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The indiscriminate use of the cumulative exposure metric (the product of intensity and duration of exposure) might bias reported 
associations between exposure to hazardous agents and cancer risk. To assess the independent effects of duration and intensity of 
exposure on cancer risk, we explored effect modification of the association of cumulative exposure and cancer risk by intensity of 
exposure. We applied a flexible excess odds ratio model that is linear in cumulative exposure but potentially nonlinear in intensity of 
exposure to 15 case-control studies of cigarette smoking and lung cancer (1985–2009). Our model accommodated modification of 
the excess odds ratio per pack-year of cigarette smoking by time since smoking cessation among former smokers. We observed 
negative effect modifi-cation of the association of pack-years of cigarette smoking and lung cancer by intensity of cigarette smoke 
for persons who smoked more than 20–30 cigarettes per day. Patterns of effect modification were similar across individual studies 
and across major lung cancer subtypes. We observed strong negative effect modification by time since smok-ing cessation. 
Application of our method in this example of cigarette smoking and lung cancer demonstrated that reducing a complex exposure 
history to a metric such as cumulative exposure is too restrictive. 
 

Cumulative exposure (the product of average daily expo-sure intensity and duration of exposure) is often the default 
exposure metric used in epidemiologic cancer studies. How-ever, the assumptions on which the use of cumulative expo-sure is 
based, namely that the cumulative probability of developing a disease is proportional to the sum of the daily probabilities of 
developing a disease, the daily probability of developing a disease increases monotonically with the concentration in the 
target tissue, the concentration in the tar-get tissue is linearly related to the external exposure (1), are not always 
justified.  

Pack-years of cigarette smoking (PCS) are calculated as the average number of packs of cigarettes smoked per day multi-plied by 
the cumulative number of years during which a person smoked. This example of the cumulative exposure metric is often used to 
evaluate smoking behavior in epidemiologic analyses. There is considerable evidence that with a straightfor-ward inclusion of PCS in 
epidemiologic analyses of chronic health effects, not all intensity- and duration-related aspects of smoking behavior are optimally 
characterized (2). For ex-ample, Doll and Peto (3) demonstrated that the absolute excess rate of lung cancer among smokers was 
related to at least the fourth power of smoking duration and only to the second power of smoking intensity. Because both smoking 
duration and baseline lung cancer rates vary with age, the relationships be-tween the excess relative risk and duration and intensity of 
smoking are likely to be more complex.  

One way to assess the independent effects of duration and intensity of cigarette smoking on lung cancer risk is to ex-plore 
effect modification of the association between PCS and lung cancer by intensity of cigarette smoking (4). Excess relative risk 
or excess odds ratio (EOR) models that are linear in total exposure and exponential in the intensity of exposure have been 
applied successfully to explore effect modification of cumulative exposure by intensity of exposure for a number of exposures 
(4–10). Such models have a general form of OR(d) = 1 + β1d × exp(β2 (n)), where β1 represents the EOR per unit of total 
exposure (d ) (i.e., the EOR of disease changes in an additive fashion with total exposure) and β2 represents the 
(multiplicative) modifying effect of intensity of exposure (n). In the past, fitting these models required the use of specialized 
software, but they can now be fitted in stan-dard software packages with relative ease (11).  

We explored the modification of the effect of PCS on the EOR for lung cancer by lifetime average intensity of cigarette 
smoking (ICS). For our analysis, we modified a previously developed approach to model total exposure and exposure in-
tensity (4). Our analysis is unique in that we were able to apply this model in a large data set of 15 independently de-signed 
case-control studies with detailed smoking informa-tion (the SYNERGY pooling project, a pooled analysis of case-control 
studies on the joint effects of occupational car-cinogens in the development of lung cancer) (12–14). Fur-thermore, our 
approach differs from previous applications by including a direct assessment of the modification of the EOR per PCS by the 
time since smoking cessation (TSC), which is a strong predictor of lung cancer risk in former smokers (15), in the regression 
model, and we included a 3-knot restricted cubic spline function for both ICS and TSC to allow a more flexible assessment of 
the shape of the modification of the EOR per PCS. 



 
METHODS 
 
SYNERGY data set 
 
We used data from the SYNERGY project (12–14). Our data set included data from 14 case-control studies from 
Canada (n = 2), France (n = 3), Germany (n = 2), Italy (n = 3), New Zealand (n = 1), Spain (n = 1), Sweden (n = 1), and The 
Netherlands (n = 1), as well as a multicenter study conducted in Central and Eastern Europe and the United Kingdom (16). 
Controls were individually or frequency-matched to cases by sex and age and recruited from the general population (82%) or 
hospitals (18%). Smoking information was predominantly collected through interviews with the subjects themselves (92% of 
cases, 94% of controls). Lung cancer subtypes were classified according to World Health Organization guidelines by the 
pathologists associated with the participat-ing hospitals. The ethics committees of the individual studies approved the conduct 
of the study, as did the institutional re-view board at the International Agency for Research on Can-cer. We provide an 
overview of the characteristics of the studies included in the analysis in Web Table 1, available at 
http://aje.oxfordjournals.org/. 
 
Smoking data 
 

Information on cigarette smoking history included the number of cigarettes smoked per day in calendar-year periods and 
the age at smoking cessation for former smokers. We cal-culated continuous variables for duration of smoking, ICS, and PCS 
based on the smoking history. A current smoker was defined as someone who had smoked for more than 1 year and still 
smoked in the year of interview or in the year before. Former smokers were defined as persons who had smoked for at least 1 
year but quit smoking at least 2 years before the date of the interview. Subjects who had smoked for less than 1 year were 
considered occasional smokers and were treated as never smokers in the analyses. All cases and controls for whom we had 
complete smoking data were in-cluded, without restriction on age or smoking status. 
 
Statistical analysis 
 

The model we used in this article provides a balance be-tween parsimony and model fit. The model falls within a 
more general framework for flexible modeling of exposure-time relations (17). Similar inferences were obtained using 
other model specifications within the more general frame-work (Web Appendix, Web Table 2, and Web Figure 1).  

Below we provide a description of the models that we ap-plied in our study, with an emphasis on how they differed from 
the models used in the previously published study by Lubin and Caporaso (4). Our models are linear for PCS and exponential 
for ICS and TSC to force the modifying ef-fect to be non-negative. We used 2 approaches to model ICS (expressed as 
cigarettes smoked per day). The first approach defines I intensity categories and indicator variables, ni i = 1, . . . , I, where ni = 
1 if a subject’s intensity level occurs within the ith category and ni = 0 otherwise. 

The model is as follows: 
 

ORðdÞ ¼ 1 þ βd × expfΣθinig; (A) 
 
where β represents the EOR for each PCS, d. The model spec-ifies a different slope for each intensity category. With θ1 set to 
0 for identifiability, θ2, . . . , θi represent category-specific effects relative to the I = 1 level. Model A has been published 
before (4, 7, 8) and was fitted to a subset of the data that is restricted to current and never smokers 50–75 years of age to 
parallel the data sets used in previous publications.  

We extended model A with a function for TSC to allow the inclusion of former smokers in our analysis, as follows: 
 

ORðdÞ ¼ 1 þ βd × exp½g1ðtÞ& × expfΣθinig; (B) 
 
where g1(t) is a 3-knot restricted cubic spline function for TSC (knots located at the 20th, 50th, and 80th percentiles of the dis-
tribution of TSC of all former smokers). The variation in EOR per PCS by continuous ICS (n) is assessed with 3 different models 
(models C, D, and E below). The first of those is: 
 

ORðdÞ ¼ 1 þ βd × hðnÞ; (C) 
 
where h(n) has the functional form h(n) = exp(Φ1 ln(n) + Φ2 ln(n)2). Φ1 and Φ2 are the parameters for the modifying 
function of continuous ICS. Model C has been published before (4, 7, 8).  

We modified model C to include a flexible spline function for ICS, as shown: 
 

ORðdÞ ¼ 1 þ βd × expðg1ðnÞÞ: (D) 
 
g1 is a 3-knot restricted cubic spline function of continuous ICS (n) (knots located at the 20th, 50th, and 80th percentiles of the 
distribution of ICS of all smokers). Models C and D were fitted to a subset of the data that was restricted to current and never 
smokers who were 50–75 years of age.  



Similar to model B, we extended model D with a function for TSC to allow the inclusion of former smokers in our 
anal-ysis, as follows: 
 

ORðdÞ ¼ 1 þ βd × expðg1ðnÞ þ g2ðtÞÞ; (E) 
 
where g1 and g2 are 3-knot restricted cubic spline functions with knots located at the 20th, 50th, and 80th percentiles of the dis-
tribution of TSC of all former smokers. g1 is a function of con-tinuous ICS (n) and g2 is a function of continuous TSC (t).  
All models were fitted using the NLMIXED procedure in SAS, version 9.2 (SAS Institute, Inc., Cary, North Carolina). Effects 
were adjusted for study center, age group (<45, 45– 49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, ≥80 years), and sex by 
allowing for stratum-specific baseline odds. Anal-yses were also fully stratified by sex and study location and conducted for all 
lung cancer subtypes combined and for 3 major lung cancer subtypes separately: squamous cell carci-noma, small cell 
carcinoma, and adenocarcinoma. We as-sessed the sensitivity of the restricted cubic spline functions for continuous ICS and 
TSC to alternative knot locations (10th, 50th, and 90th percentiles and 5th, 50th, and 95th per-centiles) in an analysis of all 
lung cancer subtypes combined among men and women. We observed a marginal impact on both model fit (Akaike 
information criterion) and model pre-diction. Therefore, all analyses were conducted with the a pri-ori specified knot locations 
(20th, 50th, and 80th percentiles). Bootstrapped 95% confidence intervals of the functions for ICS and TSC were estimated via 
1,000 bootstrap replications of the original data, and we used the 2.5th and 97.5th percent-iles of the resulting distribution. To 
avoid overinterpretation of patterns for regions in which the data were extremely sparse, we excluded predictions for 
intensities less than the 1st percentile and higher than the 99th percentile of the dis-tribution of the exposed persons from all 
plots. The same ap-proach was used for TSC. A likelihood ratio test (18) was used to compare differences in fit with the data 
between nested models. Because (conditional on attained age) age at smoking initiation 1) is multicollinear with duration of 
smok-ing and TSC, 2) typically shows relatively little variation, and 3) is not very strongly associated with cancer occurrence, 
we did not assess the effect of age at smoking initiation in our analysis (2). 
 
RESULTS 
 

The pooled data set consisted of 17,975 cases (14,255 men and 3,720 women) and 22,353 controls (17,267 men and 
5,086 women). Further details of the study population are provided in Web Table 1.  
We first applied models A and C to a data set that was re-stricted to current and never smokers who were 50–75 years of age. 
Figure 1A shows the effect of ICS on the lung cancer EOR per PCS, estimated using models A ( point estimates for deciles of 
ICS) and C (continuous line) among current and never smokers (i.e., excluding former smokers). EORs per PCS estimated 
with model A increased with increasing ICS below 20 cigarettes (1 pack) per day and slightly decreased with increasing ICS 
at intensities higher than 20 cigarettes per day. The continuous prediction of model C followed the pattern of the point 
estimates predicted with model A. Importantly, because of model specification, model C would predict EOR = 0 for zero ICS. 
Parameter estimates for Φ1 and Φ 2 were 0.0258 (standard error, 0.0062) and −0.0216 (standard error, 0.0052), respectively. 

Next, we compared the effect of ICS predicted by model C (Figure 1B, gray line) with the effect of ICS predicted by a model that 
included a flexible spline function for ICS (model D; Figure 1B, dashed line). Knots of the restricted cubic spline were located at 10, 
19, and 26 cigarettes per day. A comparison based on the Akaike information criterion (19) suggested that model D (Akaike 
information criterion = 22,677) had a better fit to the data than did model C (Akaike information criterion = 22,687). For intensities 
higher than 20 cigarettes per day, model D predicted a slightly stronger decrease in EOR per PCS with increasing ICS than did model 
C. Furthermore, model D was not restricted to start at EOR/PCS = 0 for zero ICS, which resulted in a less pronounced increase in 
EOR per PCS with increasing ICS below 20 cigarettes per day.  

The continuous black line in Figure 1B is the effect of ICS predicted by a model that was fitted on current, former, and 
never smokers of all ages and included flexible spline func-tions for both ICS and TSC (model E). The effect of ICS pre-
dicted by model E closely resembled the prediction of model D. The effect of TSC predicted by model E is presented in 
Figure 1C. Knots of the restricted cubic spline were located at 6, 15, and 28 years since smoking cessation. Model E pre-
dicted a strong reduction (83%) in the EOR for lung cancer per PCS with increasing TSC.  
In Table 1, we report the fit of model E to the study data. In model E0, the functions for ICS and TSC were set to 0; thus, the 
effect of PCS on the odds ratio for lung cancer was not modified. On the basis of a likelihood ratio test, both model E1 (in 
which the effect of TSC on the EOR for lung cancer per PCS was set to 0) and model E2 (in which the effect of ICS was set to 
0) provided a significantly better fit to the data than did model E0. Furthermore, model E 3, in which functions for both ICS 
and TSC were estimated, provided a significantly better fit to the study data than did models E1 and E2. Model E3 (hereafter 
referred to as model E) was therefore se-lected for further analyses of the data set. 
Similar patterns with ICS were observed in analyses for 3 major subtypes of cancer: squamous cell carcinoma, small cell 
carcinoma, and adenocarcinoma (Figure 2). Analyses of men and women separately resulted in patterns of the EOR per PCS 
that were comparable to the analyses of men and women combined (Web Figure 2).  

In Figure 3, we show study-specific patterns of the modi-fication of EOR per PCS by ICS. These analyses were con-
ducted on all subtypes combined. Predictions were generated by applying model E to each individual study.  

Wide confidence intervals in some of the panels of Figure 3 demonstrate that some studies had limited statistical power to explore 
patterns in the EOR per PCS. Furthermore, model E did not converge when applied a lung cancer study in France, a lung cancer 
study in Paris, and the Monitoring van Risicofactoren en Gezondheid in Nederland (MORGEN) study, which were 3 studies of 
modest sample size (Web Table 1). In most stud-ies for which we were able to observe a pattern, a downward trend in EOR per PCS 
with increasing ICS was observed after reaching a maximum EOR per PCS for approximately 20–30 cigarettes per day. Exceptions 



were the Liverpool Lung Project (LLP), the Lungcancer i Stockholm (LUCAS) Study, and the Polish arm of the International 
Agency for Research on Cancer Multicenter Case-Control Study of Occupational, Environ-ment and Lung Cancer in Central and 
Eastern Europe (INCO-COPERNICUS), which showed a flat or increasing in EOR per PCS. Confidence intervals for the predicted 
patterns for these studies did not exclude a downward trend. Higher un-certainty within studies and less consistency across studies 
was observed for patterns in effect modification by ICS for smoking intensities below 20 cigarettes per day. Among studies for which 
predictions were relatively precise, upward patterns were generally observed. Absolute levels of the EOR per PCS varied 
considerably across study locations. 
 
 
 
DISCUSSION 
 

Application of our approach in the SYNERGY data set provided insight into the consistency of patterns of modifica-tion of 
the effect of PCS on the EOR for lung cancer by ICS across a large number of independently designed case-control studies 
from Central and Eastern Europe, Canada, and New Zealand. We observed negative effect modification of the association of 
PCS and lung cancer by ICS for persons who smoked more than 20–30 cigarettes per day. Patterns of effect modification were 
similar across the major cancer sub-types of squamous cell carcinoma, small cell carcinoma, and adenocarcinoma. These 
findings corroborate the results from analyses conducted on other data sets of smoking and lung cancer (4, 7, 8). Our analysis 
furthers existing knowledge by showing similar patterns of effect modification across a large number of independently 
designed studies by allowing for and demonstrating strong effect modification by TSC and by including semiparametric spline 
functions that allow for flexible assessment of patterns of effect modification. 

 
Intensity of cigarette smoking 
 
The observed variation in the EOR per PCS with increas-ing ICS might be the result of biological processes, such as 
saturation of metabolism or increasing DNA repair capacity with increasing ICS (4, 20). Increasing misclassification of ICS 
with increasing ICS could also have contributed to the observed patterns. Studies of cigarette smoking and nicotine 
dependency have shown that an increase in the number of cigarettes smoked per day might be associated with reduced 
inhalation per cigarette, and increasing misclassification in the reporting of the number of cigarettes smoked per day it-self 
with increasing ICS is also conceivable (4, 21). Studies using serum or urine cotinine levels as a marker of tobacco smoking 
intensity have found that lung cancer risks do not plateau at high exposure levels, which suggests that such patterns observed 
in studies using smoking behavior ques-tionnaires were likely due to exposure misclassification (22, 23). However, cotinine 
levels only reflect smoking intensity over the past few days and should therefore not be considered as an “ideal” marker to 
estimate lifelong average smoking in-tensity (24). Our results suggest that the ICS patterns pre-dicted for the low exposure 
range by our model E (which is not constrained to start at β = 0 at no exposure) are highly var-iable in magnitude and 
direction across study locations. This is likely explained by the limited range of PCS at lower expo-sure intensities (4).  

We observed considerable variation across studies in the range of predicted EORs per PCS. The large heterogeneity 
of results might be associated with factors inherent to the studies, like design, response rates, and statistical power (25). 
Differential distribution of the relative occurrence of lung cancer subtypes, characteristics of smoking habits, and 
confounders and effect modifiers such as occupational exposures, indoor radon exposure and dietary components across 
study populations likely also played a role (14, 25). 

 
Time since smoking cessation 
 

Our finding of a continuous decrease in the EOR per PCS with TSC corroborates findings from other studies. For 
exam-ple, Peto et al. (15) demonstrated that the ratio of lung cancer in former smokers compared with current smokers 
fell sharp-ly with increasing TSC. Our analysis demonstrates that this effect remains after adjustment for PCS. Similar 
patterns with time since exposure cessation have been observed for exposure to benzene and leukemia (26) and for 
exposure to radon and lung cancer (27). 

 
Extension to other (time-varying) exposures 
 
Through its flexible parameterization, our model can ac-commodate various patterns of effect modification and is therefore a 
suitable tool to explore effect modification by in-tensity of exposure for a wide range of different exposures. Similar models 
have successfully been applied in studies of arsenic, as well as alcohol and smoking and a range of can-cers (6, 9, 10). A 
limitation of these models (including ours) is that they ignore the possible variation in the EOR due to variation in exposure 
intensity over time. Using the general framework described in the Web Appendix as starting point, our model can be extended 
to accommodate information on time-varying exposure. Richardson et al. recently provided an example of such a model in a 
study of radon exposure and lung cancer (28). A further extension is to allow for more complicated patterns of effect 
modification by including tensor product splines as done by Berhane et al. (29), al-though these may come at the cost of 
reduced interpretability.  

Our model and possible further extensions of it provide in-sight into whether the use of cumulative exposure in an 
epi-demiologic analysis is justified or whether reducing complex exposure history to a metric such as cumulative 



exposure is overly restrictive. Combining information on observed pat-terns of effect modification with mechanistic 
insights might contribute to the incorporation of biological hypotheses in the development of more biologically relevant 
exposure metrics (30). 
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Table 1. Linear Odds Ratio Models for Total Cigarette Exposure and 3 Lung Cancer Subtypes Fitted on the SYNERGY Data, 1985–2009a 

 
         Type of Cancer      
               

Excess OR Squamous Cell Model df Combined  Small Cell Carcinoma Adenocarcinoma 
 Modification       Carcinoma        
                  

   LL LL P Valueb LL LL P Valueb LL LL P Valueb LL LL P Valueb 
                 

E0 Not modified 45,828    25,099    14,220   23,001   
E

1 ICS 45,727    25,049   14,185   22,901   
E1 vs. E0  2  101 <0.0001  50 <0.0001  31 <0.0001  35 <0.0001 
E2 TSC 44,895    24,506    13,698   22,786   
E2 vs. E0  2  933 <0.0001  593 <0.0001  518 <0.0001  522 <0.0001 
E3 ICS and TSC 44,843    24,487    13,686   22,714   
E3 vs. E0  4  985 <0.0001  612 <0.0001  526 <0.0001  534 <0.0001 
E3 vs. E1  2  884 <0.0001  562 <0.0001  495 <0.0001  499 <0.0001 
E3 vs. E2  2  52 <0.0001  19 0.0001  8 0.0025  12 <0.0001 

                   
Abbreviations: df, degrees of freedom for likelihood ratio test; ICS, intensity of cigarette smoke; LL, log likelihood estimate of the fitted model; 

OR, odds ratio; TSC, time since smoking cessation. 
a Excess OR was modified by either a function for the intensity of exposure (E1), a function for the time since smoking cessation (E2), or both 

(E3).  
b P values from likelihood ratio tests. 

 


