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12 Abstract. This note describes an implementation of the Rothermel fire spread

13 model in the R programming language. The main function provided, ros(), computes

14 the forward rate of spread at the head of a surface fire according to Rothermel fire

15 behavior model. Additional functions are described to illustrate the potential use and

16 expansions of the package. The function rosunc() carries out uncertainty ana-

17 lysis of fire behavior, that has the ability of generating information-rich, probabilistic

18 predictions, and can be coupled to spatially-explicit fire growth models using an

19 ensemble forecasting technique. The function bestFM() estimates the fit of Stan-

20 dard Fuel Models to observed fire rate of spread, based on absolute bias and root

21 mean square error. Advantages of the R implementation of Rothermel model

22 include: open-source coding, cross-platform availability, high computational effi-

23 ciency, and linking to other R packages to perform complex analyses on Rothermel

24 fire predictions.

25 Keywords: Fire behaviour, Fuel models, Fire spread, Prescribed fire, Wildfire

2627 1. Introduction

28 Mathematical models of wildland fire behaviour have been of great importance in

29 both fire ecology research and fire management (e.g., [6, 26, 27, 38]). Rothermel

30 model for forward fire rate of spread (hereafter ROS) in surface fuels is one of the

31 most widely used fire models [29].

32 Rothermel model has been programmed into computer code-based versions [2],

33 and included as a fundamental part of several fire modeling software. Examples of

34 simulators operating at the stand scale are Behave/BehavePlus [4, 5], and the Fire

35 and Fuel Extension to the Forest Vegetation Simulator [28], both programmed in

36 Fortran. Furthermore, Rothermel model has been included in spatially-explicit fire
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37 simulators (e.g., [1, 17, 19, 24, 25]), or as extension to proprietary (e.g. [18]) or

38 open-source Geographical Information Systems (e.g., the r.ros module for GRASS

39 GIS [42]).

40 However, these packages often operate as a black-box, i.e., are opaque to cus-

41 tomization of input parameters (except for those allowed by the Graphical User

42 Interface), model form, and cross-format analysis of model output. We identified

43 a need for scientists and managers to run surface fire simulations based on Roth-

44 ermel model within a larger, seamless workflow of pre- and post- wildfire model-

45 ing analyses, such as input data preparation, iterative model runs, or plotting and

46 statistically manipulating model results (e.g., [7, 10, 16]).

47 The aim of this Research Note is to present the Rothermel package for the R

48 programming language (R Core Team, 2013). The package currently resides on

49 the CRAN repository (URL: cran.r-project.org/web/packages/rothermel). R is an

50 open-source programming language and statistical analysis framework that is

51 rapidly becoming standard in scientific research. It allows data handling (Appen-

52 dix 1), statistical analysis, and graphical representations, thanks to a suite of pre-

53 installed statistical methods, and more than 4,000 add-on packages. It functions

54 under all operating systems, including Windows, Linux and OSX. To date, some

55 fire-related packages have been developed for R (e.g., paleofire [21],

56 fume [34], and fwi.fbp [41]), but the Rothermel fire spread model has not

57 been ported yet.

58 2. The ros() Function

59 2.1. Description

60 The ros() function computes ROS ½m min�1� and other output variables from

61 Rothermel model (Table 1). Rothermel model has been subject to several correc-

62 tions. The model implemented here includes the following changes to the orginal

63 system of equations: an updated weighting factor for reaction intensity by fuel

64 category [20], updated equations for mineral content, damping coefficient, reaction

65 velocity, weighting factor for fuel loadings, and live fuel moisture of extinction [2],

66 and removing the maximum wind factor limit [7].

67 Inputs required by the fire spread model are specified by the fire behavior fuel

68 model (hereafter: fuel model). Other inputs are related to environmental variables

69 such as slope steepness, midflame wind speed, and the moisture content of each

70 fuel category and size class (Table 1). Rothermel model is static, therefore it

71 assumes constant weather variables for each simulation [29].

72 The inputs and outputs of ros() are in metric units, but the function con-

73 verts all inputs to imperial units in order to apply the original coefficients of

74 Rothermel model. The function accepts both single values, and data.-
75 frames with multiple observations. If modeltype is set to D, a dynamic
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76 fuel model will be invoked, where part of the cured herbaceous fuel is transferred

77 to the 1-h fuel size class, as a function of herb fuel moisture [35]. If characteristic

78 fuel moisture is higher than the fuel moisture of extinction, both for live and dead

79 fuels, the respective reaction intensity is set to zero [5]. The following two exam-

80 ples demonstrate the usage of ros().

81 2.2. Example 1

82 This example computes Rothermel equations by using a single fuel model, mois-

83 ture scenario, and unique slope and wind values.
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84 The result is a list of the following values:

85 [1] Characteristic dead fuel moisture [%] 7.02

86 [2] Characteristic live fuel moisture [%] 59.37

87 [3] Live fuel moisture of extinction [%] 128.40

88 [4] Characteristic SA/V ½m2 m�3� 7325.13
89 [5] Bulk density [kg m-3] 2.90

90 [6] Packing ratio [dimensionless] 0.01

91 [7] Relative packing ratio [dimensionless] 0.93

92 [8] Dead fuel Reaction intensity [kW m-2] 553.34

93 [9] Live fuel Reaction intensity [kW m-2] 933.21

94 [10] Reaction intensity [kW m-2] 1486.55

95 [11] Wind factor [0–100] 6.75

96 [12] Slope factor [0–1] 0.25

97 [13] Heat source [kW m-2] 501.85

98 [14] Heat sink [kJ m-3] 4682.05

99 [15] ROS [m min-1] 6.43

100 2.3. Example 2

101 Here we illustrate how to compute ROS using data from fire field experiments,

102 and validate Rothermel predictions against observed rate of spread. This example

103 uses the dataset firexp of the Rothermel R package. The dataset includes

104 ROS measured using a microplot scale approach [36] during field fire experiments

105 in heathland fuels (mixed grass-shrub). The experiments were carried out on flat

106 terrain under variable fire weather [8, 39]. For each observed ROS, environmental

107 and fuel parameters were measured before and during the fire. Some ranges in the

108 dataset are: ROS 0:9�26:3 m min�1; wind speed 0:4�7:9 km h�1; 1-h fuel mois-

109 ture 10–27%. We predict ROS using data from three Standard Fuel Models ([35])

110 and environmental variables measured in the field, and validate it against

111 observed values.
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112 3. Potential Expansion of the Package: Example of
113 Functions

114 The ros() function can be implemented in more complex analyses of fire

115 behavior and effects. We illustrate below two cases of the potential development

116 of new functions based on ros(). The first case is a function for uncertainty

117 analysis of rate of spread, that implements methods already explored by the litera-

118 ture [9, 14, 23, 37]. The second example is a newly developed function to evaluate

119 the fit of preset fire behavior fuel models to observed ROS (Figure 1).

120 3.1. The rosunc() Function

121 Several authors have stressed the importance of introducing stochasticity in fire

122 behavior prediction [9, 14, 23, 37]. The advantage of stochastic fire models is to

123 obtain error bounds and probability-based outcomes for the main fire behavior

124 parameters. Although Rothermel model is essentially deterministic, a probability

125 density function of ROS or other model outputs can be obtained by perturbing

126 one or more input variables (usually environmental ones). The probability associ-

127 ated to each output value is represented by the relative frequency of such output

128 among all model realizations. Manually perturbing model inputs is a tedious task.

129 The rosunc() function of the Rothermel package automatically perturbs

130 inputs by randomly sampling from gaussian distributions, where the mean is the

131 observed value and the standard deviation is specified by the user (in the form of

Figure 1. Observed vs. Predicted ROS for the firexp dataset using
Standard Fuel Models GR5, GS3 and SH7.
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132 coefficient of variation, 0–1). The output is a vector of ROS. The function accepts

133 the same arguments as in ros(), plus the desired coefficients of variations for

134 wind speed, fuel moisture, slope, fuel load, and fuel bed depth, and the number of

135 simulations desired to produce a Monte-Carlo based probability density function

136 for ROS [14, 23]. Consequently, the function runs on one fuel set at a time (i.e.,

137 no data.frames allowed as input).

138 3.2. Example 3

139 Here, one observation (row) is selected from the firexp dataset. Input values

140 are selected similarly to ros(), and a coefficient of variation of 0.3 is specified

141 to generate a gaussian distribution of fuel moisture values. The probability distri-

142 bution function of ROS is generated by 1000 Monte Carlo simulations and graph-

143 ically compared with the observed value. This example’s output may differ from

144 actual results due to the stochastic simulation of moisture values.

145 3.3. The bestFM() Function

146 A set of Standard Fuel Models (SFM) was developed to parameterize fuel proper-

147 ties of different fuel complexes [3, 35]. In the process of testing the predictions of

148 Rothermel model vs. observed ROS in a given vegetation, one of the first steps is

149 to verify whether any of the SFM yields a satisfactory prediction [22, 30, 35]. This

150 is a crucial step before undertaking the calibration of a custom fuel model [11].

151 The function bestFM() estimates the fit of the 53 SFM to a vector of

152 observed ROS, based on absolute bias (predicted - observed ROS), and root mean

153 square error (RMSE). Arguments of the function include environmental variables,

154 which are not a part of SFM, and the observed value or vector of ROS. The

155 function calls a dataset of SFM that has been embedded in the Rothermel
156 package (dataset SFM_metric), simulates ROS using SFM data and environ-
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157 mental variables, and outputs a data.frame of RMSE and/or absolute bias.

158 Simulations can also be run under predefined fuel moisture scenarios [35] by call-

159 ing the dataset scenarios (Figure 2).

160 3.4. Example 4

161 This example loads a vector of observed ROS and environmental parameters from

162 the firexp dataset, and compares them with ros() predictions from a data-

163 set of 53 Standard Fuel Models. A sorted barplot of increasing RMSE is pro-

164 duced to illustrate the output of the function. The sign of prediction bias is

165 indicated by the bar color (Figure 3).

Figure 2. Probability density function of ROS and the observed
value.

Figure 3. RMSE of 53 SFM against a dataset of observed ROS in
heathland mixed grass-shrub fuels.
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166 4. Discussion and Practical Implications

167 The main function of the Rothermel package computes ROS from user-

168 defined (or standard) fuel and environmental parameters. The ros() function

169 computes parameters of the Rothermel model with its most common modifica-

170 tions [2, 7, 20]; however, the code is open to host additional formulations, such as

171 those by the Fuel Characteristic Classification System (FCCS) [33], or alternative

172 fire spread models [15].

173 The ros() function is functionally similar to the US Forest Service software

174 BehavePlus [5], and ROS predictions for aligned head fires are equivalent between

175 the two softwares. Compared to BehavePlus, R provides an open-source platform

176 that runs on multiple operating systems (Windows, OSX, Linux). However,

177 ros() lacks the additional functionality of the latter, i.e., supplementary fire

178 behavior and spread models, together with the user friendly interface that made

179 BehavePlus so popular among fire managers. The ros() function is not inten-

180 ded as a decision support system for fire management alternative to BehavePlus.

181 Rather, it is a new tool for fire scientists who need to carry out complex analyses

182 using the Rothermel model. To this regard, its objective is similar to the Firelib C

183 function library [10], that was written to give fire simulation modellers a common

184 programming interface to use in building fire growth applications models.

185 However, compared to existing software, the R implementation of Rothermel

186 model allows to perform many simulations at the same time (Example 2), plot

187 and export the results, and nest the computation of ROS (and of all intermediate

188 outputs of Rothermel model) within more complex analyses, such as if() state-

189 ments or for() loops, or sensitivity analysis of model output [32]. Additionally,

190 the R framework can generate web-based user interfaces (package shiny [31]),

191 and complex plots such as fire characteristic charts [11].

192 Much potential is associated to the newly programmed function rosunc()
193 that carries out uncertainty analysis of ROS. This method has recently been

194 praised for its ability to generate more information-rich, probabilistic predictions,

195 as compared to traditional deterministic models [23]. Furthermore, by dynamically

196 linking to spatially-explicit fire growth models and forest dynamics simulators at

197 the stand or landscape scale [13], the rosunc() function enables modellers to

198 generate probabilistic predictions of fire growth and ensemble forecasts resulting

199 from variable weather or fuel inputs [19].

200 Finally, the function bestFM() is intended as an exploratory analysis of

201 observed ROS in a fuel complex. RMSE from Standard Fuel Models can show

202 which group of models (i.e., GR, GS, SH, TU, TL, SB) have a similar fit to the

203 data. In Example 4, observed ROS in mixed grass-shrub heath fuels from fi-
204 rexp showed increasing RMSE starting from GR, SH, GS up to TL models,

205 excluding GR9. Within the first 10 best fuel models, the GR group performed

206 slightly better than SH and GS. Our interpretation is that the herbaceous compo-

207 nent in heath fuels is driving the rate of successive ignitions. Consequently, when

208 building a custom fuel model [12] for dry heaths, particular attention should be

209 focused on setting the parameters of the herbaceous fuel category.
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210 The Rothermel package is one of the first tools to support fire science in the R

211 programming language. A wealth of packages exists for other research fields in

212 ecology and environmental science, such as climate modelling, biodiversity, natu-

213 ral hazard modelling, or genetics. Similarly, R has the potential to become a privi-

214 leged platform to carry out data analysis and modelling in fire science. In fact, the

215 R architecture is much suitable to develop tools such as decision support systems

216 and cross-scale hierarchical models, i.e., systems of interacting simulators that

217 take advantage of different modelling approaches (e.g., spatially-explicit fire

218 spread, coupled physical fire models, stochastic weather generation, treatment of

219 remotely sensed imagery...), and may effectively interact with local or remote data

220 repositories.

221 We believe that the present package nicely fits in what a recent overview of the

222 most up-to-date fire simulator pointed out [5]: ’Care must be taken to avoid black

223 box modelling and to avoid use of default values. (...) A rebuild of the code from

224 the bottom up [is desired] to facilitate integration of fire behaviour, fire effects and

225 fire danger rating systems, as well as point and spatial systems’. Additional contri-

226 butions to the package are welcome, and will implement complementary functions

227 to enrich the range of fire modeling tools able to exploit the potential of the

228 Rothermel model within the R statistical framework.
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232

233 Appendix 1: A Primer on the R Language

234 A complete introduction to the R language goes beyond the scope of this paper.

235 We will briefly illustrate the meaning of some key terms in order for the reader to

236 understand the examples and data structures referenced in this paper. For an

237 introduction to the R language, tutorials and working examples, refer e.g. to ’An

238 introduction to R’ [40], from which this section is borrowed, and to the documen-

239 tation available on the CRAN website (URL: http://cran.r-project.org).

240 The user operates R via commands entered at the prompt ’> ’. Elementary

241 commands consist of either expressions or assignments. Expressions are evaluated,

242 printed (unless specifically made invisible), and the value is lost. An assignment

243 evaluates an expression and passes the value to an object stored in a ’workspace’

244 for future retrieval. The assignment operator is ’<�’. R commands are case sensi-

245 tive; comments can be put almost anywhere, starting with a hashmark (’#’).

246 R operates on named data structures. The simplest such structure is the vector,

247 which is a one-dimensional entity consisting of an ordered collection of numeric

248 or string elements. To set up a vector named x, say, consisting of five numbers,

249 namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command x < - c(10.4,
250 5.6, 3.1, 6.4, 21.7). An R data frame is a two-dimensional entity
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251 consisting of rows (i.e., observational units) and columns (i.e., observed variables).

252 Vectors of the same length, for example x and y, can be concatenated to form

253 columns in a data frame named df using the R command df < -
254 cbind(x, y). An R list is an object consisting of an ordered collection of

255 other objects, be them vectors, data frames, or other R data structures. List ele-

256 ments are numbered and may be referred to by the subsetting operator [[ ]].

257 Finally, functions are R objects that evaluate the result of an expression using

258 user-defined arguments. A call to the function usually takes the form func-
259 tion.name (argument1, argument2). The Rothermel package for

260 R operates mainly by some newly programmed functions.
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