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Abstract We use spline quasi-interpolating projectors on a boundézhial for
the numerical solution of linear Fredholm integral equagiof the second kind by
Galerkin, Kantorovich, Sloan and Kulkarni schemes. We gebtetical results re-
lated to the convergence order of the methods, in case ofrgti@dnd cubic spline
projectors, and we describe computational aspects for dhstaction of the ap-
proximate solutions. Finally, we give several numericaraples, that confirm the
theoretical results and show that higher orders of convixgean be obtained by
Kulkarni’'s scheme.
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1 Introduction

Consider the linear equation
u—Tu=f, (1.1)

whereT : 2" — 2 is a compact linear operator on the Banach spaceThe op-
eratorl — T is assumed to be invertible, so that the equation has a usigjuéon
ue 2 foranygivenf € 2. Letm, : " — Zn C Z be a sequence of linear projec-
tors onto finite dimensional subspacgs of 2", converging to the identity operator
pointwise.
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In this paper, we consider more specifically the integralaioe
b
TX(S) = / k(st)x(t)dt, sel:=[ab], (1.2)
a

where 2” = C(I) and the kernek € C(1?). ThenT is a compact linear operator
defined onZ".

Let Zn = Yddfl(l ,n) be the space of splines of degrten the uniform knot
sequenceZy = {ti = a+ih,0 <i < n}, with h = (b —a)/n, andC%~ smoothness.
In particular we consider quadratid £ 2) and cubicq = 3) splines, because such a
choice lies on our experience of using such functions whashgroved to be efficient
in many integration problems (see e.g. [10-13]).

Let 1, be aquasi-interpolating projectofabbr. QIP) onZ;, (i.e. mf = f, Vf €
Zn) described in Section 2 below. For 27, we can writerju as

Thu = i/\i(u)Bi, (1.3)

whereN =dim(.Zn) = n+d, theB{sare B-splines and the coefficierlgu) are local
functionals using discrete valueswin some neighbourhood of sui).

We use such spline QIPs (1.3) for the numerical solution df)¢{1.2) by Galerkin,
Kantorovich, Sloan schemes (see e.qg. [3, 14]) and by the moeait Kulkarni scheme
(see [7-9)).

We remark that, recently, the use of the spline quasi-iolatipn has been proved
to work well for the approximation of solution of integralwtions (see e.g. [1,2]).
In particular, in [1] a degenerate kernel method based dh&fel right) partial ap-
proximation of the kernel by a discrete quartic spline criiaigrpolantis provided. In
[2], the authors propose and analyse a collocation methdéanodified Kulkarni’'s
scheme based on spline quasi-interpolating operatorghware not projectors, but
reproduce polynomial spaces, while the original Kulkastheme requires the use
of projection operators.

Here is an outline of the paper. In Section 2 we introduce thalcatic and cubic
spline QIPs and present their convergence properties. dticBe3 we consider the
four projection methods based on the spline QIPs (1.3):

1. Galerkin’s methogwhereT, in (1.1), is approximated b¥{ := mT 5, and the
right hand sidef by i, f. The approximate equation is then

ud — T HUd = T f, (1.4)

2. Kantorovich methogwhereT is approximated byl,X := 7, T. The approximate
equation is then

Ul — T = f, (1.5)
3. Sloan’s iterated versigmhereT is approximated by;$ := T 15,. The approximate
equation is then
up — Tmus = f, (1.6)
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4. Kulkarni’s methogwhereT is approximated by
T =T+ T (1 — %)+ (I — T0) T = TR T+ TTh — T 7 = TE+ TS - T
The approximate equation is then
ul'— T = f. x.7)

Moreover, in such a section, we construct the corresporaipgoximate solutions
by solving linear systems.

In Section 4 the convergence of the above methods is ana#ysgthe obtained
results show that the Kulkarni's method has the highesteaance order with re-
spect to the other three ones. Moreover, in @ase2, superconvergence properties
at specific points occur for Galerkin, Kantorovich and Kutkanethods.

In Section 5 we describe the computational aspects for thetagction of ap-
proximate solutions.

In Section 6, we present somaadrature formulas of product typath B-spline
weight functions (details will be given in [4]) used in thengputation of the approx-
imate solutions.

In Section 7, we give numerical results on examples of irleggquations with
more or less smooth kernels, comparing the four above mstfit& numerical com-
parisons among Galerkin, Kantorovich, Sloan and Kulkarathmds based on our
quadratic or cubic spline QIPs, confirm the theoreticalltesaf Section 4.

Finally, Section 8 contains the proofs of some theorems acknical lemmas,
presented in Sections 2 and 4.

2 Spline quasi-interpolating projectors
2.1 A quadratic spline quasi-interpolating projector

Settingd :={0,1,...n+ 1}, then+ 2 quadratic B-spline$B;, i € J}, with support
[ti—2,t+1], on the usual extended knot sequetGe) {t » =t 1 =tg=a,b=t, =
tnhi1 = tni2} form a basis of the space; (1, 7,) of Ct quadratic splines on the par-
tition 7. We sets = %(ti,lthi), for1<i<n, fy:=f() forall0<i<nand
fai_1:= f(s) for 1 <i < n. We also introduce the sef; := {sj,1 < j <n}.

We choose the quasi-interpolating projed®defined as

Pf =¥ Ai(f)B;, (2.1)
ieZ | |
where the linear coefficient functionals have the followaxgressions

/\o(f)Z: fo, Al(f)iz 2f1—%(f0+f2),
2.2)

1
An(f) :=2fon_1— é(on—Z‘F fon), Anga(f) i= fon,
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and, for2<i<n-1,

1 2 10 2 1
Ai(f) = ﬂfZi—4_ - fa3+ = foi1— - foii1+ ﬂfzwz- (2.3)

These coefficients are computed in order to mBke projector, i.e. to make func-
tionals a dual basis to B-splinek(B;) = §; for all pairs(i, j). For instance, in order
to obtain (2.3), starting from the following expression

Ai(f) =cifaia+Cofa 3+ Cafo_1+Cofaip1+Cifaiyo,

we see thaki(Bj) =0for j <i—2andj >i+2. Then writing the condition; (B;) =

g, for j =i—2,i— 1,i respectively, we obtain the equations
4c;+cp=0
4c; +6c,+c3=0
c,+3c3=4

whose solution ig; = &, ¢; = —Z, c3 = £°. Similarly, we get the coefficient func-
tionals (2.2).
This projector can be written in thiasi-Lagrange form

2n
Rf=TY fiLi,
i; 1=l

where the quasi-Lagrange functions are linear combinatd@ finite number of B-
splines. For the sake of completeness, we give their expresis terms of B-splines:

1 1 2
Lo=Bo—§B1+ﬂ|32, L1=2|31—?|327
1 1 10 2 1
Lo=—-—=-B;+ —B L3=—By,— =B Ly =—B
2 21+l43’ 3= 7 B2 =bs  La= 7B,
2 10 2 .
L2i71:_?Bi71+7Bi_?Bi+17 3<i<n-2
1 .
L2i = ﬂ(Bi*l'i_ Bi+2)a 3 S 1 S n— 37 (24)
1 10 2
Lon—a= ﬂan37 Lon—3= 7Bn—1 - 7Bn72,
1 1 2
Lon—2= —éBn + ﬂanz, Lon_1=2Bn— ?Bn—la
1 1
Lon =Bny1— EBn + ﬂanl-

As, for || f|l, <1, |Ai(f)| <3foralli € J, one deduces that the infinity norm®fis
bounded above by 3, independently of the partition.
The exact value is obtained in the following theorem, whosmpis given in

Section 8, by considering the corresponding Lebesgueifimdt:= izjo L.
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Theorem 2.1 The infinite norm of the quadratic spline projecteriB equal to

157
[Polles = == ~ 2.34

2.2 A cubic spline quasi-interpolating projector

Settingd :={0,1,...n+2}, then+ 3 cubic B-splinegB;, i € J}, with supporft; 3, 1],
on the usual extended knot sequerige) {t 3=t o=t 1=tg=a b=ty =ty 1=
thi2 = tny3} form a basis of the spac&?(l, 7,) of C2 cubic splines on the partition
.

We consider a projector whose general coefficient functisrizased on 7 values
of f. There is a simpler one, whose general coefficient functisimsed on 5 values
of f. However, as its norm is rather high, we prefer to use theéorwihich is slightly
more complicated, but has a smaller norm.

The projector is defined by

Psf = _Z/\i(f)Bi, (2.5)
where the linear coefficient functionals have the followaxgpressions
20 4 1
Ao(F) := fo, /\1(f).——1—8f0+ 9 f1— 3f2+9f3 18f4,
1 19 19 1 1
/\z(f).—éfo—f1+§f2—2—f 3f ﬁfe,
1 19 1
An(f) 1:§f2n fon1+ % 3 fon2— 2 f2n 4+3f2n 5—2—4f2n 6 (2.6)
20 4 1
Anpa(f) = f2n+ 5 fon_1— f2n—2+§f2n—3_ Efznfm
/\n+2(f) = fon,
and, for3<i<n-1,
Ai(f) =
1 4 2.7)

9 4
%fzife + Efzifs - %fzfﬁ- g fa2— %fzi + 1—5f2i+1 - %fzwz-
Also in this case, the coefficients are computed in order therfa a projector, i.e.
to make functionals a dual basis to B-splin@gBj) = §; for all pairs (i, j). For
instance, in order to obtain (2.7), starting from the folilogvexpression

Ai(f) =c1fo_e+ Cofo_5+ Cafoi_a+ Cafai_o+ Ca3fo + Cofoi1 + €1 foigo.
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Itis easy to see tha(Bj) = 0for j <i—3andj > i+ 3. Then, writing the conditions
Ai(Bj) =& for j =i—3,i —2,i — 1,i respectively, we obtain the equations

8ci1+c,=0
32c; +23c,+8c3 =0
8c1+23c,+32c3+8c4 =0
C2+8c3+16¢cs =24
whose unique solution is, = — 4, C; = 15, C3 = — 19, C4 = 2. Similarly, we get the
coefficient functionals (2.6).
This projector can be written in thiasi-Lagrange form

O

n
Pf =Y fiLi,
i; 1=l

where the quasi-Lagrange functions are linear combinatd@ finite number of B-
splines. For the sake of completeness, we give their expresis terms of B-splines:

_ 5 1 1 — 20 4
Lo=Bo—7gBi+gB2— 358 Li="gBi—Bat 58,
— 4 19 19 1 — 4 4
Lo=—-B1+5By— B3 Bs, Lz3==Bi+ -—By,

3 8 30 ° 30 9 15
1 19 9 19 1

Ly=——-B;—=—By+-B3—=—B4— —B
4= 181 24275 304 30
(2.8)

_ 1 4 - 1 19 9 19 1
Ls = —éBz-i- EBS, Le = _ZlBZ_ %Bs-i— 534— %Bs - %Be,

_ 4 .

Loi1= 1—5(Bi71+ Bij2), 4<i<n-3
— 1 19 9 19 1 :
Lo = —%Bifl— %Bi + gBiJrl— %BHZ_ %Bi+3a 4<i<n-4.

The quasi-Lagrange functiohs,_j, j =0,...,6, have symmetric expressions with

respecttdj, j =0,...,6.

For || flle <1, we gefAi(f)| and|An1(f)] <17/3,]A2(F)] and|An(f)| < 14/3
and, for 3<i <n-—1, |A(f)| < 11/3. Therefore we deduce thfPs|| < 17/3 =
5.33, for any uniform partition.

The exact value is obtained in the following theorem, whosmpis given in
Section 8, by considering the corresponding Lebesgueifumat : = ?20 |Li].

Theorem 2.2 The infinite norm of the cubic spline projectayiB equal to

292460 222277@

390963+ 3518667 ~216

1Pslles =
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2.3 Convergence properties of the spline QIPs

Since the operatorg, = P, or P; are projectors that are uniformly bounded indepen-
dently of the uniform partitior;, classical results in approximation theory (see e.qg.
[6], chapter 5) provide

If - mf|,, < Cdist(f, Z5),

where
335 form="P,

C=1+|me< {3.17 form =P

Therefore, using the fact thaty C Yddfl(l ,n) (ford = 2,3), wherelly is the space

of polynomials of degred, and a Jackson type theorem for splines ([5], chapter XII),
we can conclude that there exist const@ytsdepending ol andj, such that for all

f e Cl[a,b]

0<j<2 form=PR

_ C.hi (i) i
I =l <Cil(U,h),  with {OSJ.S?, o~

wherew is the modulus of continuity of ().
In particular forj = 2 (resp.j = 3) and whenf has a third (resp. fourth) order
continuous derivative, we obtain

If —P2ffl, = O(h°), (resp||f —Psf], = O(h%).

Moreover, using some majorations and a graphical studycaneaet the following
error bounds for smooth functions.

Theorem 2.3 1. For the quadratic projectorPand f® bounded, there holds

1f = Pof [l < Coh¥|| £ 3|, with Cy = 214.

2. For the cubic projector £and f*) bounded, there holds

1f = Pyf || < Coh®|| {@]|, with Cs = g.

Proof In the first case, using Taylor’'s formulas

(1) = 109+ (5~ 100+ 36 —%"09+ 3 [ (4~ 01 P(udu

1 1 /s
f(8) = 00+ (5 =000 +5(8 =209+ [ (s~ w2 (udu
X
and the fact thal, is exact on1,, we get

P f(x) = f(x)+ % .iin (x) '/X'ti (ti—u)2f &) (u)du+ % 'iLZil(X) ,/j (s —u)2f®(u)du,
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Then, from the majorations

/Xti (t —u)?f®(u)dul < %||f(3)||m|x_ti|3’
[ 8~ w2 1wy < 21 olx—s
one gets
Pof ()~ £00] < gl T oL (4,
where

L= (_iv—tiﬁwz )| +i|x—s|3|L2il<x>|> .

Taking into account that the quasi-Lagrange functions kaad support and the knot
sequence is uniform, the graphical study of this functigrysing a computer algebra
system, providek(x) < (7/4)h® and finally

P2 (%) = £(X)] < Coh®| F@ [, with Ty — 214.
A similar method is used for the cubic projecRar Using a Taylor expansion of order
3, we first obtain

Pyf (x) = f<x>+éif2i 00 [ —u>3f<4><u>du+éifzw<x> [Ms-urrudu

Then, from the two upper bounds

i 1
| =0t wau < 71 elx—?
S 3¢(4) 1isa 4
s =t wdul < 219 olx—s|
we deduce
PTG
IPsf(x) — f(x)| < ﬂHf [leoL(X)
where

L) = <_i|x—ti|4|tz )| +_i|x—s|4|E2il<x>|> .

The graphical study of this function provide&) < (32/3)h* and finally
1Py (x) = F(x)] < Cah?|| {4 [, with g = g,

which completes the proof. O

The quadratic spline project® has the particularly interesting property to be
superconvergent on the sets of evaluation poifitand.#, as shown in Lemma 4.1
given in Section 4.2. It seems that there is no similar rdsultubic splines.
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3 The four projection methods

Considering the approximate equations (1.4), (1.5), @ne)(1.7), wheret, is P or
P;, defined in (2.1) and (2.5), respectively, here we proposetimstruction of the
corresponding approximate solutions.

3.1 Galerkin method

The approximate solution of (1.4) can be written in the form

U%: mf+ ZJXJBJ’
J€

where theX;’s are obtained as follows.
Substituting in the equation (1.4), agu, = up, we get

i+ XiBj = mf+m(Tmf+ ) XTB)).

On the other hand, we have

TlhTThf = Z)\i(Tﬂhf)Bi and TlhTBj = Z/\i(TBj)Bi,
i€ i€

therefore, by identifying the coefficients Bf, we obtain the linear equations

X :/\i(TThf)-l- zJ/\i(TBj)Xj, ied
IE

Introducing, respectively, the vectgrand the matrixB defined by
0 :=A(Tmf) and B;j:=A(TBj),
the linear system to solve is then
(I-B)X =g, (3.1)

with X the vector whose components are the unknyn

3.2 Kantorovich method
The approximate solution of (1.5) can be written in the form

UE: f+ZJXij,
J€

where theX;’s are obtained as follows.
Substituting in the equation (1.5), we get

f+y XBj=f+m(Tf+$ X;TB;).
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As we have

TlhTf: )\i(Tf)Bi and ThTBj: )\i(TBj)Bi,

therefore, by identifying the coefficients Bf, we obtain the equations

Xi =/\i(Tf)+ZJ/\i(TBj)Xj, ied.
IE

Let ¢ be the vector with components
Gi:=Ai(Tf),
and letB be the matrix defined in Section 3.1, then the linear systesolie is

(1-B)X =c. (3.2)

3.3 Sloan method

The approximate solution of (1.6) is obtained as an itera@aterkin’s solution
up = f+ T
Therefore, we have first to computg= 1, f + Yic3XiBi (Section 3.1), then
T =Trhf +Z>QTI3,
ic
where
Tmf = I;)\i(f)TBi.

So, we finally get

=T YD +XTB, (3.3)

for which we need the computation of integrals with B-sphiveight functions

TBi(s) := /ab Bi(t)k(s,t)dt.
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3.4 Kulkarni method

We recall that the equation to solve is the following (the eppdexmis deleted for
the sake of clearness)
Un - TnUn - f,

where the operatdr, is defined by
Thi=TaT + T — T .
We can deduce the expressions:
— ThTu= Jic;Ai(Tu)B;; N
— Tmu=Sic;Ai(U)Bi, with _Bi:=TB;
= ThTThU = 3 (i j)eax3 Aj (U)Ai(Bj)Bi.
Therefore, we obtain the following expression €qr
Up=f+ Zm(m)a + ZMun)éi - 3 Aj(un)Ai(BpB, (34
e i€ (i,j)edxd

which has also the following form, with two vectofsandY of unknown coefficients:

un=f+ S XBc+ S VB (3.5)

Thus, the problem had\Punknowns. 3
Substituting (3.5) in (3.4) and settifBj := TB;, we get

XBi+ S YiBi=S A(Tw)Bi+ S Aj(un)Bj — Aj(un)Ai(B))B;.
IEZ %JJ% J;J J(i’jz i j

)€IXJ

ked led

— Z </\i(T )+ 5 XeAi(B)+ ZYMi(BE)> Bi

Aj(f Ai(B Y, Ai(By) | B
+%< i(F)+ > XeAj( k)+% A é)) i

ked
- > <)‘J(f)+lekAj(Bk)+;JY£Aj(é€)>/\i(EJ)Bi-
(i,j)eIxd ke €
Consider the vectots, c and the matrice8, B, C with components :
bi:=Ai(f), c:=A(Tf), A j=A(B)), Bij:=A(B), G,:=A(B).

We notice that\ j := Ai(Bj) = 4 j, since the functionals are a dual basis to B-splines,
thereforeA = |. Thus, identifying the coefficients & andB; (we assume that they
are linearly independent), we obtain the double systemrme#li equations

X =c+BX+CY —(Bb+BX+B?Y),
Y = b+X+BY.
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It can be written in a simpler form, since the second equatanbe substituted
in the first:

X =c+BX+(C—B)Y (3.6)
Y= b+X+BY (3.7)

Introducing the block vectors and matrices, of sikg 2

o fi) o[ o [1557]

finally we are led to solve the system dfiZinear equations:
(1-D)Z =d.

This system can be reduced to the solutiooé systenof N algebraic equations.
Indeed, substituting (3.6) for (3.6)+(3.7), we get

Y =b+c+BX+CY (3.8)
From equation (3.7), we now take
X =(1-B)Y —b, (3.9)
that we substitute in (3.8) to get
(1-B)?+B—-C)Y =c+ (I —B)b. (3.10)

Solving this equation give, thenX is computed by (3.9).

4 Convergence of the methods
4.1 Error bounds

For the four methods, sindé — T) is invertible, thenl — mT), (I — Tm,) and(l —
T.M are invertible fom large enough and we have

[0 =mT) <, [0-Tm) Y, <R [0-T" o<l

wherel, I, andl3 are constants independentof[3, 7]). Hence fom large enough,
the equations have unique solutions and we get respectively

Ju— |, < M1 llu—Rull,, (4.1)
Ju— Ul < M ]|(1 = 78) Tul|, (4.2)
Ju— Ul < [ T(1 = )., , (4.3)

lu—ugllee < 3| (1 = 70) T (1 = ) ul., - (4.4)
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4.2 Convergence orders of the solution

From the error bounds (4.1)4.4) on the solution of the integral equation, we deduce
the convergence order of the methods.

In case ofry, = P,, we need specific results on the projector. We present them
in Lemma 4.1, 4.2 and 4.3, whose proofs are given in Sectiavh@re we denote
respectivelyes(x) = mHmg(X) — mg(x), with mg(x) := x3, andvy, = U — U.

Lemma 4.1 (Superconvergence af, on 7, and.#). If ||u<4)|\oo is bounded, fof <
i<nandl<j<n,

— e3(tj) = es3(sj) =0.
— Vn(ti) = O(h*) andvy(sj) = O(h*).

Lemma 4.2 There holds

/b(mmg(x) —mg(x))dx=0.

a

More precisely, for all i= 1...n, there holds

/tti (mmg(X) — mg(x))dx= 0.

i—1

Lemma 4.3 For any function g= W1 (i.e. with ||g/[|1 bounded), there holds
b
|| o) (mma(t) — ma(t))dt = O(n).

More generally, ifHu“”H is bounded, then

b
| o) (mu(t) —ut)dt = o).
Theorem 4.1 Assume that the solution u has a bounded fourth derivatiem,tfor
T, = P, there holds
(i) for the three first methods

=0(h), |u—uil, = O(h");

[ee]

Ju=ugl = O(r®), [u—uk

(ii) for the Kulkarni’'s method
Ju—ufll,, = O(h").

Proof The first results are straightforward consequences of elés (4.1), (4.2),
(4.3) and of the above lemmas.
The last one comes from inequality (4.4), Lemma 4.3 and Térad.3. O
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Remark 4.1Let i, = P, and letz be equal tg; € ;, or § € %, then, from Lemma
4.1 and (4.1), (4.2), (4.4), it results

u(2) — ui(2) = O(h*),
u(2) — uj(2) = O(h?),
u(2) - ui(z) = O(h%),

i.e. a superconvergence phenomenon occurs at the setsladtéva points.7;, and
“h, in case of Galerkin, Kantorovich and Kulkarni methods.

Theorem 4.2 Assume that the solution u has a bounded fourth derivatiem,tfor
T, = P, there holds

(i) for the three first methods

Ju=wll, =O(h%), |lu—df| =0

(h),  lu=u3ll, = O(hie(h), lim e(h) =O;

(ii) for the Kulkarni’'s method

Ju— ., = O(h®).

fleo

Proof These results are straightforward consequences of indgsal.1), (4.2),
(4.3), (4.4) and Theorem 2.3. O

We remark that the Kulkarni’'s scheme, based on quadraticabid spline QIPs,
has a convergence order higher than the other three onatdradee same QIPs. We
also notice that, in [7], Kulkarni proposes a scheme for lat®n of (1.1)-(1.2),
based on orthogonal projections in the space of (discootislpiecewise polynomi-
als of degreel and she shows that the corresponding error bou@ig(@+)). The
proof of such a superconvergence result is based on theguntiadity of the projec-
tions. Since our Kulkarni's scheme is based on spline opegdhat are projectors
but are not orthogonal, we can not get the superconvergesoé obtained in [7].
However, we have shown that our method has a good convergeshee(i.e. seven in
cased = 2 and eight in casd = 3) and a superconvergence property at the evaluation
points in case off, = P>.

5 Computation of the solutions

In this section, we briefly describe the computational atspeeeded for the compu-
tation of approximate solutions in the four projection nuat.

5.1 Vectors and matrices for the Galerkin, Kantorovich alod® methods

The components of the right-hand siglen (3.1) are

G- = A TThf (Z/\k TBK> Z/\ TBK )\k ZIBIKAK
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therefore we havg = Bb, whereb denotes the vector with componebis= A(f),
keld.

For the computation of the vectbr we need the band matrixof sizeN x (2n+
1) associated with the linear forms of the projectors,. So, we havés = Lf, where
f € R?"1 s the vector of discrete values bfat the points of sets;, and.#.

The coefficients of the matri in (3.1) areB; j := Ai(TB;j), with

TB;(s) = /aij (t)k(s t)dt. (5.1)

In order to evaluate these integrals, we need the valugsty) and T Bj(s), i.e.
the values of this function at the points 6§, and.#,, so we have to construct a
(2n+ 1) x N matrix that we denote by. Then, we use suitable product quadrature
formulas with B-spline weight functior8;, presented in Section 6. Finally, one gets
B=LV.

For the construction of in (3.2), we need the intermediate vector with compo-
nents

b b
/ K(te,t) F(t)dt o / K(s;,t) F(t)dt, (5.2)

that can be evaluated by using a suitable Romberg’s quadri@tumula.
The vectors and matrices in (3.3) are known by Galerkin netimplementation.

5.2 Vectors and matrices for Kulkarni’'s method

For the computation of the solution of (3.10) and of the vectoX in (3.9), we need
the vectord, c and the matriceB, C.

— The vectob of components; = A(f) is the same used for the Galerkin method
and defined in Section 5.1.

— The vectorc of components; = A;i(T f) is the same used for the Kantorovich
method and defined in Section 5.1.

— The matrixB of components; ; = Ai(B;), Bj = TB;, is the same used for the
Galerkin method and defined in Section 5.1.

— The elements of the matri areCi ; = Ai(B?), whereB; = TB;. As TBj(x) =

f;’ k(x,s)Bj(s)ds we compute the matriB* with elements

b .
Bj(1) = [ kn.9Bj(sds i -tors, (5.3)

by using a suitable Romberg’s quadrature formula. Finalg get<C = LB*.

6 Quadrature formulas with B-spline weight functions

In numerical experiments, we upeduct type quadrature formuldabbr. PQF) with
B-spline weight functions and classical quadrature foasuls there are many pos-
sibilities for the construction of such PQF, we have doneesswvtests on various
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rules and selected those that appeared to be the best ininahesamples, in partic-
ular those having the least number of negative weights. atterlformulas are listed
below, where we write that a formula is of ordeif it is exact onP,_;.

6.1 PQF for quadratic B-splines

Formula of order 4 for inner B-splines

(ee] =y

/tti“ Bi(t)f (t)dt ~

i—2

(f(s—1)+6f(s)+ f(s+1)), 2<i<n-1

Formulas of order 3 for boundary B-splines

There are two specific boundary B-splinBs; with supporta,t;] andB;, with sup-
port[a,ty].

_ /:1 Bo(t) f(t)dt ~ %(9f(a)+12f(sl) —f(ty));
- :ZBl(t)f(t)dtﬁz%(13f(51)+4f(t1)+3f(52))?

and similar formulas foB, andB,, 1.

Formula of order 9 for inner B-splines

tiy1 . 41 . 1024 tiio+S-1 827 _ 95 .
|, BOfdt~h (51975f (t-2)+ 775628 ( 2 ) T 1anzs 8-V 37T 0-0)
8894 95, . 827 1024 _ (ti1+S
23625 (%) T 378 W)+ 14175f(3+1)+779625f( 2 )
41 .
+E5f(t|+1)) 5 2§ | S n— 1
Formulas of order 9 for boundary B-splines
1y 8
—/ Bo() Tt~ 3 aif(ri), 1y =a+ jn/8, with
a i=
3029 25004 2252 6064
%~ 39100 X~ 1550258 * T "51975 7 31185
_ 3191 526 4204 1616 -
T 31185 ™ 51975 ™~ 155025 7 155028 8~ 41580
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ajf(rj), rj=a+ jh/4, with

(HDMoo

_ /t2 Bu(t) f(t)dt

a
J
_ 4519 17912 2858 31576
0=523700 M7 1550258 27 22275 BT 155925

_2t76 2072 3418 1544 79
4=31185 B~ 22275 ®~ 155025 '~ 155928

~ 523700
and similar formulas foB, andB,, 1.

6.2 PQF for cubic B-splines

Formula of order 4 for inner B-splines

/ti+l Bi(t) f(t)dt ~ g(f(ti72)+4f(ti71)+ f(t), 3<i<n-1
ti—3

Formulas of order 4 for boundary B-splines

There are three specific boundary cubic B-splifigs:with support]a,t;], B1, with
support]a, to] andBy, with supporta, t3].
t
(" Bo(t)f(t)dt = h(apf(to) +arf(s1) + axf(t1) + asf(s2))), with coefficients
a

18 w19 1
=705 U105 2T 10 B 105

- /t2 B1(t)f(t)dt = h(apf(to) +auf(s1) +axf(t1) +asf(s2))), with coefficients

a

1 34 23 2

8= 57, alzﬁ, azzm, aszm;

't
— [ Bo(t) f(t)dt ~ h(aof (to) + auf (t1) + axf (t2) + asf (ts))), with coefficients

a

11131
=35 NT25y 2Ty BT 250

Symmetric formulas hold for the three last boundary B-gdin

Formula of order 8 for inner B-splines

iyl h
/ B F(t)dt &~ (19f(§_2) + 159f (ti_p) + 453f (S_1) + 628 (t;_1)
Jti_3 1890

+453f(s) + 159f (t) + 19f(541)), 3<i<n-1.
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Formulas of order 8 for boundary B-splines

t 7
- /1 B0 (0t~ 3 2 (). i=a+ o/, with coeffcients
a =

3029 3238 563 758
2= 89100 2~ 22275 ®T 17328 B~ 6237
3191 662 1051 202
M="62370 BT 17325 B 155028 & 155925

t 7
- /2 Bi(t)f(t)dt=~h %aj f(rj), rj :=a+ jh/4, with coefficients
a =

_ 87 245 2026 104
W= 365 M 17325 2T 17325 B 6oz
247 136 74 8

= 6930 ® 365 ® T 17325 5778

t 7
- /3 By(t)f(t)dt~h %aj f(rj), rj :=a+ jh/2, with coefficients
a =

53 701 2699 929
®=17325 275548 2T 9220 *7 3060
577 N .1 1
4= 5930 BT 6600 °T 3960 7 27720

Symmetric formulas hold for the three last boundary B-gdin

7 Numerical results

In this section, we compare the numerical results obtainethb Galerkin, Kan-
torovich, Sloan and Kulkarni’'s methods on integral equatiof kind (1.1)-(1.2),
whose exact solutiom is known (see Table 7.1, witky := 1—s, ¢; := cog1),
s :=sin(1) in the functionf of Test 2).

For the evaluation of integrals (5.1) we use the PQF propiosgéction 6 of order
at least equal to the expected convergence order of the theghen in Theorems
4.1 and 4.2. For the evaluation of integrals (5.2) and (5.8)apply the quadrature
formulas generated by the 4th column of Romberg’s algoriftira first being the
trapezoidal formula), that is written as follows:

1 8
/0 gl9ds~ 3 Ag(m), h=1/8

where the coefficients, are given by

31 512 176 512 218
Ao—Ae—m, Al—A7—ﬁa Az—%—ﬁ, Az=Ag

~ 2835 ~ 2835
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Firstly, we compute the maximum absolute error
ef = maxu(z) - uf (2)],
2cG

whereG s a set of 1500 equally spaced points ia [a,b] andf = g, k, s, m, in case
of methods based both on the spline oper®oand onP;, for increasing values of
n. The results are reported in Tables#26, where the quantitigg, Oy, Os andOn,
are the numerical convergence orders, obtained by theitbgeto base 2 of the ratio
between two consecutive errors.

Table 7.1 Numerical tests

Test | Intervall = [a,b] Kernelk Functionf Solutionu
1 [0,1] 3(s+1)exp(—st) exp(—s) + 3 (exp(—(s+1)) — 1) exp(—s)
2 [0,1] exp(st) exp(—s) cogs) + Wﬁ“%& exp(—s) coy(s)
3 [0, sin(s—t) cogs) Minz (2cogs) + msin(s))
4 [0,1] S°/2%t5 NG 5+ ts/?
5 [0,1] St5/2 NG VE+ e

Concerning the smoothness of the test functions, in thetfirse tests, the kernel
k, the functionf and the solutiomu are sufficiently smooth so we expect and get the
optimal convergence orders stated in Theorems 4.1 andrd &4t 4, the kernet
is C2(1), but notC3(1), with respect to the variablg f € CO(I), but f ¢ C%(1) and
consequently we expect and get reduced convergence ondersd of Galerkin, Kan-
torovich and Kulkarni methods (as noticed in [7] in case tfeotprojector choices).
Similarly, in Test 5, the kernéd is C2(1), but notC3(1), with respect to the variable
t, f €CO(l), butf ¢ C%(1) and so we expect and get a reduced convergence order in
case of Galerkin and Sloan method.

For the Tests 1, 2 and 3, we also compute the maximum absohatead the
evaluation points belonging t6;, and.#,

ef = max |u@)—-ul(2)

z€ TnU.

wheref3 = g, k, m, in case of methods based on the spline projdetdior increasing
values ofn. The results, reported in Table 7.7, confirm the theoretiogkrconver-
gence properties at the evaluation points given in Remdrk 4.
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Table 7.2 Maximum absolute errors for Test 1

Methods based oR,
n e Oy e Ok e Os en Om
4 1.4(-04) 2.6(-05) 8.1(-06) 2.5(-08)
8 1.7(-05) | 3.1 | 3.0(-06) | 3.1 | 3.3(-07) | 4.6 | 1.1(-10) | 7.9
16 2.0(-06) | 3.0 | 3.7(-07) | 3.0 | 1.5(-08) | 4.5 | 4.2-(13) | 8.0
32 2.5(-07) | 3.0 | 4.6(-08) | 3.0 | 7.3(-10) | 4.3 | 1.7(-15) | 7.9
64 3.1(-08) | 3.0 | 5.6(-09) | 3.0 | 3.9(-11) | 4.2 | 6.7(-16) | —
128 || 3.8(-09) | 3.0 | 7.0(-10) | 3.0 | 2.3(-12) | 4.1 -
256 || 4.7(-10) | 3.0 | 8.7(-11) | 3.0 | 1.4(-13) | 4.1 -
Methods based oRs
n Q% Oy eﬁ Ok & Os el Onm
4 7.4(-06) 1.5(-06) 3.3(-07) 2.5(-08)
8 5.2(-07) | 3.8 | 1.1(-07) | 3.8 | 9.0(-09) | 5.2 | 1.1(-10) | 7.9
16 3.5(-08) | 3.9 | 7.6(-09) | 3.9 | 2.5(-10) | 5.2 | 4.2(-13) | 8.0
32 2.2(-09) | 40| 49(-10) | 40| 7.1(-12) | 5.1 | 1.7(-15) | 7.9
64 1.4(-10) | 4.0 | 3.2(-11) | 4.0 | 2.1(-13) | 5.1 | 6.7(-16) | —
128 || 8.7(-12) | 4.0 | 2.1(-12) | 3.9 | 6.8(-15) | 5.0 -
256 || 5.4(-13) | 4.0 | 1.3(-13) | 3.9 | 1.1(-15) | - -

Table 7.3 Maximum absolute errors for Test 2

Methods based oR,
n e Oqg & Ok & Os ar Om
4 2.7(-04) 2.4(-05) 1.3(-04) 2.1(-09)
8 3.1(-05) | 3.1 | 2.8(-06) | 3.1 | 5.7(-06) | 4.5 | 1.0(-11) | 7.7
16 3.9(-06) | 3.0 | 3.4(-07) | 3.0 | 2.8(-07) | 4.3 | 5.4(-14) | 7.6
32 4.9(-07) | 3.0 | 4.2(-08) | 3.0 | 1.5(-08) | 4.2 | 1.0(-15) | —
64 6.1(-08) | 3.0 | 5.3(-09) | 3.0 | 8.8(-10) | 4.1 -
128 || 7.6(-09) | 3.0 | 6.5(-10) | 3.0 | 5.3(-11) | 4.0 -
256 1.1(-10) | 3.0 | 8.1(-11) | 3.0 | 3.2(-12) | 4.0 -
Methods based oR;
n e Oy & Ok e Os e Onm
4 3.1(-05) 3.3(-06) 2.3(-06) 1.2(-09)
8 || 2.1(-06) | 3.9 | 2.5(-07) | 3.7 | 7.3(-08) | 4.9 | 5.0(-12) | 7.9
16 1.4(-07) | 4.0 | 1.8(-08) | 3.8 | 2.1(-09) | 5.1 | 2.0(-14) | 8.0
32 || 8.7(-09) | 4.0 | 1.2(-09) | 3.9 | 6.0(-11) | 5.1 | 8.0(-16) | —
64 || 5.5(-10) | 4.0 | 8.1(-11) | 3.9 | 1.8(-12) | 5.1 -
128 || 3.4(-11) | 4.0 | 5.1(-12) | 4.0 | 5.5(-14) | 5.0 -
256 || 2.1(-12) | 4.0 | 3.2(-13) | 4.0 | 2.4(-15) | - -
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Table 7.4 Maximum absolute errors for Test 3

Methods based oR,
n e Oy e Ok e Os en Om
8 2.8(-04) 4.3(-04) 3.7(-05) 3.7(-08)
16 3.3(-05) | 3.1 | 5.2(-05) | 3.1 | 1.9(-06) | 4.2 | 2.3(-10) | 7.3
32 4.1(-06) | 3.0 | 6.4(-06) | 3.0 | 1.1(-07) | 4.1 | 1.6(-12) | 7.1
64 5.1(-07) | 3.0 | 8.0(-07) | 3.0 | 6.8(-09) | 4.0 | 1.3(-14) | 7.0
128 || 6.4(-08) | 3.0 | 1.0(-07) | 3.0 | 4.2(-10) | 4.0 | 1.6(-15) | -
256 || 8.0(-09) | 3.0 | 1.2(-08) | 3.0 | 2.6(-11) | 4.0 | 1.5(-16) | —
Methods based oRs
n e Oy ek Ok e Os e Om
8 3.8(-05) 6.4(-05) 2.0(-06) 2.4(-10)
16 2.1(-06) | 4.1 | 3.6(-06) | 4.2 | 3.6(-08) | 5.8 | 2.5(-13) | 9.8
32 1.3(-07) | 4.1 | 2.2(-07) | 4.1 | 5.8(-10) | 6.0 | 1.0(-15) | 8.0
64 7.8(-09) | 4.0 | 1.3(-08) | 4.0 | 9.4(-12) | 5.9 -
128 || 4.7(-10) | 4.0 | 8.0(-10) | 4.0 | 2.1(-13) | 5.5 -
256 || 2.9(-11) | 4.0 | 4.9(-11) | 4.0 | 7.7(-15) | 4.8 -

Table 7.5 Maximum absolute errors for Test 4

Methods based oR,
n e [ & Ok & Os ar Om
8 5.0(-02) 2.9(-05) 1.4(-07) 4.6(-09)
16 3.5(-02) | 0.5 | 5.2(-06) | 2.5 | 3.2(-08) | 2.1 | 3.8(-11) | 6.9
32 2.5(-02) | 0.5 | 9.1(-07) | 2.5 | 2.2(-09) | 3.8 | 3.6(-13) | 6.7
64 1.8(-02) | 0.5 | 1.6(-07) | 2.5 | 1.4(-10) | 3.9 | 4.0(-15) | 6.5
128 || 1.3(-02) | 0.5 | 2.8(-08) | 2.5 | 8.6(-12) | 4.0 | 8.9(-16) -
256 || 7.7(-03) | 0.7 | 4.9(-09) | 2.5 | 5.4(-13) | 4.0 -
Methods based oR;
n e Oqy & Ok & Os ar Onm
8 || 4.4(-02) 5.3(-06) 4.1(-07) 4.6(-09)
16 3.1(-02) | 0.5 | 9.4(-07) | 25| 3.1(-09) | 7.0 | 3.8(-11) | 6.9
32 || 2.2(-02) | 0.5 | 1.7(-07) | 2.5 | 1.1(-11) | 8.1 | 3.6(-13) | 6.7
64 1.5(-02) | 0.5 | 2.9(-08) | 2.5 | 2.6(-13) | 5.4 | 3.8(-15) | 6.6
128 || 1.1(-02) | 0.5 | 5.2(-09) | 2.5 | 1.0(-14) | 4.7 | 8.9(-16) | —
256 || 6.2(-03) | 0.8 | 9.2(-10) | 2.5 | 4.4(-16) | 4.5 -
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Table 7.6 Maximum absolute errors for Test 5

Methods based oR,
n e Oy e Ok e Os en Om
4 7.1(-02) 2.3(-03) 4.9(-05) 8.6(-07)
8 5.0(-02) | 0.5 | 2.8(-04) | 3.0 | 2.4(-06) | 4.3 | 4.6(-09) | 7.5
16 3.5(-02) | 0.5 | 3.4(-05) | 3.0 | 6.3(-08) | 5.3 | 1.9(-11) | 7.9
32 2.5(-02) | 0.5 | 4.2(-06) | 3.0 | 7.8(-10) | 6.3 | 5.9(-14) | 8.3
64 1.8(-02) | 0.5 | 5.2(-07) | 3.0 | 2.7(-10) | 1.5 | 1.0(-15) | -
128 || 1.3(-02) | 0.5 | 6.5(-08) | 3.0 | 2.8(-11) | 3.3 -
256 || 7.7(-03) | 0.7 | 8.0(-09) | 3.0 | 2.3(-12) | 3.6 -
Methods based oRs
n Q% Oy eﬁ Ok & Os el Onm
4 6.2(-02) 2.7(-04) 9.3(-05) 7.4(-07)
8 4.4(-02) | 0.5 | 1.9(-05) | 3.8 | 5.2(-06) | 4.2 | 3.2(-09) | 7.9
16 3.1(-02) | 0.5 | 1.2(-06) | 3.9 | 3.2(-07) | 4.1 | 1.3(-11) | 7.9
32 2.2(-02) | 0.5 | 7.9(-08) | 4.0 | 1.9(-08) | 4.0 | 5.5(-14) | 7.9
64 1.5(-02) | 0.5 | 5.0(-09) | 4.0 | 1.2(-09) | 4.0 | 5.5(-16) | —
128 || 1.1(-02) | 0.5 | 3.1(-10) | 4.0 | 7.5(-11) | 4.0 -
256 || 6.2(-03) | 0.8 | 1.9(-11) | 4.0 | 4.7(-12) | 4.0 -

Table 7.7 Maximum absolute errors at the sets of poiftsand.#;,, for methods based dp

Test 1
n ed Oy e Ok ed! Om
4 || 4.4(-05) 8.2(-06) 2.5(-08)

8 || 2.8(-06) | 4.0 | 5.3(-07) | 4.0 | 1.1(-10) | 7.9
16 || 1.8(-07) | 4.0 | 3.4(-08) | 4.0 | 4.2(-13) | 7.9
32 || 1.1(-08) | 4.0 | 2.1(-09) | 4.0 | 1.7(-15) | 7.9
64 || 7.1(-10) | 4.0 | 1.3(-10) | 4.0 | 5.6(-16) | —
128 || 4.4(-11) | 4.0 | 8.4(-12) | 4.0 -
256 || 2.8(-12) | 4.0 | 5.3(-13) | 4.0 -

Test 2
n ed Oy es Ok eq) Om
4 | 1.3(-04) 7.8(-06) 1.3(-09)

8 || 5.9(-06) | 45| 2.3(-07) | 4.4 | 49(-12) | 8.0
16 || 4.4(-07) | 3.7 | 1.2(-08) | 4.3 | 2.0(-14) | 7.9
32 || 3.0(-08) | 3.9 | 8.3(-10) | 3.9 | 4.4(-16) | -
64 || 1.9(-09) | 3.9 | 5.6(-11) | 3.9 -
128 || 1.2(-10) | 4.0 | 3.6(-12) | 4.0 -
256 || 7.8(-12) | 4.0 | 2.3(-13) | 4.0 -

Test 3
n es Oy es Ok e Om
8 [ 1.1(-09) 2.0(-04) 1.3(-08)

16 || 6.1(-06) | 4.1 | 1.3(-05) | 4.0 | 4.3(-11) | 8.2
32 || 37(-07) | 41| 7.9(-07) | 4.0 | 1.6(-13) | 8.1
64 || 2.3(-08) | 4.0 | 4.9(-08) | 4.0 | 1.5(-15) | -
128 || 1.5(-09) | 4.0 | 3.0(-09) | 4.0 | 1.5(-15) | -
256 || 9.1(-11) | 4.0 | 1.9(-10) | 4.0 | 1.4(-15) | -
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8 Proofs of Theorems 2.1, 2.2 and Lemmas 4.1, 4.2, 4.3

In this section we report the proofs of Theorems 2.1, 2.2 awras 4.1, 4.2, 4.3.
We recall that, in Lemmas 4.1, 4.2 and 40%(x) = X3, e3(X) = mHMg(X) — mg(x),
Vp = THu —u andTs, = Po.

Proof of Theorem 2.1

For the sake of simplicity, we tae= [a, b] = [0,n] with h= 1. By using a computer
algebra system, a first graphical study shows that the mawrimiuthe Lebesgue
function/A = 27 |Li| is attained in the first and last intervals. The first intef0al]
is covered by the supports of the seven first quasi-Lagranggibns (excepts) and,
using the local BB(=Bernstein-Bézier)-coefficients osplinesBy, B;,B; and the
definition of the quasi-Lagrange functions given in (2.4¢, get the BB-coefficients
of the latter, given in Table 8.1.

Table 8.1 BB-coefficients olLi(x),i =0,...6,i # 4,x € [0,1]

BB-coefficients ofL; (x)
i=0,...6,i #4,x€[0,1]
Lo(x) [1,-1/2,-3/14]
L1(x) [0,2,6/7]
La(x) [0,-1/2,-1/4]
La(x) [0,0,5/7]
Ls(x) [0,0,-1/7]
Le(x) [0,0,1/28]

6
From the BB-coefficientf),5/2,2] of Ap := Z ILi| =L1 —Lo+Ls—Ls+Ls,
i=1,1#4

we deduce its equation
Ao(X) = 5x(1 — X) + 2% = 5x — 3x°.

On the other hand, from the BB-coefficientslegf we deduce
3 25
Lo=(1—x)"—x(1—Xx) 12X 1 3X+14X.

We havelg(x) > 0 for 0 < x < x* andLg(x) < 0 for x* < x < 1, where the unique
zero of g is
X" = (21— +/91)/25~ 0.46.

Hence the equations &f are respectively

A~ (X) = Lo(X) +Ao(x) = 14 2x— gxz, x € [0,x"]

67
AT (X) = —Lo(X) + Ag(X) = —1+8x— ﬂxz, x € [x,1]
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Itis easy to see that maR ™~ (X) = A~ (x*) and maxA ™ (x) = AT (X) with x = 25
xe[0,x*] xe[x*,1]

|

We then deduce

157
AX)=AT(R) ===
max (%) ®) =57

which completes the proof. O

Proof of Theorem 2.2

For the sake of simplicity, we take= [a,b] = [0,n] with h= 1. By using a computer
algebra system, a first graphical study shows that the mawrimiuthe Lebesgue
functionA = 327, |Li| is attained in the first and last intervals. The first intef0al]

is covered by the supports of the eight first quasi-Lagrangetfons and, using the
polynomial expressions of B-splin&g, B1,B5,B3 in [0, 1]

Bo(x) = (1-%)°, Bl(x):%x(7x2—l8x+12), Bz(x)zlizxz(ls—nx), Ba(X) =%

and the definition of the quasi-Lagrange functions giver2iB), we get respectively

_ 257 71 23 — 97 23 20
oX) = —ﬁ)ﬁ Exz—gx—i— 1, Li(x)= Z)x3—7x2+ 35
_ 6647 153 — 7 4
Z(X) = —mxs EX2—4X7 L3(X) = §X3_2X2+ §X,
18374 15, 1. _ . 11, 1,
40 =1720¢ T 16° T80 W= g X

~ 97 1,
Le() = = 1220 ~ 16¥

other functiond o andL; have one zero, denoted kjfandx;, respectively
Xo = 4871225680 x; =.5815623494

The maximum ofA occurs in the subintervild, x|, where the equation of this func-
tion and its derivative are respectively

A= Bhe Do By, Apg-Lhe L, 25

16" 2 XT3

The functionA’ has one zera* — 20— 22.1/501~ .304 and the value of the max-
imum is equal to

N 292460 222277 —

Al ) o 390963+ 3518667 501

which concludes the proof. O
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Proof of Lemma 4.1

One first prove thags(ti) = e3(sj) = 0 for all i, j. This result is purely technical and
it can be obtained by using the exact values of the B-spline$ioand.#, and the
definitions of coefficient functionals. We only give the pféar e3(tj) =0,2<i <n,
the other cases being similar, but a little bit more speciéiarrthe endpoints of the
interval.

Denotingps(x) = (x—1)3, we havamg(x) = ps(X) + p2(X) wherep; € ;. There-
fore

Thmg(X) = ThP3(X) + P2(X) = €3(X) = Thp3(X) — p3(X) = €3(ti) = mpa(ti)

and

Thps(ti) = 5 (Ai(ps) +Aita(ps)) =

NI =

§(S—ti)3

1 2 1
—(tia—t)°— ?(S—l—ti)s'f‘ —(ti1—t)3+ >

14 14
8 1 2 1
+? (S11— ti)3 + ﬂ(tiJrl - ti)3 7 (S42— ti)3 + ﬂ(ti+2 - ti)3-
Itis clear that this sum is equal to zero, as quantities withdame coefficients have
opposite signs. For exampte,, —ti = —2h= —(tj ;2 —t;). This proves the first result.
Writing m,u in the quasi-Lagrange form

=}
=}

Thu(x) = 3 u(t)Lai(x) +  u(s)Lai-1(x),
we observe that
e3(X) = _Zj(tis —x)Lai(X) + 21(33 —X)Lzi-1(X).

Now, starting from Taylor’s formulas

u(t) = f u® (%) (t — %)% /Kt + U@ (x) (6 —x)3/6+ Ri(x),

k=0

u(s) = iu(k) ()(s = %) /K + U@ (s —%)°/6+ R (),

K=
with

Ri(x) = %/Xti (t; —s)3u(4)(s)ds Iii(x) = é/: (s —s)3u(4> (s)ds

we use the exactness af on 1, the above expression ef(x) and we define

n

R(x) = ZaRi(X)LZi (%) + R (X)Lai-1(X),

=}
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to get the following representation

ThU(X) = U(X) + :—éu<3) (x)&3(X) + R(x). (8.1)
Since
ROX) = 3 (i a0 | * (t— 9% (s)ds _iLZil(x) / " (51— 9% (s)ds) ,
therefore

R < 31U @Lz 1 [ =sds+ 5 Iaato (s —s>3ds>

= 2l (iiwzi ()16 —x>4+i§l|L2il<x>|<s —x>4> .

Assumex € [tj_1,ti] which is covered by sufibok_1) = [tk_3,tki2] fork=i—2,...i+
2 and by supfly) = [tr_3,tey3) for £ =1 —3,...i+ 2. Since boths, — x| and|t; — x|
are< 3h, we deduce

IR(X)| < %7h4||u<4)||m <iZO|in (x)| +i;|in1(X)l> ,

As the Lebesgue functiofi(x) = 31 o |Lai (X)|+ 31 |L2i—1(x)| is bounded indepen-
dently ofn, we see thaR(x)| < Ch*|ju||., for some constar@.
Now, from (8.1), we have

THU(X) — U(x) = %u(:") (x)es(x) +O(hh).

As e3(x) = 0 on. /U Fp, we see thathu—u= O(h4) at those points and we get the
superconvergence of the quadratic projector. This endgrthef of Lemma 4.1. O

Proof of Lemma 4.2

For the first equality, we use the symmetry of the absciss#erespect to the mid-
point of the interval and the exactnessmfon I1,. Thus, the quadrature formula
associated with the QIP is exact bh.

For the second one, observe that, settiBx) = (X— )+ dz2(X) = gz (X) +ga(X),
whereqp € Iy, asmmdz — g2 = 0, we get

ti

ti
es3(x)dx= /Ll(mqs(X)—%(X))dx

i1
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Now, asftit[1 gs3(x)dx=0, it is enough to prove th@ﬂ.f[l mQ3(x)dx= 0. Then, at least

for interior subintervals, we hay@[l hgs(X)dx= %(/\i,l(qg) +4Ai(03) + Ai+1(03))-
Then, one computes

1
Ai-1(0g) +4Ai(ds) + Ai1(0s) = (Q3(t| 3) +403(ti2) + Q3(t| 1) +o3(ti)
+4Q3(ti+1) +03(tiv2)) — 7(Q3(S 2) +U3(S+2))
2 36
+=(Ga(8-1) +Aa(S+1)) + =-s(s)
and this quantity is equal to zero in view of the symmetry dhdgaoints with respect

to 5 and the fact thatjz satisfiesgs(s +w) = —gs(s — w). This is also the case for
the first and last intervals. O

Proof of Lemma 4.3

For the first equality, setting; = ﬁﬁt]j ,g(t)dt, for all j = 1...n, and defining the
piecewise constant functignby y(x) = y; for x € I; = (tj_1,tj), then

b
lg—yla= [ la9 - |dx—z [ 100~ yax

Since

< / (t)dt< = / /|g |dsdt</ g/ (s)[ds
h -1 tj-1 tji—1

then

lo- v|\1<g/ [ |dsdx—h;/ (9)lds=hig/lx
] 1 ] 1

Now, we can write

[ awestat= [ a0 - vinesats [ et

On the one hand, we have the majoration

b
[ (0t - 0o < la-ilesl = Oh),

On the other hand, for ajl=1...n, we can write

b n t
J; voestia= 5y, [ estoce—o

in view of Lemma 4.2.
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For the second equality, using the same technique, we obtain

b b
[ s 0wu0) - uw)et| < o= ylalu= il + 1yl | ) - wplet

As || ThU— U]| = O(h®) and||g— y||1 = O(h), the first term is &(h*). For the second
one, we use Lemma 4.1 to deduce

/ab(mu(x)—u(x))dx: %/abu@)(x)eg(x)dx—l— /abR(x)dx

As the second term of the right-hand side B@*), takingg(x) = u®(x) in the first
term, the first equality of the present lemma leads to theel@sesult. O
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