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Abstract We use spline quasi-interpolating projectors on a bounded interval for
the numerical solution of linear Fredholm integral equations of the second kind by
Galerkin, Kantorovich, Sloan and Kulkarni schemes. We get theoretical results re-
lated to the convergence order of the methods, in case of quadratic and cubic spline
projectors, and we describe computational aspects for the construction of the ap-
proximate solutions. Finally, we give several numerical examples, that confirm the
theoretical results and show that higher orders of convergence can be obtained by
Kulkarni’s scheme.
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1 Introduction

Consider the linear equation

u−Tu= f , (1.1)

whereT : X → X is a compact linear operator on the Banach spaceX . The op-
eratorI −T is assumed to be invertible, so that the equation has a uniquesolution
u∈X for any givenf ∈X . Let πn : X →Xn ⊂ X be a sequence of linear projec-
tors onto finite dimensional subspacesXn of X , converging to the identity operator
pointwise.
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In this paper, we consider more specifically the integral operator

Tx(s) :=
∫ b

a
k(s, t)x(t)dt, s∈ I := [a,b], (1.2)

whereX = C(I) and the kernelk ∈ C(I2). ThenT is a compact linear operator
defined onX .

Let Xn := S
d−1
d (I ,Tn) be the space of splines of degreed on the uniform knot

sequenceTn := {ti = a+ ih,0≤ i ≤ n}, with h= (b−a)/n, andCd−1 smoothness.
In particular we consider quadratic (d = 2) and cubic (d = 3) splines, because such a
choice lies on our experience of using such functions which has proved to be efficient
in many integration problems (see e.g. [10–13]).

Let πn be aquasi-interpolating projector(abbr. QIP) onXn (i.e. πn f = f , ∀ f ∈
Xn) described in Section 2 below. Foru∈ X , we can writeπnu as

πnu=
N

∑
i=1

λi(u)Bi , (1.3)

whereN =dim(Xn) = n+d, theB′
isare B-splines and the coefficientsλi(u) are local

functionals using discrete values ofu in some neighbourhood of supp(Bi).
We use such spline QIPs (1.3) for the numerical solution of (1.1)-(1.2)by Galerkin,

Kantorovich, Sloan schemes (see e.g. [3,14]) and by the morerecent Kulkarni scheme
(see [7–9]).

We remark that, recently, the use of the spline quasi-interpolation has been proved
to work well for the approximation of solution of integral equations (see e.g. [1,2]).
In particular, in [1] a degenerate kernel method based on (left and right) partial ap-
proximation of the kernel by a discrete quartic spline quasi-interpolant is provided. In
[2], the authors propose and analyse a collocation method and a modified Kulkarni’s
scheme based on spline quasi-interpolating operators, which are not projectors, but
reproduce polynomial spaces, while the original Kulkarni’s scheme requires the use
of projection operators.

Here is an outline of the paper. In Section 2 we introduce the quadratic and cubic
spline QIPs and present their convergence properties. In Section 3 we consider the
four projection methods based on the spline QIPs (1.3):

1. Galerkin’s method, whereT, in (1.1), is approximated byTg
n := πnTπn, and the

right hand sidef by πn f . The approximate equation is then

ug
n−πnTπnug

n = πn f , (1.4)

2. Kantorovich method, whereT is approximated byTk
n := πnT. The approximate

equation is then
uk

n−πnTuk
n = f , (1.5)

3. Sloan’s iterated version, whereT is approximated byTs
n :=Tπn. The approximate

equation is then
us

n−Tπnus
n = f , (1.6)
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4. Kulkarni’s method, whereT is approximated by

Tm
n := πnTπn+πnT(I −πn)+(I −πn)Tπn = πnT+Tπn−πnTπn = Tk

n +Ts
n −Tg

n

The approximate equation is then

um
n −Tm

n um
n = f . (1.7)

Moreover, in such a section, we construct the correspondingapproximate solutions
by solving linear systems.

In Section 4 the convergence of the above methods is analysedand the obtained
results show that the Kulkarni’s method has the highest convergence order with re-
spect to the other three ones. Moreover, in cased = 2, superconvergence properties
at specific points occur for Galerkin, Kantorovich and Kulkarni methods.

In Section 5 we describe the computational aspects for the construction of ap-
proximate solutions.

In Section 6, we present somequadrature formulas of product typewith B-spline
weight functions (details will be given in [4]) used in the computation of the approx-
imate solutions.

In Section 7, we give numerical results on examples of integral equations with
more or less smooth kernels, comparing the four above methods. The numerical com-
parisons among Galerkin, Kantorovich, Sloan and Kulkarni methods based on our
quadratic or cubic spline QIPs, confirm the theoretical results of Section 4.

Finally, Section 8 contains the proofs of some theorems and technical lemmas,
presented in Sections 2 and 4.

2 Spline quasi-interpolating projectors

2.1 A quadratic spline quasi-interpolating projector

SettingJ := {0,1, . . .n+1}, then+2 quadratic B-splines{Bi, i ∈ J}, with support
[ti−2, ti+1], on the usual extended knot sequenceTn∪{t−2 = t−1 = t0 = a; b = tn =
tn+1 = tn+2} form a basis of the spaceS 1

2 (I ,Tn) of C1 quadratic splines on the par-
tition Tn. We setsi := 1

2(ti−1+ ti), for 1≤ i ≤ n, f2i := f (ti) for all 0 ≤ i ≤ n and
f2i−1 := f (si) for 1≤ i ≤ n. We also introduce the setSn := {sj ,1≤ j ≤ n}.

We choose the quasi-interpolating projectorP2 defined as

P2 f := ∑
i∈J

λi( f )Bi , (2.1)

where the linear coefficient functionals have the followingexpressions

λ0( f ) := f0, λ1( f ) := 2 f1−
1
2
( f0+ f2),

λn( f ) := 2 f2n−1−
1
2
( f2n−2+ f2n), λn+1( f ) := f2n,

(2.2)
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and, for 2≤ i ≤ n−1,

λi( f ) =
1
14

f2i−4−
2
7

f2i−3+
10
7

f2i−1−
2
7

f2i+1+
1
14

f2i+2. (2.3)

These coefficients are computed in order to makeP2 a projector, i.e. to make func-
tionals a dual basis to B-splines:λi(B j) = δi j for all pairs(i, j). For instance, in order
to obtain (2.3), starting from the following expression

λi( f ) = c1 f2i−4+ c2 f2i−3+ c3 f2i−1+ c2 f2i+1+ c1 f2i+2,

we see thatλi(B j)= 0 for j < i−2 andj > i+2. Then writing the conditionsλi(B j) =
δi, j for j = i −2, i −1, i respectively, we obtain the equations

4c1+ c2 = 0
4c1+6c2+ c3 = 0
c2+3c3 = 4

whose solution isc1 =
1
14, c2 = − 2

7, c3 =
10
7 . Similarly, we get the coefficient func-

tionals (2.2).
This projector can be written in thequasi-Lagrange form

P2 f =
2n

∑
i=0

fiLi ,

where the quasi-Lagrange functions are linear combinations of a finite number of B-
splines. For the sake of completeness, we give their expressions in terms of B-splines:

L0 = B0−
1
2

B1+
1
14

B2, L1 = 2B1−
2
7

B2,

L2 =−1
2

B1+
1
14

B3, L3 =
10
7

B2−
2
7

B3, L4 =
1
14

B4,

L2i−1 =−2
7

Bi−1+
10
7

Bi −
2
7

Bi+1, 3≤ i ≤ n−2,

L2i =
1
14

(Bi−1+Bi+2), 3≤ i ≤ n−3,

L2n−4 =
1
14

Bn−3, L2n−3 =
10
7

Bn−1−
2
7

Bn−2,

L2n−2 =−1
2

Bn+
1
14

Bn−2, L2n−1 = 2Bn−
2
7

Bn−1,

L2n = Bn+1−
1
2

Bn+
1
14

Bn−1.

(2.4)

As, for‖ f‖∞ ≤ 1, |λi( f )| ≤ 3 for all i ∈ J, one deduces that the infinity norm ofP2 is
bounded above by 3, independently of the partition.

The exact value is obtained in the following theorem, whose proof is given in
Section 8, by considering the corresponding Lebesgue function Λ := ∑2n

i=0 |Li |.
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Theorem 2.1 The infinite norm of the quadratic spline projector P2 is equal to

‖P2‖∞ =
157
67

≈ 2.34.

2.2 A cubic spline quasi-interpolating projector

SettingJ := {0,1, . . .n+2}, then+3 cubic B-splines{Bi, i ∈ J}, with support[ti−3, ti+1],
on the usual extended knot sequenceTn∪{t−3 = t−2 = t−1 = t0 = a; b= tn = tn+1 =
tn+2 = tn+3} form a basis of the spaceS 2

3 (I ,Tn) of C2 cubic splines on the partition
Tn.

We consider a projector whose general coefficient functional is based on 7 values
of f . There is a simpler one, whose general coefficient functional is based on 5 values
of f . However, as its norm is rather high, we prefer to use the former, which is slightly
more complicated, but has a smaller norm.

The projector is defined by

P3 f := ∑
i∈J

λi( f )Bi , (2.5)

where the linear coefficient functionals have the followingexpressions

λ0( f ) := f0, λ1( f ) :=− 5
18

f0+
20
9

f1−
4
3

f2+
4
9

f3−
1
18

f4,

λ2( f ) :=
1
8

f0− f1+
19
8

f2−
19
24

f4+
1
3

f5−
1
24

f6,

λn( f ) :=
1
8

f2n− f2n−1+
19
8

f2n−2−
19
24

f2n−4+
1
3

f2n−5−
1
24

f2n−6,

λn+1( f ) :=− 5
18

f2n+
20
9

f2n−1−
4
3

f2n−2+
4
9

f2n−3−
1
18

f2n−4,

λn+2( f ) := f2n,

(2.6)

and, for 3≤ i ≤ n−1,

λi( f ) :=

− 1
30

f2i−6+
4
15

f2i−5−
19
30

f2i−4+
9
5

f2i−2−
19
30

f2i +
4
15

f2i+1−
1
30

f2i+2.
(2.7)

Also in this case, the coefficients are computed in order to make P3 a projector, i.e.
to make functionals a dual basis to B-splines:λi(B j) = δi j for all pairs (i, j). For
instance, in order to obtain (2.7), starting from the following expression

λi( f ) = c1 f2i−6+ c2 f2i−5+ c3 f2i−4+ c4 f2i−2+ c3 f2i + c2 f2i+1+ c1 f2i+2.
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It is easy to see thatλi(B j) = 0 for j < i−3 andj > i+3. Then, writing the conditions
λi(B j) = δi, j for j = i −3, i −2, i −1, i respectively, we obtain the equations

8c1+ c2 = 0
32c1+23c2+8c3 = 0
8c1+23c2+32c3+8c4 = 0
c2+8c3+16c4 = 24

whose unique solution isc1 =− 1
30, c2 =

4
15, c3 =− 19

30, c4 =
9
5. Similarly, we get the

coefficient functionals (2.6).
This projector can be written in thequasi-Lagrange form

P3 f =
2n

∑
i=0

fiLi ,

where the quasi-Lagrange functions are linear combinations of a finite number of B-
splines. For the sake of completeness, we give their expressions in terms of B-splines:

L0 = B0−
5
18

B1+
1
8

B2−
1
30

B3, L1 =
20
9

B1−B2+
4
15

B3,

L2 =−4
3

B1+
19
8

B2−
19
30

B3−
1
30

B4, L3 =
4
9

B1+
4
15

B4,

L4 =− 1
18

B1−
19
24

B2+
9
5

B3−
19
30

B4−
1
30

B5,

L5 =−1
3

B2+
4
15

B5, L6 =− 1
24

B2−
19
30

B3+
9
5

B4−
19
30

B5−
1
30

B6,

L2i−1 =
4
15

(Bi−1+Bi+2) , 4≤ i ≤ n−3.

L2i =− 1
30

Bi−1−
19
30

Bi +
9
5

Bi+1−
19
30

Bi+2−
1
30

Bi+3, 4≤ i ≤ n−4.

(2.8)

The quasi-Lagrange functionsL2n− j , j = 0, . . . ,6, have symmetric expressions with
respect toL j , j = 0, . . . ,6.

For‖ f‖∞ ≤ 1, we get|λ1( f )| and|λn+1( f )| ≤ 17/3, |λ2( f )| and|λn( f )| ≤ 14/3
and, for 3≤ i ≤ n−1, |λi( f )| ≤ 11/3. Therefore we deduce that‖P3‖∞ ≤ 17/3 ≈
5.33, for any uniform partition.

The exact value is obtained in the following theorem, whose proof is given in
Section 8, by considering the corresponding Lebesgue function Λ := ∑2n

i=0 |Li |.

Theorem 2.2 The infinite norm of the cubic spline projector P3 is equal to

‖P3‖∞ =
292460
390963

+
222277
3518667

√
501≈ 2.16.
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2.3 Convergence properties of the spline QIPs

Since the operatorsπn = P2 or P3 are projectors that are uniformly bounded indepen-
dently of the uniform partitionTn, classical results in approximation theory (see e.g.
[6], chapter 5) provide

‖ f −πn f‖∞ ≤Cdist( f ,Xn),

where

C= 1+ ‖πn‖∞ ≤
{

3.35 forπn = P2

3.17 forπn = P3

Therefore, using the fact thatΠd ⊂S
d−1
d (I ,Tn) (for d= 2,3), whereΠd is the space

of polynomials of degreed, and a Jackson type theorem for splines ([5], chapter XII),
we can conclude that there exist constantsC j , depending onC and j, such that for all
f ∈C j [a,b]

‖ f −πn f‖∞ ≤C jh
jω( f ( j),h), with

{

0≤ j ≤ 2 for πn = P2

0≤ j ≤ 3 for πn = P3

whereω is the modulus of continuity off ( j).
In particular for j = 2 (resp. j = 3) and whenf has a third (resp. fourth) order

continuous derivative, we obtain

‖ f −P2 f‖∞ = O(h3), (resp.‖ f −P3 f‖∞ = O(h4)).

Moreover, using some majorations and a graphical study, onecan get the following
error bounds for smooth functions.

Theorem 2.3 1. For the quadratic projector P2 and f(3) bounded, there holds

‖ f −P2 f‖∞ ≤C2h3‖ f (3)‖∞, with C2 =
7
24

.

2. For the cubic projector P3 and f(4) bounded, there holds

‖ f −P3 f‖∞ ≤C3h4‖ f (4)‖∞, with C3 =
4
9
.

Proof In the first case, using Taylor’s formulas

f (ti) = f (x)+ (ti − x) f ′(x)+
1
2
(ti − x)2 f ′′(x)+

1
2

∫ ti

x
(ti −u)2 f (3)(u)du,

f (si) = f (x)+ (si − x) f ′(x)+
1
2
(si − x)2 f ′′(x)+

1
2

∫ si

x
(si −u)2 f (3)(u)du

and the fact thatP2 is exact onΠ2, we get

P2 f (x)= f (x)+
1
2

n

∑
i=0

L2i(x)
∫ ti

x
(ti−u)2 f (3)(u)du+

1
2

n

∑
i=1

L2i−1(x)
∫ si

x
(si −u)2 f (3)(u)du,
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Then, from the majorations
∣

∣

∣

∣

∫ ti

x
(ti −u)2 f (3)(u)du

∣

∣

∣

∣

≤ 1
3
‖ f (3)‖∞|x− ti|3,

∣

∣

∣

∣

∫ si

x
(si −u)2 f (3)(u)du

∣

∣

∣

∣

≤ 1
3
‖ f (3)‖∞|x− si|3,

one gets

|P2 f (x)− f (x)| ≤ 1
6
‖ f (3)‖∞L(x),

where

L(x) :=

(

n

∑
i=0

|x− ti|3|L2i(x)|+
n

∑
i=1

|x− si|3|L2i−1(x)|
)

.

Taking into account that the quasi-Lagrange functions havelocal support and the knot
sequence is uniform, the graphical study of this function, by using a computer algebra
system, providesL(x)≤ (7/4)h3 and finally

|P2 f (x)− f (x)| ≤C2h3‖ f (3)‖∞, with C2 =
7
24

.

A similar method is used for the cubic projectorP3. Using a Taylor expansion of order
3, we first obtain

P3 f (x)= f (x)+
1
6

n

∑
i=0

L2i(x)
∫ ti

x
(ti−u)3 f (4)(u)du+

1
6

n

∑
i=1

L2i−1(x)
∫ si

x
(si−u)3 f (4)(u)du.

Then, from the two upper bounds
∣

∣

∣

∣

∫ ti

x
(ti −u)3 f (4)(u)du

∣

∣

∣

∣

≤ 1
4
‖ f (4)‖∞|x− ti|4

∣

∣

∣

∣

∫ si

x
(si −u)3 f (4)(u)du

∣

∣

∣

∣

≤ 1
4
‖ f (4)‖∞|x− si|4

we deduce

|P3 f (x)− f (x)| ≤ 1
24

‖ f (4)‖∞L(x)

where

L(x) :=

(

n

∑
i=0

|x− ti|4|L2i(x)|+
n

∑
i=1

|x− si|4|L2i−1(x)|
)

.

The graphical study of this function providesL(x)≤ (32/3)h4 and finally

|P3 f (x)− f (x)| ≤C3h4‖ f (4)‖∞, with C3 =
4
9
,

which completes the proof. ⊓⊔

The quadratic spline projectorP2 has the particularly interesting property to be
superconvergent on the sets of evaluation pointsTn andSn, as shown in Lemma 4.1
given in Section 4.2. It seems that there is no similar resultfor cubic splines.
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3 The four projection methods

Considering the approximate equations (1.4), (1.5), (1.6)and (1.7), whereπn is P2 or
P3, defined in (2.1) and (2.5), respectively, here we propose the construction of the
corresponding approximate solutions.

3.1 Galerkin method

The approximate solution of (1.4) can be written in the form

ug
n = πn f +∑

j∈J

XjB j ,

where theXj ’s are obtained as follows.
Substituting in the equation (1.4), asπnun = un, we get

πn f + ∑
j∈J

XjB j = πn f +πn(Tπn f + ∑
j∈J

XjTBj).

On the other hand, we have

πnTπn f = ∑
i∈J

λi(Tπn f )Bi and πnTBj = ∑
i∈J

λi(TBj)Bi ,

therefore, by identifying the coefficients ofBi , we obtain the linear equations

Xi = λi(Tπn f )+ ∑
j∈J

λi(TBj)Xj , i ∈ J.

Introducing, respectively, the vectorg and the matrixB defined by

gi := λi(Tπn f ) and Bi, j := λi(TBj),

the linear system to solve is then

(I −B)X = g, (3.1)

with X the vector whose components are the unknownXj .

3.2 Kantorovich method

The approximate solution of (1.5) can be written in the form

uk
n = f + ∑

j∈J

XjB j ,

where theXj ’s are obtained as follows.
Substituting in the equation (1.5), we get

f + ∑
j∈J

XjB j = f +πn(T f + ∑
j∈J

XjTBj).
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As we have

πnT f = ∑
i∈J

λi(T f)Bi and πnTBj = ∑
i∈J

λi(TBj)Bi ,

therefore, by identifying the coefficients ofBi , we obtain the equations

Xi = λi(T f)+ ∑
j∈J

λi(TBj)Xj , i ∈ J.

Let c be the vector with components

ci := λi(T f),

and letB be the matrix defined in Section 3.1, then the linear system tosolve is

(I −B)X = c. (3.2)

3.3 Sloan method

The approximate solution of (1.6) is obtained as an iterate of Galerkin’s solution

us
n := f +Tug

n.

Therefore, we have first to computeug
n = πn f +∑i∈J XiBi (Section 3.1), then

Tug
n = Tπn f +∑

i∈J
XiTBi ,

where

Tπn f = ∑
i∈J

λi( f )T Bi .

So, we finally get

us
n := f +∑

i∈J
(λi( f )+Xi)TBi , (3.3)

for which we need the computation of integrals with B-splineweight functions

TBi(s) :=
∫ b

a
Bi(t)k(s, t)dt.
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3.4 Kulkarni method

We recall that the equation to solve is the following (the upper indexm is deleted for
the sake of clearness)

un−Tnun = f ,

where the operatorTn is defined by

Tn := πnT +Tπn−πnTπn.

We can deduce the expressions:

– πnTu= ∑i∈J λi(Tu)Bi ;
– Tπnu= ∑i∈J λi(u)B̃i , with B̃i := TBi ;
– πnTπnu= ∑(i, j)∈J×J λ j(u)λi(B̃ j)Bi .

Therefore, we obtain the following expression forun:

un = f +∑
i∈J

λi(Tun)Bi +∑
i∈J

λi(un)B̃i − ∑
(i, j)∈J×J

λ j(un)λi(B̃ j)Bi , (3.4)

which has also the following form, with two vectorsX andY of unknown coefficients:

un = f + ∑
k∈J

XkBk+∑
ℓ∈J

YℓB̃ℓ. (3.5)

Thus, the problem has 2N unknowns.
Substituting (3.5) in (3.4) and settingB∗

i := TB̃i , we get

∑
i∈J

XiBi + ∑
j∈J

Yj B̃ j = ∑
i∈J

λi(Tun)Bi + ∑
j∈J

λ j(un)B̃ j − ∑
(i, j)∈J×J

λ j(un)λi(B̃ j)Bi .

= ∑
i∈J

(

λi(T f)+ ∑
k∈J

Xk λi(B̃k)+∑
ℓ∈J

Yℓ λi(B
∗
ℓ)

)

Bi

+∑
j∈J

(

λ j( f )+ ∑
k∈J

Xk λ j(Bk)+∑
ℓ∈J

Yℓ λ j(B̃ℓ)

)

B̃ j

− ∑
(i, j)∈J×J

(

λ j( f )+ ∑
k∈J

Xk λ j(Bk)+∑
ℓ∈J

Yℓλ j(B̃ℓ)

)

λi(B̃ j)Bi .

Consider the vectorsb,c and the matricesA, B, C with components :

bi := λi( f ), ci := λi(T f), Ai, j := λi(B j), Bi, j := λi(B̃ j), Ci, j := λi(B
∗
j ).

We notice thatAi, j := λi(B j) = δi, j , since the functionals are a dual basis to B-splines,
thereforeA = I . Thus, identifying the coefficients ofBi andB̃ j (we assume that they
are linearly independent), we obtain the double system of linear equations

X = c+BX +CY − (Bb+BX +B2Y),
Y = b+X +BY.
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It can be written in a simpler form, since the second equationcan be substituted
in the first:

X = c+BX +(C−B)Y (3.6)

Y = b+X +BY (3.7)

Introducing the block vectors and matrices, of size 2N,

Z :=

[

X
Y

]

, d :=

[

c
b

]

, D :=

[

B C−B
I B

]

,

finally we are led to solve the system of 2N linear equations:

(I −D)Z = d.

This system can be reduced to the solution ofone systemof N algebraic equations.
Indeed, substituting (3.6) for (3.6)+(3.7), we get

Y = b+ c+BX +CY (3.8)

From equation (3.7), we now take

X = (I −B)Y −b, (3.9)

that we substitute in (3.8) to get

((I −B)2+B−C)Y = c+(I −B)b. (3.10)

Solving this equation givesY, thenX is computed by (3.9).

4 Convergence of the methods

4.1 Error bounds

For the four methods, since(I −T) is invertible, then(I −πnT), (I −Tπn) and(I −
Tm

n ) are invertible forn large enough and we have
∥

∥(I −πnT)
−1
∥

∥

∞ ≤ Γ1,
∥

∥(I −Tπn)
−1
∥

∥

∞ ≤ Γ2, ‖(I −Tm
n )−1‖∞ ≤ Γ3

whereΓ1, Γ2 andΓ3 are constants independent ofn ([3,7]). Hence forn large enough,
the equations have unique solutions and we get respectively

‖u−ug
n‖∞ ≤ Γ1‖u−πnu‖∞ , (4.1)

‖u−uk
n‖∞ ≤ Γ1‖(I −πn)Tu‖∞ , (4.2)

‖u−us
n‖∞ ≤ Γ2‖T(I −πn)u‖∞ , (4.3)

‖u−um
n‖∞ ≤ Γ3‖(I −πn)T(I −πn)u‖∞ . (4.4)
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4.2 Convergence orders of the solution

From the error bounds (4.1)÷(4.4) on the solution of the integral equation, we deduce
the convergence order of the methods.

In case ofπn = P2, we need specific results on the projector. We present them
in Lemma 4.1, 4.2 and 4.3, whose proofs are given in Section 8,where we denote
respectivelye3(x) = πnm3(x)−m3(x), with m3(x) := x3, andvn = πnu−u.

Lemma 4.1 (Superconvergence ofπn onTn andSn). If ‖u(4)‖∞ is bounded, for0≤
i ≤ n and1≤ j ≤ n,

– e3(ti) = e3(sj ) = 0.
– vn(ti) = O(h4) andvn(sj ) = O(h4).

Lemma 4.2 There holds

∫ b

a
(πnm3(x)−m3(x))dx= 0.

More precisely, for all i= 1. . .n, there holds

∫ ti

ti−1

(πnm3(x)−m3(x))dx= 0.

Lemma 4.3 For any function g∈W1,1 (i.e. with‖g′‖1 bounded), there holds

∫ b

a
g(t)(πnm3(t)−m3(t))dt = O(h4).

More generally, if
∥

∥

∥
u(4)
∥

∥

∥

∞
is bounded, then

∫ b

a
g(t)(πnu(t)−u(t))dt = O(h4).

Theorem 4.1 Assume that the solution u has a bounded fourth derivative, then, for
πn = P2, there holds

(i) for the three first methods

‖u−ug
n‖∞ = O(h3),

∥

∥

∥
u−uk

n

∥

∥

∥

∞
= O(h3), ‖u−us

n‖∞ = O(h4);

(ii) for the Kulkarni’s method

‖u−um
n‖∞ = O(h7).

Proof The first results are straightforward consequences of inequalities (4.1), (4.2),
(4.3) and of the above lemmas.

The last one comes from inequality (4.4), Lemma 4.3 and Theorem 2.3. ⊓⊔
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Remark 4.1Let πn = P2 and letz be equal toti ∈ Tn or si ∈ Sn, then, from Lemma
4.1 and (4.1), (4.2), (4.4), it results

u(z)−ug
n(z) = O(h4),

u(z)−uk
n(z) = O(h4),

u(z)−um
n (z) = O(h8),

i.e. a superconvergence phenomenon occurs at the sets of evaluation pointsTn and
Sn, in case of Galerkin, Kantorovich and Kulkarni methods.

Theorem 4.2 Assume that the solution u has a bounded fourth derivative, then, for
πn = P3, there holds

(i) for the three first methods

‖u−ug
n‖∞ =O(h4),

∥

∥

∥
u−uk

n

∥

∥

∥

∞
=O(h4), ‖u−us

n‖∞ =O(h4ε(h)), lim
h→0

ε(h)= 0;

(ii) for the Kulkarni’s method

‖u−um
n‖∞ = O(h8).

Proof These results are straightforward consequences of inequalities (4.1), (4.2),
(4.3), (4.4) and Theorem 2.3. ⊓⊔

We remark that the Kulkarni’s scheme, based on quadratic andcubic spline QIPs,
has a convergence order higher than the other three ones based on the same QIPs. We
also notice that, in [7], Kulkarni proposes a scheme for the solution of (1.1)-(1.2),
based on orthogonal projections in the space of (discontinuous) piecewise polynomi-
als of degreed and she shows that the corresponding error bound isO(h3(d+1)). The
proof of such a superconvergence result is based on the orthogonality of the projec-
tions. Since our Kulkarni’s scheme is based on spline operators that are projectors
but are not orthogonal, we can not get the superconvergence result obtained in [7].
However, we have shown that our method has a good convergenceorder (i.e. seven in
cased= 2 and eight in cased= 3) and a superconvergence property at the evaluation
points in case ofπn = P2.

5 Computation of the solutions

In this section, we briefly describe the computational aspects needed for the compu-
tation of approximate solutions in the four projection methods.

5.1 Vectors and matrices for the Galerkin, Kantorovich and Sloan methods

The components of the right-hand sideg in (3.1) are

gi := λi(Tπn f ) = λi

(

∑
k∈J

λk( f )T Bk

)

= ∑
k∈J

λi(TBk)λk( f ) = ∑
k∈J

Bi,kλk( f ),
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therefore we haveg= Bb, whereb denotes the vector with componentsbk := λk( f ),
k∈ J.

For the computation of the vectorb, we need the band matrixL of sizeN× (2n+
1) associated with the linear formsλi of the projectorπn. So, we haveb = L f̃, where
f̃ ∈ R

2n+1 is the vector of discrete values off at the points of setsTn andSn.
The coefficients of the matrixB in (3.1) areBi, j := λi(TBj), with

TBj(s) =
∫ b

a
B j(t)k(s, t)dt. (5.1)

In order to evaluate these integrals, we need the valuesTBj(tk) and TBj(sℓ), i.e.
the values of this function at the points ofTn andSn, so we have to construct a
(2n+1)×N matrix that we denote byV. Then, we use suitable product quadrature
formulas with B-spline weight functionsB j , presented in Section 6. Finally, one gets
B = LV .

For the construction ofc in (3.2), we need the intermediate vector with compo-
nents

∫ b

a
k(tk, t) f (t)dt or

∫ b

a
k(sℓ, t) f (t)dt, (5.2)

that can be evaluated by using a suitable Romberg’s quadrature formula.
The vectors and matrices in (3.3) are known by Galerkin method implementation.

5.2 Vectors and matrices for Kulkarni’s method

For the computation of the solutionY of (3.10) and of the vectorX in (3.9), we need
the vectorsb, c and the matricesB, C.

– The vectorb of componentsbi = λi( f ) is the same used for the Galerkin method
and defined in Section 5.1.

– The vectorc of componentsci = λi(T f) is the same used for the Kantorovich
method and defined in Section 5.1.

– The matrixB of componentsBi, j = λi(B̃ j), B̃ j = TBj , is the same used for the
Galerkin method and defined in Section 5.1.

– The elements of the matrixC areCi, j = λi(B∗
j ), whereB∗

j = TB̃ j . As TB̃ j(x) =
∫ b

a k(x,s)B̃ j (s)ds, we compute the matrixB∗ with elements

B∗
j (τi) =

∫ b

a
k(τi ,s)B̃ j (s)ds, τi = ti or si , (5.3)

by using a suitable Romberg’s quadrature formula. Finally,one getsC = LB∗.

6 Quadrature formulas with B-spline weight functions

In numerical experiments, we useproduct type quadrature formulas(abbr. PQF) with
B-spline weight functions and classical quadrature formulas. As there are many pos-
sibilities for the construction of such PQF, we have done several tests on various
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rules and selected those that appeared to be the best in numerical examples, in partic-
ular those having the least number of negative weights. The latter formulas are listed
below, where we write that a formula is of orderℓ if it is exact onPℓ−1.

6.1 PQF for quadratic B-splines

Formula of order 4 for inner B-splines

∫ ti+1

ti−2

Bi(t) f (t)dt ≈ h
8
( f (si−1)+6 f (si)+ f (si+1)), 2≤ i ≤ n−1.

Formulas of order 3 for boundary B-splines

There are two specific boundary B-splines:B0, with support[a, t1] andB1, with sup-
port [a, t2].

–
∫ t1

a
B0(t) f (t)dt ≈ h

60
(9 f (a)+12f (s1)− f (t1));

–
∫ t2

a
B1(t) f (t)dt ≈ h

30
(13f (s1)+4 f (t1)+3 f (s2));

and similar formulas forBn andBn+1.

Formula of order 9 for inner B-splines

∫ ti+1

ti−2

Bi(t) f (t)dt ≈ h

(

41
51975

f (ti−2)+
1024

779625
f

(

ti−2+ si−1

2

)

+
827

14175
f (si−1)+

95
378

f (ti−1)

+
8894
23625

f (si)+
95
378

f (ti)+
827

14175
f (si+1)+

1024
779625

f

(

ti+1+ si+1

2

)

+
41

51975
f (ti+1)

)

, 2≤ i ≤ n−1.

Formulas of order 9 for boundary B-splines

–
∫ t1

a
B0(t) f (t)dt ≈

8

∑
j=0

a j f (r j ), r j = a+ jh/8, with

a0 =
3029
89100

, a1 =
25904
155925

, a2 =− 2252
51975

, a3 =
6064
31185

,

a4 =− 3191
31185

, a5 =
5296
51975

, a6 =− 4204
155925

, a7 =
1616

155925
, a8 =− 37

41580
;
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–
∫ t2

a
B1(t) f (t)dt ≈

8

∑
j=0

a j f (r j ), r j = a+ jh/4, with

a0 =
4519

623700
, a1 =

17912
155925

, a2 =
2858
22275

, a3 =
31576
155925

,

a4 =
2776
31185

, a5 =
2072
22275

, a6 =
3418

155925
, a7 =

1544
155925

, a8 =− 79
623700

;

and similar formulas forBn andBn+1.

6.2 PQF for cubic B-splines

Formula of order 4 for inner B-splines

∫ ti+1

ti−3

Bi(t) f (t)dt ≈ h
6
( f (ti−2)+4 f (ti−1)+ f (ti)) , 3≤ i ≤ n−1.

Formulas of order 4 for boundary B-splines

There are three specific boundary cubic B-splines:B0, with support[a, t1], B1, with
support[a, t2] andB2, with support[a, t3].

–
∫ t1

a
B0(t) f (t)dt ≈ h(a0 f (t0)+a1 f (s1)+a2 f (t1)+a3 f (s2))), with coefficients

a0 =
13
105

, a1 =
17
105

, a2 =− 19
420

, a3 =
1

105
;

–
∫ t2

a
B1(t) f (t)dt ≈ h(a0 f (t0)+a1 f (s1)+a2 f (t1)+a3 f (s2))), with coefficients

a0 :=
1
21

, a1 =
34
105

, a2 =
23
210

, a3 =
2

105
;

–
∫ t3

a
B2(t) f (t)dt ≈ h(a0 f (t0)+a1 f (t1)+a2 f (t2)+a3 f (t3))), with coefficients

a0 =
1
35

, a1 =
151
280

, a2 =
13
70

, a3 =− 1
280

.

Symmetric formulas hold for the three last boundary B-splines.

Formula of order 8 for inner B-splines

∫ ti+1

ti−3

Bi(t) f (t)dt ≈ h
1890

(19f (si−2)+159f (ti−2)+453f (si−1)+628f (ti−1)

+453f (si)+159f (ti)+19f (si+1)) , 3≤ i ≤ n−1.
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Formulas of order 8 for boundary B-splines

–
∫ t1

a
B0(t) f (t)dt ≈ h

7

∑
j=0

a j f (r j ), r j := a+ jh/8, with coefficients

a0 =
3029
89100

, a1 =
3238
22275

, a2 =− 563
17325

, a3 =
758
6237

,

a4 =− 3191
62370

, a5 =
662

17325
, a6 =− 1051

155925
, a7 =

202
155925

;

–
∫ t2

a
B1(t) f (t)dt ≈ h

7

∑
j=0

a j f (r j ), r j := a+ jh/4, with coefficients

a0 =
37

3465
, a1 =

2456
17325

, a2 =
2026
17325

, a3 =
104
693

,

a4 =
247
6930

, a5 =
136
3465

, a6 =
74

17325
, a7 =

8
5775

;

–
∫ t3

a
B2(t) f (t)dt ≈ h

7

∑
j=0

a j f (r j ), r j := a+ jh/2, with coefficients

a0 =
53

17325
, a1 =

701
5544

, a2 =
2699
9240

, a3 =
929
3960

,

a4 =
577
6930

, a5 =
71

6600
, a6 :=− 1

3960
, a7 =

1
27720

.

Symmetric formulas hold for the three last boundary B-splines.

7 Numerical results

In this section, we compare the numerical results obtained by the Galerkin, Kan-
torovich, Sloan and Kulkarni’s methods on integral equations of kind (1.1)-(1.2),
whose exact solutionu is known (see Table 7.1, withx1 := 1− s, c1 := cos(1),
s1 := sin(1) in the functionf of Test 2).

For the evaluation of integrals (5.1) we use the PQF proposedin Section 6 of order
at least equal to the expected convergence order of the method, given in Theorems
4.1 and 4.2. For the evaluation of integrals (5.2) and (5.3) we apply the quadrature
formulas generated by the 4th column of Romberg’s algorithm(the first being the
trapezoidal formula), that is written as follows:

∫ 1

0
g(s)ds≈

8

∑
r=0

Arg(rh), h= 1/8,

where the coefficientsAr are given by

A0=A8=
31
810

, A1 =A7=
512
2835

, A2=A6=
176
2835

, A3=A5=
512
2835

, A4=
218
2835

.
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Firstly, we compute the maximum absolute error

eβ
n = max

z∈G
|u(z)−uβ

n (z)|,

whereG is a set of 1500 equally spaced points inI = [a,b] andβ = g, k, s, m, in case
of methods based both on the spline operatorP2 and onP3, for increasing values of
n. The results are reported in Tables 7.2÷7.6, where the quantitiesOg,Ok,Os andOm

are the numerical convergence orders, obtained by the logarithm to base 2 of the ratio
between two consecutive errors.

Table 7.1 Numerical tests

Test Interval I = [a,b] Kernelk Function f Solutionu

1 [0,1] 1
2(s+1)exp(−st) exp(−s)+ 1

2(exp(−(s+1))−1) exp(−s)

2 [0,1] exp(st) exp(−s)cos(s)+ exp(−x1)(c1x1−s1)−x1
s2−2s+2

exp(−s)cos(s)

3 [0,π] sin(s− t) cos(s) 2
4+π2 (2cos(s)+π sin(s))

4 [0,1] s5/2t5 √
s

√
s+ 34

195s5/2

5 [0,1] s5t5/2 √
s

√
s+ 17

60s5

Concerning the smoothness of the test functions, in the firstthree tests, the kernel
k, the functionf and the solutionu are sufficiently smooth so we expect and get the
optimal convergence orders stated in Theorems 4.1 and 4.2. In Test 4, the kernelk
is C2(I), but notC3(I), with respect to the variables, f ∈ C0(I), but f /∈ C1(I) and
consequently we expect and get reduced convergence orders in case of Galerkin, Kan-
torovich and Kulkarni methods (as noticed in [7] in case of other projector choices).
Similarly, in Test 5, the kernelk is C2(I), but notC3(I), with respect to the variable
t, f ∈C0(I), but f /∈C1(I) and so we expect and get a reduced convergence order in
case of Galerkin and Sloan method.

For the Tests 1, 2 and 3, we also compute the maximum absolute error at the
evaluation points belonging toTn andSn

esβn = max
z∈Tn∪Sn

|u(z)−uβ
n (z)|

whereβ = g, k, m, in case of methods based on the spline projectorP2, for increasing
values ofn. The results, reported in Table 7.7, confirm the theoreticalsuperconver-
gence properties at the evaluation points given in Remark 4.1.
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Table 7.2 Maximum absolute errors for Test 1

Methods based onP2

n eg
n Og ek

n Ok es
n Os em

n Om

4 1.4(-04) 2.6(-05) 8.1(-06) 2.5(-08)
8 1.7(-05) 3.1 3.0(-06) 3.1 3.3(-07) 4.6 1.1(-10) 7.9
16 2.0(-06) 3.0 3.7(-07) 3.0 1.5(-08) 4.5 4.2-(13) 8.0
32 2.5(-07) 3.0 4.6(-08) 3.0 7.3(-10) 4.3 1.7(-15) 7.9
64 3.1(-08) 3.0 5.6(-09) 3.0 3.9(-11) 4.2 6.7(-16) –
128 3.8(-09) 3.0 7.0(-10) 3.0 2.3(-12) 4.1 –
256 4.7(-10) 3.0 8.7(-11) 3.0 1.4(-13) 4.1 –

Methods based onP3

n eg
n Og ek

n Ok es
n Os em

n Om

4 7.4(-06) 1.5(-06) 3.3(-07) 2.5(-08)
8 5.2(-07) 3.8 1.1(-07) 3.8 9.0(-09) 5.2 1.1(-10) 7.9
16 3.5(-08) 3.9 7.6(-09) 3.9 2.5(-10) 5.2 4.2(-13) 8.0
32 2.2(-09) 4.0 4.9(-10) 4.0 7.1(-12) 5.1 1.7(-15) 7.9
64 1.4(-10) 4.0 3.2(-11) 4.0 2.1(-13) 5.1 6.7(-16) –
128 8.7(-12) 4.0 2.1(-12) 3.9 6.8(-15) 5.0 –
256 5.4(-13) 4.0 1.3(-13) 3.9 1.1(-15) – –

Table 7.3 Maximum absolute errors for Test 2

Methods based onP2

n eg
n Og ek

n Ok es
n Os em

n Om

4 2.7(-04) 2.4(-05) 1.3(-04) 2.1(-09)
8 3.1(-05) 3.1 2.8(-06) 3.1 5.7(-06) 4.5 1.0(-11) 7.7
16 3.9(-06) 3.0 3.4(-07) 3.0 2.8(-07) 4.3 5.4(-14) 7.6
32 4.9(-07) 3.0 4.2(-08) 3.0 1.5(-08) 4.2 1.0(-15) –
64 6.1(-08) 3.0 5.3(-09) 3.0 8.8(-10) 4.1 –
128 7.6(-09) 3.0 6.5(-10) 3.0 5.3(-11) 4.0 –
256 1.1(-10) 3.0 8.1(-11) 3.0 3.2(-12) 4.0 –

Methods based onP3

n eg
n Og ek

n Ok es
n Os em

n Om

4 3.1(-05) 3.3(-06) 2.3(-06) 1.2(-09)
8 2.1(-06) 3.9 2.5(-07) 3.7 7.3(-08) 4.9 5.0(-12) 7.9
16 1.4(-07) 4.0 1.8(-08) 3.8 2.1(-09) 5.1 2.0(-14) 8.0
32 8.7(-09) 4.0 1.2(-09) 3.9 6.0(-11) 5.1 8.0(-16) –
64 5.5(-10) 4.0 8.1(-11) 3.9 1.8(-12) 5.1 –
128 3.4(-11) 4.0 5.1(-12) 4.0 5.5(-14) 5.0 –
256 2.1(-12) 4.0 3.2(-13) 4.0 2.4(-15) – –
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Table 7.4 Maximum absolute errors for Test 3

Methods based onP2

n eg
n Og ek

n Ok es
n Os em

n Om

8 2.8(-04) 4.3(-04) 3.7(-05) 3.7(-08)
16 3.3(-05) 3.1 5.2(-05) 3.1 1.9(-06) 4.2 2.3(-10) 7.3
32 4.1(-06) 3.0 6.4(-06) 3.0 1.1(-07) 4.1 1.6(-12) 7.1
64 5.1(-07) 3.0 8.0(-07) 3.0 6.8(-09) 4.0 1.3(-14) 7.0
128 6.4(-08) 3.0 1.0(-07) 3.0 4.2(-10) 4.0 1.6(-15) –
256 8.0(-09) 3.0 1.2(-08) 3.0 2.6(-11) 4.0 1.5(-16) –

Methods based onP3

n eg
n Og ek

n Ok es
n Os em

n Om

8 3.8(-05) 6.4(-05) 2.0(-06) 2.4(-10)
16 2.1(-06) 4.1 3.6(-06) 4.2 3.6(-08) 5.8 2.5(-13) 9.8
32 1.3(-07) 4.1 2.2(-07) 4.1 5.8(-10) 6.0 1.0(-15) 8.0
64 7.8(-09) 4.0 1.3(-08) 4.0 9.4(-12) 5.9 –
128 4.7(-10) 4.0 8.0(-10) 4.0 2.1(-13) 5.5 –
256 2.9(-11) 4.0 4.9(-11) 4.0 7.7(-15) 4.8 –

Table 7.5 Maximum absolute errors for Test 4

Methods based onP2

n eg
n Og ek

n Ok es
n Os em

n Om

8 5.0(-02) 2.9(-05) 1.4(-07) 4.6(-09)
16 3.5(-02) 0.5 5.2(-06) 2.5 3.2(-08) 2.1 3.8(-11) 6.9
32 2.5(-02) 0.5 9.1(-07) 2.5 2.2(-09) 3.8 3.6(-13) 6.7
64 1.8(-02) 0.5 1.6(-07) 2.5 1.4(-10) 3.9 4.0(-15) 6.5
128 1.3(-02) 0.5 2.8(-08) 2.5 8.6(-12) 4.0 8.9(-16) –
256 7.7(-03) 0.7 4.9(-09) 2.5 5.4(-13) 4.0 –

Methods based onP3

n eg
n Og ek

n Ok es
n Os em

n Om

8 4.4(-02) 5.3(-06) 4.1(-07) 4.6(-09)
16 3.1(-02) 0.5 9.4(-07) 2.5 3.1(-09) 7.0 3.8(-11) 6.9
32 2.2(-02) 0.5 1.7(-07) 2.5 1.1(-11) 8.1 3.6(-13) 6.7
64 1.5(-02) 0.5 2.9(-08) 2.5 2.6(-13) 5.4 3.8(-15) 6.6
128 1.1(-02) 0.5 5.2(-09) 2.5 1.0(-14) 4.7 8.9(-16) –
256 6.2(-03) 0.8 9.2(-10) 2.5 4.4(-16) 4.5 –
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Table 7.6 Maximum absolute errors for Test 5

Methods based onP2

n eg
n Og ek

n Ok es
n Os em

n Om

4 7.1(-02) 2.3(-03) 4.9(-05) 8.6(-07)
8 5.0(-02) 0.5 2.8(-04) 3.0 2.4(-06) 4.3 4.6(-09) 7.5
16 3.5(-02) 0.5 3.4(-05) 3.0 6.3(-08) 5.3 1.9(-11) 7.9
32 2.5(-02) 0.5 4.2(-06) 3.0 7.8(-10) 6.3 5.9(-14) 8.3
64 1.8(-02) 0.5 5.2(-07) 3.0 2.7(-10) 1.5 1.0(-15) –
128 1.3(-02) 0.5 6.5(-08) 3.0 2.8(-11) 3.3 –
256 7.7(-03) 0.7 8.0(-09) 3.0 2.3(-12) 3.6 –

Methods based onP3

n eg
n Og ek

n Ok es
n Os em

n Om

4 6.2(-02) 2.7(-04) 9.3(-05) 7.4(-07)
8 4.4(-02) 0.5 1.9(-05) 3.8 5.2(-06) 4.2 3.2(-09) 7.9
16 3.1(-02) 0.5 1.2(-06) 3.9 3.2(-07) 4.1 1.3(-11) 7.9
32 2.2(-02) 0.5 7.9(-08) 4.0 1.9(-08) 4.0 5.5(-14) 7.9
64 1.5(-02) 0.5 5.0(-09) 4.0 1.2(-09) 4.0 5.5(-16) –
128 1.1(-02) 0.5 3.1(-10) 4.0 7.5(-11) 4.0 –
256 6.2(-03) 0.8 1.9(-11) 4.0 4.7(-12) 4.0 –

Table 7.7 Maximum absolute errors at the sets of pointsTn andSn, for methods based onP2

Test 1
n esgn Og eskn Ok esmn Om

4 4.4(-05) 8.2(-06) 2.5(-08)
8 2.8(-06) 4.0 5.3(-07) 4.0 1.1(-10) 7.9
16 1.8(-07) 4.0 3.4(-08) 4.0 4.2(-13) 7.9
32 1.1(-08) 4.0 2.1(-09) 4.0 1.7(-15) 7.9
64 7.1(-10) 4.0 1.3(-10) 4.0 5.6(-16) –
128 4.4(-11) 4.0 8.4(-12) 4.0 –
256 2.8(-12) 4.0 5.3(-13) 4.0 –

Test 2
n esgn Og eskn Ok esmn Om

4 1.3(-04) 4.8(-06) 1.3(-09)
8 5.9(-06) 4.5 2.3(-07) 4.4 4.9(-12) 8.0
16 4.4(-07) 3.7 1.2(-08) 4.3 2.0(-14) 7.9
32 3.0(-08) 3.9 8.3(-10) 3.9 4.4(-16) –
64 1.9(-09) 3.9 5.6(-11) 3.9 –
128 1.2(-10) 4.0 3.6(-12) 4.0 –
256 7.8(-12) 4.0 2.3(-13) 4.0 –

Test 3
n esgn Og eskn Ok esmn Om

8 1.1(-04) 2.0(-04) 1.3(-08)
16 6.1(-06) 4.1 1.3(-05) 4.0 4.3(-11) 8.2
32 3.7(-07) 4.1 7.9(-07) 4.0 1.6(-13) 8.1
64 2.3(-08) 4.0 4.9(-08) 4.0 1.5(-15) –
128 1.5(-09) 4.0 3.0(-09) 4.0 1.5(-15) –
256 9.1(-11) 4.0 1.9(-10) 4.0 1.4(-15) –
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8 Proofs of Theorems 2.1, 2.2 and Lemmas 4.1, 4.2, 4.3

In this section we report the proofs of Theorems 2.1, 2.2 and Lemmas 4.1, 4.2, 4.3.
We recall that, in Lemmas 4.1, 4.2 and 4.3,m3(x) = x3, e3(x) = πnm3(x)−m3(x),
vn = πnu−u andπn = P2.

Proof of Theorem 2.1

For the sake of simplicity, we takeI = [a,b] = [0,n] with h= 1. By using a computer
algebra system, a first graphical study shows that the maximum of the Lebesgue
functionΛ = ∑2n

i=0 |Li | is attained in the first and last intervals. The first interval[0,1]
is covered by the supports of the seven first quasi-Lagrange functions (exceptL4) and,
using the local BB(=Bernstein-Bézier)-coefficients of B-splinesB0,B1,B2 and the
definition of the quasi-Lagrange functions given in (2.4), we get the BB-coefficients
of the latter, given in Table 8.1.

Table 8.1 BB-coefficients ofLi(x), i = 0, . . .6, i 6= 4, x∈ [0,1]

BB-coefficients ofLi(x)
i = 0, . . .6, i 6= 4, x∈ [0,1]

L0(x) [1,-1/2,-3/14]
L1(x) [0,2,6/7]
L2(x) [0,-1/2,-1/4]
L3(x) [0,0,5/7]
L5(x) [0,0,-1/7]
L6(x) [0,0,1/28]

From the BB-coefficients[0,5/2,2] of Λ0 :=
6

∑
i=1, i 6=4

|Li |= L1−L2+L3−L5+L6,

we deduce its equation

Λ0(x) = 5x(1− x)+2x2 = 5x−3x2.

On the other hand, from the BB-coefficients ofL0, we deduce

L0 = (1− x)2− x(1− x)− 3
14

x2 = 1−3x+
25
14

x2.

We haveL0(x) ≥ 0 for 0≤ x ≤ x∗ andL0(x) ≤ 0 for x∗ ≤ x ≤ 1, where the unique
zero ofΛ0 is

x∗ = (21−
√

91)/25∼ 0.46.

Hence the equations ofΛ are respectively

Λ−(x) = L0(x)+Λ0(x) = 1+2x− 17
14

x2, x∈ [0,x∗]

Λ+(x) =−L0(x)+Λ0(x) =−1+8x− 67
14

x2, x∈ [x∗,1]
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It is easy to see that max
x∈[0,x∗]

Λ−(x) = Λ−(x∗) and max
x∈[x∗,1]

Λ+(x) = Λ+(x) with x= 56
67.

We then deduce

max
x∈[0,1]

Λ(x) = Λ+(x) =
157
67

,

which completes the proof. ⊓⊔

Proof of Theorem 2.2

For the sake of simplicity, we takeI = [a,b] = [0,n] with h= 1. By using a computer
algebra system, a first graphical study shows that the maximum of the Lebesgue
functionΛ = ∑2n

i=0 |Li | is attained in the first and last intervals. The first interval[0,1]
is covered by the supports of the eight first quasi-Lagrange functions and, using the
polynomial expressions of B-splinesB0,B1,B2,B3 in [0,1]

B0(x)= (1−x)3, B1(x)=
1
4

x(7x2−18x+12), B2(x)=
1
12

x2(18−11x), B3(x)=
x3

6
,

and the definition of the quasi-Lagrange functions given in (2.8), we get respectively

L0(x) =−257
160

x3+
71
16

x2− 23
6

x+1, L1(x) =
97
20

x3− 23
2

x2+
20
3

x,

L2(x) =−6647
1440

x3+
153
16

x2−4x, L3(x) =
7
9

x3−2x2+
4
3

x,

L4(x) =
1337
1440

x3− 15
16

x2− 1
6

x, L5(x) =−11
36

x3+
1
2

x2,

L6(x) =− 97
1440

x3− 1
16

x2 L7(x) =
2
45

x3, L8(x) =− 1
180

x3.

In the interval[0,1], the functionsL1,L3,L4,L5,L6,L7,L8 have one sign while the
other functionsL0 andL2 have one zero, denoted byx∗0 andx∗2, respectively

x∗0 = .4871225680, x∗2 = .5815623494.

The maximum ofΛ occurs in the subinterval[0,x∗0], where the equation of this func-
tion and its derivative are respectively

Λ(x) =
361
48

x3− 137
8

x2+
25
3

x+1, Λ ′
(x) =

361
16

x2− 137
4

x+
25
3
.

The functionΛ ′
has one zerox∗ = 274

361− 22
1083

√
501∼ .304 and the value of the max-

imum is equal to

Λ(x∗) =
292460
390963

+
222277
3518667

√
501.

which concludes the proof. ⊓⊔
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Proof of Lemma 4.1

One first prove thate3(ti) = e3(sj ) = 0 for all i, j. This result is purely technical and
it can be obtained by using the exact values of the B-splines on Tn andSn and the
definitions of coefficient functionals. We only give the proof for e3(ti) = 0, 2≤ i ≤ n,
the other cases being similar, but a little bit more specific near the endpoints of the
interval.

Denotingp3(x) = (x−ti)3, we havem3(x) = p3(x)+ p2(x) wherep2 ∈Π2. There-
fore

πnm3(x) = πnp3(x)+ p2(x)⇒ e3(x) = πnp3(x)− p3(x)⇒ e3(ti) = πnp3(ti)

and

πnp3(ti) =
1
2
(λi(p3)+λi+1(p3)) =

1
14

(ti−2− ti)
3− 2

7
(si−1− ti)

3+
1
14

(ti−1− ti)
3+

8
7
(si − ti)

3

+
8
7
(si+1− ti)

3+
1
14

(ti+1− ti)
3− 2

7
(si+2− ti)

3+
1
14

(ti+2− ti)
3.

It is clear that this sum is equal to zero, as quantities with the same coefficients have
opposite signs. For example,ti−2−ti =−2h=−(ti+2−ti). This proves the first result.

Writing πnu in the quasi-Lagrange form

πnu(x) =
n

∑
i=0

u(ti)L2i(x)+
n

∑
i=1

u(si)L2i−1(x),

we observe that

e3(x) =
n

∑
i=0

(t3
i − x3)L2i(x)+

n

∑
i=1

(s3
i − x3)L2i−1(x).

Now, starting from Taylor’s formulas

u(ti) =
2

∑
k=0

u(k)(x)(ti − x)k/k! +u(3)(x)(ti − x)3/6+Ri(x),

u(si) =
2

∑
k=0

u(k)(x)(si − x)k/k! +u(3)(x)(si − x)3/6+ R̃i(x),

with

Ri(x) =
1
6

∫ ti

x
(ti − s)3u(4)(s)ds, R̃i(x) =

1
6

∫ si

x
(si − s)3u(4)(s)ds,

we use the exactness ofπn on Π2, the above expression ofe3(x) and we define

R(x) =
n

∑
i=0

Ri(x)L2i(x)+
n

∑
i=1

R̃i(x)L2i−1(x),
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to get the following representation

πnu(x) = u(x)+
1
6

u(3)(x)e3(x)+R(x). (8.1)

Since

R(x) =
1
6

(

n

∑
i=0

L2i(x)
∫ ti

x
(ti − s)3u(4)(s)ds+

n

∑
i=1

L2i−1(x)
∫ s1

x
(s1− s)3u(4)(s)ds

)

,

therefore

|R(x)| ≤ 1
6
‖u(4)‖∞

(

n

∑
i=0

|L2i(x)|
∫ ti

x
(ti − s)3ds+

n

∑
i=1

|L2i−1(x)|
∫ si

x
(si − s)3ds

)

=
1
24

‖u(4)‖∞

(

n

∑
i=0

|L2i(x)|(ti − x)4+
n

∑
i=1

|L2i−1(x)|(si − x)4

)

.

Assumex∈ [ti−1, ti ]which is covered by supp(L2k−1) = [tk−3, tk+2] for k= i−2, . . . i+
2 and by supp(L2ℓ) = [tℓ−3, tℓ+3] for ℓ= i−3, . . . i+2. Since both|sk−x| and|tℓ−x|
are≤ 3h, we deduce

|R(x)| ≤ 27
8

h4‖u(4)‖∞

(

n

∑
i=0

|L2i(x)|+
n

∑
i=1

|L2i−1(x)|
)

.

As the Lebesgue functionΛ(x) = ∑n
i=0 |L2i(x)|+∑n

i=1 |L2i−1(x)| is bounded indepen-
dently ofn, we see thatR(x)| ≤Ch4‖u(4)‖∞ for some constantC.

Now, from (8.1), we have

πnu(x)−u(x) =
1
6

u(3)(x)e3(x)+O(h4).

As e3(x) = 0 onSn∪Tn, we see thatπnu−u= O(h4) at those points and we get the
superconvergence of the quadratic projector. This ends theproof of Lemma 4.1. ⊓⊔

Proof of Lemma 4.2

For the first equality, we use the symmetry of the abscissae with respect to the mid-
point of the interval and the exactness ofπn on Π2. Thus, the quadrature formula
associated with the QIP is exact onΠ3.

For the second one, observe that, settingm3(x) = (x−si)
3+q2(x) =q3(x)+q2(x),

whereq2 ∈ Π2, asπnq2−q2 = 0, we get

∫ ti

ti−1

e3(x)dx=
∫ ti

ti−1

(πnq3(x)−q3(x))dx.
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Now, as
∫ ti
ti−1

q3(x)dx= 0, it is enough to prove that
∫ ti
ti−1

πnq3(x)dx= 0. Then, at least

for interior subintervals, we have
∫ ti
ti−1

πnq3(x)dx= h
6(λi−1(q3)+4λi(q3)+λi+1(q3)).

Then, one computes

λi−1(q3)+4λi(q3)+λi+1(q3) =
1
14

(q3(ti−3)+4q3(ti−2)+q3(ti−1)+q3(ti)

+4q3(ti+1)+q3(ti+2))−
2
7
(q3(si−2)+q3(si+2))

+
2
7
(q3(si−1)+q3(si+1))+

36
7

q3(si)

and this quantity is equal to zero in view of the symmetry of data points with respect
to si and the fact thatq3 satisfiesq3(si +w) = −q3(si −w). This is also the case for
the first and last intervals. ⊓⊔

Proof of Lemma 4.3

For the first equality, settingγ j =
1
h

∫ t j
t j−1

g(t)dt, for all j = 1. . .n, and defining the
piecewise constant functionγ by γ(x) = γ j for x∈ I j = (t j−1, t j), then

‖g− γ‖1 =

∫ b

a
|g(x)− γ(x)|dx=

n

∑
j=1

∫ t j

t j−1

|g(x)− γ j |dx.

Since

|g(x)− γ j | ≤
1
h

∫ t j

t j−1

|g(x)−g(t)|dt ≤ 1
h

∫ t j

t j−1

∫ x

t
|g′(s)|dsdt≤

∫ t j

t j−1

|g′(s)|ds,

then

‖g− γ‖1 ≤
n

∑
j=1

∫ t j

t j−1

∫ t j

t j−1

|g′(s)|dsdx= h
n

∑
j=1

∫ t j

t j−1

[g′(s)|ds= h‖g′‖1.

Now, we can write

∫ b

a
g(t)e3(t)dt =

∫ b

a
(g(t)− γ(t))e3(t)dt+

∫ b

a
γ(t)e3(t)dt.

On the one hand, we have the majoration
∣

∣

∣

∣

∫ b

a
(g(t)− γ(t))e3(t)dt

∣

∣

∣

∣

≤ ‖g− γ‖1‖e3‖∞ = O(h4).

On the other hand, for allj = 1. . .n, we can write

∫ b

a
γ(t)e3(t)dt =

n

∑
j=1

γ j

∫ t j

t j−1

e3(t)dt = 0,

in view of Lemma 4.2.
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For the second equality, using the same technique, we obtain
∣

∣

∣

∣

∫ b

a
g(t)(πnu(t)−u(t))dt

∣

∣

∣

∣

≤ ‖g− γ‖1‖u−πnu‖∞ + ‖γ‖∞

∫ b

a
|πnu(t)−u(t)|dt.

As ‖πnu−u‖∞ =O(h3) and‖g−γ‖1=O(h), the first term is aO(h4). For the second
one, we use Lemma 4.1 to deduce

∫ b

a
(πnu(x)−u(x))dx=

1
6

∫ b

a
u(3)(x)e3(x)dx+

∫ b

a
R(x)dx.

As the second term of the right-hand side is aO(h4), takingg(x) = u(3)(x) in the first
term, the first equality of the present lemma leads to the desired result. ⊓⊔
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