processing properties.

A neuron is an electrically excitable cell that processes and transmits information

through electrochemical signals, called action potentials. They are elicited whenever

the electrical voltage of a neuron reaches a characteristic voltage threshold, as a con-

sequence of external stimulations.

The activity of neurons is frequently described by renewal point process models,
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2 Introduction

which assume the statistical independence and identical distribution of the intervals

between subsequent action potentials. However, the assumption of independence

must be questioned for many different types of neurons. Indeed, thanks to more

sophisticated neural recording techniques, it is clear that dependencies have a fun-

damental role in neural information processing [35, 82].

The phenomenon of significant serial correlation of the intervals between subsequent

action potentials is a common property of neurons in various systems. In the sensory

periphery it is observed in the sensory ganglion receptors of a paddle fish [83] and

in the ganglion cells of a goldfish retina [74]. In central parts of mammalian brain,

the same serial dependencies are reported in primate sensory cortex [73] and more

recently in rat cortical neurons [34, 82].

The aim of this thesis is the development of stochastic models, computational proba-

bility methods and statistical techniques to analyse the dependency structures arising

in neural activity.

However all these mathematical skills to detect and study dependency structures can

be generalized and applied to other fields.

For instance, modelling the complex dependency structures of financial variables,

such as asset returns in massive markets, is a fundamental research problem in the

financial domain. Its extreme importance is partially demonstrated in the 2007 global

financial crisis. That financial imbalance was originated from the mortgage market in

the United States and it quickly spread to every cell of the global financial system. If

early precautionary measures are taken according to the fundamental understanding

of the global financial dependency structure, some of these crises may be avoided.

Actually large scale organizations consist of interdependent units, typically linked via

information technology infrastructures. Furthermore, they increasingly collaborate

and interact with other organizations, due to intense global competition and com-

plexity of modern products and services. Security risk assessment and mitigation in

such large scale organizations requires analysis of complex networks of dependencies

that are often only partially observable.

Similar problems arise in the fields of social networks, epidemiology, demography
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and survival analysis. It is usually assumed that individuals, forming a social sys-

tem, are independent. However, they share the same environment or the same load,

like parents and children in family disease aggregation. Hence the behaviour of one

individual may affect the other components of the system, following more or less

simple interaction networks.

Thesis objective and structure

The objective of this thesis is the mathematical analysis of the dependency struc-

tures arising in neural dynamics. In the main chapters of this thesis (Chapters 3, 4,

5 and 6) we analyse a particular class of neural models, which are able to reproduce

these dependency structures. Moreover we provide computational probability meth-

ods and statistical techniques for a comprehensive mathematical study of the neural

information processing in presence of dependence.

The first two chapters provide the necessary background for a better understanding

of the following main chapters.

Chapter 1 is devoted to the mathematical background. In particular we introduce

some important dependency measures, which are used throughout the thesis. Then

we shortly review some notions on stochastic processes, recalling the definitions of

Gauss-Markov diffusion processes, simple point processes and first passage time of

a diffusion process. The last part of the first chapter is devoted to the probability

density function estimation problem, recalling some well-known estimation methods

in presence of both independent and dependent sample random variables.

Chapter 2 gives an overview of the neuronal background of this thesis, describing the

principal elements of neuroanatomy and neurophysiology. Then we provide a brief

review of existing mathematical neural models. In particular we focus our attention

on two classes of stochastic neural models: the leaky integrate-and-fire models and

the two-compartment neural models.
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The leaky integrate-and-fire models owe their success to their relative simplicity

jointly with their reasonable ability to reproduce neural characteristics. However

they completely disregard the cellular structure of a neuron, losing some important

features of the neural dynamics. On the other hand, two-compartment neural mod-

els account for the neuron geometry and seem to be a good compromise between

mathematical tractability and an improved realism.

Chapter 3 is devoted to a comprehensive description of the two-compartment neural

model introduced in [69]. In particular we focus on a statistical analysis of new neu-

ral features that this model is able to reproduce.

The most important novelty of this model is the ability to reproduce some depen-

dency structures which arise from particular choices of the model parameters. We use

dependency measures, that are unusual in the neural literature, like the Kendall’s

tau [64] and the notion of copula [84]. In particular we show that an increase in

external input intensity increases the strength of the observed dependencies.

Besides its physiological functioning, a neuron is an electrically excitable cell that

processes and transmits information through sequences of action potentials. One of

the central questions in theoretical neuroscience is how to read out the input infor-

mation from a sequence of action potentials in an accurate and efficient way.

A sequence of action potentials is typically stochastic in nature, due to the variability

in the input received by neurons. Hence, one of the prerequisites in studying the neu-

ral information processing is knowing the expression of the probability distribution

of the intervals between subsequent action potentials. Mathematically these inter-

vals are often modelled by the first passage time of an underling stochastic process

through a particular threshold.

One of the most widely discussed problem in probability is the distribution of dif-

ferent first passage times that can be considered in the applications. As regard the

first passage time problem of one-dimensional diffusion processes, many numerical

and analytical solutions already exist, while in the fields of multivariate diffusion

processes there are still many open problems.
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In Chapter 4 we introduce the first passage time problem of one component of a bi-

variate stochastic process, which has many applications including the two-compartment

neural model described in Chapter 3. We prove that the probability density function

of this first passage time is the unique solution of a new integral equation and we

propose a numerical algorithm for its solution. The convergence properties of this

algorithm are discussed. Then, in Chapter 5 we apply this numerical algorithm to

find the marginal and joint distributions of the intervals between subsequent action

potentials, simulated by the two-compartment neural model of Chapter 3.

Another prerequisite to understand the neural information processing is the rate of

occurrence of action potentials. Indeed a traditional coding scheme assumes that

most information about the external stimuli to a neuron is contained in the propor-

tion of action potentials per time unit.

The proportion of events of the same kind per time unit is stochastically modelled

by the hazard rate functions of a simple point stochastic process.

In case of independent and identically distributed (i.i.d.) sample random variables,

many parametric and non-parametric hazard rate function estimators already exist.

On the contrary the hazard rate estimation problem in presence of dependence is

almost totally ignored in the literature.

In Chapter 6 we provide two non-parametric estimators for the unconditional and

conditional hazard rate functions of a simple point process, in presence of depen-

dence and we prove their convergence properties. Then we apply these estimators to

solve the neural coding rate estimation problem, in presence of dependent intervals

between subsequent action potentials.





CHAPTER 1

Mathematical Background

1.1 Measures of dependence

Dependency structures between random variables play an important role in different

fields, such as demography, economics, epidemiology, signal processing and neuro-

science. For this reason tools to measure the dependence between random variables

and to analyse their joint behaviour are necessary.

In the literature there are several indices of dependence. In Section 1.1.1 we revise

two of them: the correlation coefficient ρ and the Kendall’s τ . In Chapter 3 we use

the properties of these indices to detect the presence of dependent variables in the

description of a single neuron dynamics.

Copulas are mathematical objects increasingly used to describe the joint behaviour

of random variables. In section 1.1.2 we introduce basic concepts on copulas, neces-

sary for the understanding of Chapter 5 and Chapter 6, while we refer to [39, 41, 61,

84, 117, 118] for a detailed introduction to copulas.

7



8 Chapter 1. Mathematical Background

1.1.1 Correlation coefficient ρ and Kendall’s τ

The correlation coefficient ρ is a popular measure of linear dependence ([78], Ch. 4).

Definition 1.1.1. The correlation coefficient ρ of the random variables X and Y is

the ratio between their covariance and the product of their standard deviations:

ρ :=
Cov(X,Y )√

V ar(X)
√
V ar(Y )

=
E[(X − E(X))(Y − E(Y ))]√

V ar(X)
√
V ar(Y )

. (1.1)

Given a set of n observations {(xi, yi), i = 1, . . . , n} of the bivariate random variable

(X,Y ), a correct estimator of the covariance between X and Y is∑n
i=1(xi − x̄)(yi − ȳ)

n− 1
. (1.2)

Here x̄ and ȳ denote the sample means associated to X and Y , respectively.

An estimator ρ̂ of the correlation coefficient (1.1) is

ρ̂ =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)SxSy
, (1.3)

where Sx and Sy are the sample standard deviations of X and Y , respectively.

The correlation coefficient ρ is commonly used due to its simplicity and low com-

putational cost. However, it is well known that correlation is not equivalent to

dependence:

a) two independent random variables are surely uncorrelated (ρ = 0), as their

covariance is zero. On the contrary, uncorrelated random variables are not

necessarily independent. ρ = 0 implies independence if and only if the random

variables are normally distributed.

b) the correlation coefficient ρ detects only linear dependencies (first line of Table

1.1). Hence non-linear dependence between random variables does not prevent

uncorrelation.

When non-linear dependencies are involved, the Kendall’s tau, defined in [64], is a

more reliable measure of dependence (see [38] and Table 1.1).
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X Y ρ(X,Y ) τ(X,Y )

uniform on [0, 1] 5X 1 1

exponential with mean 1 X2 0.89 1

standard normal eX 0.77 1

Table 1.1: Comparison between the correlation coefficient ρ and the Kendall’s τ

between perfectly dependent random variables X and Y . The correlation coefficient

ρ correctly detects the perfect correlation between the random variables only in case

of linear dependence (first line).

Definition 1.1.2. The Kendall’s τ of the random variables X and Y is the difference

between the probabilities of concordance and discordance for two independent copies

(X1, Y1) and (X2, Y2) of the bivariate random variable (X,Y ), that is

τ := P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] . (1.4)

Given a sample of n observations {(xi, yi), i = 1, . . . , n} of the bivariate random

variable (X,Y ), the couples (xi, yi) and (xj , yj) are concordant if (xi−xj)(yi−yj) > 0,

i 6= j, otherwise they are discordant.

An estimator τ̂ of the Kendall’s τ (1.4) is

τ̂ =
(number of concordant pairs)− (number of discordant pairs)

n(n− 1)/2
(1.5)

where n(n− 1)/2 is the total number of pairs.

Both the estimator (1.3) and (1.5) are unbiased and range between -1 and 1:

a) in case of positive dependence both the coefficients are close to 1;

b) in case of negative dependence both the coefficients are close to -1;

a) in case of independence both the coefficients are close to 0.

However the value of these estimators is strongly dependent on the shape of the

dependence law between the involved random variables, as shown by Table 1.1.
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1.1.2 Copulas

Definition 1.1.3. A bivariate copula is a function C : [0, 1]2 → [0, 1] with the

following properties [84]:

• C(u, 0) = C(0, u) = 0, ∀u ∈ [0, 1];

• C(1, u) = C(u, 1) = u, ∀u ∈ [0, 1];

• C is 2-increasing, i.e. C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0, for all

(u1, v1), (u2, v2) ∈ [0, 1]2 with u1 ≤ u2 and v1 ≤ v2 .

The importance of copulas is strongly related with the results expressed by Sklar’s

theorem [117]. It establishes a correspondence between joint distributions and cop-

ulas.

Theorem 1.1.4 (Sklar’s Theorem). Let H be a bivariate distribution function

H(x1, x2) = P(X1 ≤ x1, X2 ≤ x2)

with marginal distribution functions

F1(x1) = P(X1 ≤ x1) =

∫ +∞

−∞
H(x1, x2)dx2

F2(x2) = P(X2 ≤ x2) =

∫ +∞

−∞
H(x1, x2)dx1

where X1 and X2 are generic random variables.

Then there exists a bivariate copula C such that

H(x1, x2) = C(F1(x1), F2(x2)). (1.6)

Conversely, for any couple of univariate distribution functions F1(x1) = P(X1 ≤ x1)

and F2(x2) = P(X2 ≤ x2) of two random variables X1 and X2 and any bivariate

copula C, the function

C(F1(x1), F2(x2)) (1.7)

is the joint distribution function of X1 and X2 with marginals F1 and F2.

Furthermore, if F1 and F2 are continuous, then the copula C is unique.
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Remark 1.1.5. Definition 1.1.3 and Sklar’s Theorem 1.1.4 can be generalized to the

multivariate case with univariate marginals. We refer to [39, 61, 117, 118] for a more

general analysis of copulas, as in this thesis we consider only bivariate copulas.

Copulas separate dependency properties from marginal distributions, while these two

features are mixed in the joint distribution functions. Moreover copulas are invariant

under increasing and continuous transformations.

There exist different families of copulas, corresponding to different dependency struc-

tures. A graphical method to classify copulas is based on their associated scatterplots.

In this thesis we make use of the Gaussian copula (Chapter 5) and the independent

copula (Chapter 6).

The Gaussian copula is obtained by projecting a bivariate normal distribution on

the unit square [0, 1]2. For a given correlation coefficient ρ, the Gaussian copula is

Cρ(u, v) = φρ
(
φ−1
ρ (u), φ−1

ρ (v)
)
. (1.8)

Here φρ is the bivariate normal distribution with mean vector zero and correlation

coefficient ρ, φ−1
ρ denotes its inverse. Note that if in (1.6) one uses a Gaussian

copula and non-Gaussian marginal distribution functions, the joint distribution is

not a bivariate normal distribution.

A particular copula is the independent copula:

Π(u, v) = uv. (1.9)

It coincides with the joint distribution function of two independent uniform random

variables on [0, 1]. Therefore the scatterplot of an independent copula coincides with

a sample of randomly spaced points in the unit square [0, 1]2, as in Figure 1.2.

In Figure 1.1 and 1.2 we compare the scatterplots of a bivariate Gaussian copula

with correlation coefficient ρ = 0.9 and a bivariate independent copula.

The shape of a copula C(u, v) can be determined from modelling arguments or can

be argued from plots and confirmed through statistical tests. In this thesis we follow
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Figure 1.1: Scatterplot of a

Gaussian copula (ρ = 0.9).

Figure 1.2: Scatterplot of an

independent copula.

this last procedure, using the goodness-of-fit test proposed in [37] and revised in [42].

It is based on the comparison of the empirical copula with a parametric estimate of

the copula derived under the null hypothesis.

Definition 1.1.6. The empirical copula of random variables X and Y is defined as

Cn(u, v) :=
1

n

n∑
i=1

1(Ui ≤ u, Vi ≤ v), (u, v) ∈ [0, 1]2, (1.10)

where 1 is the indicator function.

Given n independent copies (Xi, Yi), i = 1, . . . , n, of the random vector (X,Y ), Ui

and Vi denote the associated pseudo-observations

Ui =
nF̂X(Xi)

n+ 1
, (1.11)

Vi =
nF̂Y (Yi)

n+ 1
. (1.12)

Here F̂X and F̂Y are the empirical distribution functions of X and Y , respectively,

F̂X(t) =
1

n

n∑
i=1

1(xi ≤ t), (1.13)

F̂Y (t) =
1

n

n∑
i=1

1(yi ≤ t), (1.14)
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where xi and yi, i = 1, . . . n, are n observations of the random variables X and Y ,

respectively.

Copula goodness-of-fit tests verify whether a copula C belongs to an assumed class

of copulas C0 = {Cθ : θ ∈ O}, where O is an open subset of Rp, p ≥ 1, and θ is an

unknown parameter of the copula.

A natural testing procedure consists in studying the “distance” between the empirical

copula Cn and a parametric estimation Cθn of the assumed copula under the null

hypothesis H0 : C ∈ C0. In [37] goodness-of fit tests based on the empirical distance

Cn =
√
n(Cn − Cθn). (1.15)

are briefly considered . Their implementation is examined in details in [42], where

the authors consider, as test statistic, a rank-based version of the Cramér-Von Mises

statistic [19, 128]:

Sn =

∫ 1

0

∫ 1

0
Cn(u, v)2dCn(u, v). (1.16)

Large values of this statistic lead to reject the null hypothesis H0.

The test p-values can be deduced from the limiting distribution of Sn, which depends

on the asymptotic behaviour of Cn. The convergence of the latter follows from

appropriate regularity conditions on the parametric family C0 and the sequence {θn}
of estimators. In practice, the asymptotic distribution of Sn cannot be tabulated

and approximate p-values can only be obtained via particular adapted Monte Carlo

methods or specific parametric bootstrap procedures.

This copula goodness-of-fit test is consistent, i.e. if the null hypothesis is false it is

rejected with probability 1 as n→∞ (for the complete proof see [42]).

Remark 1.1.7. A possible improvement of this copula goodness-of-fit test concerns

a better definition of the empirical copula (1.10).

Despite their good asymptotic properties, the empirical distribution functions (1.13)

and (1.14) exhibit a slow rate of convergence, see for example [94]. Therefore, we

may need to resort to more reliable techniques to estimate the required distribution

functions. In [52] alternative estimators, like kernel-based and nearest neighbour

estimators, are proposed and their performances compared.
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1.2 Stochastic processes

The largest part of modelling instances, from physics to chemistry, engineering, eco-

nomics, biology or neuroscience, deals with random phenomena evolving in time.

Stochastic processes are the mathematical tools, devoted to model these instances.

Indeed they concern sequences of random events governed by probabilistic laws [62].

Definition 1.2.1. A d-dimensional stochastic process is a collection of multivariate

random variables {X(t), t ∈ T}, defined on the same probability space (Ω,A,P) and

taking values in a subset of Rd. The set T is a subset of R, called parameter set.

Any stochastic process is formally function of two variables: ω ∈ Ω and t ∈ T . If we

fix ω ∈ Ω, we obtain a function of t, called trajectory of the process. Otherwise if we

fix t ∈ T we obtain a random variable on (Ω,A,P).

Besides their general definition, stochastic processes can be classified according to

their specific stochastic properties, as for instance Markov, Gaussian or Martingale

properties. Here we revise two families of stochastic processes, applied in the follow-

ing sections, while we refer to [30, 62, 63, 72, 102, 107, 127] for a complete introduction

to stochastic processes.

In Section 1.2.1 we introduce the class of Gauss-Markov diffusion processes. They

are used in Section 2.2.2, to define a two-compartment model of a neuron. In Section

1.2.2 we describe the class of simple point processes. Their fundamental properties

are applied in Chapter 6 to derive strongly consistent estimators of the hazard rate

functions of a sequence of events.

In some applications of stochastic processes (e.g. biology, neuroscience and eco-

nomics), the process’ first attainment of a boundary is the random variable of interest.

It is called first passage time (FPT). In Section 1.2.3 we formally defined the FPT

and the FPT problem, i.e. the study of the FPT distribution. Moreover in this sec-

tion we introduce a particular FPT problem, which is solved numerically in Chapter

4 for the class of Gauss-Markov processes.
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1.2.1 Gauss-Markov processes and their properties

An important class of stochastic processes is the class of diffusion stochastic processes

[5, 63, 95, 102].

Definition 1.2.2. A d-dimensional stochastic process {X(t), t ∈ T} on (Ω,A,P),

taking values in E ∈ Rd, is a d-dimensional diffusion process if its trajectories are

continuous with probability 1 and it satisfies the Markov property:

P(X(t) ∈ B|Fτ ) = P(X(t) ∈ B|X(τ)), ∀t > τ, t, τ ∈ T, (1.17)

where B is a Borel subset of Rd and Fτ is the process history until τ .

A d-dimensional diffusion process is completely characterized by a d-dimensional vec-

tor µ(x, t) = (µ1(x, t), µ2(x, t), . . . , µd(x, t)), called drift, and a d×d positive defined

matrix Q(x, t) = [σij(x, t)]i,j=1,2,...d, called diffusion matrix [63]. Their components

are defined by the following limits, for every i, j = 1, 2, . . . , d,

µi(x, t) = lim
h→0+

1

h
E [Xi(t+ h)−Xi(t)|X(t) = x] , (1.18)

σij(x, t) = lim
h→0+

1

h
E [(Xi(t+ h)−Xi(t))(Xj(t+ h)−Xj(t))|X(t) = x] , (1.19)

where Xi denotes the i-th component of the d-dimensional process X.

Thanks to the Markov property, the transition density function

f (x, t | y, t0) =
∂

∂x
P(X(t) < x|X(t0) = y), t > t0, (1.20)

of a diffusion process X satisfies the following key equations [63]:

• the Chapman-Kolmogorov equation

f (x, t | y, t0) =

∫
Rd
f (x, t | z, u) f (z, u | y, t0) dz , (1.21)
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• the Kolmogorov backward equation

∂f (x, t | y, t0)

∂t0
+

d∑
i=1

µi(y, t0)
∂f (x, t | y, t0)

∂yi

+
1

2

d∑
i=1

d∑
j=1

σij(y, t0)
∂2f (x, t | y, t0)

∂yi∂yj
= 0 , (1.22)

• the Kolmogorov forward equation

∂f (x, t | y, t0)

∂t
+

d∑
i=1

∂

∂xi
(µi(x, t)f (x, t | y, t0))

− 1

2

d∑
i=1

d∑
j=1

∂2

∂xixj
(σij(x, t)f (x, t | y, t0)) = 0 , (1.23)

where x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd).

Any d-dimensional diffusion process {X(t), t ∈ T} is solution of a particular stochas-

tic differential equation: dX(t) = m(X(t), t)dt+ G(X(t), t)dB(t), t ≥ t0

X(t0) = y
(1.24)

where B(t) is a d-dimensional standard Brownian motion. Here m(x, t) and G(x, t)

are respectively a d-dimensional vector and a d × d matrix, whose components

are measurable Lipschitz functions with respect to x. In particular m(x, t) and

G(x, t)G′(x, t) represent respectively the drift and the diffusion matrix of the dif-

fusion process solution of (1.24). Here the superscript ′ denotes the transpose of a

matrix. Therefore, another way to characterize a diffusion process is through the

stochastic differential equation of which it is solution.

Definition 1.2.3. A d-dimensional diffusion process with linear drift, X, is the

solution of a linear (in the narrow sense) stochastic differential equation [5] dX(t) = [A(t)X(t) + M(t)] dt+ Σ(t)dB(t), t ≥ t0

X(t0) = y
(1.25)
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where A(t) and Σ(t) are d× d matrices, M(t) is a d-dimensional vector and B(t) is

a d-dimensional standard Brownian motion.

The solution of (1.25), corresponding to an initial value y at time t0, is

X(t) = φ(t, t0)

[
y +

∫ t

t0

φ(u, t0)−1M(u)du+

∫ t

t0

φ(u, t0)−1G(u)dB(u)

]
, (1.26)

where φ(t, t0) is the solution of the homogeneous matrix equation

d

dt
φ(t, t0) = A(t)φ(t, t0) with φ(t0, t0) = I. (1.27)

For t ≥ 0, the diffusion process has a D-dimensional distribution with mean vector

m(t |y, t0 ) := E(X(t)|X(t0) = y) = φ(t, t0)

[
y +

∫ t

t0

φ(u, t0)−1M(u)du

]
(1.28)

and D ×D conditional covariance matrix

Q(t |y, t0 ) = φ(t, t0)

[∫ t

t0

φ(u, t0)−1G(u)G(u)
′
(φ(u, t0)−1)

′
du

]
φ(t, t0)

′
, (1.29)

where the superscript ′ denotes the transpose of a matrix.

In the autonomous case, A(t) = A, M(t) = M and Σ(t) = Σ, expressions (1.28)

and (1.29) are simplified:

m(t |y, t0 ) = eA(t−t0)

[
y +

∫ t

t0

e−A(u−t0)Mdu

]
(1.30)

Q(t |y, t0 ) = eA(t−t0)

[∫ t

t0

e−A(u−t0)GG
′
e−A

′
(u−t0)du

]
eA
′
(u−t0) (1.31)

=

∫ t

t0

eA(t−u)GG
′
eA
′
(t−u)du.

Definition 1.2.4. When the initial condition y is constant or Gaussian, the solution

of (1.25) is a Gaussian process, frequently known as Gauss-Markov diffusion process

[5].
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Examples of Gauss-Markov diffusion processes are the Integrated Brownian Motion

(IBM), the Integrated Ornstein Uhlenbeck Process (IOU). The underlying process

of the two-compartment neural model, described in Section 2.2.2, is also a Gauss-

Markov diffusion process.

If det Q(t | y, t0) 6= 0 for each t, the transition probability density function (1.20) of

any two-dimensional Gauss-Markov diffusion process is

f (x, t | y, t0) =
exp

{
−1

2 [x−m(t |y, t0 )]
′
Q(t |y, t0 )−1 [x−m(t |y, t0 )]

}
2π
√

det Q(t | y, t0)
(1.32)

and verifies the Chapman-Kolmogorov equation (1.21) [95].

1.2.2 Simple point processes and their properties

Definition 1.2.5. A point process on the real line is a stochastic process {N(t), t ≥
0}, that counts the number of events on [0, t] [18, 21]. Therefore:

• N(t) ≥ 0;

• N(t) is an integer.

• If s ≤ t then N(s) ≤ N(t);

• If s ≤ t then N(t)−N(s) is the number of events in (s, t].

Definition 1.2.6. A stochastic point process on the real line N is called simple if

at any instant at most one single event occurs with probability 1:

P
{

lim
∆t→0

[N(t+ ∆t)−N(t)] = 0 or 1

}
= 1, ∀t ≥ 0. (1.33)

In Section 6 we consider a simple point process N = {N(t), t ≥ 0} on the probability

space (Ω,A,P), adapted to the natural filtration Nt = σ{N(τ), τ ≤ t} and observed

on a fixed time interval [0, L], 0 < L <∞.

We denote by l1, l2, . . . , lN(L) the ordered set of event instants in [0, L]. Then the

inter-event interval process {Ti = li − li−1, i ≥ 1 and l0 = 0} is determined by well-

defined non-negative random variables.
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To study a simple point process with inter-event intervals Ti, i ≥ 1, we need the

following additional filtrations:

Fi = σ{Tj , j = 1, 2, . . . , i}, i ≥ 1, (1.34a)

Gi = σ{(Tj , Tj+1), j = 1, 2 . . . , i}, i ≥ 1. (1.34b)

Note that (1.34a) represents the past history of the inter-event interval process, while

(1.34b) is the joint past history of an inter-event interval and its subsequent.

Denote by f1(t) the unconditional density function of T1 and by fi(t|Fi−1) the condi-

tional density function of Ti, i ≥ 2, given the history Fi−1. In Chapter 6 we express

these densities in terms of the associated hazard rate functions:

h1(t) = − d

dt
ln [S1(t)] =

f1(t)

S1(t)
, (1.35a)

hi(t|Fi−1) = − d

dt
ln [Si(t|Fi−1)] =

fi(t|Fi−1)

Si(t|Fi−1)
, i ≥ 2, (1.35b)

where S1(t) = 1 −
∫ t

0 f1(s)ds and Si(t|Fi−1) = 1 −
∫ t

0 fi(s|Fi−1)ds are the corre-

sponding survival functions.

Therefore

f1(t) = h1(t)S1(t) = h1(t) exp

(
−
∫ t

0
h1(u)du

)
, (1.36a)

fi(t|Fi−1) = hi(t|Fi−1)Si(t|Fi−1)

= hi(t|Fi−1) exp

(
−
∫ t

0
hi(u|Fi−1)du

)
. (1.36b)

Another important function in the theory of simple point processes is the conditional

intensity function. It measures the proportion of events per time unit, conditioned

on the past history of the process. In this thesis we express the conditional intensity

function in terms of the inter-event interval hazard rate functions (1.35a) and (1.35b),

as in [21] (Chapter 7).

Definition 1.2.7. The conditional intensity function of a stochastic simple point

process N is the following piecewise-defined function
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λ∗(t) :=

{
h1(t), (0 < t ≤ l1),

hi(t− li−1|Fi−1), (li−1 < t ≤ li, i ≥ 2).
(1.37)

Remark 1.2.8. Notice that λ∗(t) is a function of the point process history up to

time t. Hence it is itself a stochastic process λ∗(·, ω). It depends on a random event

ω through the realization of the inter-event interval process {Ti(ω), i ≥ 1}.

A well-known result on the conditional intensity function of a simple point process

is the so called time-rescaling theorem ([21], Ch. 7).

Theorem 1.2.9 (Time-rescaling theorem). Let N be a simple point process, with

bounded and strictly positive conditional intensity function λ∗(t). Define Λ∗(t) as

the point-wise integral

Λ∗(t) =

∫ t

0
λ∗(u)du . (1.38)

Then, under the random time transformation

t 7→ Λ∗(t) , (1.39)

the transformed process Ñ(t) = N(Λ∗−1(t)) is a unit-rate Poisson process.

Remark 1.2.10. The transformed inter-event intervals of Ñ(t) are

T̃i = Λ∗(li)− Λ∗(li−1) =

∫ li

li−1

λ∗(u)du,

where l0 = 0 and li, i ≥ 1, are the event instants of the original process. According

to Theorem 1.2.9, they are i.i.d. exponential random variables with mean 1.

1.2.3 FPT problems for multivariate stochastic processes

Definition 1.2.11. The FPT of a stochastic process is the random time taken by

the process to reach an assigned threshold for the first time. The analysis of the FPT

distribution is usually called, FPT problem.
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The FPT problem arises in many different fields, like neuroscience, reliability theory,

finance, and epidemiology ([93, 95, 119] and examples cited therein).

In some instances, the random variable of interest is the FPT of one of the compo-

nents of a multivariate stochastic process, as for the two-compartment neural model

defined in Section 2.2.2. In Chapter 4 we solve this problem numerically for a bivari-

ate Gauss-Markov diffusion process. Here we introduce the necessary notations.

Let X(t) = (X1(t), X2(t)), t ≥ t0, be a two-dimensional Gauss-Markov diffusion

process originated in y = (y1, y2) at time t0. The FPT of the second component

through a boundary S > y2 is:

T = inf {t ≥ t0 : X2(t) ≥ S} . (1.40)

Its probability density function is

g (t |y, t0 ) =
∂

∂t
P (T < t |X(t0) = y ) . (1.41)

Another quantity of interest is the probability density function of the bivariate ran-

dom variable (X1(T ), T ):

gc ((z, S), t |y, t0 ) =
∂2

∂z∂t
P (X1(T ) < z, T < t |X(t0) = y ) , (1.42)

z ∈ R, t ∈ [t0,∞], S > y2.

The following theorem links the transition probability density function (1.32) of a bi-

variate Gauss-Markov diffusion process X with the joint probability density function

(1.42).

Theorem 1.2.12. For x = (x1, x2) ∈ R2, with x2 > S,

P (X(t) > x|X(t0) = y) (1.43)

=

∫ t

t0

dϑ

∫ +∞

−∞
gc ((z, S), ϑ | y, t0)P (X(t) > x|X1(ϑ) = z,X2(ϑ) = S) dz

and

f (x, t | y, t0) =

∫ t

t0

dϑ

∫ +∞

−∞
gc ((z, S), ϑ | y, t0) f (x, t | (z, S), ϑ) dz. (1.44)
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Proof. Equation (1.43) is a consequence of the strong Markov property, as explained

in the following.

Let ϕ : R× (S,∞)→ R be a bounded, Borel measurable function and let FT be the

σ-algebra generated by the process X(t) up to the random time T . We get

E[ϕ(X(t))|X(t0) = y] = E[E[ϕ(X(t))|FT ; X(t0) = y]] (1.45)

= E[E[ϕ(X(t))|X(T )]]

=

∫ t

t0

dϑ

∫ +∞

−∞
E[ϕ(X(t))|X(ϑ) = (z, S)] gc((z, S), ϑ|y, t0)dz

where the first equality uses the double expectation theorem while the second one

uses the strong Markov property. Here expectations are with respect to the proba-

bility measure induced by the random variable X(t).

For ϕ(y) = 1{x1,∞}×{x2,∞}(y) we get (1.43). Finally, writing the conditional proba-

bility P (X(t) > x|X1(ϑ) = z,X2(ϑ) = S) as a double integral, by changing the order

of integration and differentiating (1.43) with respect to x1 and x2, we get (1.44).

Remark 1.2.13. Equation (1.44) is introduced in [50] and and we prove it in [6].

1.3 Probability density function estimation

The probability density function is a fundamental concept in probability theory and

statistics, as it gives a natural description of the distribution of continuous random

variables.

Definition 1.3.1. Let X be a continuous random variable. Then the probability

density function of X is a function f : R→ R such that:

a) f(x) ≥ 0, ∀x ∈ R;

b)
∫ +∞
−∞ f(x)dx = 1;

c) P(a ≤ X ≤ b) =
∫ b
a f(x)dx, ∀a, b ∈ R, a < b;
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In many instances we have a set of observed data, assumed to be a sample from an

unknown probability density function. The probability density function estimation

problem consists in the construction of an estimate of a probability density function

from sample data.

There is a wide variety of probability density function estimators for i.i.d. sample

random variables [90, 104, 105, 116]. In Section 1.3.1 we provide a brief summary of

the main methods for probability density function estimation.

However the i.i.d. assumption is too strong for many applications [35, 82]. Indeed in

many instances the dependence is very important, as it captures important features

of the system under study. In Section 1.3.2 we introduce two examples of probability

density function estimators in the presence of dependence. They are used in Chapter

6, to provide uniform strongly consistent estimators for a point process hazard rate

functions (1.35a) and (1.35b).

1.3.1 Estimators under the classical i.i.d hypothesis

There exist two different approaches to the probability density function estima-

tion problem. One approach is parametric. Assume that data are sampled from

a known probability distribution, with probability density function depending on an

unknown parameter. Then the underling probability density function could be esti-

mated by finding an estimator of the unknown parameter. The second approach is

non-parametric. It does not specify the underlying form of the distribution and it

estimates the probability density function directly from sample data.

Parametric estimation

The most popular method to estimate the unknown parameters of a probability den-

sity function is maximum likelihood estimation ([78], Ch. 7).

Suppose there is a sample (x1, x2, . . . , xn) of n i.i.d. observations, coming from a dis-

tribution with probability density function f(·) = f(· ; θ) depending on an unknown

parameter θ. The maximum likelihood estimation method selects the set of values

of the unknown parameter which maximize the joint probability density function of
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the observations

L(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi; θ),

called the likelihood function.

Intuitively, these values maximize the “agreement” of the underling probability dis-

tribution with the observed data.

Theorem 1.3.2. Let X1, X2, . . . , Xn be i.i.d. random variables having common den-

sity f(· ; θ). Assume that the support of f(· ; θ) is independent of θ and that f(· ; θ)
is differentiable with respect to θ. Then the maximum likelihood estimator θn is a

consistent estimator of θ, i.e. it converges almost surely (with probability 1) to θ [78]:

lim
n→+∞

|θn − θ| = 0 a.s. (1.46)

Here the subscript n denotes the sample size.

Non-parametric estimation

A commonly used non-parametric method to estimate the probability density func-

tion is the kernel density estimation.

Given a sample of n i.i.d. observations (x1, x2, . . . , xn), the kernel density estimator

of the underlying probability density function f is defined by

f̂n(x) :=
1

nhn

n∑
i=1

K

(
x− xi
hn

)
, (1.47)

where hn > 0 is a smoothing parameter, depending on the sample size n, called

bandwidth.

Here K is a symmetric non-negative function, called kernel function, such that∫ +∞

−∞
K(x)dx = 1,

lim
|x|→+∞

K(x) = 0.

In Table 1.2 we report some of the most common kernel functions.
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Uniform K(x) = 1
21{|x|≤1}

Triangular K(x) = (1− |x|)1{|x|≤1}

Gaussian K(x) = 1√
2π
e−x

2/2

Cosine K(x) = π
4 cos

(
π
2x
)
1{|x|≤1}

Table 1.2: The most common kernel functions. Here 1 denotes the indicator function.

Theorem 1.3.3. Let us assume that the underlying probability density function f

is continuous. Then taking a bounded variation kernel and choosing a suitable band-

width sequence {hn, n = 1, 2, . . .}, such that

lim
n→+∞

hn = 0, lim
n→+∞

nhn = +∞

the kernel density estimator (1.47) is a uniform strongly consistent estimator of f ,

i.e. it converges uniformly and almost surely (with probability 1) to f :

lim
n→+∞

sup
x∈R

∣∣∣f̂n(x)− f(x)
∣∣∣ = 0 a.s. (1.48)

The bandwidth of a kernel density estimator is a free parameter which exhibits a

strong influence on the resulting probability density function estimator. Indeed it
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changes the rate of convergence of the estimator [116]. The most common optimality

criterion used to select this parameter is to minimize the so called mean integrated

squared error:

MISE = E
[∫ +∞

−∞

(
f̂n(x)− f(x)

)2
dx

]
.

When Gaussian kernels are used and the underlying probability density function to

estimate is Gaussian, then it can be shown that the optimal choice for hn is

hn =

(
4σ̂5

3n

) 1
5

, (1.49)

where σ̂ is the sample standard deviation [116].

1.3.2 Estimators in presence of dependence

The probability density function estimators of Section 1.3.1 have good properties un-

der weak conditions. Indeed these estimators converge to the unknown probability

density function to estimate quickly as the sample size n tends to infinity (see The-

orem 1.3.3 and 1.3.2, for instance). The same convergence properties still hold even

if we relax the independence hypothesis. However in this case to ensure the almost

sure convergence of the estimators, we require stronger condition on estimators and

sample variables.

In this section we review some fundamental theorems that provide the uniform al-

most sure convergence of two non-parametric probability density function estimators,

in presence of dependent sample variables.

Estimator for unconditional density functions

In [56], Gyorfi proved the almost sure L2-convergence of a kernel-type probability

density function estimator for ergodic processes. Many other researchers, [9, 60, 124]

for instance, developed Gyorfi’s work until in [23] the uniform almost sure conver-

gence of a kernel-type probability density function estimator is proved. Here we

report a specific version of this result adapted to our aims.
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Let us consider an ergodic and stationary sequence {Ti, i = 1, 2, . . .} of inter-event

intervals from a simple point process N , with shared probability density function f .

A kernel-type estimator of this probability density function is defined as

f̂n(t) =
1

nbn

n∑
i=1

K

(
t− Ti
bn

)
, t ≥ 0, (1.50)

where the subscript n denotes the sample size.

Here {bn} is a sequence of positive real numbers such that

lim
n→+∞

bn = 0, lim
n→+∞

nbn = +∞. (1.51)

The function K(t) is a kernel function on R such that

K(t) > 0 ∀t ∈ R,
∫
R
K(t)dt = 1, lim

|t|→+∞
K(t) = 0. (1.52)

The uniform almost sure convergence of the kernel probability density function esti-

mator (1.50) depends on the following assumptions. Here fi(t|Fi−1) is the conditional

probability density function of Ti given the past history Fi−1, defined in (1.34a).

A1: The densities f(t) and fi(t|Fi−1) belong to the space C0(R) of real-valued

continuous functions on R tending to zero at infinity.

A2: The conditional probability density functions fi(t|Fi−1), i ≥ 2 are Lipschitz

with ratio 1, i.e.∣∣fi(t|Fi−1)− fi(t′|Fi−1)
∣∣ ≤ |t− t′| ∀t, t′ ∈ R .

A3: The kernel K(t) has bounded variation and it is Hölder with ratio L <∞ and

order γ ∈ [0, 1]: ∣∣K(t)−K(t′)
∣∣ ≤ L|t− t′|γ ∀t, t′ ∈ R .

Theorem 1.3.4. Let {N(t), t ≥ 0} be a simple point process with ergodic and sta-

tionary inter-event intervals {Ti, i ≥ 1}. Under assumptions A1 to A3, for all

sequences {bn} such that

lim
n→+∞

nb2n
log n

= +∞, (1.53)
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and any compact interval [0,M ] ⊆ R+, we have

lim
n→+∞

sup
t∈[0,M ]

∣∣∣f̂n(t)− f(t)
∣∣∣ = 0 a.s. (1.54)

Estimator for conditional density functions

Ould-Said [86] and Arfi [4] show the uniform almost sure convergence of a kernel-type

estimator for conditional probability density functions. Here we provide a version of

their result, adapted to our specific goals.

Let {Ti, i = 1, 2, . . .} be a stationary and ergodic sequence of inter-event intervals

from a simple point process, with shared probability density function f . Here our

aim is to provide a kernel-type estimator of the shared conditional density function

f(t|τ) of an inter-event interval Ti+1 given its preceding Ti = τ . Let us recall that

the formal definition of this probability density function is

f(t|τ) =
f(τ, t)

f(τ)
, (1.55)

where f(τ, t) is the shared joint probability density function of couples (Ti, Ti+1),

i ≥ 1, of subsequent inter-event intervals. Here the density function f plays the

role of marginal probability density function of Ti, since the inter-event intervals are

ergodic and stationary.

A kernel-type estimator of the conditional probability density function (1.55) is

f̂n(t|τ) =
f̂n(τ, t)

f̂n(τ)
, (1.56)

where

f̂n(τ, t) =
1

nb2n

n∑
i=1

K1

(
τ − Ti
bn

)
K2

(
t− Ti+1

bn

)
, (1.57)

f̂n(t) =
1

nbn

n∑
i=1

K1

(
τ − Ti
bn

)
. (1.58)

Here the subscript n denotes the sample size and {bn} is a sequence of positive real

numbers, such that bn → 0 and nbn → +∞ as n → +∞. Kj , j = 1, 2, are kernel
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functions such that lim|u|→+∞Kj(u) = 0. Moreover, we assume that these kernels

have bounded variation and that K1 is strictly positive.

The uniform almost sure convergence of the kernel probability density function es-

timator (1.56) depends on the following hypotheses. Here fi(τ, t|Gi−1) is the condi-

tional probability density function of the couple (Ti, Ti+1) given the joint past history

Gi−1, defined in (1.34b).

H1: The joint densities f(τ, t) and fi(τ, t|Gi−1) belong to the space C0(R2) of real-

valued continuous functions on R× R tending to zero at infinity.

H2: The marginal densities f(t) and fi(t|Fi−1) belong to the space C0(R) of real-

valued continuous functions on R tending to zero at infinity.

H3: The conditional density functions fi(τ, t|Gi−1) and fi(t|Fi−1) are Lipschitz with

ratio 1,∣∣fi(τ, t|Gi−1)− fi(τ ′, t′|Gi−1)
∣∣ ≤ |τ − τ ′|+ |t− t′| (τ, τ ′), (t, t′) ∈ R× R,∣∣fi(t|Fi−1)− fi(t′|Fi−1)

∣∣ ≤ |t− t′| (t, t′) ∈ R× R .

H4: Let [0,M ] ⊆ R+ be a compact interval. We assume that for all t in an ε-

neighbourhood [0,M ]ε of [0,M ] there exists γε > 0 such that f(t) > γε.

H5: The kernels Kj , j = 1, 2, are Hölder with ratio L <∞ and order γ ∈ [0, 1],∣∣K1(τ)−K1(τ ′)
∣∣ ≤ L|τ − τ ′|γ (τ, τ ′) ∈ R× R∣∣K2(t)−K2(t′)
∣∣ ≤ L|t− t′|γ (t, t′) ∈ R× R

Remark 1.3.5. These assumptions are satisfied by any ergodic process with suffi-

ciently smooth probability density functions (see [23] for details).

Theorem 1.3.6. Let {N(t), t ≥ 0} be a simple point process with ergodic and station-

ary inter-event intervals {Ti, i ≥ 1}. Under hypotheses H1 to H5, for all sequence

{bn} satisfying

lim
n→+∞

nb4n
lnn

= +∞ , (1.59)
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and any compact interval [0,M ] ∈ R+, we have

lim
n→+∞

sup
(τ,t)∈[0,M ]2

∣∣∣f̂n(t|τ)− f(t|τ)
∣∣∣ = 0 a.s. (1.60)

Remark 1.3.7. The bandwidth bn strongly influences the rate of convergence of the

kernel density estimators (1.50) and (1.56). However in case of dependent sample

variables we don’t know an optimality criterion to select these parameters yet, as in

the classical case of i.i.d. sample variables.



CHAPTER 2

Neuronal background

The study of the nervous system dates back to the ancient Egypt. Manuscripts since

1700 B.C. indicate that the Egyptians had some knowledge about symptoms of brain

damage. However the study of the brain has become a branch of science only af-

ter the invention of the microscope and the development of a staining procedure by

Camillo Golgi during the late 1890s. This procedure uses a silver chromate salt to

reveal the intricate structures of individual neurons.

The scientific study of the nervous system has had a new significant increase dur-

ing the second half of the twentieth century, due to advances in electrophysiology

and more recently in molecular biology. Immediately after the Second World War,

Hodgkin and Huxley published the results of the first recording of an intracellular

nervous signal, obtained by inserting a fine capillary electrode inside the nerve fibre

of the giant axon of a squid. Nowadays neuroscientists are able to study the nervous

system from different viewpoints.

31
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For about a century the Golgi technique has been very successful in staining neurons.

It enables the semi-automatic reconstruction and the quantitative analysis of their

neuronal branching patterns (e.g. [53] and [87]). In recent times it is used in com-

bination with other classical staining methods to achieve a quantitative statistical

description of brain tissue in terms of the density of neurons, synapses, and total

length of axons and dendrites.

Further progresses are supported by the spread of modern imaging techniques. They

allow digital reconstructions of dendritic and axonal morphology. In the last few

decades, the development of intracellular labelling [20, 120], using various visualiza-

tion methods like fluorescent glyco-protein reaction [79], have led to a large output

of high resolution data about dendritic morphology.

In addition, these new visualization approaches in conjunction with traditional in

vitro (slice conditions) microscopy reduce the sampling bias due to limited access to

some neuron types in vivo (anaesthetized animal) and variable cell survival during

slice preparation.

However, in vivo visualizations enable the observation of developmental and activity-

dependent morphological changes, such as individual spine plasticity [77]. Hence sci-

entists are developing new visualization approaches also for the in vivo morphology

observation, both at the whole cell and sub-cellular levels [85, 123].

In section 2.1 we revise some basic concepts of neuroanatomy and neurophysiology,

useful for the understanding of the following chapters.

The human brain contains around 1010 neurons, connected to each other in complex

networks. It is able to perform billions of activities, from motion to memory and

learning. Part of the underlying processes to these neural functions are still unknown.

The modern functional study of brain activities follows many directions. Some of

the research topics of the last decades are, for instance:

• the functional brain mapping of epilepsy networks;
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• the neural basis of social learning and social deciding;

• the neural mechanisms of the rewarding effects of drugs;

• the processes associated with fear memories.

All these research topics are based on the analysis of the relationship between exter-

nal stimuli and neural responses.

Indeed neuroscientists already know that external stimuli are encoded by neurons

in sequences of electrical pulses. However we still ignore completely the underly-

ing coding mechanism for the information processing. The branch of neuroscience,

which focuses on the mathematical problems in modelling the neural code of external

stimuli, is computational neuroscience. There exists a wide literature on these topics

(e.g. [47, 125, 126]), but many modelling features are still debated.

The aim of this thesis is to develop methods for the analysis of the dependency

structures that arise during neural coding processes, from both the stochastic mod-

elling (Chapters 3 and 5) and statistical (Chapter 6) point of view. In section 2.2 we

introduce some neural models that are used in the following chapters.

2.1 Elements of neuroanatomy and neurophysiology

Neurons are the core components of the nervous system. They are highly specialized

cells for the processing and transmission of information signals.

Given the wide range of different functions performed by humans and animals, there

is a wide variety of neurons. However they share the same elementary structure

(Figure 2.1), which is formed by three fundamental parts [125].

1. A focal part, called soma. It collects and elaborates input information from

other neurons or the external environment.

2. A treelike structure, emanating from the soma, called dendritic tree. It is

formed by the dendrites, which are the principal information gathering com-

ponents of a neuron. Over the dendrites many contacts from other cells occur

at specialized sites, called synapses.
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3. A long projection of the nerve cell, called axon. It is responsible for the prop-

agation of the information output signal from a cell to the other.

Figure 2.1: Schematic representation of the elementary structure of a neuron.

Source: http://www.wpclipart.com/medical/anatomy/cells/neuron/neuron.png.html

Neurons are electrically excitable cells, maintaining a voltage difference, called mem-

brane potential, between the interior and the exterior of the cell. It is generated

primarily from intracellular-versus-extracellular concentration differences of sodium,

potassium, chloride and calcium ions, by means of metabolically driven ion pumps

and channels, embedded in the neuron membrane.

In absence of neural activity, the membrane potential decays spontaneously to a

characteristic level, called resting potential, which is about 70 mV negative inside.

When an input arrives to a neuron from other cells or the external environment, it

generates an alteration of ion concentrations, opening the ion channels. Whenever

the membrane potential attains a critical level due to these alterations, an electrical

pulse, called action potential, is elicited. Informally we say that the neuron fires and

the membrane potential elicits a spike. After each spike, the membrane potential is

reset to its resting value.

A chain of spikes emitted by a single neuron is called spike train (Figure 2.2), while

the waiting time between two consecutive spikes is called interspike interval (ISI).
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Figure 2.2: Example of spike train.

Source: http://www.oist.jp/press-room/news/2012/2/6/fiery-neurons

A traditional coding scheme, assumes that most of the information about external

stimuli is contained in the firing rate of the neuron (e.g. [2, 3, 58, 80]). For instance,

in motor neurons the strength at which an innervated muscle is flexed depends on

the average number of spikes per time unit [46].

2.2 Neural modelling

The number of models for a single neuron dynamics is very large and their complex-

ity ranges from oversimplified to highly realistic biophysical models.

The first mathematical model dates back to 1907, when Lapique ([71]) proposed to

describe the membrane potential evolution of a neuron subject to an input, by using

the time derivative of the physical law for the capacitance.

In the presence of an input current, the membrane potential increases until it reaches

a constant threshold S. Then a spike occurs and the potential is reset to its resting

value.

In 1952, Alan Lloyd Hodgkin and Andrew Huxley [57] introduced a physiologically

detailed mathematical model for the transmission of electrical signals between neu-

rons of the giant axon of a squid. This model treats each component of the nervous

cell as an electrical element. The ion channels are represented by electrical conduc-

tances which depend on both voltage and time. The electrochemical gradients driving

the flow of ions are represented by voltage sources, whose voltage is determined by
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the ratio of the intra and extracellular ion concentrations. Finally, ion pumps are

represented by current sources.

Although these models reasonably fit some experimental data, they are mathemat-

ically complex. The need of a model simplification leads to the birth of stochastic

neural models. They separate the neural components in two groups: the principal

components are accounted in a deterministic mathematical description of neuronal

dynamics, while the others are globally summarized in a noise term.

The first attempt to formulate a stochastic neural model is due to Gerstein and

Mandelbrot [45]. They describe the membrane potential dynamics before the release

of an action potential through a Wiener process. Then, whenever the underlying

stochastic process reaches a characteristic threshold, a spike occurs and the process

is reset to its initial value.

This model is the basis of successive more realistic models. The most popular neural

stochastic models are the one-dimensional Leaky Integrate and Fire (LIF) models

(see [14], [15] and [111] for a depth review on these models). Their success is due to

their relative simplicity jointly with their reasonable ability to reproduce neuronal

input-output features.

2.2.1 LIF neural models

LIF models reproduce the membrane potential dynamics, between two consecutive

spikes, through a one-dimensional stochastic process X = {X (t) ; t ≥ 0}. It is char-

acterized by a leakage term to model the spontaneous membrane potential decay

in absence of inputs. Famous examples are the Stein’s model and the Ornstein-

Uhlenbeck diffusion model.

In [121], Stein formulates the first LIF model, where the membrane potential evolu-

tion is modelled by the process solution of the stochastic differential equation dX(t) = −α (X(t)− ρ) dt+ δ+dN+(t) + δ−N−(t)

X(t0) = x0

. (2.1)
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Here α > 0 is the leakage constant, ρ is the resting membrane potential, N+(t)

and N−(t) are independent Poisson processes of parameters λ+ and λ−, respectively,

δ+ > 0 and δ− < 0 are the intensities of excitatory and inhibitory inputs.

The Ornstein-Uhlembeck diffusion model was proposed as a continuous limit of

Stein’s model [16]. Here the membrane potential evolution is modelled by the

Ornstein-Uhlembeck process, defined by the stochastic differential equation dX(t) = (−αX(t) + µ) dt+ σdB(t)

X(t0) = x0

. (2.2)

Here α > 0 is the leakage constant, µ ∈ R and σ ∈ R+ are the input intensity and

variability, respectively and B(t) is a standard Brownian motion.

The solution of (2.2) for a constant initial value x0 is a one-dimensional Gauss-Markov

diffusion process with mean

E(X(t)) =
µ

α
+
(
x0 −

µ

α

)
e−αt (2.3)

and variance

V ar(X(t)) =
σ2

2α

(
1− e−2αt

)
. (2.4)

Action potentials are elicited whenever the membrane potential process X exceeds,

for the first time, a constant threshold S. After each spike, X is reset to its resting

value X (0) = x0 and the membrane potential evolution restarts according to the

stochastic process dynamics (2.2).

Remark 2.2.1. For simplicity we suppose that the resting value x0 of both the

models is constant. However it is possible to find in the literature LIF models with

time dependent resting membrane potential [13, 122].

Any ISI corresponds to the FPT

TS,x0 = inf {t ≥ 0 : X (t) ≥ S |X (0) = x0 } (2.5)

of the stochastic process X across the boundary S > x0. The assumed resetting

mechanism ensures that ISIs are i.i.d. random variables, defining a so-called renewal
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stochastic process. Therefore the knowledge of the ISI distribution corresponds to

the knowledge of the distribution of the FPT TS,x0 .

The FPT problem is a widely studied argument, which has a well-known solution

in some simple cases, but in general it is still an open problem, subject of many

theoretical studies [12, 24, 93, 115].

The analytical solution is known in very few instances, like the Weiner process of

Gerstein and Mandelbrot model with constant threshold [32]. On the contrary for the

Ornstein-Uhlenbeck process we only know the Laplace transform of its FPT proba-

bility density function. The inverse transform can be derived in closed form in very

few instances [113], but there exist some efficient numerical methods to approximate

the FPT probability distribution and its moments for an Ornstein-Uhlenbeck process

[88, 98].

LIF model popularity is due to its mathematical tractability [29]. It derives from the

fact that they concentrate the neuron features into a single point. This implies to

disregard completely the geometrical structure of a neuron, losing some important

features of the neuron dynamics. For instance, LIF models are not able to reproduce

the experimentally observed dependence between successive ISIs.

Attempts to generalize one-dimensional LIF models make use of the LIF paradigm in

the frame of multi-compartment models. In [10], [65], [67] and [68], two-compartment

neural models are discussed.

2.2.2 Two-compartment neural models

Two-compartment neural models are spatially complex models. They model the

dynamics of neural signal flows between two interconnected parts of a neuron. They

are described by two-dimensional diffusion processes with linear drift,

dX(t) = {AX(t) + M(t)} dt+ Σ(t)dB(t), (2.6)

were A and Σ(t) are 2× 2-matrices, M(t) is a two-dimensional vector and {B(t), t ≥
0} is a two-dimensional standard Brownian motion.

The components of the two-dimensional diffusion process {X(t), t ≥ 0} model the



2.2. Neural modelling 39

membrane potentials in each compartment. M and Σ represent the intensity and

the variability of external inputs to the neuron, respectively.

In this thesis we consider the two-compartment neural model proposed in [69]. Here

the two compartments correspond to the dendritic tree and the soma. The dendritic

component is responsible for receiving external inputs, while the somatic component

emits outputs. Hence we assume that external inputs reach indirectly the soma by

the interconnection between the two compartments (Figure 2.3).

Figure 2.3: A schematic representation of a two-compartment neural model.

The model is described by a two-dimensional diffusion process {X(t), t ≥ 0}, whose

components X1(t) and X2(t) model the membrane potential evolution in the den-

dritic and somatic compartment, respectively. Assuming that external inputs have

intensity µ and variance σ2, we obtain the following two-compartment model

dX1(t) = {−αX1(t) + αr [X2(t)−X1(t)] + µ}dt+ σdB(t) (2.7a)

dX2(t) = {−αX2(t) + αr [X1(t)−X2(t)]}dt (2.7b)

with X1(0) = x1 and X2(0) = x2. Here αr is the strength of the interconnection

between the two compartments, while α is the leakage constant that models the spon-

taneous membrane potential decay in absence of inputs. For the sake of simplicity, we

assume that the membrane time constants are the same in both the compartments,

however this assumption can be easily removed.
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The neuron dynamics is modelled in the following way. Whenever the somatic mem-

brane potential X2 reaches a characteristic threshold S the neuron elicits a spike.

Then the value of X2 is reset to its resting value while the dendritic membrane po-

tential X1 continues its evolution.

In absence of a firing threshold, the solution of (2.7a) and (2.7b) for constant initial

values is a bivariate Gauss-Markov diffusion process with mean m (t) = E(X(t)),

whose components are:

m1(t) =m1(∞) +
1

2

(
x1 + x2 −

µ

α

)
a(t) +

1

2

(
x1 − x2 −

µ

α+ 2αr

)
b(t), (2.8a)

m2(t) =m2(∞) +
1

2

(
x1 + x2 −

µ

α

)
a(t) +

1

2

(
x2 − x1 +

µ

α+ 2αr

)
b(t), (2.8b)

where a(t) = e−αt and b(t) = e−(α+2αr)t.

The initial membrane potentials x1 and x2 are identified with the resting potentials

of both the compartments, when the time origin coincides with a firing epoch and

the first component is in a stationary regime. For notational simplicity we identify

the resting potential with zero. It is only a translation of the model values, which

does not change the results.

The constants

m1(∞) =
(α+ αr)µ

α(α+ 2αr)
, m2(∞) =

αrµ

α(α+ 2αr)
(2.9)

represent the asymptotic mean membrane potentials. Note that the membrane po-

tential of the dendritic zone is always greater than the one of the somatic compart-

ment. Furthermore the membrane potentials of the two components become similar

when αr � α.

When the initial values are constant, the covariance matrix Γ(t, τ) of the bivariate

process X has components
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Γ11 (t, τ) = V ar (X1(∞))−

2α2
rc(t− τ)2 + ααr

(
1 + 4c(t− τ) + 3c(t− τ)2

)
+ α2 (1 + c(t− τ))2

8α(α+ αr)(α+ 2αr)d(t− τ)
σ2 , (2.10)

Γ22 (t, τ) = Γ11 (t, τ)− σ2

2(α+ αr)
+

σ2

2(α+ αr)d(t− τ)
,

Γ12 (t, τ) = Cov(X12(∞))− (α+ 2αr)c(t− τ)2 − α
8α(α+ 2αr)d(t− τ)

σ2 , (2.11)

Γ21 (t, τ) = Γ12 (t, τ) , (2.12)

where c(t) = e2αrt and d(t) = e2(α+αr)t.

Here the constants

V ar (X1(∞)) =
(2α2 + 4ααr + α2

r)σ
2

4α(α+ αr)(α+ 2αr)
(2.13)

and

Cov(X12(∞)) =
αrσ

2

4α(α+ 2αr)
(2.14)

denote the asymptotic dendritic variance and covariance between the two compart-

ments, respectively.

Remark 2.2.2. Besides their use to model neurons, two-compartmental models are

applied in many fields, including pharmacokinetics, epidemiology, biomedicine, sys-

tems theory, complexity theory, engineering, physics, information science and social

science [54, 75, 81, 112], to model the flow of substances between two interconnected

parts of a system.





CHAPTER 3

Dependency structure of a

single spike train generated by a

two-compartment neural model.

The two-compartment model, introduced in Section 2.2.2 has something in common

with the Ornstein-Uhlenbeck one-dimensional LIF model described in [96]. However,

the lack of resetting of the dendritic component destroys the renewal character of

one-dimensional models (Figure 3.1). Hence dependent ISIs are generated by this

model, due to the absence of the renewal hypothesis. For particular choices of the

model parameters there is a statistical evidence of this dependence, as we highlight

in [7].

In this Chapter we perform an analysis of the new neural features reproduced by the

43
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two-compartment neural model from a statical point of view.

In many cases we require the statistical stationarity of the dendritic component.

Indeed we prove the identical distribution of the dendritic component at different

spiking times, through suitable statistical tests.

Figure 3.1: Example of evolution of the dendritic (lower panel) and somatic (upper

panel) membrane potentials, simulated according with equations (2.7a) and (2.7b).

Here α = 0.05 ms−1, αr = 0.5 ms−1, µ = 1.5 mV , σ = 1 mV/ms1/2, and S = 10

mV . Note that the dendritic component is not reset after a spike.

In the following, we denote with i∗ the index of the spiking epoch at which the

dendritic component X1(t) is statistically stationary. To estimate the value of i∗ we

perform Kolmogorov-Smirnov tests ([78], Ch. 11) on the random variables X1(li)

and X1(li+1), i ≥ i∗, to check their identical distribution.

3.1 Model dynamics

We assume that our origin of times coincides with the epoch of a spike. We indicate

with li the epoch of the i-th spike, i ≥ 1. Then the i-th ISI, i ≥ 1, is described by

the random variable

Ti = inf {t > 0 : X2 (t) ≥ S |X2 (li−1) = 0} , (3.1)
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with l0 = 0 and T1 = l1.

To study the dynamics of this model we separate the case of absence of noise from

the one with noise, following a classical approach of one-dimensional models.

3.1.1 Absence of Noise

When σ = 0, the time evolution of the dendritic and somatic potentials is given by

equations (2.8a) and (2.8b), respectively. In the subthreshold regime (S > m2(∞))

the neuron is silent, while in the suprathreshold regime (S < m2(∞)) it spikes

regularly at fixed times lj = li∗ + (j − i∗)Ti∗ , for j ≥ i∗.
If the spike frequency is low, the two components attain their stationary dynamics

during each ISI. Then we have m1 (li) = m1(∞), m2 (li) = S and m2

(
l+i
)

= 0, for

i ≥ 1. Here l+i indicates the instant immediately following the i-th spike.

In the case of supra-threshold regime and low spiking frequency, with initial condition

x1 = m1(∞) and x2 = 0, each ISI Ti, i ≥ 1, is solution of the equation (see [69])

S −m2(∞) =
(
e−αTi + e−(α+2αr)Ti

) S −m2(∞)

2
+ e−2(α+αr)Tim2(∞). (3.2)

Equation 3.2 relates the ISIs with the asymptotic somatic membrane potential, when-

ever the dendritic component attains its stationary dynamics during each ISI.

Since the dendritic potential evolution is perturbed by the resetting of the somatic

component, the stationary regime is not attained during the first ISI. Therefore, in

general (3.2) holds for any Tj , with j > i∗.

3.1.2 Presence of Noise

For σ > 0, the value of the dendritic component at spiking epochs is random and its

distribution depends upon the preceding dynamics of the process. Hence a depen-

dency between ISIs and the past evolution of the membrane potential appears.

When the dendritic component is stationary, approximate formulas relating ISIs and

the values of the dendritic component at spiking epochs can be proved. To obtain

these formulas we integrate equation (2.7b) between two spiking epochs, li−1 and li.

Note that the somatic component can not attain values larger than S on t ∈ (li−1, li),
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i ≥ 1. Hence we introduce the process XB
2 (t), with t ∈ (li−1, li) to model the somatic

membrane potential. The sample paths of XB
2 (t) coincide with those of X2(t) that

have not crossed S on t ∈ (li−1, li), i ≥ 1. Then, by definition, XB
2 (l+i−1) = 0 and

XB
2 (li) = S. Formally, XB

2 (t) is a Bridge process not crossing the boundary S on

t ∈ (li−1, li), described in [51]. For t ∈ (li−1, li) it is solution of

XB
2 (li)−XB

2 (li−1) = −(α+ αr)

∫ li

li−1

XB
2 (t)dt+ αr

∫ li

li−1

X1(t)dt . (3.3)

In order to determine a relationship between the value of the dendritic component

at li−1 and the ISI Ti,i ≥ 1, we separate the analysis of (3.3) into the two cases of

sub-threshold and supra-threshold regimes.

Supra-threshold regime

When m2(∞) > S, i.e. when input are strong, ISIs are short and XB
2 (t) can be ap-

proximated by X2(t) for t ∈ (li−1, li), with X2(li) = S. Indeed, in this case, multiple

crossings of the threshold on short time intervals are rare and a small percentage

of sample paths of X2(t) has not a corresponding sample path of XB
2 (t). Hence

equation (3.3) can be rewritten as

X2(li)−X2(li−1) = −(α+ αr)

∫ li

li−1

X2(t)dt+ αr

∫ li

li−1

X1(t)dt . (3.4)

Taking the expectation of each member of (3.4) and applying Fubini’s theorem [40],

we get

S = −(α+ αr)

∫ li

li−1

m2(t)dt+ αr

∫ li

li−1

m1(t)dt. (3.5)

When the spiking activity is fast, the dendritic component does not attain its sta-

tionary regime during each ISI and it assumes different values at spiking epochs.

Hence the value of the dendritic membrane potential at time li depends upon the

past dynamics of the process, {X(t), t < li}.
We denote with Mi = E [X1 (li) |X(t), t < li], the expected value of the dendritic

component at a spiking epoch, conditioned upon the previous history of the process.

Then the expressions of (2.8a) and (2.8b), with initial conditions x2 = m2(li−1) = 0
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and x1 = m1(li−1) = Mi−1, are

m1(t) =m1(∞) +
1

2

(
Mi−1 −

µ

α

)
e−αt +

1

2

(
Mi−1 −

µ

α+ 2αr

)
e−(α+2αr)t, (3.6a)

m2(t) =m2(∞) +
1

2

(
Mi−1 −

µ

α

)
e−αt +

1

2

(
µ

α+ 2αr
−Mi−1

)
e−(α+2αr)t. (3.6b)

Replacing (3.6a) and (3.6b) into (3.5), we get the following approximate formula

relating ISIs and values of the dendritic component at spiking epochs:

2(S −m2(∞)) =
(
Mi−1 −

µ

α

)
e−αTi +

(
µ

α+ 2αr
−Mi−1

)
e−(α+2αr)Ti . (3.7)

When α→ 0, e−αTi ≈ 1 and 1− 2S
Mi−1− µ

α+2αr

> 0, equation (3.7) can be solved to get

Ti ≈ −
1

α+ 2αr
ln

(
1− 2S

Mi−1 − µ
α+2αr

)
i = 1, 2, . . . (3.8)

Hence the distribution of the i− th ISI Ti depends on the entire past history of the

process, through the conditional expectation Mi−1 of the dendritic component at the

previous spiking epochs.

However, when the conditional random variables Mj , j ≥ 1, are identically dis-

tributed and their distribution does not depend upon the previous evolution of the

process, the ISIs Tj+1, j ≥ 1, become identically distributed. Indeed this happens

for any j ≥ i∗, when the dendritic component is stationary. In this case the ISI

distribution coincides with the distribution of the FPT of the somatic component

through the threshold S.

Moreover, the ISIs Ti, Ti+1, ..., Ti+n, i > 1 are dependent since Mj−1 depends upon

Tj−1, j = i, . . . , i+ n.

A further approximation of (3.8),

Ti ≈
1

α+ 2αr

(
2S

Mi−1 − µ
α+2αr

)
, (3.9)
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holds when 2S
µ

α+2αr
−Mi−1

is small enough, i.e. for large inputs. Hence the mean firing

frequency is approximately

E
(

1

Ti

)
≈ α+ 2αr

2S

(
E(Mi−1)− µ

α+ 2αr

)
(3.10)

and its variance is

V ar

(
1

Ti

)
≈
(
α+ 2αr

2S

)2

V ar(Mi−1). (3.11)

Furthermore for the correlation we get:

ρ

(
1

Ti
,

1

Ti−1

)
≈ ρ(Mi−1,Mi−2). (3.12)

Formulas (3.8)-(3.12) are not useful for computational aims, as their use requests the

knowledge of the moments of the conditional random variable Mi, i ≥ 1. However

they are interesting because they illustrate the relationship between the moments of

the random variables Ti and Mi.

Sub-threshold regime

When the somatic membrane potential is in the sub-threshold regime, formulas from

(3.7) to (3.12) do not hold. However, in this case, the attainment of the threshold is

rare and it is determined by the noise. With moderate noise intensity, ISIs increase

and the dendritic component attains its stationary regime during each ISI. Hence

we can postulate the identical distribution of Ti, i ≥ 1. Furthermore in this case,

during each ISI, the process forgets the initial value of the dendritic component.

Hence the ISIs are approximately i.i.d. The presence of the renewal property makes

the features of the two-compartment model similar to those of one-dimensional LIF

models. Hence our interest focuses mainly on the supra-threshold regime.

3.2 Model features

To discuss the dependency features of the model we make use of the approximated

formulas of the previous section and of simulations. Here we focus on the dependency
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properties between successive ISIs, as the parameter values vary, while we refer to

[69] for further properties.

We first perform a sensitivity analysis on the parameters αr, σ and µ involved in the

model. We recognize that particular choices of these parameters make the ISIs depen-

dent but identically distributed. Then we compare the proposed two-compartment

model with the more popular one-dimensional LIF models.

To quantitatively compare these models, we should select the criteria to fix the pa-

rameter values. A reasonable choice is to estimate the parameter values from recorded

data for each model. Unfortunately this is not a simple task.

Recent papers, like [26–28, 70], deal with the parameter estimation problem for one-

dimensional LIF models. These results can be generalized to estimate µ, σ and α.

Indeed µ and σ are related to the input mean and variability, while α can be iden-

tified, as in the case of the Ornstein-Uhlenbeck model [96], with the transmembrane

leakage. However, the estimation problem for αr is new. It is an abstract meaning

parameter that models the connection between the compartments. Hence, suitable

statistical methods should be developed to estimate this parameter. However, this

task requires further mathematical efforts, postponed to future works. Hence the

comparison between the proposed model and one-dimensional LIF models is just

qualitative.

The discussion of joint and marginal ISI distributions is postponed to Chapter 5.

3.2.1 Role of the parameters

In this section we provide a comprehensive description of the new neural features

modelled by the two-compartment model. The aim of this analysis is to show the

different roles of the model parameters on the neural dynamics. Hence the selection

of the model parameter values is not suggested by any attempt to reproduce realistic

instances.
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Where not differently established, the parameters values are: S = 10 mV , α = 0.05

ms−1, αr = 0.5 ms−1, σ = 1 mV/ms1/2, µ = 3.5 mV . We use simulations of 1000

sample paths.

Role of αr

The junctional constant αr determines the strength of the connections between the

two compartments. When αr = 0, the somatic potential evolves independently from

the dendritic one. Actually its dynamics becomes deterministic, because it does not

receive noise from the dendritic component.

For fixed α, as αr increases, the dependence between the values of the dendritic

component at successive spiking epochs decreases. Indeed, when αr increases, the

somatic potential dynamics strongly affects the dendritic potential evolution. Hence,

for larger values of αr, both potentials exhibit a resetting effect at spiking epochs and

the ISIs become i.i.d (see Figure 3.2(b)). On the contrary, in the presence of a weak

coupling between the two compartments, the dendritic potential can attain a sta-

tionary dynamics, as little perturbation arrives from the somatic dynamics. Hence

the renewal feature affects only the somatic component, generating a dependence

between successive ISIs.

αr τ̂ ρ̂ i∗

0.05 [0.39, 0.47] [0.57, 0.65] 4

0.25 [0.11, 0.19] [0.17, 0.29] 5

0.5 [0.10, 0.18] [0.10, 0.22] 5

0.75 [0.03, 0.11] [0.05, 0.16] 5

Table 3.1: Estimated values of Kendall’s τ and correlation coefficient ρ between

subsequent ISIs (95% confidence intervals).

In Table 3.1 we illustrate the dependence between two successive ISIs reporting the

values of the Kendall’s τ and the correlation coefficient ρ. The estimated values τ̂
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and ρ̂ refer to successive ISIs. With the choice of the parameters of Table 3.1, the

ISI Ti∗ and Ti∗+j , j > 1, are dependent (τ̂ > 0.1) when αr = 0.05, otherwise the

dependence disappears (see Table 3.2).

(a)

(b)

Figure 3.2: Two examples of samples of the somatic (upper) and dendritic (lower)

components. In panels (a) αr = 0.5 ms−1, while in panels (b) αr = 10 ms−1.

(T ∗i , Ti∗+1) (T ∗i , Ti∗+2) (T ∗i , Ti∗+3) (T ∗i , Ti∗+4)

τ̂ [0.57, 0.64] [0.23, 0.34] [0.10, 0.22] [−0.04, 0.08]

ρ̂ [0.39, 0.46] [0.14, 0.22] [0.06, 0.14] [−0.03, 0.05]

Table 3.2: Estimated values of Kendall’s τ and correlation coefficient ρ (95% confi-

dence intervals) between different couples of ISIs. Here αr = 0.05 and i∗ = 4. Note

that for αr = 0.05 Ti∗ and Ti∗+j are dependent (τ̂ > 0.1) for j ∈ [1, 3].
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Role of σ

The noise affects directly only the dendritic compartment. However the intercon-

nection between the two compartments allows the input variability to influence the

somatic dynamics and the distribution of ISIs. Indeed, increasing σ, the ISI variabil-

ity increases, as shown in Table 3.3.

σ i∗ σ2(T6) τ̂ ρ̂

0.05 6 [0.003, 0.004] [0.06, 0.14] [0.07, 0.19]

1 5 [0.33, 0.39] [0.08, 0.16] [0.13, 0.25]

5 4 [9.21, 10.98] [0.09, 0.17] [0, 0.11]

10 3 [26.93, 32.09] [0.21, 0.29] [0.03, 0.15]

Table 3.3: Estimated values of i∗, Kendall’s τ (95% confidence intervals), correlation

coefficient ρ (95% confidence intervals) between successive ISIs and sample variance

σ2(T6) of T6 (95% confidence interval), for different noise intensities. i∗ is determined

using a Kolmogorov-Smirnov test ([78], Ch. 11) to check the identical distribution

of X1(li) and X1(li+1) for i ≥ i∗.

Furthermore, for increasing values of σ, the stationary distribution of Mi, i ≥ i∗

becomes flatter (Figure 3.3).

As a consequence, the dependence between successive ISIs increases (see Table 3.3).

However the dependence disappears when one considers Ti∗ and Ti∗+j , j > 1.

From Table 3.3 we can also observe that the Kendall’s τ captures the ISI dependen-

cies better than correlation coefficient ρ. This fact is related to the properties of the

two dependence measures: ρ detects linear dependencies while τ does not hypothe-

size specific shapes of the dependencies. Furthermore ρ is the ratio of a covariance

with the product of two standard deviations. Both the ISI covariance and standard

deviations increase with σ. This causes the non monotonic behaviour of ρ.
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Figure 3.3: Stationary probability density function of Mi, i ≥ i∗, for different values

of σ: σ = 1 (dotted), σ = 5 (solid), σ = 10 (dashdot). Note that for increasing values

of σ, the distribution becomes flatter.

Role of µ

Examples in Table 3.4 show that the dependence between successive ISIs increases

with the mean input µ.

For small values of the input µ the somatic component is in the sub-threshold regime.

In this case the neuron is slow and the somatic component attains its stationary

regime during each ISI. Furthermore during each ISI, the process has the necessary

time to forget the initial value of the dendritic component and ISIs are independent

(Table 3.4, third and fourth column). For values of µ < 2 mV , a Kolmogorov-

Smirnov test ([78], Ch. 11) on the distribution of Mi, i ≥ 1, confirms that these

random variables are identically distributed (with a p-value of 0.29).
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µ i∗ τ̂ ρ̂ µ(Tj)j>i∗ m2(∞)− S
1 1 [−0.05, 0.03] [−0.05, 0.07] 52.401 ms -0.48

2 2 [−0.02, 0.06] [−0.05, 0.07] 8.7091 ms 9.05

3 4 [0.06, 0.14] [0.10, 0.22] 4.7324 ms 18.57

4 6 [0.16, 0.24] [0.20, 0.32] 3.2923 ms 28.09

5 8 [0.34, 0.42] [0.33, 0.44] 2.5176 ms 37.62

Table 3.4: Estimated values of i∗, Kendall’s τ (95% confidence intervals) and correla-

tion coefficient ρ (95% confidence intervals) and ISI sample mean µ(Tj) for j > i∗ as

µ varies. In the last column the values of m2(∞)−S allow to recognize sub-threshold

and supra-threshold regimes.

When the input µ increases, the ISIs decrease and X1 (t) does not attain its station-

ary regime during the first ISI. This implies that the variables Mi, i ≥ 1, are not

identically distributed for small values of i. However for i ≥ i∗ the random vari-

ables Mi become identically distributed (with a p-value of 0.53). Furthermore as µ

increases, successive ISIs, as well as successive values of the variables Mi, become

dependent. This dependence strengthens with µ, as shown by Table 3.4. This fact

can be explained considering the decrease of the ISIs as µ increases. Indeed, the

process does not forget its starting point when the spikes are frequent. In particular

for µ > 4 we can also observe a light dependence between ISIs Ti∗ and Ti∗+j , j > 1

(see Table 3.5).

µ i∗ (T ∗i , Ti∗+1) (T ∗i , Ti∗+2) (T ∗i , Ti∗+3)

5 8 [0.33, 0.44] [0.05, 0.17] [−0.05, 0.07]

7.5 12 [0.51, 0.60] [0.16, 0.22] [0.04, 0.16]

10 17 [0.62, 0.69] [0.27, 0.38] [0.10, 0.22]

Table 3.5: Estimated values of Kendall’s τ (95% confidence intervals) between dif-

ferent couples of ISIs with µ > 4
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3.2.2 Qualitative comparison with LIF models

The ability to reproduce many qualitative and quantitative features of data, com-

bined with their relative simplicity, has determined the popularity of LIF models.

However their strong simplification of the neural structure has two main deficiencies:

• the geometry of the neuron is not considered;

• the ISIs are independent and identically distributed random variables.

The proposed two-compartment neural model is a first attempt to investigate the

effects of the interaction between different parts of the neuron. It is characterized by

several features that distinguish it from classical LIF models.

The indirect transfer of the input signal from the dendritic to the somatic component

causes a delayed reaction of the modelled neuron, as it is apparent from Figure 3.1.

Then, the two-compartment neural model is more stable with respect to negligible

short changes in the input intensity, as the effects of noise on the somatic compart-

ment are filtered by the connection between the compartments. Indeed the variance

of the somatic compartment is always smaller then the variance of the dendritic com-

partment, as well illustrated by the relationship between the asymptotic variances of

the two compartments [69]:

V ar(X2(∞)) = V ar(X1(∞))− σ2

2(α+ αr)
< V ar(X1(∞)). (3.13)

Here V ar(X2(∞)) is the asymptotic somatic variance and V ar(X1(∞)) is the asymp-

totic dendritic variance, defined in (2.13).

Moreover the two-compartment neural model responds to input variations by a lower

variability in the ISI distribution (see Table 3.3, first and third columns). Indeed

the asymptotic variances V ar(X1(∞)) and V ar(X2(∞)) are always smaller then the

asymptotic variance of a LIF model. For instance we have

V ar(X(∞))

V ar(X2(∞))
= 4 + 6

α

αr
+ 2

(
α

αr

)2

> 4 (3.14)

where V ar(X(∞)) is the asymptotic variance of a LIF model, obtained taking the

limit of (2.4) as t tends to +∞.
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A further important feature is the serial dependence between ISIs, not observed in

spike trains generated by any one-dimensional LIF model. Indeed the renewal hy-

pothesis of LIF models prevents any relationship between successive ISIs.

The serial dependence between ISIs characterizes bursting and clustering activity

(Figure 3.4), often experimentally observed [17, 22, 106]. The role of bursting ac-

tivity for information processing is apparently enormous and the two-compartment

model is a simple example of neural model achieving bursting for constant inputs.

Moreover in Section 3.2.1 we show that the dependence between ISIs increases when µ

increases. Hence this model suggests a possible mechanism which determines bursts

and clusters: a sufficiently strong input.

(a)

(b)

Figure 3.4: Examples of evolution of the two neural compartments for different values

of µ: µ = 1 mV (a) and µ = 3.5 mV (b). Note that figure (b) shows bursting activity

due to the increase of the input intensity. The other parameters are α = 0.05 ms−1,

αr = 0.5 ms−1, σ = 5 mV/ms1/2 and S = 10 mV .



CHAPTER 4

A FPT problem for bivariate

stochastic processes:

a numerical solution

FPT problems arise in a variety of applications ranging from finance to biology,

physics or psychology ([93, 95, 119] and examples cited therein).

Analytical [48, 49, 88, 91, 97, 109], numerical or approximate [12, 25, 31–33, 99,

103, 110, 129] results on the FPT problem already exist for specific classes of one

dimensional stochastic processes. However, the case of bivariate processes has not

been widely studied yet. Indeed, results are available only for specific problems such

as the first exit time of a two-dimensional stochastic process from a specific surface

[50, 66]. However there is a set of instances where the random variable of interest

is the FPT of one of the components of a bivariate process through a constant or

57
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a time dependent boundary. Beside the two-compartment neural model, described

in Chapter 3, examples of this type of problems arise for the FPT of integrated

processes such as the Integrated Brownian Motion (IBM) or the Integrated Ornstein

Uhlenbeck Process (IOU). Indeed, these one dimensional stochastic processes should

be studied as bivariate processes when the Markov property has to be preserved.

Recent examples of applications of the IBM and the IOU processes appear in the

metrological literature [89] where these processes are alternatively used to model the

error of atomic clocks. In that case the crossing problem corresponds to the first

attainment of an assigned value by the atomic clock error.

Motivated by these applications and by our interest on the ISIs generated by the two-

compartment neural model, we consider the FPT of one component of a bivariate

stochastic process through an assigned constant boundary. In particular we consider

the class of bivariate Gauss-Markov processes, as their transition probability density

function is well know.

In Section 4.1 we present a new integral equation for the FPT distribution and a

condition for the existence and uniqueness of its solution. In Section 4.2 we intro-

duce a numerical algorithm for its solution and we show its convergence properties.

In Section 4.3 we illustrate the proposed numerical method through a set of exam-

ples. Finally in Section 4.4 we compare the computational effort and reliability of

the proposed numerical method with a simulation algorithm.

We postpone to Chapter 5 the detailed application of the proposed numerical algo-

rithm to the two-compartment neural model of Section 2.2.2.

4.1 An Integral Equation for the FPT distribution

Let us consider a diffusion process {X(t), t ≥ 0} originated in y = 0 at t0 = 0.

Then the following theorem holds.

Theorem 4.1.1. If

P (X2(t) ≥ S |X1(ϑ) = z,X2(ϑ) = S ) , z ∈ R , ϑ ∈ [0, t] (4.1)
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and its derivative with respect to t are continuous in ϑ, then the FPT probability

density function is the solution of the following integral equation

P (X2(t) ≥ S |X(0) = 0) (4.2)

=

∫ t

0
dϑ g (ϑ | 0, 0)EZ(ϑ) [P (X2(t) ≥ S |X1(ϑ), X2(ϑ) = S )]

where the distribution of the random variable Z(ϑ) is the conditional distribution of

X1(T ) given T = ϑ

P (X1(T ) < z |T = ϑ; X(t0) = y ) . (4.3)

The solution of (4.2) exists and it is unique.

Proof. Let us consider (1.43) with x2 = S and x1 = −∞. We get

P (X2(t) > S | X(0) = 0) (4.4)

=

∫ t

0
dϑ

∫ +∞

−∞
gc ((z, S), ϑ | 0, 0)P (X2(t) > S|X1(ϑ) = z,X2(ϑ) = S) dz.

Considering that

P (X1(T ) < z, T < t | X(0) = 0) (4.5)

=

∫ t

0
dτ P (X1(τ) < z |T = τ,X(0) = 0) g (τ |0, 0) ,

and taking the derivatives with respect to z and t, by using (1.42), we get

gc ((z, S), t |0, 0) =
∂

∂z
P (X1(T ) < z |T = t; X(0) = 0) g (t |0, 0) . (4.6)

Substituting (4.6) in (4.4) we get the integral equation (4.2). It is a first kind Volterra

equation with regular kernel

k(t, ϑ) = EZ(ϑ) [P (X2(t) ≥ S |X1(ϑ), X2(ϑ) = S )] ,

as k(t, ϑ) is bounded. In particular k(t, t) does not vanish for any t ≥ 0.

Due to hypothesis (4.1), the kernel of the Volterra equation (4.2) and its derivative

with respect to t are continuous for 0 ≤ ϑ ≤ t.
Similarly, the left hand side of equation (4.2) and its derivative with respect to t are
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continuous for t ≥ 0. Furthermore P (X2(0) ≥ S |0, 0) = 0.

Thus, applying Theorem 5.1 of [76], we get the existence and uniqueness of the

solution.

Corollary 4.1.2. The FPT probability density function of the second component of

a bivariate Gauss-Markov process (1.25) satisfies the following equation

1− Erf

(
S −m(2)(t)√

2Q(22)(t)

)
= (4.7)

=

∫ t

0
dϑg (ϑ |0, 0)EZ(ϑ)

[
1− Erf

(
S −m(2)(t | (X1(ϑ), S), ϑ)√

2Q(22)(t | (X1(ϑ), S), ϑ)

)]
,

where m(2)(t) = m(2)(t | 0, 0) denotes the second component of the vector (1.28),

Q(22)(t) = Q
(22)
t (t | 0, 0) denotes the element on the lower right corner of the matrix

(1.29) and Erf(x) denotes the error function [1].

The Volterra equation (4.7) admits a unique solution if

∂

∂t

(
S −m(2)(t | (z, S), ϑ)√

2Q(22)(t | (z, S), ϑ)

)
(4.8)

is a continuous function of t ≥ ϑ ≥ 0.

Proof. Due to the Gaussianity of the process, we have

P (X2(t) ≥ S |X(t0) = y ) =

∫ +∞

−∞
dx1

∫ +∞

S
dx2f (x, t | y, t0)

=
1

2

(
1− Erf

(
S −m(2)(t | y, t0)√

2Q(22)(t | y, t0)

))
.

Replacing this result into (4.2), we obtain (4.7).

Since (4.8) is continuous for hypothesis, then

∂

∂t
P (X2(t) ≥ S |X(t0) = y ) =

∂

∂t

1

2

(
1− Erf

(
S −m(2)(t | y, t0)√

2Q(22)(t | y, t0)

))
(4.9)

= − 1√
π

exp

−
(
S −m(2)(t | y, t0)√

2Q(22)(t | y, t0)

)2
 ∂

∂t

(
S −m(2)(t | y, t0)√

2Q(22)(t | y, t0)

)
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is continuous. Thus applying Theorem 4.1.1 we get the existence and uniqueness of

the solution of (4.7).

Remark 4.1.3. The function

P (X2(t) ≥ S |X1(ϑ) = z,X2(ϑ) = S ) (4.10)

represents the probability of being over the threshold S after a time interval (t− ϑ),

starting from the threshold itself. For a Gauss-Markov process we get

P (X2(t) ≥ S |X1(ϑ) = z,X2(ϑ) = S ) =
1

2

[
1− Erf

(
S −m(2)(t | (z, S), ϑ)√

2Q(22)(t | (z, S), ϑ)

)]
.

(4.11)

Thus under weak conditions of its well-definition, applying the l’Hopital’s rule, the

following limit

lim
ϑ→t

{
1− Erf

(
S −m(2)(t | (z, S), ϑ)√

2Q(22)(t | ϑ, (z, S))

)}
(4.12)

assumes a positive value C ≤ 2. Then, by using the dominated convergence theorem,

we can conclude that

lim
ϑ→t

EZ(ϑ)

[
1− Erf

(
S −m(2)(t | (X1(ϑ), S), ϑ)√

2Q(22)(t | (X1(ϑ), S), ϑ)

)]
= C. (4.13)

Remark 4.1.4. Note that the random variable X1(ϑ) where T = ϑ, in the expec-

tation (4.13), has values on an interval [a, b] that changes depending on the features

of the process (1.25). Indeed it represents the position of the first component of the

process when the second one has reached the boundary. For instance, in the IBM

case, X1(ϑ) has values in [0,+∞] as a negative value implies a negative increment in

the second component, preventing a crossing of the boundary.

4.2 Gauss-Markov processes: a numerical algorithm

The complexity of equation (4.7) does not allow to get closed form solutions for g.

Hence we pursue our study by introducing a numerical algorithm for its solution.
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Let us consider the partition t0 = 0 < t1 < . . . < tN = t of the time interval [0, t]

with step h = tk − tk−1 for k = 1, . . . , N .

Discretizing the integral equation (4.7) via the Euler method, we have:

1− Erf

(
S −m(2)(tk)√

2Q(22)(tk)

)
(4.14)

=
k∑
j=1

ĝ (tj |0, 0)EZ(tj)

1− Erf

S −m(2)(tk | (X1(tj), S), tj)√
2Q(22)(tk | (X1(tj), S), tj)

h
for k = 1, . . . , N .

Equation (4.14) gives the following algorithm for the numerical approximation ĝ (τ |0, 0)

of g (τ |0, 0), τ ∈ (0, t].

Step 1:

ĝ (t1 | 0, 0) =
1

Ch

[
1− Erf

(
S −m(2)(t1)√

2Q(22)(t1)

)]
, (4.15)

where C is given by (4.13).

Step k, k > 1:

ĝ (tk | 0, 0) =
1

Ch

{
1− Erf

(
S −m(2)(tk)√

2Q(22)(tk)

)}
(4.16)

− 1

C

k−1∑
j=1

ĝ (tj | 0, 0)EZ(tj)

1− Erf

S −m(2)(tk | (X1(tj), S), tj)√
2Q(22)(tk | (X1(tj), S), tj)

 .

Note that the first term on the r.h.s. is obtained for j = k.

To sum up, the FPT probability density function in the knots t0, t1, . . . , tN is the

solution of a linear system Lĝ = b where
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b =


1− Erf

(
S−m(2)(t1)√

2Q(22)(t1)

)
...

1− Erf

(
S−m(2)(tN )√

2Q(22)(tN )

)
 , ĝ =


ĝ (t1 | 0, 0)

...

ĝ (tN | 0, 0)


and

L =



Ch

θ2,1h Ch

θ3,1h θ3,2h Ch
...

...
. . .

θN,1h θN,2h · · · · · · Ch


,

with

θk,j = EZ(tj)

1− Erf

S −m(2)(tk |(X1(tj), S), tj )√
2Q(22)(tk |(X1(tj), S), tj )

 (4.17)

for k = 1, . . . , N and j = 1, . . . , k.

To evaluate the expected value (4.17) for k = 1, . . . , N and j = 1, . . . , k, we make

use of the following Monte Carlo method. We repeatedly simulate the bivariate

process until the second component crosses the boundary and we collect the se-

quence {Zi, i = 1, . . .M} of i.i.d random variables with probability distribution func-

tion (4.3). Then we compute the sample mean

θ̂k,j = 1−

∑M
i=1 Erf

(
S−m(2)(tk|(Zi,S),tj )√

2Q(22)(tk|(Zi,S),tj )

)
M

. (4.18)

Here M is the sample size.

The following lemma and theorem prove that this algorithm converges. In order to

simplify the notations of the theorem, let us first define

ψ(z; tk, tj) := Erf

S −m(2)(tk | (z, S), tj)√
2Q(22)(tk | (z, S), tj)

 (4.19)
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for k = 1, . . . , N , j = 1, . . . , k.

Lemma 4.2.1. Let the parameters A(t) and M(t) of (1.25) be continuous on [0, t]

for each tk, tj ∈ [0, t] and let the variance Q(22)(t|(z, S), tj) be increasing with respect

to t, then there exists a constant γ, such that for all h > 0

max
1≤k≤N,1≤j≤k−1

EZ(tj) |ψ(Z(tj), tk, tj)− ψ(Z(tj), tk−1, tj)| ≤ γh. (4.20)

Proof. From the definition of ψ(z; tk, tj), by using the increasing monotonicity of

Q(22)(t|(z, S), tj) we get

|ψ(z, tk, tj) − ψ(z, tk−1, tj)| =
2√
π

∣∣∣∣∣∣∣
∫ S−m(2)(tk|(z,S),tj)√

2Q(22)(tk|(z,S),tj)

S−m(2)(tk−1|(z,S),tj)√
2Q(22)(tk−1|(z,S),tj)

e−y
2/2dy

∣∣∣∣∣∣∣
≤ a1

∣∣∣∣∣∣S −m
(2)(tk|(z, S), tj)√

2Q(22)(tk|(z, S), tj)
− S −m(2)(tk−1|(z, S), tj)√

2Q(22)(tk−1|(z, S), tj)

∣∣∣∣∣∣
≤ a1√

2Q(22)(tk−1|(z, S), tj)

∣∣∣m(2)(tk|(z, S), tj)−m(2)(tk−1|(z, S), tj)
∣∣∣

(4.21)

where a1 is a suitable constant.

From (1.28) we get∣∣∣m(2)(tk|y, tj) − m(2)(tk−1|y, tj)
∣∣∣

= |φ(tk, tj)− φ(tk−1, tj)|y

+

∣∣∣∣∣φ(tk, tj)

∫ tk

tj

φ(u, tj)
−1M(u)du− φ(tk−1, tj)

∫ tk−1

tj

φ(u, tj)
−1M(u)du

∣∣∣∣∣
= |φ(tk, tj)− φ(tk−1, tj)|y

+ |φ(tk, tj)|

∣∣∣∣∣
∫ tk

tj

φ(u, tj)
−1M(u)du−

∫ tk−1

tj

φ(u, tj)
−1M(u)du

∣∣∣∣∣
+ |φ(tk, tj)− φ(tk−1, tj)|

∣∣∣∣∣
∫ tk−1

tj

φ(u, tj)
−1M(u)du

∣∣∣∣∣ . (4.22)
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Since φ(t, tj) is a continuous function of t, tj ∈ [0, t], it is globally bounded. Then

it is Lipschitz with uniform Lipschitz constant with respect to t and tj . Moreover,

as φ(t, tj) depends on tj ∈ [0, t] in a continuous way, it admits maximum on [0, t].

Therefore

|m(tk|y, tj)−m(tk−1|y, tj)| ≤ K(tj)hy +O(h) (4.23)

where K(tj) is a constant which depends on tj .

By taking the expectation of (4.23) with y = (Z(tj), S), we get

EZ(tj) |m(tk|(Z(tj), S), tj)−m(tk−1|(Z(tj), S), tj)| = O(h). (4.24)

Since 1/Q(22)(tk−1|(z, S), tj) is bounded on [0, t] for each z, the expectation of (4.21)

gives

EZ(tj) |ψ(Z(tj), tk, tj)− ψ(Z(tj), tk−1, tj)| = O(h) (4.25)

and we get the thesis.

Theorem 4.2.2. If the sample size M for the Monte Carlo method is such that the

error |λ| = h2 at a confidence level α, then the error εk = ĝ (tk | 0, 0)− g (tk | 0, 0) of

the proposed algorithm at the discretization knots tk, k = 1, 2, . . ., is |εk| = O(h) at

the same confidence level α.

Proof. Euler and Monte Carlo methods, applied to (4.7), give

1− Erf

(
S −m(2)(tk)√

2Q(22)(tk)

)
=

k∑
j=1

hĝ (tj |0, 0) θ̂k,j , (4.26)

while (4.7) can be rewritten as

1− Erf

(
S −m(2)(tk)√

2Q(22)(tk)

)
=

k∑
j=1

hg (tj |0, 0)
(
θ̂k,j + λ

)
+ δ(h, tk) (4.27)

where δ(h, tk) denotes the error of Euler method and λ indicates the error of the

Monte Carlo method at confidence level α.

Subtracting (4.27) from (4.26) we obtain

δ(h, tk) = h
k∑
j=1

(
θ̂k,jεj + λg (tj |0, 0)

)
. (4.28)
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Differencing (4.28) and using (4.13), we get

δ(h, tk)− δ(h, tk−1) = h

k−1∑
j=1

(
θ̂k,j − θ̂k−1,j

)
εj + hCεk + g (tk |0, 0)λ (4.29)

or equally

εk =
1

Ch
[δ(h, tk)− δ(h, tk−1)]− 1

C

k−1∑
j=1

(
θ̂k,j − θ̂k−1,j

)
εj −

g (tk |0, 0)λ

hC
. (4.30)

Then, due to Lemma (4.2.1) and to the law of large number, choosing M large

enough, we have

|εk| ≤
1

Ch
|δ(h, tk)− δ(h, tk−1)|+ ah

C

k−1∑
j=1

εj +
g (tk |0, 0) |λ|

hC
. (4.31)

Finally, observing that the error of Euler method is |δ(h, t)| = O(h2), choosing M

such that the error of the Monte Carlo method is |λ| = h2 and applying Theorem

7.1 of [76], we get the thesis.

4.3 Examples

In this section we show the application of the algorithm presented in Sections 4.2 to

two examples: an IBM and an IOU process.

4.3.1 Integrated Brownian Motion

The Integrated Brownian Motion by itself is not a Gauss-Markov diffusion process

because it is not a Markov process. However we can study this one dimensional

process as a bivariate process together with a standard Brownian motion, as follows dX1(t) = dBt

dX2(t) = X1(t)dt,
(4.32)

with X(0) = 0.

The process (4.32) is a particular case of the Gauss-Markov diffusion process (1.25),
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where

A(t) =

(
0 0

1 0

)
, M(t) =

(
0

0

)
and G(t) =

(
1 0

0 0

)
.

There exist analytical solutions of the FPT problem of the integrated component of

the process (4.32), but they are not efficient as they involve multiple integrals [55]

or suppose particular symmetry properties [50].

Hence, we numerically solve the FPT problem for an IBM using the algorithm pro-

posed in Section 4.2. A first attempt in this direction was discussed in [108]. In this

instance the approximated FPT probability density function through a boundary S

in the knots t0, t1, . . . tN is solution of a linear system Lĝ = b where

b =


1− Erf

( √
6S

2t
3/2
1

)
...

1− Erf

( √
6S

2t
3/2
N

)
 , ĝ =


g (t1 | 0, 0)

...

g (tN | 0, 0)



and

L =



2h

θ2,1h 2h

θ3,1h θ3,2h 2h
...

...
. . .

θN,1h θN,2h · · · · · · 2h


.

Here C = 2, Q(22)(tj) = t3j/6 and for k, j = 1, . . . , N

θk,j = EZ(tj)

[
1 + Erf

( √
6X1(tj)

2
√

(tk − tj)h

)]
.

Note that in this case the constant C defined in Remark 4.1.3 is equal to 2 and the

range of the random variable X1(T ) is [0,∞].

In Figure 4.1 we show the FPT probability density function of an IBM through a

boundary S for three different values of the boundary.
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Figure 4.1: Evaluation of the FPT probability density function for an IBM through

three different boundaries: S = 1 (dotted), S = 3 (dashdot), S = 6 (solid).

4.3.2 Integrated Ornstein Uhlenbeck Process

As the IBM, the IOU process is not a Markov process and it should be studied as a

bivariate process together with an Ornstein-Uhlenbeck process, as follows
dX1(t) = (−αX1(t) + µ) dt+ σdBt

dX2(t) = X1(t)dt,

(4.33)

with X(0) = 0.

The process (4.33) is a Gauss-Markov diffusion process (1.25), where

A(t) =

(
−α 0

1 0

)
, M(t) =

(
µ

0

)
and G(t) =

(
σ 0

0 0

)
.

Note that in this case the constant C defined in Remark 4.1.3 is equal to 1 and the

range of the random variable X1(T ) is [−∞,∞].
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In Figure 4.2 we show the FPT probability density function of an IOU through a

boundary S = 6, for µ = 0.01, σ = 1 and three different values of the parameter α.

Figure 4.2: Evaluation of the FPT probability density function of an IOU through

a boundary S = 6 for µ = 0.01, σ = 1 and three different values of the parameter α:

α = 0.01 (dotted), α = 0.3 (dashdot), and α = 0.5 (solid).

Note that the curve for α = 0.01 in Figure 4.2 is very similar to the curve for S = 6

in Figure 4.1. Indeed if µ→ 0 and α→ 0 an IOU converges to a standard IBM.

4.4 Comparison between the proposed numerical algo-

rithm and simulation algorithms

The introduced numerical method involves a Monte Carlo estimation to evaluate the

expected value (4.17). The trajectories are simulated by using an iterative expression

of the solution of the stochastic differential equations (2.7a) and (2.7b), defining the



70 Chapter 4. A FPT problem for bivariate processes

model. According to (1.26), in the autonomous case, this solution is

Xt = eAtx0 + M

∫ t

0
eA(t−s)ds+ Jt, (4.34)

where

Jt =

∫ t

0
GeA(t−s)dBs.

Here {Jt, t ≥ 0}, is a bivariate Gaussian process with zero mean and covariance

matrix Σ(t) = E(Jt · J′t), called innovation.

Taking a partition of the temporal interval (0, t) with step h = tn+1 − tn, we can

obtain the following iterative form of equation (4.34)

Xtn+1 = eAhXtn + M

∫ tn+1

tn

eA(tn+1−s)ds+ Jtn . (4.35)

where Jtn =
∫ tn+1

tn
GeA(tn+1−s)dBs.

The only term to compute now is the innovation Jtn . This is a simple simulation

task, as Jtn is a bivariate Gaussian process with zero mean and covariance matrix

Σ(tn) = E(Jtn · J′tn), which depends only on the discretization step h.

Then, imposing on the second component a resetting mechanism after the generation

of an action potential, we obtain our simulation algorithm. It provides trajectories

which are not affected by errors. Furthermore we use a small discretization step in

order to avoid hidden crossings.

One may wonder about the advantages of the proposed method compared to simu-

lation algorithms. Indeed it is easy to simulate M sample paths of the considered

bivariate process to get a sample of FPTs. It could be used to draw histograms or

their continuous approximations. However this approach is computationally expen-

sive. Indeed it requires large samples to give reliable results. Moreover the estimation

of the distribution tails is scarcely reliable and time consuming.

On the contrary the proposed numerical method requests weak computational efforts,

despite the presence of the Monte Carlo method. Indeed, a small number of trajec-

tories guarantees reliable results. Moreover the efficiency of the numerical algorithm

may be highlighted adding a stopping rule for the time window (or the number N
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of knots) where the FPT probability density function is numerically evaluated. For

instance, a common condition is to achieve a special value for the area under the

FPT probability density function (e.g. 0.9), depending on the overall computational

complexity.

(a) M = 50

(b) M = 1000

Figure 4.3: FPT probability density function for the IBM obtained via the proposed

numerical method and the corresponding histogram. Samples of size M are used to

build the histogram and to evaluate (4.18) in the numerical method: (a) M = 50 (b)

M = 1000. Computational time for the numerical method: 2.0682 s (a) and 36.4803

s (b). Computational time for the histogram: 2.0798 s (a) and 36.5778 s (b).
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In Figure 4.3 we compare the results obtained by the two methods. We simulate M

sample paths of the IBM in order to determine a sample of M FPTs. We use it to

draw the corresponding histogram. The same sample is used to compute the sample

mean (4.18) to get the FPT probability density function via the numerical method.

The choice M = 1000 gives reliable results in both cases. However, when M = 50

the histogram is crude while the numerical method does not lose its reliability. The

computational times to build the histogram or to draw the FPT probability density

function with the proposed numerical method are comparable, for the same value of

M. The two methods run on Intel R© CoreTM i3-370M processor.

In Figure 4.4 we show the shapes of the FPT probability density function obtained

via the proposed numerical algorithm. We use a sample of size M = 50 (solid line)

and M = 1000 (dash line) to compute (4.18). Their differences are negligible.

Figure 4.4: FPT probability density function for the IBM obtained via the proposed

numerical method computed using a sample of size M = 50 (solid line) and M = 1000

(dash line) for the sample mean (4.18).



CHAPTER 5

The ISI distribution problem for

a two-compartment neural

model

Neural spike trains, described in Chapter 2, are typically stochastic in nature, due

to the variability in the input they receive. As a consequence, how to read out ac-

curately and efficiently the input information from spike trains is not a simple task.

Indeed it is one of the central questions in theoretical neuroscience [36, 47, 101].

One of the prerequisites to acquire input information from a spike train is knowing

the exact expression of ISI distribution.

Under the renewal hypothesis of LIF models, the ISI are i.i.d. random variables.

Their distribution coincides with the distribution of the FPT of the one-dimensional

stochastic process, modelling the neuron membrane potential, through an assigned

73
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threshold. In this case there already exist some analytical, numerical and approxi-

mate results as mentioned in Chapter 4.

However the i.i.d. hypothesis is too strong to model neural data, as many experi-

ments show the presence of an ISI dependency structure.

In Chapter 3 we show that the two-compartment neural model is able to reproduce

dependent but identically distributed ISIs. It happens for particular choices of the

parameters, when the dendritic component is stationary. In these instances, the ISI

distribution coincides with the distribution of the FPT of the somatic component

through a threshold S, when the model underlying process starts at t0 = ti∗ . Here i∗

denotes the index of the spiking epochs at which the dendritic component becomes

stationary, as in Chapter 3.

Note that the two-compartment model underlying process, described by equations

(2.7a) and (2.7b), is a Gauss-Markov diffusion process with

A(t) =

(
−α− αr αr

αr −α− αr

)
, M(t) =

(
µ

0

)
and G(t) =

(
σ 0

0 0

)
.

Then, we are able to approximate the probability density function of any ISI Ti,

i > i∗, by applying the numerical algorithm proposed in Chapter 4.

Here the constant C defined in Remark 4.1.3 is equal to 2 and the range of the

random variable X1(T ) is [kS,∞], where

k =
α+ αr
αr

.

Indeed X1(T ) < kS implies a negative increment in the second component, prevent-

ing a crossing of the boundary, as dX2(T ) = {−αS + αr [X1(T )− S]}dt < 0.

In Figure 5.1 we illustrate the ISI probability density function for different values of

the model parameters αr (panel a), σ (panel b) and µ (panel c). In each panel the

other parameters are chosen to have identically distributed ISIs.

Note that these densities are not normal. Indeed they show slight asymmetries and
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the normal assumption cannot be accepted (the p-values of normal goodness-of-fit

tests are lower than 10−6). This fact is evident in Figure 5.1(b), where the probability

density functions with σ = 5 and σ = 10 are strongly asymmetric.

(a)

(b)

(c)

Figure 5.1: Probability density functions of identically distributed ISIs through a

boundary S = 10 mV , numerically computed by solving equation (1.44). In panel

(a) αr = 0.1 ms−1 (solid), αr = 0.3 ms−1 (dashdot) and αr = 0.5 ms−1 (dotted).

In panel (b) σ = 1 mV/ms1/2 (solid), σ = 5 mV/ms1/2 (dashdot) and σ = 10

mV/ms1/2 (dotted). In panel (c) µ = 2 mV (solid), µ = 3 mV (dashdot) and µ = 4

mV (dotted). Furthermore α = 0.05 ms−1, while αr = 0.5 ms−1 in (b) and (c),

µ = 3.5 mV in (a) and (b), σ = 1 mV/ms1/2 in (a) and (c).
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When ISIs are dependent and identically distributed, they share the same distri-

bution, approximated as shown before, and a particular dependency structure, de-

scribed by a suitable copula. In these cases we can study the joint distribution of

two successive ISIs, by applying Theorem 1.1.4.

5.1 Joint distribution of successive ISIs

In this Section we study the joint distribution of two successive dependent and identi-

cally distributed ISIs, by using some scatterplots of the associated copula for different

values of µ (Figure 5.2).

(a) (b)

(c) (d)

Figure 5.2: Scatterplot of the copula C(u, v) between T6 and T5 for µ = 2 mV (a),

µ = 3.5 mV (b), µ = 4 mV (c), µ = 5 mV (d).
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The shape of these scatterplots allows us to hypothesize the presence of a normal cop-

ula. As µ increases, the scatterplots show a stronger dependence between subsequent

ISIs, confirming the results of Table 3.4. The copula goodness of fit test, described

in Section 1.1.2, confirms this conjecture, with p-values greater than 0.2. Hence the

joint distribution of two subsequent ISIs can be obtained using the Gaussian copula,

with correlation coefficient estimated from the data. The marginal distributions are

obtained numerically with the techniques described in Chapter 4.

In Figure 5.3 we show an example of ISI joint probability density function.

Figure 5.3: Numerical evaluation of the joint probability density function of T5 and T6

using a normal copula with correlation coefficient ρ = 0.4, estimated from data, and

marginal distributions computed according to Chapter 5. The set of the parameters

is: α = 0.05 ms−1, αr = 0.5 ms−1, µ = 4 mV , σ = 3 mV/ms1/2, S = 10 mV .
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Similar results are obtained by varying other parameters when the successive ISIs

are dependent but identically distributed.

It is useful to observe that the presence of a Gaussian copula between subsequent ISIs

does not imply that the ISI marginals are normally distributed, as mentioned before.

Indeed normal goodness of fit tests on ISI marginal distributions reject the Gaussian

hypothesis with a p-value lower than 10−6 for any considered set of parameters.



CHAPTER 6

Firing rate estimators for a

single spike train with

dependent ISIs.

As already mentioned, one of the challenging problems of computational neuroscience

concerns the features of the coding mechanisms used by neurons to encode external

stimuli in sequences of action potentials [36, 47, 101].

In this chapter we focus our attention on a traditional coding scheme, which assumes

that most of the information about the stimulus is contained in the proportion of

spikes per time unit, the so-called firing rate.

Since the sequence of action potentials generated by a given stimulus to a neuron

varies from trial to trial, neural firing rates are typically treated stochastically. The

proportion of random events of the same kind per time unit is stochastically mod-
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elled by the conditional intensity function (1.37) of a simple point process. Since

the definition of conditional intensity function depends on the hazard rate functions

(1.35a) and (1.35b), the firing rate estimation problem is strictly connected to the

hazard rate estimation problem.

Estimators for point process hazard rate functions generally assume that the un-

derlying point process is Poisson or a general renewal process, i.e. the inter-event

intervals are i.i.d. random variables. These estimators have good statistical prop-

erties and converge quickly to the correct hazard rate functions as the sample size

grows to infinity.

However the independence hypothesis is too strong for many applications, like in neu-

roscience. In the literature, the problem of dependence between inter-event intervals

is addressed and solved only when their joint distribution is known [11, 44]. Indeed,

there exists a number of examples of maximum likelihood estimators for a point

process conditional and unconditional hazard rate functions, in presence of depen-

dent inter-event intervals. Moreover it has been proven that the likelihood function

of any sequence of inter-event intervals can be expressed in terms of the associated

conditional and unconditional hazard rate functions ([21], Ch. 7). Nevertheless this

type of approach is often not applicable to experimental instances in neuroscience,

as the joint distribution of inter-event intervals is not always known in closed form.

A modelling instance presenting this difficulty is determined by the ISIs generated

by the two-compartment neural model, as discussed in Chapter 5.

In this chapter, we provide non-parametric estimators for the conditional and uncon-

ditional hazard rate functions of a simple point process with mildly dependent inter-

event intervals. We assume in fact that the inter-event interval process is Markov,

ergodic and stationary.

In Section 6.1 we describe the proposed non-parametric hazard rate estimators. Then

we prove their uniform almost sure convergence to the unknown hazard rate function

on a compact subset of R. These hazard rate estimators are based on some hypothe-

ses, which cannot be verified directly in many instances. Hence in Section 6.2 we
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develop a statistical algorithm to validate our estimators on sample data. This “a

posteriori” algorithm controls if the sample satisfies the necessary assumptions of the

proposed method.

Then in Section 6.3 we illustrate the applicability of the proposed non-parametric

estimators on a simple illustrative example, while in Section 6.4, we show their

application to the neural firing rate estimation problem. In particular we apply

the proposed estimators to a spike train simulated by the two-compartment neural

model.

6.1 Uniform strongly consistent non-parametric estima-

tors of a simple point process hazard rate functions

Let us consider a point process N on the time interval [0, L], 0 < L < ∞, with

event-instant sequence 0 < l1 < l2 < . . . < lN(L). Assume that the inter-event in-

tervals Ti = li − li−1, i ≥ 1 and l0 = 0, belong to a Markov, ergodic and stationary

process. Hence the inter-event intervals are identically distributed with shared un-

conditional probability density function f(t). Furthermore the marginal conditional

probability density functions given the process history fi(t|Fi−1), defined in (1.36b),

are fi(t|Ti−1 = ti−1) = f(t|ti−1), i ≥ 2. Here f(t|τ) is a two variable transition prob-

ability density function, shared by all the inter-event intervals due to the stationarity

assumption.

Then the hazard rate functions (1.35a) and (1.35b) of a point process N with Markov,

ergodic and stationary inter-event intervals are

h(t) =
f(t)

S(t)
, (6.1a)

h(t|τ) =
f(t|τ)

S(t|τ)
. (6.1b)

where S(t) = 1 −
∫ t

0 f(s)ds and S(t|τ) = 1 −
∫ t

0 f(t|τ)ds are the associated survival

functions.
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Thanks to the ergodic and stationary hypotheses, the sequence of inter-event inter-

vals {T1, T2, . . . , Tn} satisfies the hypotheses of Theorem 1.3.4.

According to this theorem notation, let us denote by f̂n(t) the uniform strongly con-

sistent estimator of f(t) on [0,M ], M > 0. Here M denotes the maximum value

attainable for an inter-event interval of the point process N , observed on the time

interval [0, L]. Hence 0 < M < L < ∞ and the survival functions S(t) and S(t|τ)

are strictly greater than zero for every t ∈ [0,M ].

To prove our first main result we need the following auxiliary lemma.

Lemma 6.1.1. Under the hypotheses of Theorem 1.3.4,

Ŝn(t) = 1−
∫ t

0
f̂n(s)ds , (6.2)

is a uniform strongly consistent estimator on [0,M ] of the survival function S(t) =

1−
∫ t

0 f(s)ds, that is

lim
n→+∞

sup
t∈[0,M ]

∣∣∣S(t)− Ŝn(t)
∣∣∣ = 0 a.s. (6.3)

Proof.

sup
t∈[0,M ]

∣∣∣S(t)− Ŝn(t)
∣∣∣ = sup

t∈[0,M ]

∣∣∣∣∫ t

0
f̂n(s)ds−

∫ t

0
f(s)ds

∣∣∣∣
≤ sup

t∈[0,M ]

∫ t

0

∣∣∣f̂n(s)− f(s)
∣∣∣ ds

≤ sup
t∈[0,M ]

∫ t

0
sup

s′∈[0,M ]

∣∣∣f̂n(s′)− f(s′)
∣∣∣ ds

= sup
s′∈[0,M ]

∣∣∣f̂n(s′)− f(s′)
∣∣∣ sup
t∈[0,M ]

∫ t

0
ds

= T sup
s′∈[0,M ]

∣∣∣f̂n(s′)− f(s′)
∣∣∣ .

Finally, applying Theorem 1.3.4, we get the thesis.
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Remark 6.1.2. Observe that both S(t) and Ŝn(t) are bounded and strictly positive

functions on [0,M ], as they are, respectively, a survival function and a sum of survival

functions associated to strictly positive density functions.

Now we have all the ingredients to define a uniform strongly consistent estimator of

the unconditional hazard rate function (6.1a).

Proposition 6.1.3. Under the hypotheses of Lemma 6.1.1,

ĥn(t) =
f̂n(t)

Ŝn(t)
(6.4)

is a uniform strongly consistent estimator of the unconditional hazard rate function

(6.1a) on [0,M ], that is

lim
n→+∞

sup
t∈[0,M ]

∣∣∣ĥn(t)− h(t)
∣∣∣ = 0 a.s. (6.5)

Proof.

sup
t∈[0,M ]

∣∣∣ĥn(t)− h(t)
∣∣∣ = sup

t∈[0,M ]

∣∣∣∣∣ f̂n(t)S(t)− f(t)Ŝn(t)

Ŝn(t)S(t)

∣∣∣∣∣
= sup

t∈[0,M ]

∣∣∣∣∣ f̂n(t)S(t)− f(t)S(t) + f(t)S(t)− f(t)Ŝn(t)

Ŝn(t)S(t)

∣∣∣∣∣
≤ sup

t∈[0,M ]

∣∣∣f̂n(t)− f(t)
∣∣∣∣∣∣Ŝn(t)S(t)
∣∣∣ |S(t)|+ sup

t∈[0,M ]

∣∣∣S(t)− Ŝn(t)
∣∣∣∣∣∣Ŝn(t)S(t)
∣∣∣ |f(t)| .

Applying Theorem 1.3.4 and Lemma 6.1.1 we get the thesis, as S(t) and Ŝn(t) are

bounded and strictly positive functions and f(x) ∈ C0(R).

Let us now consider the estimation problem of the conditional hazard rate (6.1b).

Due to the ergodic and stationary hypotheses, the sequence of couples of subsequent

inter-event intervals {(Ti, Ti+1), i ≥ 1} satisfies the hypotheses of Theorem 1.3.6.

Hence it holds:
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Proposition 6.1.4. Consider a uniform strongly consistent kernel estimator f̂n(t|τ)

on [0,M ]2 of the inter-event interval conditional density function f(t|τ), according

to Theorem 1.3.6. Furthermore let the involved kernels be both strictly positive on R.

Then

ĥn(t|τ) =
f̂n(t|τ)

Ŝn(t|τ)
, (6.6)

is a uniform strongly consistent estimator of the conditional hazard rate function

(6.1b) on [0,M ]2, that is

lim
n→+∞

sup
(τ,t)∈[0,M ]2

∣∣∣ĥn(t|τ)− h(t|τ)
∣∣∣ = 0 a.s. (6.7)

Proof. The proof follows the same line of Proposition 6.1.3.

Remark 6.1.5. Using Proposition 6.1.3 and Proposition 6.1.4, we can also provide

a uniform strongly consistent estimator for the conditional intensity function (1.37)

of a Markov, ergodic and stationary inter-event interval process, that is

λ̂∗n(t) =

{
ĥn(t) (0 < t ≤ l1)

ĥn(t− lj−1|Tj−1 = tj−1) (lj−1 < t ≤ lj , j = 2, . . . n)
(6.8)

where l1, l2, . . . , ln are the event instants.

Remark 6.1.6. Modelling spike trains by means of simple point processes, the

conditional intensity function estimator (6.8) can be applied as firing rate estimator

for neurons generating statistically dependent but identically distributed ISIs.

6.2 A statistical algorithm to validate the proposed haz-

ard rate estimators on sample data

The proposed hazard rate estimators are based on Markov, ergodic and stationary

hypotheses. Therefore when these hypotheses cannot be verified directly, we need to

validate the proposed estimators on sample data. In this section we present an “a

posteriori” testing procedure, based on Theorem 1.2.9, to verify whether the estima-

tors are reliable as well as consistent.
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We first compute the conditional intensity function estimator λ̂∗n, defined by equation

(6.8). Then we perform the following time transformation

t 7→ Λ̂∗n(t) =

∫ t

0
λ̂∗n(u)du. (6.9)

Under this time rescaling, the inter-event intervals Ti = li − li−1, i ≥ 1 and l0 = 0,

become

T̃i = Λ̂∗n(li)− Λ̂∗n(li−1) =

∫ li

li−1

λ̂∗n(u)du, i = 1, . . . , n. (6.10)

If the hazard rate estimators (6.4) and (6.6) are reliable, i.e. if the hypotheses

supporting their computation are verified, the transformed inter-event intervals T̃i,

i = 1, . . . , n, should be i.i.d. exponential random variables with mean 1, according to

Theorem 1.2.9. Hence a way to validate our estimators on sample data is to check

the independence and the exponential distribution of these transformed inter-event

intervals.

For this purpose, we can simply perform a goodness-of-fit test to verify if the random

sequence {T̃i, i = 1, . . . , n} follows the exponential distribution with mean 1. Then

we can compute the Kendall’s tau of the couples (T̃i, T̃i+1), i = 1, . . . , n− 1, to check

if the transformed inter-event intervals are independent.

Here we propose an alternative test of the hypotheses on the transformed inter-event

intervals, based on the concept of independent copula (1.9). Indeed, under the null

hypothesis, the bivariate copula between two subsequent inter-event intervals should

be the independent copula, with exponential marginal distributions of mean 1.

Actually we consider a further transformation of the inter-event intervals:

Zi = 1− e−T̃i . (6.11)

Under the null hypothesis, {Zi, i ≥ 1} is a collection of i.i.d. uniform random variables

on the interval [0, 1]. Therefore the copula of the couples (Zi, Zi+1), i = 1, 2, . . . , n,

should be the independent copula with uniform marginal distributions on [0, 1].

Hence we can test the reliability of the proposed estimators, performing a unifor-

mity test and the goodness-of-fit test for the independent copula proposed in Section
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1.1.2. Here the approximate p-values for the copula goodness-of-fit test statistic are

obtained using a parametric bootstrap, described in [42] and [43].

Therefore an “a posteriori” validation procedure for the proposed estimators of the

unconditional and conditional hazard rate functions is based on the following statis-

tical algorithm.

Algorithm 6.2.1. (Validation algorithm)

1. Construct the non-parametric estimator (6.8).

2. Compute the transformed inter-event intervals

T̃i =

∫ li

li−1

λ̂∗n(u)du , i = 1, 2, . . . , n.

3. Test the hypothesis that T̃i are i.i.d. exponential variables with mean 1:

a. Make the transformation Zi = 1 − e−T̃i , i = 1, 2, . . . , n and test whether

these transformed random variables are uniform on [0, 1].

b. Perform a goodness-of-fit test for the independent copula on the couples

(Zi, Zi+1), i = 1, 2, . . . , n− 1.

Remark 6.2.2. Testing that Zi, i = 1, 2, . . . , n, are i.i.d. uniform random variables

on [0, 1] is equivalent to test that T̃i, i = 1, 2, . . . , n, are i.i.d. exponential random

variables with mean 1.

Remark 6.2.3. In Algorithm 6.2.1 we perform a goodness-of-fit test for copulas to

verify the independence between Zi and Zi+1. However any other test of indepen-

dence can be applied, like a classical chi-squared test.

When the inter-event intervals are not Markov, extensions of the proposed estima-

tors to the case of stochastic processes with finite memory are needed. Indeed the

original version of Theorem 1.3.6 in [86] and [4] concerns the estimation of the condi-

tional probability density function of a univariate random variable Y given a generic
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d-variate random variable X, d ≥ 1. Therefore the extension of the proposed esti-

mators to inter-event interval processes with finite memory is immediate, although

this implies stronger computational efforts and requests larger samples.

On the other side, when the inter-event interval process is neither ergodic nor sta-

tionary, we need some strategy to ensure the identical distribution of inter-event

intervals. For instance we can divide the estimation problem on shorter time win-

dows on which the process is statistically stationary and ergodic. Otherwise if the

process is periodic and we know its period, we can sample the inter-events intervals

spaced by a period to ensure their identical distribution.

6.3 A simple illustrative example

In this section we use simulated data to show the features of the non-parametric

hazard rate estimators presented in Section 6.1. We simulate a sample of inter-event

intervals from a non-negative and ergodic autoregressive (AR) model of order 1, and

we prove the efficacy of the validation procedure of Section 6.2.

Definition 6.3.1. A non negative AR model of order 1 is defined as

Xk = φXk−1 + ξk, k ∈ N, (6.12)

where X0 = 0, φ is a non-negative parameter and ξk, k ∈ N, are i.i.d. non-negative

random variables.

Remark 6.3.2. As a classical Gaussian AR model of order 1 [114], a non-negative

AR model of order 1 is Markov. Furthermore, if we choose 0 < φ < 1, it is also

ergodic and stationary.

Remark 6.3.3. Since φ and ξk, are both non-negative, also Xk is non-negative for

every k > 0. Hence a non-negative AR model of order 1 can simulate properly a

sequence of inter-event intervals.
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Here we simulate 1000 inter-event intervals from a non-negative AR model of order

1 with ξk, k ∈ N, exponentially distributed with mean 1.

To compute the hazard rate estimators (6.4) and (6.6) we choose

1. Gaussian kernels K1 and K2 with mean zero and standard deviation σ = 0.3;

2. Kernel weights bn = n−β, where n is the sample size and β = 0.2.

Remark 6.3.4. Note that the kernels and their weights satisfy the hypotheses of

Theorem 6.1.3 and Theorem 6.1.4.

In Table 6.1 we report the results of the validation Algorithm 6.2.1 proposed in Sec-

tion 6.2 for different choices of the parameter φ. The table shows the p-values for

the uniformity test and the copula goodness-of-fit test, performed in the second step

of the algorithm.

φ
Uniformity test Copula goodness-of-fit test

p-value p-value

0.2 0.67 0.79

0.5 0.60 0.92

0.8 0.40 0.84

1 10−4 10−16

1.5 10−4 10−16

Table 6.1: Results of the validation Algorithm 6.2.1, applied on inter-event intervals

simulated by a non-negative AR model of order 1.

When 0 < φ < 1 both tests correctly return high p-values, as the ergodic and

stationary hypotheses are verified (first three lines of Table 6.1). On the other hand,

when φ ≥ 1, the inter-event intervals are not stationary. As a result, the validation

algorithm returns low p-values for both the uniformity test and the copula goodness-

of-fit test (last two lines of Table 6.1). Hence, in these cases, our validation algorithm

correctly alerts on the wrong use of the proposed estimators (6.4) and (6.6).
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6.4 Application to the firing rate estimation problem.

Aim of the neural code is to transform the input stimulus into a neuronal response. A

traditional coding scheme, called rate coding, assumes that most information about

the stimulus is contained in the proportion of action potentials per time unit, the

so-called firing rate. Existing estimators request the independence and the identi-

cally distribution of ISIs. However, as already outlined in previous chapters, the

hypothesis of independence is too strong for neural data.

Typically spike trains are modelled by stochastic simple point processes. Indeed spike

trains are stochastic sequences of events of the same kinds, which admit at most one

single spike at any time instant. In particular, here we consider simple point pro-

cesses with dependent inter-event intervals, whose conditional intensity function is

the modelling counterpart of the firing rate of a neuron with dependent ISIs.

In this section we estimate the firing rate of a neuron modelled by the two-compartment

model, described in Section 2.2.2. Indeed the ISIs generated by this model can be

statistically stationary and Markov for particular choices of the parameter, as anal-

ysed in Chapter 3. Therefore they constitute an appropriate sample on which to

apply the conditional intensity function estimator (6.8).

Here we simulate 1000 such stationary and Markov ISIs for suitable choices of the

model parameters. Then we compute the conditional intensity function estimator

(6.8) using

1. Gaussian kernels K1 and K2 with mean zero and standard deviation σ = 0.2;

2. Kernel weights bn = n−β where n is the sample size and β = 0.2.

Remark 6.4.1. Note that the kernels and their weights satisfy the hypotheses of

Theorem 6.1.3 and Theorem 6.1.4.

In Table 6.2 we report the results of the validation Algorithm 6.2.1 proposed in

section 6.2 for different choices of the model parameters, such that the ISIs are sta-

tionary and Markov. It shows the p-values for the uniformity test and the copula
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goodness-of-fit test, performed in the second step of the algorithm.

Parameters
Uniformity test Copula goodness-of-fit test

p-value p-value

α = 0.05, αr = 0.5,
0.88 0.97

µ = 4, σ = 1, S = 10

α = 0.05, αr = 0.5,
0.65 0.49

µ = 3.5, σ = 5, S = 10

α = 0.05, αr = 0.25,
0.84 0.62

µ = 4, σ = 1, S = 10

α = 0.05, αr = 0.5,
0.21 0.01

µ = 8, σ = 1, S = 10

Table 6.2: Results of the validation Algorithm 6.2.1, applied on ISIs simulated by

the two-compartment neural model.

Remark 6.4.2. When the input intensity µ is close to the value of the firing thresh-

old S, the ISIs become very short and the evolution of the two-compartment neural

model is more dependent on its past history. For these instances the copula goodness-

of-fit test correctly fails (last line of Table 6.2), as the ISI process is statistically a

Markov process of order greater than 1 (see Table 3.5).



Conclusion

Motivated by our interest in neural modelling, in this thesis we develop and investi-

gate with different techniques of stochastic and statistical analysis the dependency

structures, which can arise in neural information processing.

From a stochastic modelling viewpoint, we consider a particular bivariate stochastic

model, called two-compartment neural model, which is able to reproduce the de-

pendency structures observed on experimental data. Unlike the classical and more

popular one-dimensional LIF models, this model attempts to account for the geome-

try of the nerve cell. Hence it allows the investigation of the effects of the interaction

between different parts of the neuron.

Of course we do not claim that the use of a bivariate stochastic process to model

the neural dynamics makes this model more realistic. For instance, this model as-

sumes that the compartments are infinitely close to one other and disregards the

existence of other compartments. Further constraints should be introduced to make

the model biologically more acceptable. We are interested in this model as it seems

to be one of the simplest models allowing a serial dependence between successive ISIs.

Despite the increased complexity of the two-compartment neural model, we are able

91
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to develop some suitable mathematical tools for its analysis. Furthermore, in this

thesis we make use of some dependency measures, like copulas and the Kendall’s tau,

which are not common in neuroscience. In Chapters 3 and 5 we show their power

and we suggest their regular use on recorded data.

Then, we develop further statistical methods for the analysis of two fundamental

aspects of the neural information processing: the ISI distribution and the firing rate.

In Chapters 4 and 5 we provide a numerical algorithm for the estimation of the ISI

distribution as the FPT distribution of one component of the bivariate stochastic

process, underlying the two-compartment model. We show that it is solution of a

new integral equation and we prove its existence and uniqueness. We also discuss the

advantages of this numerical method with respect to a totally simulated algorithm.

Chapter 6 presents a contribution to the improvement of the class of neural firing rate

estimators. Existing estimators request the independence of available data. Here we

propose a non-parametric estimator in case of Markov, ergodic and stationary ISI

processes. We also provide a statistical algorithm to validate it on sample data,

when the hypotheses on the ISIs cannot be verified directly. Extensions to stochastic

processes with finite memory are briefly discussed.

The results presented in this thesis are motivated by neuroscience problems. However

their interest is wider and applications in different contexts can arise. For instance

multi-compartment models can be applied to model pharmacokinetics, ecosystems

and computer networks. Indeed the presented two-compartment model can be gen-

eralised to dimension d, d > 2, adding a finite number of further compartments.

However this generalization requires more mathematical efforts to generalize the nu-

merical method for the estimation of the FPT distribution.

The hazard rate estimators, proposed in Chapter 6, to estimate the neural firing rate

can be applied in many fields like reliability theory, epidemiology and economics.

Future extensions of the range of applicability of these estimators concern the devel-

opment of statistical techniques devoted to isolate periodic changes or trends of the

underlying stochastic processes, as proposed in [59].
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