
12 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Virtual agents for the production of linear animations

Published version:

DOI:10.1016/j.entcom.2013.06.001

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/143102 since 2016-06-29T11:59:56Z

Virtual agents for the production of linear animations

Rossana Damianoa, Vincenzo Lombardoa, Fabrizio Nunnari1

aCIRMA - Università di Torino
bDFKI

Abstract

In the last decade, a number of techniques from the new media practices
have contributed to innovate the traditional production of entertainment,
through the modularization and the automation of a number of phases. This
paper proposes a novel approach to the automatic generation of character
animations that draws inspiration from the techniques for the construction
of the virtual agents. The pipeline for the production of animated scenes
is based on the mapping between the authorial description of characters’
behavior and the actual animation data. The application context is the
production of linear (non interactive) animations. Given the specification of
a set of high level goals, the implemented system generates the animation
through the generation of a sequence of actions, the translation of actions into
animation commands, the display of an animated scene through a 3D graphic
engine. The pipeline and the system are validated onto the production of a
short animated movie, with the participation of a commercial company.

Keywords:
virtual agents, character animation, animation languages, HTN planning

1. Introduction

In the last decade, a number of techniques from the new media practices
have contributed to the innovation of the traditional production of entertain-
ment, introducing modularization and automation in a number of phases of
the production process [1]. In this paper, we investigate on the generation
of a character’s animations from a high level description of its behavior.

The production pipeline of the character animation [2], with particular
reference to 3D animation, starts from the screenplay written by an author
and is accomplished through a a series of phases. The director, together with

Preprint submitted to Journal of Entertainment Computing June 29, 2016

the storyboard artists, creates an animated storyboard (also called “animat-
ics”), in which the scenes described in the screenplay are visualized through
a sequence of drawings, usually timed according to some audio track; the
graphic artists create backgrounds, objects, characters, and assemble them
into scenes; the animators (possibly coordinated by an animation director)
animate the characters, breaking down their actions and editing the anima-
tion curves through the use of sophisticate graphic editors (that hide the
math and the numbers behind 3D computation). Finally, scenes are edited
following the animatics, with variations in timing and rhythm, which are
refined following music beats and cinematographic principles; all the scenes
are assembled together into a linear animated movie.

For the sake of expressivity, the animation curves generally expose a high
number of controls to the animators. A simple gesture, like grabbing an
object, involves more joints than those located in arm and fingers, since the
whole body must follow to reflect stretching and change of balance [2]. For
modern, full-featured characters, more than one hundred animation curves
can be associated to one animation clip; a “simple” skeleton is made of about
100 bones, with 3 degrees of freedom for each bone.

The automation of character animation raises issues at different levels of
specification. At low level, where human animators can control single ani-
mation curves, the techniques for the automatization of the animation pro-
cess include procedural techniques, such as Inverse Kinematics solvers, which
ease the translation of hands and feet in space, accounting for whole chains
of body segments [3, chapter 5.3], and physical simulation, which achieves
realism in balancing situations with complex body models and applied forces
(e.g., gravity) [4]. However, nowadays, only a limited set of animations can
be accomplished fully procedurally (e.g., automatic eye gaze), while main-
taining a highly expressive animation output.

At high level, the problem of bridging the gap between the story – con-
ceived of by an author and possibly including an interactive script – and the
generation of the animation, has been addressed by the research in virtual
agents. The integration of these two levels is particularly complex in inter-
active applications, which employ autonomous virtual agents to cope with
the range of behaviors required by the interactivity. Autonomous agents
are widespread in a range of applicative domains that span from cultural
heritage [5, 6, 7] and education [8, 9] to interactive drama [10, 11] and con-
versational agents [12, 13]. Authoring the behavior of such agents is an in-
terdisciplinary task, that requires the cooperation of several disciplines and

2

professional roles, including knowledge and software engineers, programmers,
graphic artists and animators [14]. The “procedural author” [15] specifies the
basic “bricks” that constitute the behavior of the character in the range of
situations encompassed by the interactive story. Concerning the animation
of the character, we can identify two relevant roles: a 3D animator, who
animates the behavioral “bricks” (clips representing actions, such as a walk
cycle, and poses for well distinctive action strokes, such as the expression of
surprise), and the 3D programmer, who works on the procedural generation
of the animation bricks (e.g. gaze direction) and their automatic composi-
tion.

The goal of the work presented in this paper is to apply the techniques
derived from the field of virtual agents to the production of linear (i.e. non
interactive) animation. In particular, we rely on the techniques of agent
deliberation to interpret the directions contained in the screenplay, generat-
ing a sequence of actions from a high level specification of the character’s
behavior; then, actions are translated into animated scenes through a real
time graphic engine. The pipeline and the system introduced by this paper
is aimed at saving time in both the conception and realization of animation:
the high–level behavior of the agent, stated in the screenplay (and usually re-
interpreted or detailed out by the director or the animators in the traditional
pipeline), is given as input to the system as a set of generic tasks, without
specifying the details of how they will be accomplished in some particular
scene/situation; the system translates the characters’ tasks into practical ac-
tions and then into the actual animations for a given situation. This process
can support the work of the director and the animators, by providing a first
approximation of the final result, or can be directly employed to the genera-
tion of the character’s animated behavior, when the quality required for the
animation is not high.

Given the applicative context of the linear animation, the novel contri-
butions of the paper are:

• a production pipeline for authoring animated characters from high level
behavior specifications;

• a reference architecture for generating the animation from these speci-
fications;

• a declarative language for mapping the character’s behavior onto ani-
mations.

3

Figure 1: Levels of behavior of a virtual agent (adapted from [3]).

The whole approach, called AnimaTricks, was validated on a pilot linear
animation (a short movie with a narrative content), with the participation of
a production company.1 The generated animation were evaluated by a panel
of producers and consultants.

The structure of the paper is the following. After surveying the state
of the art of the techniques for animated agents (Section 2), we describe
(Section 3) the AnimaTricks pipeline, system architecture and the language
we used to specify the agent’s behavior and the action-animation mapping.
Finally, we describe the case study and comment on the results (Section 4).
Conclusions and future work end the paper.

2. Animated characters

Most of the research on animated agents was stimulated by the design
and implementation of artificial characters and intelligent virtual agents in
interactive applications.

The schema in Figure 1 depicts the levels of behavior of a virtual agent,
going from the most abstract to the most concrete activities. The Reasoning

1The project AnimaTricks was funded by Regione Piemonte, settore Cultura, 2009.

4

unit, taking into account the internal state of the agent (current goal, action
history, the perception of the world) and the world knowledge, deliberates
a strategy that is passed to the Planner (usually an updated goal). The
Planner, which relies upon a library of plans associated to goals, calculates
the sequence of actions. The actions are coordinated in their executions
(Movement Coordinator), while the actual animation is operated by the DOF
manipulator, which manipulates the degrees of freedom on the character’s
joints and blend-shapes.

The first two units constitute the deliberative, AI–based component of
the virtual agent. In our application context, representation and reasoning
are delegated to the author and we assume that they are distilled into the
authorial directives in the form of task specifications. As for the planner,
virtual agent architectures are based on multiple approaches, ranging from
HTN planning (Hierarchical Task Network) [16, 17] to heuristic search plan-
ning [11]. A debated issue is the coupling of the planner with the graphic
engine that implements the two lowest levels, which are responsible for the
generation of the motor activities. Some approaches, such as [11], have ex-
plored the coupling with external graphic engines, such as Unreal2 or Unity3:
this scheme guarantees the real time reactivity of the character, but opens the
issue of the coordination between the behavioural drive and the graphic en-
gine [18]. Other approaches have pursued the complete integration between
the deliberation and the animation component, leading to the development
of layered architectures [19, 20, 21], that integrate the deliberative and the
animation levels through the design of animation languages that encode the
character’s behavior in terms of animation primitives.

Three observations make layered architectures the appropriate candidates
for applying modularization and automation to the production of linear ani-
mation – where interactivity and real time response are not required. First,
in order for the architecture to be applicable in a pipeline where some fig-
ures have no programming skills, it must support a declarative approach to
the definition of actions, so as to facilitate the task for the 3D animator,
who is responsible for the action breakdown into basic animations and their
realization as animation clips, possibly split into different tracks for the vari-
ous body parts; second, the system must enable the definition of parameters

2http://www.unrealengine.com/ [last visited on 8 May 2013]
3http://unity3d.com/ [last visited on 8 May 2013]

5

for the declared actions: this greatly improves the modularization of ani-
mations, reducing the number of definitions for similar actions in slightly
different contexts, and supporting the re-usability of work across different
scenes and projects; third, the engine must provide an animation system
that works both data-driven and procedurally. On the one hand, the 3D
animator must be allowed to provide complex expressive animations (that
cannot be realized through the automatic merge of basic motor primitives);
on the other, the procedural generation and the alteration of data-driven
movements are a key feature to support the parametrization. Hence, the
system should give 3D programmers the means to alter, parametrize and
mix (blending and layering, see below) human-made poses and animations.

Another concern of our architecture is about time management. The
deliberative process outputs a sequence of actions, to be performed in the
specified order. No timing information is specified. We believe that perfect
timing specification is not a crucial issue in action definition: it yields to
a repetitive iterative authoring process to fine-tune the desired result and
poses limits to a further (future) extension of the system to more interactive
environments. Hence, in our system time is neither exposed as parameter
nor used in the action execution. Differently, we specify animation “speeds”,
for which it is easier to identify default values (e.g., walk speed), and whose
duration depends on the specific scene state during execution (e.g., according
to actual path length).

In particular, in our work, we are interested in defining a declarative
language (from now on, an Action to Animation definition language, or A2A)
to define parameterized actions through the use of motor activities comprising
both data-driven and procedural animations. So, the movement coordinator
plays the role of the interpreter of the A2A definitions, while motor activities
are hard-coded in an animation engine (DOF manipulator). Many character
animation engines have been developed in the past (such as the C4 system
[20]), which provide all the functionalities to drive autonomous characters.
However, they do not expose a declarative language to define new actions and
animations, making it difficult to adapt the system to new environments.

A number of declarative languages have been proposed since the dawning
of character animation, allowing the definition of actions that can be pro-
cessed by a Movement Coordinator. The pioneering PAR (Parameterized
Action Representation) language [22] is a template-based representation of
actions designed to program animated agents, bridging the gap between nat-

6

ural language instructions and the actual animations. A PAR definition, that
includes the agent of the action, the relevant objects, the path to follow, loca-
tion, manner, the purpose of a particular action, and the logical preconditions
and effects, provides the means to define the parameters and mixes the logi-
cal information with the description of its animation. In our architecture the
former aspect is handled within the specification of the behavioral plans, and
the latter is left to the animation language: the production pipeline identifies
an AI engineer and a 3D programmer for these two levels respectively.

BML (Behavior Markup Language, one of the most documented and
solidly implemented languages) [23] and BEAT (Behavior Expression Anima-
tion Toolkit) [24] are animation languages conceived to animate intelligent
conversational virtual agents, geared to describe the multimodal communica-
tive behavior of an agent. They focus on the ability to synchronize human
gesture with speech. Whilst data-driven animation is supported, these lan-
guages are specific to human gesture for conversation, not for generic human
movement. Animation of custom body parts, as well as the control of non-
humans, is not supported; additionally, timing specification is a necessary
requirement of the language, and so, according to our requirements above, is
not appropriate for the parameterization of linear animations.

The Improv system supports the description of both animation and be-
havior of actors on stage [19]. Its oversimplified behavioral sub-system is
based on simple sequential script approach (much poorer with respect to the
HTN approach of this paper). The animation layer, and its related language,
despite not exposing a parameterization mechanism, and requiring explicit
time information, share some concepts with our approach. The Improv an-
imation language supports the definitions of actions by imposing a change
of value for a set of degrees of freedom (DOFs) in time. In modern termi-
nology, a DOF can be either the rotation of a bone around a reference axis
(x, y or z) in skeletal animation or the weight of a blend pose for blend–
shape animation. We took inspiration from Improv in its ability to let the
author compose actions. First, the author can specify sequences of actions;
second, by defining “priority groups”, the author specifies the parallelism of
actions, giving the author the means to specify how to handle overlapping
DOFs variation in time. In our animation language we further extended
the sequential/parallel-with-priority approach by allowing the definition of
nested, sequences and recursive parallel groups. Moreover, we include as
DOFs the global position and rotation of the character in space.

EMBRScript is the animation language of the EMBR animation engine

7

[25]. It allows the description of animated gestures through the composition
of both data-driven and procedural animations. It was used to implement
a BML realizer, providing all the features needed to accomplish the conver-
sational animation gestures. However, the language is bound to the human
movements and a finite preset of body parts and autonomous behaviors. The
disadvantage consists in having a granularity in handling layered animations
to the level of body parts, instead of single DOFs (such in Improv and our
system). This limited granularity problem arises since hand-made anima-
tion tend to be made of animation curves scattered throughout the whole
body skeleton. More advanced procedural features, like automatic eye-gaze
and settling of the body according to its balance, can be inserted into our
system as dedicated animation tracks. Concerning balance, differently from
EMBRScript, where settlement is used to explicitly move the character to
simulate change of balance, in our system a physical simulation would be
used to re-settle a posture that can has been altered out of its believability.
Moreover, EMBR requires the specification of many temporal constraints.
This can be acceptable within the BML architecture, where such constraints
are meant to be generated by an automatic resolver, but it can be a hard job
for a human author in the pipeline. Finally, the language does not support
the exposition of parameters in newly defined animations.

In the following, we present the AnimaTricks system, including the pipeline
and the architecture, with a particular reference onto the representation lan-
guage, all specialized for the context of the linear production of animations.

3. The AnimaTricks System

The architecture of the system includes three main components (Figure
2): the Planner, the A2A Executor and the Animation engine. Each module
in the architecture is related to a specific knowledge base (the cylinders in
Fig. 2). For the Planner, the knowledge base consists of the plan library. For
the A2A Executor, the knowledge base consists in the catalogue of actions.
The Animation Engine relies on the repository of animation data.

The AnimaTricks System includes an offline Authoring Pipeline, where
contents (characters’ behavior specifications and animation data) are created,
and an online System Architecture, where the system is run to generate the
character animation.

8

Scene

description

Plan
library

Task
Character

Planner

A2A Executor

Animation
data

repository

Animation Engine

A2A
Mapping

rules

Action
Catalogue

• ...
• ...

Action ontology

Enthusiasm

Figure 2: A graphical representation of the reference architecture. Solid lines represent
the control flow, dashed lines the data flow.

3.1. Authoring Pipeline

The offline phase includes the Behavior definition, in which the writer,
with the help of the AI engineer, encodes a set of character’s behaviors into
the format required by the planner (Plan Library), and the Catalogue cre-
ation, in which the action primitives contained in the Plan Library are
translated into the animation language (creating manual animations when
required), labeled and stored in the Action Catalogue. In this pipeline, the
animator is required to adopt a ‘new media language’ approach [1], by speci-
fying configurations that will be reached through automatic procedures (the
automation principle) and by animating re-usable modules (the modularity
principle) that are dynamically employed to create new sequences.

Behavior definition. Given the input provided by the writer, the AI
engineer designs and implements a library of plans that encodes the char-
acter’s behavior and tests them in a range of representative of situations.
Plans are evaluated by the writer to make sure that the generated behavior
is acceptable, and iteratively modified if necessary. In AnimaTricks, plans
are encoded in the HTN paradigm, i.e., by describing complex, high–level

9

tasks as sequences of simpler, lower level tasks.
Catalogue creation. Given the rigged 3D model of the character, cre-

ated according to the specifications provided by the writer, the animator’s
work consists in cooperating with the 3D programmer to implement the ac-
tions contained in the Behavior Library. Each action that is already stored in
the Action Catalogue (from a previous project) is a candidate for reuse. Oth-
erwise, if the animation of the action is produced from scratch, the animator
and the 3D programmer analyze the structure of the action and break it down
into its motor components; the 3D programmer evaluates if the action can
be procedurally generated through an animation language expression (Ac-
tionToAnimation - A2A - mapping). Even if the animation is procedurally
generated, it may be necessary (or more convenient for quality requirements)
that one or more parts of the action are manually edited. For example, for
some action types (such as facial takes of joy or surprise), it is advisable to
manually produce the pose that marks the culmination of the action. Finally,
the new entry is added to the catalogue, accompanied by a textual label and
stored in the repository.

In the online phase, the system generates the animated behavior of the
character given a specification of the character’s high level tasks. This phase
is similar to the traditional production methodology, where the writer pro-
vides a set of directives containing a high level description of the scene, in-
cluding the behavior of extra characters (for example, “doing office work”),
further refined by the director through the exact staging of the scene ele-
ments (characters and objects), i.e., a detailed the description of their posi-
tions, activities and trajectories, accompanied with exact timings. In Anima-
Tricks, these directives are translated into a formal specification of high-level
tasks that the system interprets to generate the animation of the characters
through planning and procedural animation.

3.2. System Architecture

Planning. The input to the Planner consists of a description of the
scene and a set of tasks. In the current implementation of the system, we
use the JSHOP2 planning system [26, 27], so actions are encoded in JSHOP2
language. For example, here below is the description (called method) of the
task consisting of taking an object.4 The method (take, line 1) features two

4The example, taken from the implemented system, is encoded in JSHOP2 plan de-

10

parameters, an agent (?agent) and an object (?object), and encompasses
two alternatives: if the agent is in the same location as the object (line 5),
it simply grabs it (line 7); otherwise (lines 10–12), the agent moves to the
object location and then grabs it (line 14). The actions of going and grabbing
are represented, respectively, by the methods go then grab.

1 (:method (take ?agent ?object)

2

3 ;agent and object are in same location

4 ((agent ?agent) (object ?object) (location ?loc)

5 (at ?agent ?loc)(at ?object ?loc))

6 ;simply grab the object

7 ((grab ?agent ?object))

8

9 ;the agent has to reach the location of the object

10 ((agent ?agent) (object ?object)

11 (location ?from)(location ?to)

12 (at ?agent ?from)(at ?object ?to))

13 ;go to the object location and grab it

14 ((go ?agent ?from ?to)(grab ?agent ?object))

15)

When the system is assigned a behavior directive that encompasses the
task of taking an object (for example (take agent1 folder)), the param-
eters of the method are bound to the corresponding scene entities (here,
agent1 and folder) and the method is refined until a sequence of primitive
actions is obtained (“grab” or “go and grab”).5

The description of the scene is a set of ground formulae, constrained to
the template list below, designed to meet the requirements of the staging
task (where the director puts the entities on stage according to a certain
layout):

• The list of characters that appear in the scene;

• The list of objects in the scene, such as pieces of furniture, props, etc.

scription language: see [28] for the mapping of this format onto the standard format for
plan representation, PDDL.

5Notice that the planning system does not support explicit entity types in the descrip-
tion of the plans, so it is does not provide a mechanism to enforce the binding to action
parameters onto the scene entities. For this reason, in AnimaTricks, we created a simple
taxonomy of entity types, that can be used in the specification of plans to guarantee that
their parameters are bound to the appropriate scene entities when the plan is applied.
In the example, the ?agent and ?object parameters are constrained to be, respectively,
instances of the agent and object types.

11

• The list of relevant scene locations (coordinates in the Animation en-
gine).

• The positions of characters and objects, i.e., the location in which their
are situated.

• The list of events to which the character is to react.

Executor. Given the plan generated by the Planner (e.g., !sit-down
agent1 desk2, !grab agent1 pen1, !write-line agent1 sheet1, ...),
the Executor module retrieves from the Action Catalogue the corresponding
A2A (Action to Animation) mapping, a procedural definition where the ac-
tion is mapped onto some animation construct expressed in the AnimaTricks
language (see below). A2A mappings, issued from the breakdown process
carried out by the animator and the 3D programmer, are mutually exclusive
(to avoid conflict resolution strategies, not particularly relevant in a story-
telling context). The A2A mapping is interpreted in its sequential/parallel
structure to produce a sequence of calls to the animation primitives and
generate the final blended animation.

3.3. The AnimaTricks Language: A2A mapping and animations

The main features of the animations are:

• animations operate on skeleton joints, blend-shape weights, and on the
global position and rotation of the character in space;

• primitive animations are defined by loading data-driven stored anima-
tions or implementing procedures for generating simple animations for
global position, rotation and IK end-effectors (e.g., hands reaching spe-
cific locations, eye gaze, finger pointing, . . .);

• non primitive animations can be defined by: sequencing animations
(procedural blending achieves smooth transitions); layering animations,
with a control of priority levels for overlapping DOFs; iterating anima-
tions. Sequencing and layering form animations too, thus supporting
hierarchical structures;

• synchronization over animations is only realized through the specifica-
tion of sequential / parallel hierarchical structures; the language does
not require an explicit encoding of timing; durations are intrinsic in

12

data-driven animation clips, while for procedural animations speed is
specified instead of duration.

A2A definitions map actions onto complex animations plus a set of pa-
rameters. Parameters depend on the schematic structure of an action as
encoded by the corresponding frame (consulting offline the FrameNet lexical
resource [29] or some process ontology [30]): for example the action “walk”
can expressed by specifying a path along which the action occurs, the source
and destination locations of the action, the area in which the walking action
takes place. The work described in [31] exemplifies how characters’ actions
can be mapped onto ontology concepts via the lexical mediation provided by
FrameNet.

The syntax of the AnimaTricks language that encodes such concepts in-
cludes the Primitives Types, the Objects, and A2A definitions. The Primi-
tive Types are: String, float, int, Point, Rotation, Anim, List < T >, where
the < T > template-like syntax denotes that containers are specialized at
instantiation according to the contained type.

Objects are named sets of attributes (such as position and rotation),

Point← location of(obj name : String)

Rotation← rotation of(obj name : String)

that can be grouped in lists:

List < T >← “[”(element : T) ∗ “]”

Basic animations can be obtained through the retrieval of a clip from a
repository of animation clips:

Anim← clip animation(id : String)

or through pure procedural animation, e.g., an IK end-effector (or handle)
moving or rotating to a specific value:

Anim← move handle to(handle : String, pos : Point, speed : float)

Anim ← rotate handle to(handle : String, rot : Rotation, angular speed :

float)

An object moves through the space following a path of points, at a certain
speed (in meters per second). The duration of the animation is computed on
the length of the whole path:

Anim← follow path(points : List < Point >, speed : float)

rotate to and rotate towards create an animation that makes the char-
acter rotate to the specified rotation or towards the specified point at the

13

specified turn speed (in degrees per second), respectively, typically used to
align objects:

Anim← rotate to(rot : Rotation, turn speed : float)

Anim← rotate towards(p : Point, turn speed : float)

Animations can be structured in time through:
1) the repetition of the same animation, using the definition

Anim← repeat(a : Anim, times : int), using times -1 for infinite loops.

2) the sequentiality blending of several animations, via the function

seq(anims : List < Anim >).

3) the parallel construct, with a first-defined / high-priority fashion,
meaning that (similarly to Improv) DOFs controlled by firstly defined anima-
tions will have precedence on the same DOFs affected by following animations
in the provided list. The syntax is:

par(anims : List < Anim > [, endsync : String])

The optional “endsync” parameter defines the duration behavior of the
parallel sequence. Allowed values are “all” (default) and “first”. Their mean-
ing follows the specification of the SMIL language.6 The last three func-
tions correspond to the repetition, parallelism, and sequence composition
constructs in the MURML language [32].

Actions are procedurally defined as animations, possibly structured ac-
cording to some sequential or parallel construct. Here are some examples.
The action Say-goodbye (below, line 1) is a basic form of non-parametrized

invocation of a data-driven animation stored with the name “goodbye” (line
2).

1 Say-goodbye() {

2 clip_animation("goodbye")

3 }

Another example is the Grab-one-hand action, presenting both parame-
ters (line 1) and sequencing (line 2): the definition of this action requires the
hand of the actor to reach the target location (line 3) before the actor closes
its hand (line 4).

6http://www.w3.org/TR/2008/REC-SMIL3-20081201/smil-timing.html#Timing-
endsyncAttribute [last visited on 8 May 2013]

14

1 Grab-one-hand(target:Point) {

2 seq([

3 move_handle_to("hand", target, DEFAULT_HAND_SPEED)

4 clip_animation("hand_closed") ;

5])

6 }

If the author wishes to modulate the speed of the hand movement (to have
a quicker gesture) a float multiplier can be used (e.g., DEFAULT HAND SPEED
* 1.7)

The Walk action (line 1 below) presents a combination of sequential and
parallel movements. It is a sequence (line 2) of a rotation towards the point
to reach (line 3) followed by the actual walking animation. The walking ani-
mation is built by parallelizing (line 4) a looping walking cycle (line 5), with
the primitive animation moving the agent between two specified points (line
6). The “first” directive (line 8) says that the parallel animation terminates
as soon as the first of its component ends.

1 Walk(from_location:String, to_location:String) {

2 seq([

3 rotate_towards(position_of(to_location), DEFAULT_ROT_SPEED * 3)

4 par(

5 [repeat(clipAnimation("walk_cycle"), -1)

6 follow_path([from_location to_location], DEFAULT_WALK_SPEED)

7],

8 "first"

9])

10 }

The Animation Engine is provided by the Enthusiasm project7, an open
source platform that supports the authoring of 3D real-time interactive vir-
tual environments. Enthusiam contains a 3D engine with high-level function-
alities for building applications based on real-time 3D technologies: real-time
3D rendering (on top of DirectX or OpenGL), import assets from popular
3D authoring tools (such as Maya, 3DStudio, Blender, and more), spatial-
ized audio, physics, multiplatform support (Windows, Linux, MacOS X).
Original features are: a simplified scene management, both C++ and Java
APIs, effortless integration in Java AWT/Swing interfaces, and the character
animation engine described in this paper.

15

Fetch 
(char1,sheet1) 

Write 
(char1, le1er1) 

Put‐down 
(char1, pencil2, 

desk2) 

Write‐line 
(char1,sheet2)  ... 

Make‐phone‐call 
(char1, phone1) 

Put‐down 
(char1,phone2,desk2) 

Stand‐up 
(char2,seat1) 

Walk 
(char2,loc‐seat1, loc‐shelf1) 

Take 
(char2,sheet1,shelf1) 

Walk 
(char2,loc‐seat2,loc‐seat1) 

Figure 3: Snapshots of the video automatically generated by the system from the planning
goal.

4. Case study: animation of extra characters

We employed our system to conduct an experiment on the creation of ex-
tra characters in serial productions (TV series, video games, etc.).8 The val-
idation test had a duration of one month, involving two 3D artists (modeling
and tuning of the character with respect to the production needs), one senior
animator (animation and labelling), two software developers (programming
the Animation engine), one visual artist (setup, lighting, and shooting of the
scenario), an AI engineer. Figure 3 contains an example animation taken
from one of the generated sequences of actions. In the snapshot, two charac-
ters do office work, answering the phone and writing (char1) or standing up
to fetch some paper sheets (char2, in background). The upper part of the
figure shows the plan generated by the planner; in each shot, the characters

7http://enthusiasm.sourceforge.net/ [last visited on 8 May 2013]
8The software and data employed in the experiment can be downloaded at

http://www.cirma.unito.it/animatricks/downloads/project/

16

are connected by the dashed lines to the plan actions they are executing.
The experiment is tailored on a real production scenario. Since we assume

that the reuse of animated behaviors across episodes/environments/sessions,
is relevant for evaluating the impact of the system, we included re-use as-
pects in the experiment design. So, as a preliminary phase, we asked an
author to write down a script by inserting actions that typically recur in the
series productions (for example, sitting at the desk and writing some letters,
etc). Given this script, a 3D character was designed, modeled and rigged ac-
cording to the requirements issued by the animator, and animated by using
traditional techniques. Then, we proceeded through three main phases:

1. creation of the repository of animations, obtained by breaking down
the actions, producing the basic animation clips or poses, and labeling
the animation for subsequent reference;

2. testing the offline pipeline (see Section 3.1): first, behavior definition,
through the authoring of a set of complex, goal directed character be-
haviors; then, catalogue creation, through the mapping of the behavior
primitives onto the animation repository;

3. testing the online pipeline: staging and animation of the character on a
set of authorial directives, conducted by using the AnimaTricks system
(see Section 3.2).

Each phase involved a specific set of challenges. Phase 1 (segmentation
of existing animation into action units and labeling) proved that identifying
meaningful actional units for reuse in an animation clip is a reasonable task.
Given an animation composed of 40 seconds (1000 frames), the animator
identified 43 actions (e.g., writing, grabbing, etc.) and 27 poses (e.g., surprise
takes, eye blinks, etc.), most of which involved only the facial expressions.

Phase 2 of the experiment faced the challenge of the authoring of behav-
iors by the AI engineer under the authorial control of the animation director.
The behavior described by the writer was encoded in a plan library, then
tested onto different goals and scene configurations; the refinement went on
until the animation director judged the result satisfactory for the coherence
and recognizability of the generated action sequences. The plan library con-
tained 17 complex actions (methods) and 21 primitive actions (operators),
that were mapped onto the actions in the catalogue. The planner was tested
on 20 different scenarios, where the AnimaTricks agents were given different
tasks (or the same tasks with different parameters). Output plans ranged

17

from 16 to 32 actions; 5 scenarios were selected to run the evaluation based
on the procedural animation techniques required. The plan library included
actions such as entering, sitting at the desk to accomplish several tasks, like
doing or receiving phone calls, hand-writing letters and notes, getting up to
take objects (pen, sheets, etc.) when necessary.

For example, a fragment of the plan represented in Figure 3 generated
the following sequence of operators:

[11] (!Talk agent1)

[12] (!Say-goodbye agent1)

[13] (!Put-down agent1 phone1 desk1)

[14] (!Grab-one-hand agent1 pen1)

[15] (!Write-line agent1 section1 sheet1)

[16] (!Write-line agent1 section1 sheet1)

[17] (!Finish-page agent1 section1 sheet1)

[18] (!Put-down agent1 pen1 desk1)

[19] (!Stand-up agent1)

[20] (!Walk agent1 desk-loc shelf-loc)

The creation of the Action Catalogue involved the programming of A2A
rules for the actual reuse of the stored animation data. The animator and the
3D programmer analyzed the structure of each primitive action included in
the plan library to translate it into the animation language, possibly reusing
clips stored in the Animation Data Repository. Most of the actions had to
be produced from scratch as animation clips. This is the case for primitive
actions, such as !Talk, !Put-down, !Write-line, corresponding to the units
Uttering, Taking, Writing, identified during the breakdown of the original an-
imation. For other actions, however, an existing clip (or pose) was embedded
in an A2A mapping rule, such as walk and grab-one-hand. In the experiment,
we developed 9 direct correspondences between action and animation and 3
A2A rules, with a use of action parameterization. However, given its short
duration, the animated scene did not include any reuse of animations across
different actions.

Phase 3 directly challenged the functioning of the animation system
(integration of components, computational resources, etc.). First, the main
character has been animated by composing the animations retrieved from the
repository (instead of performing full length manual animation). Then, given
two background characters, the system was assigned a complex directive for
each character; each directive yielded 8 different plans, and one plan was
chosen for each character by the director. We were able to optimize two
cases:

18

• The main character was animated on main gestures and poses and
blended subsequently. We were able to automatize 20 out of the 40
seconds of animation, thus halving the animation work (though some
interpolation is already in use in major 3D authoring software). This
means saving about 2-day work of the senior animator.

• We also provided 30 seconds of animation for each of the two secondary
characters in the scene. Animation time for secondary characters is nor-
mally lower that for primary characters, so this correspond to roughly
3-day work of a junior animator.

These times must be compared to the time needed by the senior animator
to segment and label the script (1 day), the time needed by AI engineer to
encode and debug the plans describing the character behavior (2 days), and
the time needed to develop A2A rules for the Action Catalogue (1/2 day).
This translates in having converted 5 days of animation work into 3 and 1/2
days of multiple specialized work. Given the short duration of the movie
(a more thorough experiment would require a very expensive budget), these
results can be considered a success. We believe that longer durations of serial
animations, also across several episodes involving the same characters, would
produce greater time savings.

At the end of the experiment, in order to evaluate the quality of the
obtained animation, we asked a panel of animation experts and producers
to assess if the quality was acceptable for the creation of extra characters.
The resulting scene, together with the production process, was presented to
a focus group of five animation producers, videomakers, and trainers, in a
public panel. The aim of the focus group was to assess the quality of the
animation produced through the reuse of action animations, the feasibility of
the pipeline (including the semantic labeling and the search and reuse phase),
and to validate the production scenarios for which the system was designed
(offline animation and animation of extra characters). The experts evaluated
its quality and potential for use in the animation industry and the impacts
of the technique for the animation languages. According to the comments
we collected, the system has a high potential in the animation production,
for both main and extra characters, in the case of TV series productions,
especially if coupled with animation data extracted from motion capture
takes. However, it should be noticed that the major problems concern the
creation of the animation catalogue and the classification system that allows

19

for a fast retrieval of the animation segments. Past experiences in series
production that tried to create a repository of animation segments lead to
a waste of time in classification and retrieval. From the discussion, it seems
that an action–based storing and retrieval of animations would facilitate the
task of animators: in most past experiences, producers reported about the
frustration of animators in retrieving their own work, with the consequence
that most of them tended to animate the same action again.

5. Conclusions and Future Work

In this paper we described a system for the modularization and automa-
tion of character animation starting from a high–level specification of their
behavior. The system is based on a reference architecture that integrates
an AI decision making component to generate the agent’s behavior and an
animation component that transforms the agent’s behavior into perceivable
acts in a 3D graphic environment.

Together with the system architecture, we presented a production pipeline
that involves traditional figures, such as 3D artists and animators, to work
with AI engineer and 3D programmers. The pipeline requires authors, AI
engineer, animators and 3D programmers to cooperate to the representation
of the agent’s behavior both at the decision-making and at the animation
level. The work of the professional roles in the pipeline is accompanied by
declarative languages that support each production phase. For character
animation we presented a declarative animation language, with a set of rules
that map the agent’s actions, generated by the AI component, to hand-made
and procedurally generated animations.

We also described an experiment in which the pipeline and the system
were used for the animation of secondary characters in serial productions.
This case study provided a test bed for the evaluation of the system and
gave encouraging results, both on the feasibility of the pipeline and time
saving.

The current system has some limitations. First of all, the rules that map
the actions in the catalogue to the animation language must be coded by
hand. In order to alleviate this task, we will investigate the possibility of
a semi-automatic translation given the structure of the action itself. The
mapping of parameters from plan actions to animations, addressed by [33],
also deserves further investigation. Second, the semantic labels attached to
actions are not exploited in the current system: so, in the future, we are

20

planning to use state-of-the-art technologies to support semantic access to
the Action Catalogue. Third, currently the system does not support multi-
agent coordinated actions. All the animated behaviors must be monitored by
the animation director and generated again in case of conflicts in general and
any collisions in particular. Finally, the system does not support interactivity,
since the resulting plan devised by the decision making component is directly
executed in the 3D virtual world with no reconsideration in case of failures.
Since the paradigm of HTN planning can easily be adapted to deal with re–
planning [34, 35], we intend to expand the system to interactive animated
agents.

References

[1] L. Manovich, The Language of New Media, The MIT Press, 2001.

[2] I. Kerlow, The Art of 3D Computer Animation and Effects, Wiley Pub-
lishing, 4th edition, 2009.

[3] R. Parent, Computer Animation: Algorithms and Techniques., Morgan
Kaufmann, 2007.

[4] Y. Abe, M. da Silva, J. Popović, Multiobjective control with frictional
contacts, in: Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, SCA ’07, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, 2007, pp. 249–258.

[5] W. Swartout, D. Traum, R. Artstein, D. Noren, P. Debevec, K. Bron-
nenkant, J. Williams, A. Leuski, S. Narayanan, D. Piepol, et al., Ada
and grace: toward realistic and engaging virtual museum guides, in:
Intelligent Virtual Agents, Springer, pp. 286–300.

[6] S. Kopp, L. Gesellensetter, N. Kraemer, I. Wachsmuth, A conversational
agent as museum guide - design and evaluation of a real-world applica-
tion, in: 5th International Working Conference on Intelligent Virtual
Agents (IVA’05).

[7] A. Bogdanovych, J. Rodriguez-Aguilar, S. Simoff, A. Cohen, Authentic
interactive reenactment of cultural heritage with 3d virtual worlds and
artificial intelligence, Applied Artificial Intelligence 24 (2010) 617–647.

21

[8] R. Aylett, M. Vala, P. Sequeira, A. Paiva, Fearnot!–an emergent narra-
tive approach to virtual dramas for anti-bullying education, LNCS 4871
(2007) 202.

[9] L. Ieronutti, L. Chittaro, Employing virtual humans for education and
training in X3D/VRML worlds, Computers & Education 49 (2007) 93–
109.

[10] M. Mateas, A. Stern, Integrating plot, character and natural language
processing in the interactive drama Fa̧ade, in: TIDSE 03.

[11] D. Pizzi, F. Charles, J. Lugrin, M. Cavazza, Interactive storytelling with
literary feelings, in: The second International Conference on Affective
Computing and Intelligent Interaction (ACII2007), Springer, Lisbon,
Portugal, September, 2007.

[12] V. Lombardo, F. Nunnari, R. Damiano, A Virtual Interpreter for the
Italian Sign, in: Intelligent Virtual Agents: 10th International Con-
ference, IVA 2010, Philadelphia, PA, USA. Proceedings, Springer, p.
201.

[13] R. Niewiadomski, E. Bevacqua, M. Mancini, C. Pelachaud, Greta: an in-
teractive expressive eca system, in: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2,
International Foundation for Autonomous Agents and Multiagent Sys-
tems, pp. 1399–1400.

[14] J. Skorupski, Storyboard authoring of plan-based interactive dramas,
in: Proceedings of the 4th International Conference on Foundations of
Digital Games, FDG ’09, ACM, New York, NY, USA, 2009, pp. 349–351.

[15] M. Mateas, A. Stern, Writing façade: A case study in procedural author-
ship, Second Person: Role-Playing and Story in Games and Playable
Media (2004) 183–208.

[16] M. Cavazza, F. Charles, S. Mead, Interacting with virtual characters
in interactive storytelling, in: Proc. of the First Int. Joint Conf. on
Autonomous Agents and Multiagent Systems.

22

[17] S. Kopp, L. Gesellensetter, N. C. Krämer, I. Wachsmuth, A conversa-
tional agent as museum guide - design and evaluation of a real-world
application., in: Intellingent Virtual Agents, pp. 329–343.

[18] F. Dignum, J. Westra, W. van Doesburg, M. Harbers, Games and
Agents: Designing Intelligent Gameplay, International Journal of Com-
puter Games Technology 2009 (2009).

[19] K. Perlin, A. Goldberg, Improv: a system for scripting interactive actors
in virtual worlds, in: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, volume SIGGRAPH ’96,
ACM, ACM press, New York, NY, USA, 1996, pp. 205–216.

[20] D. Isla, R. Burke, M. Downie, B. Blumberg, A layered brain architecture
for synthetic creatures, in: International Joint Conference on Artificial
Intelligence, volume 17, Citeseer, pp. 1051–1058.

[21] A. Loyall, W. Reilly, J. Bates, P. Weyhrauch, System for authoring
highly interactive, personality-rich interactive characters, in: Proc. of
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, pp. 59–68.

[22] N. I. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao,
M. Palmer, Parametrized action representation for virtual human
agents, in: J. Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.), Em-
bodied Conversational Agents, The MIT Press, Cambridge, Massachus-
sets, 2000, pp. 256–284.

[23] S. Kopp, B. Krenn, S. Marsella, A. Marshall, C. Pelachaud, H. Pirker,
K. Thórisson, H. Vilhjálmsson, Towards a common framework for mul-
timodal generation: The behavior markup language, Lecture Notes in
Computer Science 4133 (2006) 205.

[24] J. Cassell, H. Vilhjálmsson, T. Bickmore, BEAT: the behavior expres-
sion animation toolkit, in: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM New York, NY,
USA, pp. 477–486.

[25] A. Heloir, M. Kipp, Embr – a realtime animation engine for interactive
embodied agents, in: LNCS, Intelligent Virtual Agents, Springer, 2009.

23

[26] D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, F. Yaman,
SHOP2: An HTN planning system, Journal of Artificial Intelligence
Research 20 (2003) 379–404.

[27] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, H. Munoz-Avila, J. W. Mur-
dock, D. Wu, F. Yaman, Applications of shop and shop2, IEEE Intelli-
gent Systems 20 (2005) 34–41.

[28] R. Alford, U. Kuter, D. Nau, Translating htns to pddl: A small amount
of domain knowledge can go a long way, IJCAI, July (2009).

[29] C. Baker, C. Fillmore, J. Lowe, The berkeley framenet project, in:
Proceedings of the 36th Annual Meeting of the Association for Com-
putational Linguistics and 17th International Conference on Computa-
tional Linguistics-Volume 1, Association for Computational Linguistics,
pp. 86–90.

[30] I. Niles, A. Pease, Mapping WordNet to the SUMO ontology, in: Pro-
ceedings of the IEEE International Knowledge Engineering conference,
pp. 23–26.

[31] M. Cataldi, R. Damiano, V. Lombardo, A. Pizzo, Lexical mediation for
ontology-based annotation of multimedia, in: New Trends of Research
in Ontologies and Lexical Resources, Springer, 2013, pp. 113–134.

[32] A. Kranstedt, S. Kopp, I. Wachsmuth, Murml: A multimodal utterance
representation markup language for conversational agents, in: Proc. of
the AAMAS Workshop on Embodied conversational agents–Lets specify
and evaluate them.

[33] S. P. Cash, R. M. Young, Bowyer: a planning tool for bridging the gap
between declarative and procedural domains., in: Proc. of AIIDE 05.

[34] G. Boella, R. Damiano, A replanning algorithm for decision theoretic
hierarchical planning: principles and empirical evaluation, Applied Ar-
tificial Intelligence 22 (2008) 937–963.

[35] R. Van Der Krogt, M. De Weerdt, Plan repair as an extension of plan-
ning, in: Proc. of the Int. Conf. on Automated Planning and Scheduling.

24

