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Abstract 

An ecoepidemic model is presented, in which two diseases affect the prey. Predators are allowed to have other 

food sources. Equilibria are analyzed for feasibility and stability. The most striking result is that in these 

conditions the two strains cannot both survive in the system, contrary to what is possible to obtain, under 

suitable assumptions, in standard epidemic models. 
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1 Introduction 

Real life systems are always very complicated. Mathematical models represent a tool for understanding their 

behavior, but very often they tend to oversimplify the real systems, in the tentative to analytically extract some 

information on their possible future evolution (Rai et al., 2011; Elsadany, 2012; Elsadany et al., 2012; 

Ivanchikov and Nedorezov, 2011, 2012; Nedorezov, 2011, 2012; Nedorezov and Sadykov, 2012; Visser et al., 

2012). Networks are recently becoming essential to more adequately model the complexity of interactions 

among several system components (Zhang, 2011a). In ecology, they can be used to set up the interactions 

mechanisms among the various entities that one wants to take into account (Dormann, 2011). The network 

approach is a very versatile instrument, as it can be used at all levels, from modeling the function of molecular 

components (Martínez-Antonio, 2011) to the higher ecological level (Zhang, 2011b) and human population 

level, with human artifacts modifying the environment (Ferrarini, 2011). 

     An important issue in mathematical biology is represented by ecology. Research in this field has been 

carried out with applications in the management of public resources and crop and harvesting of renewable 

resources, like for instance in fisheries. On the other hand, starting almost a century ago (Kermack and 

McKendrick, 1927) mathematics has successfully been applied also to fighting epidemics spread. Some 

diseases that have affected humanity since centuries have now been put under control. In 1980 indeed, thanks 

also to results due to mathematical modelling, WHO has declared smallpox worldwide eradicated. But new 

epidemics nowadays loom and renewed efforts are needed from researchers and scientists. 

     Diseases affect the animal populations too, and especially for animals that are raised in farms, their 

economic burden can be relevant. One can just mention the cases of foot and mouth disease that affected UK 

in the past years with the negative impact for horse raising. Among wild animal communities diseases also 

play an important role and might even threaten the species survival. But in such situations the interplay among 
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different populations too is to be considered, as well as the possibility that the disease gets transmitted into the 

other population. 

     In the biomathematical literature, models for the study of these complex interactions have been proposed 

since about twenty years (Hadeler and Freedman, 1989). Later on, this field of research has received a name, 

ecoepidemiology. A brief account of its development can be found in Venturino (2007). 

     Ecoepidemic models thus describe general systems in which two or more populations interact, but are also 

subject to diseases. Scientists have begun to study them systematically since the early nineties of the past 

century (Beltrami and Carroll, 1994; Venturino, 1994; Venturino, 1995, Chattopadhyay and Arino, 1999). A 

fair amount of literature in the subject has then appeared, focusing mainly on a disease spreading among the 

prey (Arino et al., 2004). Diseases among the predators have also been considered (Venturino, 2002), and 

infections spreading among the interacting species are of more recent vintage (Venturino, 2006; Hsieh and 

Hsiao, 2008). A more detailed account of some of these more recent results can be found in Chapter 7 of 

Malchow, Petrovskii and Venturino (2008). 

     While all these models are represented using mainly ordinary differential equations as mathematical tool, 

and the number of dependent variables is usually kept low, so that the dynamical system can be analytically 

investigated, it is not difficult to conceive more intricated situations in which more than just two diseased 

populations interact, i.e. one can have several species in a food web for instance, but also several diseases at 

hand that need to be represented in the model description. The various connections between interacting 

populations and the various diseases affecting them are then easily described via a network graph. However, 

the basic features of a complex model might at times be captured also via minimal models. In this perspective, 

on the way to consider the nontrivial interactions of several diseases on intermigling populations, we want at 

first to understand the outcomes possible when two different strains affect the very same population in a 

predator-prey system. 

     Much more recently than previous works in ecoepidemiology indeed, in this context the authors have 

proposed and investigated a simple ecoepidemic model with two diseases in the prey (Elena et al., 2011). A 

similar model with two diseases affecting the predators has also recently appeared (Roman et al., 2011). 

Common results of these investigations is the striking result that the minimal models so conceived do not 

support the two diseases affecting both at the same time the infected population, whether be it a the higher or 

the lower trophical level. 

     In this paper we consider again a minimal network, in which predators and prey interact, and two diseases 

affect the very same species. We thus modify the model with diseases in the prey, in the attempt to obtain 

coexistence of the two strains. The modification accounts for other possible food sources available for the 

predators. Our findings are however still negative. This is surprising, since for standard epidemic models, i.e. 

with the diseases spreading in an isolated population, that does not interact with other ones, the two strains are 

sustainable by suitable “ecological” assumptions (Ackleh and Allen, 2003; Andreasen et al., 1997; Castillo-

Chavez et al., 1999). In ecoepidemic models, one could presume that these extra assumptions would come 

from the interaction with the other population. Based on our findings so far, this does not seem to be the case. 

     The model we present here assumes, contrary to (Elena et al., 2011), that predators in absence of the prey 

considered in the system, evolve toward the carrying capacity allowed by the environment in which they live, 

this being possible in view of other food resources not explicitly modeled in the system. 

     The paper is organized as follows. In the next section we present the model. The following section contains 

the analysis of the system’s equilibria. Their stability is investigated in the subsequent Section. We then report 

some simulations on the system behavior. A final discussion and interpretation of the results concludes the 

paper. 
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2 New Model 

Let S denote the healthy prey, I the diseased prey of type A and Y those of type B, P be their predators. We 

consider here the situation in which available for the predators are also other food sources, which are not 

explicitly modeled. 

This is reflected in the last equation of the following system, 

 

 

 

More specifically, the older model proposed in (Elena et al., 2011) differs essentially only in the last equation 

for the predators, in which instead of the logistic growth, they experience mortality in absence of the prey 

modeled in the system. Explicitly, the former, alternative version of the model contains the very same first 

three equations of (1), while the last one is replaced by 

 

 

In the predators’ evolution equation, fourth equation of (1), the last term gives the reward predators have from 

hunting. It is assumed here that only sound prey are captured. Thus, infected are identifiable, and avoided by 

the predators who do not feed on them. 

     The first three equations of (1) instead describe the prey dynamics. In the first one, sound prey reproduce 

logistically, experiencing the total prey population intraspecific pressure, can get infected with either one of the 

two strains, and are hunted by the predators. The final two terms express the fact that both diseases are 

assumed to be recoverable. 

     The next assumption furthermore is very important as it concerns the mutual relationship of the two types 

of disease. We consider strains that cannot both simultaneously affect the same individual. Further, any 

individual infected by any one of them cannot contract the other strain, nor can the latter replace the former. 

Thus, neither co-infection nor super-infection are possible here. 

     The second and third equations of (1) contain the epidemics dynamics. Individuals enter these classes via 

successful contacts among susceptibles and infected of the “right” strain, and leave them by natural plus 

disease related mortalities, respectively and or by recovering, at respective rates and . 

      For later purposes, it is necessary to have the Jacobian of (1) at hand. It is reported below. 

 

where 
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Note that boundedness for (1) is immediately obtained from standard arguments like those used in the previous 

model, (Elena et. al., 2011), since the only change in this new model affects just the last equation and for it, 

easily, we obtain the estimate 

              lim sup t→P = H, 

thus an upper bound on P is always ensured. 

 

3 Equilibria 

We now turn to the investigation of the equilibria Qi = (Si,Ii,Yi,Pi), i = 0,...,7 of (1). Four of the former 

equilibria of (Elena et al., 2011) are again easily found in this case, since in all of them the predators are absent. 

In fact they are again the origin Q0≡ E0, then Q1 ≡E1 =(k,0,0,0). Also the points in which one disease is 

endemic coincide, namely Q3 = E3 and Q4 = E4, with the same feasibility conditions υ+φ<kβ and μ+γ<kλ. Note 

instead that in place of E2 we find now the equilibrium 

 

feasible if 

 
 

In the modified model (1), however, new equilibria arise with respect to those of (Elena et al., 2011). First, 

the point Q5 = (0,0,0,H) is found, which is always feasible. We then find Q6 whose population values are 

 
Defining 

 

the point is feasible if 

 

Finally, we have Q7 with components 

 

Defining 

 

the feasibility condition of the latter is 
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However, also in this situation the coexistence equilibrium does not exist, since solving the equilibrium 

equations we are led to the conditions 

 

which for generic parameter values cannot be all satisfied by the same value of the susceptible population. 

Therefore also this modified model does not allow the infected population to simultaneously sustain the two 

strains. 

 

4 Stability 

We now turn to the local stability analysis for the equilibria found in the previous Section. 

At the origin the eigenvalues are r, −(+), −(+), n, showing that it is an unstable saddle. 

At Q1 the eigenvalues are −r, k−−, k−−, n+ek, showing that also this point is an unstable saddle. 

At Q2 = (S2,0,0,P2) we find the eigenvalues and the roots of the quadratic 

 

with  

 
The Routh-Hurwitz conditions require F0 > 0, which reduces to 

                                         

 

and F1 > 0 as well, which gives 

 

and in addition the negativity of the other eigenvalues, namely 

  
At Q3 and Q4 two eigenvalues are explicitly found, and one is common to both equilibria, namely n+eS*. 

Clearly the value of S* changes in the two cases, but what counts is that the eigenvalue is positive, thereby 

implying that both equilibria are unstable. 

     Here an interesting remark can be made. On comparing Q3 and Q4 with E3 and E4 of (Elena et al., 2011), we 

observe both Q3 and Q4 are never stable, while instead E3 and E4 are stabilized respectively by  
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and by 

    

For Q5 the eigenvalues are −n, −−, −−, r−aH, so that its stability condition reduces to 

 
For the equilibria Q6 and Q7, stability is very hard to be analytically investigated; we therefore study it via 

numerical methods. 

 

5 Simulations 

First of all we exhibit the behavior of the system without additional food sources. Figures 1 and 2 show the 

stable behavior of the system settling to the equilibria E1 ≡Q1 which is common to both models, and E2, which 

differs from Q2. The latter is shown instead in Fig. 5. The stable equilibria E3≡Q3, E4 ≡Q4, which are once 

again common to both models, are shown in Figures 3 and 4 for the model (2). These equilibria for (1) are 

unstable, and therefore not shown. 

 

 

Fig. 1 Equilibrium E1 obtained for the parameter values: r=0.5, k=50, λ=0.01, β=0.01, a=0.7, γ=0.3, φ=0.4, µ=0.25, ν=0.3, m=0.7, 

e=0.01. 
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Further, the new discovered equilibria that pertain only to the system (1) are pictured in Figures 6-8. 

      All these simulations are in agreement with our theoretical analysis, showing both existence and stability of 

the relevant equilibria. 

 

 

 

 

Fig. 2 Equilibrium E2 obtained for the parameter values: r=0.5, k=50, λ=0.01, β=0.01, a=0.2, γ=0.3, φ=0.2, µ=0.2, ν=0.4, m=0.45, 

e=0.1. 
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Fig. 3 Equilibrium E3 obtained for the parameter values: r=0.5, k=50, λ=0.01, β=0.01, a=0.7, γ=0.25, φ=0.25, µ=0.23, ν=0.2, 

m=0.5, e=0.01. 
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Fig. 4 Equilibrium E4 obtained for the parameter values: r=0.7, k=50, λ=0.01, β=0.01, a=0.2, γ=0.2, φ=0.3, µ=0.2, ν=0.3, m=0.45, 

e=0.01. 

 

 

 

 

 

 

 

 

 

 

 

37



Network Biology, 2013, 3(1): 29-44 

 IAEES                                                                                                                                                                          www.iaees.org   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Equilibrium Q2 obtained for the parameter values: r=0.75, k=50, λ=0.02, β=0.01, a=0.01, γ=0.5, φ=0.8, µ=0.5, ν=0.9, 

n=0.2, e=0.01, H=40. 
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Fig. 6 Equilibrium Q5 obtained for the parameter values: r=0.5, k=50, λ=0.2, β=0.3, a=0.1, γ=0.4, φ=0.5, µ=0.25, ν=0.3, n=0.8, 

e=0.2, H=40. 

 

 

 

 

 

 

 

39



Network Biology, 2013, 3(1): 29-44 

 IAEES                                                                                                                                                                          www.iaees.org   

 

 

 

 

 

 

 

 

Fig. 7 Equilibrium Q6 obtained for the parameter values: r=0.8, k=50, λ=0.3, β=0.5, a=0.01, γ=0.5, φ=0.4, µ=0.3, ν=0.025, n=0.8, 

e=0.8, H=40. 
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Fig. 8 Equilibrium Q7 obtained for the parameter values: r=0.8, k=50, λ=0.3, β=0.2, a=0.01, γ=0.5, φ=0.4, µ=0.3, ν=0.25, n=0.8, 

e=0.02, H=40. 

 

 

6 Conclusions 

In this investigation we considered an ecoepidemic system where two diseases affect the prey. The predators 

can feed also on other sources, which was not the case in the model presented in (Elena et al., 2011). 

     One positive conclusion in both cases shows that the ecosystem can never disappear, given the 

unconditional instability of the origin. 

     Some equilibria of the model with no other food supply for the predators (2) appear also as equilibria of the 

system in which predators have other resources (1). However, their characteristics differ. We provide a detailed 

description below. 

     In fact, the healthy-prey-only equilibrium E1 ≡Q1 is conditionally stable for (2), while it cannot be attained 

in (1), since it is always unstable. In particular, it is stable for the system (2) in which the predators disappear 

in absence of the prey, if the prey carrying capacity is low enough, since E1 is stable only if the following 

condition holds, 
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so that if the carrying capacity exceeds the ratio of the predators’ mortality with the return that they get from 

hunting, the latter equilibrium becomes unstable, and the predators enter into the system. 

     We now compare the disease-free equilibria in the two models, E2 and Q2. We find in fact the feasible 

equilibrium E2 for (2), stable if the remaining previous stability conditions are still satisfied. This equilibrium 

is easily seen to originate via a transcritical bifurcation from E1, as mentioned above: compare the stability 

condition of E1 given above, with the feasibility and stability conditions for E2, namely 

 

and  

In the model (1) the corresponding equilibrium Q2 becomes feasible instead if the predators’ carrying capacity 

is larger than the ratio between the prey’s reproduction rate and the rate at which they are hunted (4). Both 

equilibria are conditionally stable, for Q2 the conditions are quite complex, see (7)-(9) compared to the above 

given feasibility condition for E2. In fact the latter two express the same concept, that the prey population level 

at the equilibrium must be bounded above by the very same quantities, namely the ratios of the losses the 

infected classes suffer by mortality and recovery over their recruitment rates. The difference between (9) and 

the above feasibility condition for E2 lies of course in the level of the prey, which is different in the two models. 

     The predator-free endemic equilibria with only one strain, E3 = Q3 and E4 = Q4, are conditionally stable in 

the model (2) for which the prey are necessary for the survival of the predators. Instead, if other food sources 

for the predators are available, the equilibria Q3 and Q4 cannot be attained, given their instability, system (1). 

From the stability conditions for E3 and for E4 previously given for the model (2), we have shown that for both 

equilibria no Hopf bifurcations arise. 

     The model with other resources (1) contains further equilibria. An obvious one is provided by the predators-

only point Q5, always feasible but stable for a large enough predators’ carrying capacity, see (10). Comparing 

this with (4), we see that it originates from Q2 via a transcritical bifurcation. 

     The remaining equilibria, at which predators and prey thrive together, with the latter hosting only one 

endemic strain, have been shown to be reachable by the system via numerical simulations. 

     The most striking result is however that in both models (2) and (1) no internal equilibrium exists, nor an 

equilibrium in which the two diseased populations coexist together, in absence of the predators. Therefore it 

seems that predators hunting healthy prey, whether be it in presence or absence of additional available 

resources, do not provide the additional “ecological” conditions found in standard epidemiology, that allow the 

two strains to be present at the same time in the infected population. 
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