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Slice Sampling σ -Stable Poisson-Kingman
Mixture Models

Stefano FAVARO and Stephen G. WALKER

The article is concerned with the use of Markov chain Monte Carlo methods for
posterior sampling in Bayesian nonparametric mixture models. In particular, we consider
the problem of slice sampling mixture models for a large class of mixing measures
generalizing the celebrated Dirichlet process. Such a class of measures, known in the
literature as σ -stable Poisson-Kingman models, includes as special cases most of the
discrete priors currently known in Bayesian nonparametrics, for example, the two-
parameter Poisson-Dirichlet process and the normalized generalized Gamma process.
The proposed approach is illustrated on some simulated data examples. This article has
online supplementary material.

Key Words: Bayesian nonparametrics; MCMC posterior sampling; Normalized ran-
dom measures; Size-biased random permutation; Stick-breaking representation for the
σ -Stable Poisson-Kingman models.

1. INTRODUCTION

Density estimation is a standard issue in Bayesian nonparametrics and requires the
specification of priors selecting almost surely distributions admitting a density function. A
useful and general device for defining a prior on densities has been introduced by Lo (1984)
in terms of the so-called infinite dimensional mixture model. The basic idea consists in
introducing an almost surely discrete random probability measure P̃ on X, a Polish space
endowed with the usual Borel σ -field X , which is convoluted with a suitable kernel k.
Specifically, let P̃ be an almost surely discrete random probability measure on X, that is,

P̃ =
∑

j≥1

P̃jδXj
(1)

for some sequence (Xj )j≥1 of X-valued random locations and some sequence (P̃j )j≥1 of
nonnegative random masses that sum to one, almost surely. A random density function can
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then be defined as follows:

fP̃ (y) =
∫

X
k(y|x)dP̃ (x), (2)

where the k(y|x) is a continuous and possibly multivariate density function for each fixed
x ∈ X. The original formulation by Lo (1984) set the mixing measure P̃ to coincide with the
Dirichlet process introduced by Ferguson (1973). Hence, it takes on the name of Dirichlet
process mixture model. However, it is apparent that one can replace the Dirichlet process
with any almost surely discrete random probability measure P̃ . See Lijoi and Prünster
(2010) for a detailed overview on some classes of mixing measures alternative to the
Dirichlet process.

Various Markov chain Monte Carlo (MCMC) methods for sampling from the posterior
distribution of fP̃ have been proposed in the literature. Early work in this direction ex-
ploited the integration with respect to the underlying mixing measure P̃ , thus removing the
infinite dimensional aspect of the problem. The main references in this area are represented
by the algorithms devised by Escobar (1994) and Escobar and West (1995), and origi-
nally developed for the Dirichlet process mixture model (see also the subsequent variants
proposed by MacEachern 1994; MacEachern 1998; MacEachern and Müller 1998; Neal
2000). These sampling methods are usually referred to as marginal methods and, as noted
by Ishwaran and James (2001), they can be applied to any mixing measure P̃ for which
the induced system of predictive distributions is known in explicit form. An alternative
family of sampling methods rely on the simulation of the whole posterior mixture model
and, hence, of the underlying mixing measure P̃ as well. These methods, usually referred
to as conditional methods, do not remove the infinite dimensional aspect of the problem
and they focus on finding appropriate ways for sampling a sufficient but finite number of
random masses of P̃ in Equation (1). Recently, for the Dirichlet process mixture model,
there has been interest in developing conditional methods that only use a finite number
of random masses and allow inference according to the true infinite dimensional mixing
measure P̃ . The retrospective sampler by Papaspiliopoulos and Roberts (2008) used a care-
fully constructed Metropolis-Hastings update, whereas Walker (2007) used slice sampling
ideas (see also Griffin and Walker 2011; Kalli, Griffin, and Walker 2011 for some recent
developments on the slice sampling approach).

In the present article, we focus on the mixture model in Equation (2) with mixing
measure P̃ in a large class of almost surely discrete random probability measures gen-
eralizing the Dirichlet process and known in the literature as σ -stable Poisson-Kingman
models. Such a class of models has been introduced by Pitman (2003) and includes as
special cases most of the discrete priors currently known in Bayesian nonparametrics.
Indeed, apart from the Dirichlet process, it includes the two-parameter Poisson-Dirichlet
process by Perman, Pitman, and Yor (1992) (see also Pitman 1995; Pitman and Yor 1997)
and, consequently, the normalized σ -stable process introduced by Kingman (1975) in the
context of optimal storage problems. It also includes the normalized generalized Gamma
process by Pitman (2003) (see also Lijoi, Mena, and Prünster 2007) and, consequently,
the normalized inverse Gaussian process introduced by Lijoi, Mena, and Prünster (2005)
in the context of Bayesian nonparametric mixture modeling. We aim to extend the slice
sampling ideas by Walker (2007), originally introduced for the Dirichlet process mixture
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model, to the σ -stable Poisson-Kingman mixture model, that is, a mixture model with an
underlying σ -stable Poisson-Kingman mixing measure. The proposed slice sampling is
achieved by resorting to a collection of results on size-biased sampling of Poisson point
processes, introduced by Perman, Pitman, and Yor (1992) and here applied to derive a stick-
breaking representation for the σ -stable Poisson-Kingman models. Indeed, the proposed
stick-breaking representation of the underlying mixing measure P̃ turns out to be a key tool
for MCMC posterior sampling via the slice sampling approach by Walker (2007).

The article is structured as follows. Section 2 reviews the general definition of Poisson-
Kingman model. Section 3 presents the subclass of σ -stable Poisson-Kingman models,
the corresponding stick-breaking representation, and the detailed slice sampling algorithm
for posterior sampling σ -stable Poisson-Kingman mixture models. Section 4 contains
illustrations of the proposed algorithm and Section 5 concludes with a brief discussion.

2. POISSON-KINGMAN MODELS

To review the general definition of the Poisson-Kingman model, we start by providing
a succinct description of the class of completely random measures (CRMs) introduced by
Kingman (1967). The reader is referred to the monograph by Kingman (1993) for a detailed
treatment on the subject of CRMs.

Let µ̃ be a random element defined on some probability space and taking values on the
space of bounded finite measures on (X,X ). Kingman (1967) termed the random element
µ̃ CRM if for any n ≥ 1 and A1, . . . , An in X , with Ai ∩ Aj = % for i &= j , the random
variables µ̃(A1), . . . , µ̃(An) are mutually independent. Kingman (1967) showed that any
CRM can be decomposed into the sum of three independent components: a nonrandom
measure, a countable collection of nonnegative random masses at nonrandom X-valued
locations, and a countable collection of nonnegative random masses at X-valued random
locations. We consider CRMs with the sole component of random masses (J̃j )j≥1 at random
locations (Xj )j≥1, that is,

µ̃(·) =
∑

j≥1

J̃jδXj
(·). (3)

The distribution of µ̃ in Equation (3) is determined by its Laplace functional transform
having the Lévy-Khintchine representation

E
[
e−

∫
X f (x)µ̃(dx)] = exp

{
−

∫

R+×X

(
1 − e−sf (y)) ν(ds, dy)

}
,

for any measurable function f : X → R such that
∫

X |f (x)|µ̃(dx) < +∞ almost surely.
The measure ν on R+ × X is usually referred to as Lévy intensity measure and it char-
acterizes uniquely µ̃. For our purpose, it is enough to focus on Lévy intensity measures
ν factorizing as ν(ds, dy) = ρ(ds)P0(dy) for some Lévy measure ρ absolutely continuous
with respect to the Lebesgue measure and some nonatomic probability measure P0 on
(X,X ). Such a factorization implies the independence between the random locations and
the random masses so that, without loss of generality, the random locations (Xj )j≥1 can
be assumed to be independent and identically distributed according to P0, while the
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distribution of the corresponding random masses (J̃j )j≥1 is governed by the Lévy
measure ρ.

The definition of Poisson-Kingman model has been proposed by Pitman (2003) in terms
of a suitable transformation of CRMs. Such a definition is strictly related to the defini-
tion of homogeneous normalized random measure with independent increments (NRMI),
introduced in Bayesian nonparametrics by James, Lijoi, and Prünster (2008). Let µ̃ be a
CRM with Lévy intensity measure ν(ds, dy) = ρ(ds)P0(dy) and let T =

∑
j≥1 J̃j be the

corresponding total mass that is assumed to be absolutely continuous with respect to the
Lebesgue measure. Now, if card({J̃j : j ≥ 1} ∩ (0, ε)) =

∫ ε

0 ρ(s)ds = +∞ for any ε > 0,
one can define an almost surely discrete random probability measure P̃ on X as

P̃ (·) = µ̃(·)
T

=
∑

j≥1

P̃jδXj
(·), (4)

where

P̃j = J̃j

T
(5)

and (Xj )j≥1 is a sequence of random variables, independent of (P̃j )j≥1, and independent
and identically distributed according to P0. In the article by James, Lijoi, and Prünster
(2008), the random probability measure P̃ in Equation (4) is termed homogeneous NRMI
and it is denoted by NRMI(ρ, P0). Intuitively, a Poisson-Kingman model can be defined as
a generalization of a NRMI(ρ, P0) obtained by suitably deforming the distribution of the
normalizing total mass T . A formal definition of the class of Poisson-Kingman models is
given below.

Consider a CRM µ̃ with Lévy intensity measure ν(ds, dy) = ρ(ds)P0(dy) and denote by
(J(j ))j≥1 the decreasing rearrangement of the sequence of random masses of µ̃. Moreover,
denote by (P(j ))j≥1 the sequence of decreasing ordered random probabilities obtained by
normalizing the sequence (J(j ))j≥1 with respect to the total mass T , that is,

P(j ) = J(j )

T
. (6)

In other terms, the sequence (P(j ))j≥1 represents the decreasing rearrangement of the
random probabilities of P̃ defined in Equation (5).

Definition 2.1 Let γ be a distribution on R+ and let Pρ,t be the regular conditional
distribution of the sequence (P(j ))j≥1 of decreasing ordered random probabilities defined
in Equation (6), given the total mass T = t . Then, the distribution

∫

R+
Pρ,tγ (dt)

is termed Poisson-Kingman distribution with Lévy measure ρ and mixing distribution γ .
Such a distribution is denoted by PK(ρ, γ ).



834 S. FAVARO AND S. G. WALKER

The definition of Poisson-Kingman distribution can be applied for defining an almost surely
discrete random probability measure P on X as

P (·) =
∑

j≥1

P(j )δXj
(·), (7)

where (P(j ))j≥1 is distributed according to a PK(ρ, γ ) distribution and (Xj )j≥1 is a sequence
of random variables, independent of (P(j ))j≥1, and independent and identically distributed
according to P0. In the article by Pitman (2003), the random probability measure P in
Equation (7) is termed Poisson-Kingman model and it is denoted by PK(ρ, γ , P0). Clearly,
the definition of NRMI(ρ, P0) can be recovered as a special case of the definition of
PK(ρ, γ , P0) model by setting γ to coincide with the distribution of the total mass T .

3. SAMPLING σ -STABLE POISSON-KINGMAN
MIXTURE MODELS

The class of σ -stable Poisson-Kingman models, also referred to as the class of Gibbs-
type random probability measures, has been introduced by Pitman (2003) and further
investigated by Gnedin and Pitman (2005). Consider a sequence (P(j ))j≥1 of decreasing
ordered random probabilities distributed according to a PK(ρ(σ ), γ ) distribution where

ρ(σ )(ds) = σ

'(1 − σ )
s−σ−1ds,

for some σ ∈ (0, 1), and where γ is a distribution absolutely continuous with respect
to the Lebesgue measure with density function gγ . In the article by Pitman (2003), the
PK(ρ(σ ), gγ , P0) model is termed σ -stable Poisson-Kingman model. Without loss of gen-
erality, we assume gγ (t) = h(t)fσ (t) for some nonnegative measurable function h such
that gγ is a proper density function, and where fσ denotes the positive σ -stable density
function, that is,

fσ (t) = 1
π

∑

i≥0

(−1)i+1

i!
sin(πσ i)

'(σ i + 1)
tσ i+1

. (8)

It is worth pointing out that the class of PK(ρ(σ ), hfσ , P0) models includes most of the
discrete priors currently known in Bayesian nonparametrics. Indeed, as we will see in the
examples below, by a suitable specification of the function h and the parameter σ , one
can recover as special cases the Dirichlet process, the normalized σ -stable process, the
two-parameter Poisson-Dirichlet process, the normalized inverse Gaussian process, and
the normalized generalized Gamma process.

For our purpose, it is useful to consider a different rearrangement of the sequence of
random probabilities (P(j ))j≥1 distributed according to a PK(ρ(σ ), γ ) distribution. Such
a rearrangement is obtained via the so-called size-biased random permutation approach.
Specifically, this means that

Pj = P(πj ),

where for any positive integer k ≥ 1 and for all the finite sets {i1, . . . , ik} of distinct
positive integers, the conditional probability of the event {πj = ij for all 1 ≤ i ≤ k} given
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(P(j ))j≥1 coincides with

P(i1)
P(i2)

1 − P(i1)
· · · P(ik)

1 − P(i1) − · · · − P(ik)
.

The sequence of random probabilities (Pj )j≥1 is termed as the size-biased random per-
mutation of the sequence (P(j ))j≥1. The reader is referred to the literature by Perman,
Pitman, and Yor (1992) and Pitman (1996) for a detailed study on the interplay between
size-biased random permutations and almost surely discrete random probability measures.
In particular, Perman, Pitman, and Yor (1992) provided a collection of results that can
be usefully applied to obtain a stick-breaking representation for the size-biased random
permutation of a sequence decreasing ordered random probabilities distributed according
to a PK(ρ(σ ), γ ) distribution. The next proposition is an application of Theorem 2.1 in the
article by Perman, Pitman, and Yor (1992) and it represents the key result for slice sampling
σ -stable Poisson-Kingman mixture models.

Proposition 3.1 Let (Pj )j≥1 be the size-biased random permutation of a se-
quence (P(j ))j≥1 of decreasing ordered random probabilities distributed according to a
PK(ρ(σ ), gγ ) distribution. Then,

Pj = Vj

j−1∏

i=1

(1 − Vi) (9)

for a sequence of random variables (Vj )j≥1 such that Vj |T , V1, . . . , Vj−1 is absolute con-
tinuous with respect to the Lebesgue measure, and its density function on (0, 1) coincides
with

g(vj |t, v1, . . . , vj−1) = σ (tzj )−σ

'(1 − σ )fσ (tzj )
v−σ

j fσ (tzj (1 − vj )) (10)

for any j ≥ 1, where zj =
∏j−1

i=1 (1 − vi) with the proviso z1 = 1. The corresponding
PK(ρ(σ ), gγ , P0) model P can be represented as

P (·) =
∑

i≥1

PjδXj
(·), (11)

where (Xj )j≥1 is a sequence of random variables, independent of (Pj )j≥1, and independent
and identically distributed according to P0.

The following examples discuss the stick-breaking representations of two
PK(ρ(σ ), hfσ , P0) models well known in Bayesian nonparametrics: the two-parameter
Poisson-Dirichlet process and the normalized generalized Gamma process. Both the stick-
breaking representations include as a special case the celebrated stick-breaking represen-
tation of the Dirichlet process introduced by Sethuraman (1994).

Example 3.1 Let (P(j ))j≥1 be a sequence of decreasing ordered random probabilities
distributed according to a PK(ρ(σ ), w(θ,σ )) distribution with

w(θ,σ )(t) = '(θ + 1)
'(θ/σ + 1)

t−θfσ (t)
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for some σ ∈ (0, 1) and θ > −σ . The corresponding PK(ρ(σ ), w(θ,σ ), P0) model P is known
in the literature as two-parameter Poisson-Dirichlet process. It includes as special cases
the normalized σ -stable process recovered by setting θ = 0, and the Dirichlet process
recovered by setting σ → 0. An application of Proposition 3.1 leads to the stick-breaking
representation of the two-parameter Poisson-Dirichlet process

P (·) =
∑

j≥1

Vj

j−1∏

i=1

(1 − Vi)δXj
(·), (12)

where (Vj )j≥1 is a sequence of independent random variables such that Vj is distributed
according to a Beta distribution with parameter (1 − σ, θ + jσ ), for any j ≥ 1. Moreover,
(Xj )j≥1 is a sequence of random variables, independent of (Vj )j≥1, and independent and
identically distributed according to P0. The stick-breaking representation in Equation (12)
was originally obtained by Perman, Pitman, and Yor (1992) and further investigated by
Pitman (1996).

Example 3.2 Let (P(j ))j≥1 be a sequence of decreasing ordered random probabilities
distributed according to a PK(ρ(σ ), v(b,σ )) distribution with

v(b,σ )(t) = ebσ −btfσ (t)

for some σ ∈ (0, 1) and b > 0. The corresponding PK(ρ(σ ), v(b,σ ), P0) model P is known
in the literature as normalized generalized Gamma process. It includes as special cases
the normalized inverse Gaussian process recovered by setting σ = 1/2 and the normalized
σ -stable process recovered by setting b = 0. An application of Proposition 3.1 leads to the
stick-breaking representation of the normalized generalized Gamma process

P (·) =
∑

j≥1

Vj

j−1∏

i=1

(1 − Vi)δXj
(·), (13)

where (Vj )j≥1 is a sequence of random variables such that Vj |V1, . . . , Vj−1 is absolute
continuous with respect to the Lebesgue measure, and its density function on (0, 1) coincides
with

g(vj |v1, . . . , vj−1) = σ

'(1 − σ )
(vj zj )−σ

∫ +∞
0 t−jσ e−btfσ (tzj+1)dt

∫ +∞
0 t−(j−1)σ e−btfσ (tzj )dt

for any j ≥ 1, where we set zj =
∏j−1

i=1 (1 − vi) with the proviso z1 = 1. Moreover,
(Xj )j≥1 is a sequence of random variables, independent of (Vj )j≥1, and independent and
identically distributed according to P0. See Favaro, Lijoi, and Prünster (2012) for a detailed
analysis of the stick-breaking representation in Equation (13) with σ = 1/2.

3.1 THE SLICE SAMPLING ALGORITHM

The stick-breaking representation in Proposition 3.1 can be usefully applied to slice
sample σ -stable Poisson-Kingman mixture models. The starting point is the mixture model
fP in Equation (2) with a mixing measure P being a PK(ρ(σ ), hfσ , P0) model. In particular,
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according to the series representation in Equation (11) of P, we can write

fP (y) =
∑

j≥1

Pjk(y|Xj ). (14)

Using the slice sampling idea introduced by Walker (2007), the infinite dimensional aspect
of fP in Equation (14) is tackled by introducing a suitable latent random variable U, which
has joint density function with Y given by

f(P,U )(y, u) =
∑

j≥1

1(u < Pj )k(y|Xj ). (15)

Given the latent variable U, the number of components of the mixture model fP is finite,
the indices being Au = {j : Pj > U}. In particular, given the latent variable U, one has the
finite mixture model

f(P |U )(y|u) = 1
Nu

∑

j∈Au

k(y|Xj )

where the size of the set Au is determined by
∑

j≥1 1(Pj > u) and Nu =
∑

j∈Au
Pj . One

can then introduce a further latent random variable D, which indicates the components of
the mixture model from which y is taken and gives the joint density function

f(P,U,D)(y, u, d) = 1(u < Pd )k(y|Xd ). (16)

Clearly, without the latent variable U, the latent variable D can take an infinite number of
values that would make the implementation of MCMC algorithms problematic.

The latent random variable U introduced in the augmented mixture model in Equation
(15) can be easily updated because it is assumed to be uniformly distributed. Moreover, given
the latent variable U, the set Au can be easily found using the stick-breaking representation
of the mixing measure P. Here, to improve the efficiency in the search for the set Au, we
consider the more general class of slice sampler recently introduced by Kalli, Griffin, and
Walker (2011), the so-called slice-efficient sampler. Specifically, we replace Equation (16)
with the joint density function

f(P,U,D)(y, u, d) = eξd1(u < e−ξd )Pdk(y|Xd ) (17)

for some ξ > 0 (see Kalli, Griffin, and Walker (2011) for details). From Equation (17), the
complete data likelihood based on a sample of size n is then easily seen to be

n∏

i=1

eξdi 1(ui < e−ξdi )Pdi
k(yi |Xdi

). (18)

In particular, it can be easily verified that for any i ≥ 1, conditioning on the latent variable
Ui = ui , it is that 1 ≤ Di ≤ Ni where Ni = ,−(1/ξ ) log ui- with ,x- being the integer
part of x. Therefore, to present a valid MCMC algorithm we only need to record the Ni’s
at each iteration so as to adequately sample the Di’s. Moreover, if we set N = max{Ni},
note that we only need the Pj ’s and the Xj ’s for j = 1, . . . , N . We conclude this section
by describing the sampling of the random probabilities Pj ’s defined via the stick-breaking
representation in Equation (9). The sampling of the Di’s given the Pj ’s and the sampling
of the Xj ’s given the Di = di’s will be discussed in the next section together with some
illustrations of the proposed algorithm.
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Using the stick-breaking representation of the mixing measure P, for any N ≥ 1 we need
to sample the random variables (T , V1, . . . , VN ) from their conditional distributions, given
the allocation random variables (D1, . . . , Dn). For such purpose, by an application of Equa-
tion (10) it can be easily verified that the conditional density function of (T , V1, . . . , VN ),
given the allocation variables (D1, . . . , Dn), is

f (t, v1, . . . , vN |d1, . . . , dn) ∝ h(t)t−Nσfσ



t

N∏

j=1

(1 − vj )




N∏

j=1

v
nj −σ

j (1 − vj )mj −(N−j )σ ,

(19)
where

nj =
n∑

i=1

1(di = j ) (20)

and

mj =
n∑

i=1

1(di > j ). (21)

To sample from Equation (19), we apply the representation by Kanter (1975) of the positive
σ -stable density function fσ . Specifically, setting

Kσ (z) =
(

sin(πσz)
sin(πz)

)− 1
1−σ

(
sin((1 − σ )πz)

sin(πσz)

)

for 0 < z < 1, it follows from the article by Kanter (1975) that

fσ (s) = σ

1 − σ
s− 1

1−σ

∫ 1

0
e−s

− σ
1−σ Kσ (z)Kσ (z)dz. (22)

Therefore, using the representation in Equation (22) for a positive σ -stable density function
fσ , we can introduce an augmented version of f (t, v1, . . . , vN |d1, . . . , dn) given by

f ∗(t, z, v1, . . . , vN |d1, . . . , dn) ∝ h(t)t−Nσf ∗
σ



t

N∏

j=1

(1 − vj ), z





×
N∏

j=1

v
nj −σ

j (1 − vj )mj −(N−j )σ ,

where

f ∗
σ (s, z) ∝ s− 1

1−σ e−s
− σ

1−σ Kσ (z)Kσ (z).

To simplify this part of the model and to facilitate an easy MCMC implementation, we
introduce a further latent random variable V that interacts with the model providing an
augmented version of the density function f ∗

σ (s, z) given by

f ∗
σ (s, z, v) ∝ s− 1

1−σ Kσ (z)1
(
v < e−s

− σ
1−σ Kσ (z)

)
.

Finally, we are now able to describe the full conditional distributions of the random variables
(T , V,Z, V1, . . . , VN ) that are required to be sampled. Specifically, for any N ≥ 1 and for
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any j = 1, . . . , N , one has the following conditional density function for the Vj ’s

f ∗(vj | rest ) ∝ (1 − vj )mj −(N−j )σ− 1
1−σ v

nj −σ

j 1



1 − vj >

(
Kσ (z)
− log v

) 1−σ
σ

t
∏

l &=j (1 − vl)



 .

Moreover, for any N ≥ 1

f ∗(z| rest ) ∝ Kσ (z)1
(
Kσ (z) < −(log v) s

σ
1−σ

)

and

f ∗(t | rest) ∝ h(t) t−Nσ− 1
1−σ 1



t >

(
Kσ (z)
− log v

) 1−σ
σ

∏N
l=1(1 − vl)



 .

According to Kanter (1975), the function Kσ (·) is strictly decreasing on (0, 1) and hence a
value z0 can be obtained easily whereby Kσ (z0) > −(log v) s

σ
1−σ yet z0 is close to z1, where

Kσ (z1) = −(log v) sσ/1−σ . We can now use rejection sampling by sampling a proposal
z∗ as a uniform random variable over the set (z0, 1) and accepting as a sample from
f ∗(z| rest ) with probability

1(z∗ > z1)
Kσ (z∗)
Kσ (z0)

.

In particular, we know that z∗ > z1 when Kσ (z∗) < −(log v)sσ/1−σ . This algorithm works
very well for all σ ∈ (0, 1) and z1. An illustration is given based on the choice of σ = 0.4 and
z1 = 0.89; Figure 1 presents the histogram of 1000 samples based on uniform rejection
sampling.

Truncated samples

D
en

si
ty

0.90 0.92 0.94 0.96 0.98 1.00

0
5

10
15

20

Figure 1. Samples from K0.4(z) restricted to lie in (0.89, 1).
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4. ILLUSTRATIONS

In this section, we illustrate on simulated data and on a real dataset—the slice sampling
algorithm for σ -stable Poisson-Kingman mixture models. To start, for a n = 50 sample
size, we generate independent and identically distributed random variables Yi’s as follows:
with probability 1/2, Yi ∼ N (−10, 22) and with probability 1/2, Yi ∼ N (10, 22), where
we denoted by N (µ, σ 2) the Gaussian distribution with mean µ and variance σ 2. We
employ the standard Gaussian mixture model assuming a known variance τ 2 = 22 for
each component and assuming a mixing measure P being a PK(ρ(1/2), hf1/2, P0). Hence,
according to Equation (14), the corresponding σ -stable Poisson-Kingman Gaussian mixture
model is

fP (y) =
∑

j≥1

PjN (y|µj , τ
2),

where (Pj )j≥1 is the sequence of stick-breaking random probabilities described in Propo-
sition 3.1. Finally, for any j ≥ 1, we denote by π (µj ) the prior distribution for µj , which
is taken to be a Gaussian distribution with mean 0 and variance 102. From Equation (18),
the complete data likelihood based on the sample of size n = 50 is given by

50∏

i=1

eξdi 1(ui < e−ξdi )Pdi
N (yi |µdi

, τ 2)

for some choice of ξ > 0. In the applications that follow, this is fixed at ξ = 1. For any
i ≥ 1, given the latent variable Ui , the choice of the latent variable Di is finite and hence can
be sampled. Moreover, once the latent variable Di have been sampled, then it is possible
to sample the µj . To know how many of the µj ’s and the Vj ’s we need to sample, we use
the values of Ni = ,(− log wi)/ξ- and N = max{Ni}. Specifically, if we sample the µj ’s
and the Vj ’s for j = 1, . . . , N, then we can implement a precise sampler since the Di’s are
bounded by the Ni’s, respectively.

We start illustrating the sampling algorithm by describing the full conditional distribution
of (T , V1, . . . , VN ), for any N ≥ 1. In particular, from Equation (19), the conditional density
function of the random variables (T , V1, . . . , VN ), given the allocation random variables
(D1, . . . , Dn), is proportional to

h(t) f1/2



t

N∏

j=1

(1 − vj )



 t−N/2
N∏

j=1

v
nj −1/2
j (1 − vj )mj −(N−j )/2

with nj and mj specified by Equations (20) and (21). Also, for σ = 1/2, the σ -stable
density function fσ in Equation (8) reduces to

f1/2(t) ∝ t−3/2e− 1
4t

(see, e.g., Section 0.3 in the article by Pitman 2006). To make the sampler easier to cope
with, for the exponential term appearing in the f1/2 density function, we included a latent
random variable V that enters the latent model via the term

1
(

v < exp
{
− 1

4t(1 − v1) . . . (1 − vN )

})
.
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Now the sampling of each Vj ’s is straightforward and the corresponding full conditional
density function is proportional to

v
nj −1/2
j (1 − vj )mj −(N−j )/2−3/2 1

(

(1 − vj ) >
1

(− log v) 4t
∏

l &=j (1 − vl)

)

.

Finally, we need to consider the full conditional density function of the total mass variable
T , which is proportional to

h(t) t−N/2−3/2 1

(

t >
1

(− log v) 4
∏

j (1 − vj )

)

.

Both of these densities pose no real problems in being sampled. Once we have sampled
(V1, . . . , VN ), then we have the corresponding random probabilities (P1, . . . , PN ). Hence,
we can now sample the allocation variables (D1, . . . , Dn) according to the full conditional
distribution

P (Di = j | rest ) ∝ Pj eξjN (yi |µj , τ
2)1(j ≤ Ni)

and, finally, we can also sample the µj ’s according to the following full conditional density
function

∏

di=j

N (yi |µj , τ
2)π (µj ).

In the specific illustrations, we took the prior π to be a Gaussian distribution with mean 0
and variance 102. We consider the sampling algorithm for two choices of the function h:
h(t) = 1 corresponding to the normalized 1/2-stable process (see Example 3.1 for details),
and h(t) = e1−t corresponding to the normalized inverse Gaussian process with parameter
b = 1 (see Example 3.2 for details). We ran the algorithm for 50,000, iterations keeping
the final 9000 for estimating the sampling density function. The algorithm took a matter
of seconds to run. To sample from the predictive at each iteration, we sample the weights
Pj ’s. If the sample dn+1 ≤ N, then we take the predictive sample from N (µdn+1 , τ

2); if
dn+1 > N, then we can take µdn+1 from the prior π and take yn+1 from N (µdn+1 , τ

2). The
predictive plot is presented in Figure 2 for the choice h(t) = 1 and in Figure 3 for the choice
h(t) = e1−t .

For the latter case, that is, for h(t) = e1−t , we provide further information. The estimate
of the total mass parameter is 1.70 and the convergence of the running mean throughout
the chain is given in Figure 4. The chain was run for 100,000 iterations, and every 100th
iteration was taken to construct the running average. In this case, the estimated correlation
between V1 and V2 is 0.74.

Including and updating τ, if a prior is provided, is straightforward. Suppose the prior is
π (λ), where λ = τ−2, then

π (λ| rest ) ∝ π (λ) λn/2 exp

{

−0.5λ

n∑

i=1

(y(i) − µd(i))2

}

.

Hence, a Gamma prior is most appropriate here and in the following example we take it to
be a standard Exponential, that is, π (λ) = exp(−λ). Now, we simulated n = 50 data points
Yi’s from a mixture of two Gaussian distributions defined as follows: with probability 1/2,
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Figure 2. Mixture of Gaussian distributions, Yi ∼ 1
2N (−10, 22) + 1

2N (10, 22): samples from the predictive
density function for h(t) = 1.

Yi ∼ N (0, 1) and with probability 1/2 Yi ∼ N (3, 0.52). The data are provided in Figure 5,
and 10 posterior samples using the same MCMC sampler as described above were collected
throughout the chain, separated by 1000 iterations. The samples are shown in Figure 6.
These density functions were constructed using the weights, means, and variance, obtained
at a particular iteration, and the notion of the density function being a mixture of Gaussian
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Figure 3. Mixture of Gaussian distributions, Yi ∼ 1
2N (−10, 22) + 1

2N (10, 22): samples from the predictive
density function for h(t) = e1−t .
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Figure 4. Mixture of Gaussian distributions, Yi ∼ 1
2N (−10, 22) + 1

2N (10, 22): running average for total mass
parameter with h(t) = e1−t .

density functions. We computed the mixtures up to the value of N, and the remaining mass,
typically very small, was added to a Gaussian density function with the prior mean and the
sampled variance.

We also run the model, with prior on the variance term, with σ = 1/2 and h(t) = e1−t (see
Example 3.2 for details) on the Galaxy dataset (see Roeder 1990), and which consists of 82
velocities of galaxies—an obligatory exercise when working with infinite mixture models.
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Figure 5. Mixture of Gaussian distributions, Yi ∼ 1
2N (0, 1) + 1

2N (3, 0.52): data.
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Figure 6. Mixture of Gaussian distributions, Yi ∼ 1
2N (0, 1) + 1

2N (3, 0.52): posterior samples of densities.

We ran our model with 30,000 iterations and every 50th iteration was used to sample from
the predictive. So, at the relevant iterations, we sample from the density function given
all the parameters. The density function estimate is given in Figure 7. Note that we have
transformed the data (Y = Y/1000 − 20) and the prior settings were precisely as those for
the example of the mixture of two Gaussian distributions. In Figure 8, we provide five
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Figure 7. Predictive density for Galaxy dataset using h(t) = e1−t .
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Figure 8. Posterior samples of densities for Galaxy dataset using h(t) = e1−t .

posterior samples taken from the chain and separated by 1000 iterations. This was done in
exactly the same manner as described in the previous example.

5. DISCUSSION

We have shown how to slice sample a class of mixture models, which includes all of the
current popular choices of mixing measures. With “standard” stick-breaking models the
stick-breaking variables (Vj )j≥1 are independent, even as they appear in the full conditional
distribution sampled in the posterior MCMC algorithm.

On the other hand, the models we are considering in this article have corresponding full
conditional distribution given by Equation (19). This only leads to independent (vj ) vari-
ables in special cases, which depend on the choice of σ and h(t). Nevertheless, we have
shown how to sample this joint distribution and hence implement a valid MCMC algorithm.
The joint density function arises as a consequence of using a σ -stable Poisson-Kingman
based mixture model and specifically due to the representation of such random probabil-
ity measures as stick-breaking processes, with not necessarily independent stick-breaking
variables.

The present article is different from the work by Griffin and Walker (2011) in the
following way. In the article by Griffin and Walker (2011), normalized random measure
mixture models are handled using the normalized representation in terms of Lévy processes.
Whereas in the present article, we remove the need to consider Lévy processes by using a
representation of normalized random measures as stick-breaking processes with dependent
stick-breaking variables. We argue this latter representation is in fact the simpler to deal
with.
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Finally, we note that the class of σ -stable Poisson-Kingman models is indexed by a
function h(t), in addition to what is usually encountered in discrete random probability
measure. This function and its role need to be properly investigated. This might not have
happened to date due to the lack of tools to do posterior inference with this class of model.
However, this is now not the case.

SUPPLEMENTARY MATERIALS

The datasets and the Scilab code that implements the σ -stable Poisson-Kingman mixture
models described in Section 4 are available as a zip file (slicePK.zip).
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