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Abstract

We present three models for refuges in interacting population systems of predator-
prey type, with the prey hosting a transmissible disease. The safety niche is assumed
to lessen the disease spread, but not to protect prey from predators. This represents
a novelty with respect to standard ecosystems where the refuge prevents predators’
attacks. The niche is assumed either to protect the healthy individuals, or to hinder
the infected ones to get in contact with the susceptibles, or finally to reduce altogether
contacts that might lead to new cases of the infection. Some counterintuitive results
are obtained. The effectiveness of the three different strategies are compared. The best
situation in terms of disease containment appears to be the environment which provides
a place where the healthy individuals cannot come in contact with disease carriers.
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1 Introduction

In population models predator-prey and competition systems play a dominant role, since
the blossoming of this discipline about a century ago. In more recent times, more refined
models try to better describe reality. Since prey try to seek protection against attacks of
their predators in the features of the environment, scientists have tried to incorporate this
behavior into the interaction models. The introduction of refuges has lead to the observation
that the Lotka-Volterra models gets stabilized [3] even to show global asymptotic stability,
[1, 2]. This shows the relevant role that spatial refuges exert in shaping the dynamics of
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predator-prey interplay. The refuge is expressed in the equations by reducing the amount
of prey population available for hunting by the predators.

In this classical setting, if Y denotes the prey population that can take cover, by Yn we
denote the number of individuals who find protection in the niches that are available for
their safety. Thus there are only Y − Yn individuals that can interact with the predators.
There could be several functional forms that can be chosen for Yn. The simplest one is a
constant value, Yn = Y0, with Y0 ∈ R+, or alternatively one could take a linear function of
the prey population, Yn = Y0Y , [3] or also a linear function of the predators X, Yn = Y0X

[6]. More recently, a model has been proposed in which the form is taken as a bilinear
function of both populations, Yn = Y0XY , [4].

Ecoepidemiology investigates the influence of diseases in ecosystems, see Chapter 7
of [5]. It appears therefore that the refuges for some of the populations involved can be
introduced also in this context. However, instead of using the environmental niches as
protection against the predators, i.e. as an ecological tool as described above, we employ
them in order to investigate whether they can influence the disease spread, i.e. we give them
an epidemiological meaning. Therefore, it is not against predators that prey are protected,
but we rather consider the case in which the healthy prey for some reason due to the
conformation of the environment can avoid to come in contact with disease-carriers of their
own population and therefore be somewhat protected from the epidemics. This is achieved
by reduced contact rates that they have with infected individuals. Of all the various possible
types of niche, to keep things simple, we just take the constant case, Yn = Y0.

In the next Sections, we present three models, based on the ecoepidemic system pre-
sented in [7], differing in the way the refuge is modeled. In Section 2, some of the susceptibles
are prevented from interaction with infected individuals. In Section 3, it is part of the in-
fected that are unable to become in contact with healthy individuals. In Section 4, we look
at a reduced contact rate. A final discussion compares the results.

2 The model with a refuge for the healthy prey

Consider at first the system in which the susceptibles are more able to wander about than
the infected ones, because the latter indeed are in general weakened by the disease. In this
way, it is possible that the susceptibles reach places unattainable by the diseased individuals.
Thus the latter cannot come in contact with the healthy remote individuals, and therefore
these sound individuals cannot be infected. We assume that s denotes the fixed number of
susceptibles that escape from the spread of the epidemics using the refuge.

The model is formulated as follows. The healthy prey R reproduce with net reproduc-
tion rate a, are subject to intraspecific competition only with other sound individuals at rate
b and are hunted by predators at rate c. Those that can be infected by the diseased prey
individuals U , as discussed above, leave their class at rate λ, to enter into the class of sick
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inviduals. The latter do not reproduce, are hunted at a rate k 6= c by the predators. Here
k > c means that they are weaker than sound ones, and therefore more easy to capture,
while k < c instead takes into account the fact that they might be less palatable than the
healthy ones. Finally, they can recover the disease at rate ω and therefore reenter into the
S population. As mentioned above, infected are assumed not to contribute to intraspecific
pressure, either of sound prey or among themselves; this again is grounded in the fact that
their disease-related weakness prevents them to compete with the other individuals in the
population. The predators are assumed to have also other food sources, for which they
reproduce at rate d, but clearly get a benefit from the interactions with the healthy prey
expressed by the parameter e < c. This constraint expresses the fact that the amount of
food they get from the captured prey cannot exceed its mass. So far all the system param-
eters are nonnegative. For the predators hunting the infected prey, instead, we could model
two different situations. For h > 0, the infected cause a damage to the predators, killing
them. In this paper we concentrate only on this case. In the opposite case we could have
the normal situation in which predators get a reward from capturing the diseased prey, so
that in this situation we would have 0 < −h < k. In summary, the ecoepidemic model with
inclusion of a disease-safety niche for the susceptibles reads

dR

dt
= R[a − bR − cF ] − λ(R − s)U + ωU (1)

dU

dt
= λ(R − s)U − U [kF + ω]

dF

dt
= F [d + eR − fF − hU ]

Note that the above system needs some further qualifications. In fact when R < s

the next to last term in the first equation and the first one in the second equation would
become positive and negative respectively, which makes no sense biologically. Therefore
in such situations they should be understood to be identically zero. But in such case the
infected prey in the system are easily seen to vanish, since in the second equation the term
on the right hand side is always negative. The system then would settle to one of the
equilibria of the classical disease-free predator-prey model, with logistic correction for the
prey alternative food supply for the predators, see [7] for its brief analysis. For the benefit
of the reader a short summary of its findings is presented also here at the top of Section 5.

The equilibria of (1) are P1 = (0, 0, 0) and

P2 =

(
0, 0,

d

f

)
, P3 =

(a

b
, 0, 0

)
, P4 =

(
af − cd

bf + ce
, 0,

ae + bd

bf + ce

)
.

The first three points are always feasible, P4 is feasible for

af > cd. (2)
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Then there is coexistence P5 = (R5, U5, F5). Its population values are obtained solving for
F and U respectively the second and third equations in (1), thus giving

F5 =
1

k
[λ(R5 − s) − ω] , U5 =

1

h
[d + eR5 − fF5] .

Substituting into the first one, we obtain the quadratic equation W (R) ≡
∑2

k=0 akR
k = 0

whose roots give the values of R5. Its coefficients have the following values

a2 =
λ

h

(
f

k
λ − e

)
− b − c

k
λ, a0 =

1

hk
(dk + fsλ + fω) (sλ + ω),

a1 = a +
c

k
(sλ + ω) +

1

hk
[(sλ + ω)(ek − fλ) − λ(dk + fsλ + fω)].

Now, since a0 > 0, if the parabola W (R) is concave one positive root will exist. Thus a
sufficient condition for the existence of P5 is a2 < 0, i.e., explicitly,

fλ2 < h[(b + e)k + cλ]. (3)

For feasibility, we need also the other population values at a nonnegative level, a fact which
is attained for U5 if ek > fλ, else we must impose it, giving

R5 <
dk + fλ + fω

fλ − ek
, (4)

as we do for F5 to obtain

R5 > s +
ω

λ
. (5)

The Jacobian of (1) is

J =




a − 2bR − λU − cF −λ(R − s) + ω −cR

λU λ(R − s) − kF − ω −kU

eF −hF d + eR − hU − 2fF




The eigenvalues for P1 are −λs − ω, d, a, entailing its instability. Those for P2 are −(dk +
fλs + fω)f−1, −d, (af − cd)f−1 giving the stability condition

af < cd. (6)

Comparing this condition with (2), we observe that there is a transcritical bifurcation, for
which P4 emanates from P2 when the latter becomes unstable. In other words, introducing
the healthy prey invasion number

R(i) ≡ af

cd
. (7)
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we have that for R(i) > 1 the healthy prey establish themselves in the environment.

For P3 the eigenvalues are (bd + ae)b−1, (λa − λsb − bω)b1, −a, giving instability.

At P4 one eigenvalue is easily factored out,

λ(af − cd) − k(bd + ae)

ce + bf
− λs − ω,

while the remaining ones are roots of the quadratic equation

T (δ) = δ2 + b1δ + b2 = 0, (8)

where letting D = ce + bf ,

b1 =
t1

D
, b2 =

t3

D
, t1 = af(b + e) + bd(f − c),

t3 = (bd + ae)(af − cd), t2 = t21 − 4t3(bf + ce).

Explicitly,

T1,2 =
−b1 ±

√
b2
1 − 4b2

2
=

−t1 ±
√

t2

2(ec + bf)
. (9)

0 5 10 15 20
0

5

R

time

a=21, b=0.3, c=1, d=1, e=0.5, f=0.9, 
 h=0.1, k=10, λ=10.2, ω=0.8, s=0.9, p=0, q=0

0 5 10 15 20
0

5

10

U

time

0 5 10 15 20
0

2

4

F

time

Figure 1: The coexistence equilibrium is attained for the following choice of parameters:
a = 21, b = 0.3, c = 1, d = 1, e = 0.5, f = 0.9, h = 0.1, k = 10, λ = 10.2, ω = 0.8, s = 0.9.
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By the feasibility condition (2), t3 > 0 so that t2 < t21. Hence both roots of (9) have negative
real part. Stability hinges then just on the first eigenvalue, i.e. λR4 < kF4 + λs + ω or
explicitly the following condition

λ
af − cd

bf + ce
< k

ae + bd

bf + ce
+ λs + ω. (10)

For the coexistence equilibrium P5, we have run some simulations to show that it can
be attained at a stable level. Figure 1 shows one such instance, for the parameter values
s = 0.9 and

a = 21, b = 0.3, c = 1, d = 1, e = 0.5, f = 0.9, (11)

h = 0.1, k = 10, λ = 10.2, ω = 0.8.

Here the R5 equilibrium value is much higher than the number of individuals s that can
take cover in the safety niche. Observe also that the same inequality holds also for all the
healthy prey population values before attaining the equilibrium level.

3 The case of a cover for the infected

Assume now that part of the infected are somehow confined in an environment in which
healthy prey cannot enter. In this way the contagion risk is reduced. Let p denote the fixed
number of infected that inhabit the unreacheable territory. With the remaining notation
similar to model (1), the system in our present case reads

dR

dt
= R[a − bR − cF − λ(U − p)] + ωU (12)

dU

dt
= λ(U − p)R − U [kF + ω]

dF

dt
= F [d + eR − fF − hU ]

Again, here we have to remark that for U < p the contributions to the infected class is
to be understood to drop to zero. In such case, once again, the infected prey in the system
vanish, and the system settles to any equilibrium of the classical disease-free predator-prey
model P̃4 ≡ P4, [7].

For (12) the equilibria are again the origin P̃1 ≡ P1 = (0, 0, 0) and the point P̃2 ≡ P2

but here we find a new predator-free point, while coexistence of healthy prey and predators
is forbidden. We thus have

P̃0 =

(
a

b
,

aλp

aλ − bω
, 0

)
.
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The latter is feasible for aλ > bω, i.e. introducing the disease basic reproduction number
R0, if

R0 ≡ aλ

bω
> 1. (13)

The presence of the coexistence equilibrium P̃5 = (R̃5, Ũ5, F̃5) can be discussed as
follows. From the last equation of (12) we solve for F

F̃5 =
1

f
(d + eR − hU)

and substitute into the remaining equations to obtain two conic sections

Φ(R, U) ≡ k

f
hU2 − e

k

f
RU + U

(
λ − k

f
d − ω

)
− pλ = 0,

Ψ(R, U) ≡ −
(

b +
c

f
e

)
R2 +

(
c

f
h − λ

)
RU +

(
pλ − c

f
d + a

)
R + ωU = 0,

of which we seek an intersection (R̃5, Ũ5) in the first quadrant. We study the each one of
them separately.

The implicit function Φ = 0 can be solved as a function R = ρ(U),

ρ(U) ≡ 1

fU

[
khU2 + (fλ − dk − fω)U − fpλ

]
.

The numerator is a convex quadratic, which has two real roots with opposite signs, Ũ±. In
fact Descartes rule shows that independently of the sign of fλ − dk − fω there is always
one variation and one permanence of signs in its coefficients. For U > 0 it is therefore a
continuous function crossing the U axis at Ũ+ > 0, that has a vertical asymptote coinciding
with the R axis and for U > 0 it raises up to infinity, asymptotically approaching the
straight line R = hkf−1U . Its inverse, U = ρ−1(R), has the R axis as horizontal asymptote
for R → −∞ and goes to infinity for large positive R, crossing the U axis at U+. This curve
corresponds to the level 0 of the surface Φ(R, U). This implicit function is clearly negative
at the origin, since Φ(0, 0) = −pλ < 0, and by continuity retains this sign everywhere below
the curve U = ρ−1(R), while it is positive above it.

The function Ψ(R, U) instead vanishes at the origin. Studying it on the R axis, we find
that it must cross it also at the point

R̃(1) =
fpλ − c + af

bf + ce
,

which can have either sign. If R̃(1) < 0, then Ψ(R, U) > 0 in the whole first quadrant.
Therefore in this case Φ and Ψ do not meet in the first quadrant and the coexistence
equilibrium P̃5 does not exist.

c©CMMSE ISBN: 978-84-616-2723-3



Safety niches in ecoepidemics spread

Conversely, if

fpλ + af > c (14)

since Ψ is a conic section, it must raise up from the origin and then go down to meet the R

axis at R̃1, thus it defines an arc of a concave function U ≡ A(R) in the first quadrant. We
must investigate when this arc U = A(R) and the function U = ρ−1(R) meet. We do so by
comparing their respective slopes at R = 0. Evidently, since A(0) = 0 and ρ−1(0) = Ũ+ > 0,
if A′(0) < (ρ−1)′(0), no intersection can exist, recalling the concavity of A and the fact that
ρ−1 is monotonically increasing, as we can easily verify that [ρ−1(R)]′ = [ρ′(U)]−1 > 0 for
U > 0. One can also explicitly find the expression of A(U) as

A(U) = R
(bf + ce)R + cd − fpλ − af

(ch − fλ)R + fω
.

We must impose the converse condition A′(0) > (ρ−1)′(0). Implicit differentiation of Φ and
Ψ and evaluation at R = 0 yields

(ρ−1)′(0) =
ekU+

2hkU+fλ − dk − fω
, A′(0) =

1

ω
(cd − fpλ − af).

For U = 0 we then need to have the slope of A larger than the one of ρ−1, but this does
not automatically imply an intersection of the two curves. In fact two intersections exist
if we additionally require for instance that at the maximum of the arc A, or in general for
any suitable value of the abscissa R̄ in [0, R1], the values of A and ρ−1 “interlace”, i.e. the
following conditions are met

A′(0) > (ρ−1)′(0), A
(
R̄

)
≥ ρ−1

(
R̄

)
. (15)

The above conditions are then sufficient for the existence of P̃5. In particular we could here
easily locate the reference point as R̄ ≡ 1

2R̃1,
The Jacobian of (12) is

J̃ =




a − 2bR − cF − λ(U − p) −λR + ω −cR

λ(U − p) λR − kF − ω −kU

eF −hF d + eR − hU − 2fF


 .

P̃1 is always unstable, since the eigenvalues are d and

−1

2
ω +

1

2
a +

1

2
λ p ± 1

2

√
ω2 + 2 a ω − 2 λ p ω + a2 + 2 a λ p + p2 λ2.

For P̃2 we find the eigenvalue A0 = −d and

A± =
1

2f

[
af − kd − ωf − cd + fpλ ±

√
Y

]
,

Y = 2 kdω f + ω2f2 − 2 kd2c + 2ω f2a + 2 kdaf − 2 ω fcd + 2 kdλ pf

−2 λ pω f2 − k2d2 + 2 cdλ pf + 2 afcd − 2 af2λ p − a2f2 − c2d2 − p2λ2f2.
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Stability is then ensured if

f(a + pλ) < kd + ωf + cd. (16)

0 5 10 15 20
0

5

10

R

time

a=21, b=0.3, c=1, d=1, e=0.5, f=0.9, 
 h=0.1, k=10, λ=10.2, ω=0.8, s=0, p=0.1, q=0

0 5 10 15 20
0

10

20

U

time

0 5 10 15 20
1.5

2

2.5

F

time

Figure 2: The coexistence equilibrium P̃5 is achieved when p = 0.1 and the remaining
parameters are given by (11) as in Figure 1.

For the point P̃0 we have the following eigenvalues

B1 =
dbaλ − db2ω + ea2λ − eabω − haλ pb

b (aλ − bω)

and the pair

B± =
1

2b(aλ − bω)

[
a2λ2 − aλ bω − bω aλ + b2ω2 − ba2λ + ab2ω − λ pb2ω ±

√
X

]
,

X = b2ω2a2λ2 − 2 b3a3λ ω + λ2p2b4ω2 + a2b4ω2 + b2a4λ2 + b4ω2ω2 + 2 a4bλ3

+a2λ2b2ω2 − 2 a3λ3bω − 2 a3λ3bω − 2 ab4ω ω2 − 2 a3b2ω λ2 + 2 a2b3λ ω2 + a4λ4

+4 a2λ2b2ω ω − 2 aλ b3ω2ω − 2 b3ω2aλ ω − 2 ab4ω2λ p − 4 a3b2λ2ω + 4 a2b3ω λ ω

−2 a2λ3pb2ω + 2 aλ2b3ω2p − 2 b4ω ω2λ p + 2λ2pb3a2ω + 2 b3ω aλ2pω.

Using feasibility (13), stability in this case is ensured by the following set of conditions

aλ(db + ea − bhp) > db2ω + eabω, aλ[aλ − 2bω − ab] < bω[bpλ − bω − ab]. (17)
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With the help of some simulations we can show that the coexistence equilibrium can be
stably achieved, Figure 2. The refuge parameter used is p = 0.1 while all the remaining ones
are those (11) as in Figure 1. Note that in this case raising the niche level to p = 0.4 causes
the infected population at some point to fall below this threshold, so that they are wiped
out, Figure 3. So while we stated that the disease-free point is not an equilibrium of (12) per
se, in suitable situations it would certainly occur. In fact when the infected population U

becomes smaller than the level p, and this occurs pretty early in the simulation as observed
in Figure 3, the sound prey first and then also the predator populations suddenly surge to
finally settle to the coexistence equilibrium of the underlying demographic model.

4 The case of reduced contacts

We consider now another situation, in which we assume that it is the rate of contacts between
infected and susceptibles that gets somewhat reduced, due to the effect of a protective niche.
In this case then we introduce the fraction 0 ≤ q ≤ 1 of avoided contacts. The model, using

0 5 10 15 20
0

20

40

R

time

a=21, b=0.3, c=1, d=1, e=0.5, f=0.9, 
 h=0.1, k=10, λ=10.2, ω=0.8, s=0, p=0.4, q=0

0 5 10 15 20
−20

0

20

U

time

0 5 10 15 20
0

10

20

F

time

Figure 3: The disease-free equilibrium is attained for p = 0.4 with the remaining parameters
given by (11) as in Figure 1. Note that the diseased population U falls below the level p

very soon, and consequently both the healthy prey first and subsequently the predators pick
up, and finally settle to the coexistence equilibrium of the underlying demographic model.
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again the very same previous notation, now becomes

dR

dt
= R[a − bR − cF − (1 − q)λU ] + ωU (18)

dU

dt
= U [(1 − q)λR − kF − ω]

dF

dt
= F [d + eR − fF − hU ]

Clearly, by redefining β = (1 − q)λ for ω = 0 we get the same model studied in [7]. For
the convenience of the reader we summarize the basic results on the equilibria in which
at least one of the population vanishes and then extend the study for the coexistence, to
encompass here the situation ω 6= 0 not considered in [7] for this specific equilibrium. The
equilibria are again all the equilibria of the system (1), namely the origin P̂1 ≡ P1 ≡ P̃1,
and P̂2 ≡ P2 ≡ P̃2, P̂3 ≡ P3, P̂4 ≡ P4. For feasibility of P̂4 clearly we need again (2).

Coexistence P̂5 = (R̂5, Û5, F̂5) is obtained by solving the second equation in (18) at
equilibrium and substituting into the third equation of (18) to get

F̂5 =
(1 − q)λR̂5 − ω

k
, Û5 =

(
e

h
− f

hk
(1 − q)λ

)
R̂5 +

d

h
+

f

hk
ω,

and finally from the first equation in (18) we get the quadratic
∑2

k=0 ckR
k, whose roots

determine the value of R̂5, with c0 = (dkω + fω2)(hk)−1 > 0 and

c2 =
( c

k
− e

h

)
(1 − q)λ +

f

hk
(1 − q)2λ2 − b, c1 = a +

c

k
ω +

e

h
ω − (1 − q)λ

(
d

h
+ 2

f

hk
ω

)
.

Again we can apply Descartes’ rule to have at least a positive root. This occurs for one
root if we impose either one of the alternative conditions

c2 < 0, c1 < 0; c2 < 0, c1 > 0, (19)

and we get two positive roots if

c2 > 0, c1 < 0. (20)

We do not write explicitly these conditions. For feasibility we must impose

R̂5 >
ω

(1 − q)λk
(21)

and the condition

R̂5 >
dk + fω

ek − f(1 − q)λ
, ek > f(1 − q)λ, (22)
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since the opposite one ek < f(1 − q)λ would give a negative value for R̂5.

For P̂1 the eigenvalues are −ω, d, a, showing its instability.

The eigenvalues of P̂2 are −(dk + fω)f−1, −d, (af − cd)f−1, for which the stability
condition is (6). Here again comparing (6) with (2) we observe the existence of a transcritical
bifurcation, for which the same conclusions, using the healthy prey invasion number (7) can
be drawn as for the model with refuge for the healthy prey (1).

The eigenvalues of P̂3 are (bd + ae)b−1, [(1 − q)λa − bω]b−1, −a, thus it is unstable.

For P̂4 one eigenvalue can easily be factored out, while the other ones are the roots of the
quadratic (8). Thus, as found formerly, by feasibility (2) both its roots have negative real
part, and stability depends only on the first eigenvalue, namely it is given by (1− q)λR4 <

kF4 + ω, a condition that can also be explicitly written as

(1 − q)λ
af − cd

bf + ce
< k

ae + bd

bf + ce
+ ω. (23)

Figure 4 shows the result of a simulation with the same parameter values (11) as for
Figure 1, but for q = 0.1, assessing the stability of the coexistence equilibrium P̂5.
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Figure 4: The coexistence equilibrium is attained P̂5 for the same parameters (11) as in
Figure 1 with q = 0.1.
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5 Models Comparison

The classical predator-prey model underlying these ecoepidemic systems is obtained by
eliminating the variable U and its corresponding equation in (18). The resulting system,
which can be seen as the projection of the ones considered here onto the disease-free R−F

phase plane, has the following equilibria:

Q1 = (0, 0), Q2 =

(
0,

d

f

)
, Q3 =

(a

b
, 0

)
, Q4 =

(
af − cd

bf + ce
,
ae + bd

bf + ce

)
.

The latter is feasible when (2) holds.
Q1 and Q3 are both unstable, in view of their respective eigenvalues a, d and −a,

(ae + bd)b−1. For Q2 we find (af − cd)f−1, −d showing that it is stable exactly when (6)
holds. The eigenvalues of Q4 are complex conjugate, with negative real part, so that Q4

is unconditionally stable. Being the only such equilibrium, local stability implies global
stability. This fact could be shown also via a suitable Lyapunov function.

Thus, the ecoepidemic system exhibits a similar range of behaviors as the demographic
ecosystem: coexistence is allowed, both with and without infected, compare P4 and P5,
and also the predators-only equilibrium P2, recalling that other food sources for them are
available. Evidently, in this prey-free environment, the role of the refuge for the prey is
nonexistent. The same does not occur, not surprisingly either, for the disease-free equilib-
rium P4. In fact the population levels are not affected by the size of the refuges in any
model, but the stability of this equilibrium does in fact depend on this parameter. The way
in which the refuges’ parameters s and q appear in the stability conditions differs, compare
(10) and (23). But both have a stabilizing effect for the ecoepidemic system, a result which
as mentioned agrees with former findings in the literature for predator-prey models, [3]. In
the case of the reduced contacts model, the refuge favors stability since, mathematically,
the left hand side becomes smaller due to a positive q, while in the case of a refuge for the
healthy prey it is the right hand side that gets increased by the presence of s. However,
since q is a fraction, denoting the relative reduction in the frequency of contacts, while
s represents the number of refuges, it is more likely that the latter has a more marked
influence on stability.

Note further that the disease-free equilibrium P4 does not exist per se if the infected
find cover, i.e. in system (12). However, we have seen that this equilibrium is achievable
when the infected population value falls below the threshold given by the size of the niche
p. For the same model (12), however, in place of the disease-free equilibrium, we find an
additional situation that does not arise in the other models, in which namely the predators
get wiped out from the environment while the prey thrive with their disease becoming
endemic. This predator-free environment can be achieved if the conditions (13) and (17)
hold. In such situation note that the infected level is directly proportional to the size p

of the niche available for their segregation. In particular, if the disease is unrecoverable,
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ω = 0, or if there is no intraspecific competition among the healthy prey, b = 0, the size of
surviving infected is exactly p. If these situations are not met, then the resulting number
of thriving infected is larger than p. Hence, the higher the refuges, the more endemic the
disease remains, when the predators are wiped out. This is a somewhat counterintuitive
result. It is true that the niches help the infected not to get in contact with the susceptibles,
but then one would expect also an advantage for the healthy individuals. Instead we find
them at the level ab−1 which would be attained at the unstable equilibrium P2. Hence,
another way of looking at this situation is to observe that in this case the niche stabilizes
the otherwise unstable predator-free equilibrium, at the price of making the disease endemic.

The numerical experiments with the coexistence equilibria of the three models show
that using the set of demographic parameter values in (11), i.e. those given by the first
row, the system settles to the demographic disease-free equilibrium (23.2475, 0, 14.0261),
whose projection onto the R − F phase plane corresponds of course to the equilibrium
of the underlying classical predator-prey system, (23.2475, 14.0261). If we now introduce
the disease, with the related parameter values found in the second row of (11), we find
the ecoepidemic equilibrium (2.1133, 1.8658, 2.0819). As we can easily observe, the disease
has a large impact on the system, reducing both its populations by an order of magnitude.
Although the epidemics affects only the prey, its effect is felt also by the predators. This can
easily be interpreted, because a reduced food supply, due to a lower prey population caused
by the disease, must reduce also the predator population and, in addition, consumption of
infected prey is harmful for the predators. In other words, diseases, as stated many times
in ecoepidemiological research, affect the whole ecosystems, and therefore in environmental
studies they cannot be easily neglected.

Coming back to the effects of our safety refuges, we have run simulations using the
previous parameter values (11), with various sizes for the refuge coefficients s, p and q. As
remarked earlier the proviso holds, that in the models (1) and (12) a check is implemented,
for which when U < p and R < s the next to last term in the first equation and the first
one in the second equation are set to zero in both (1) and (12). The results are reported in
Figures 5-7.

Comparison of the results indicates that for the healthy refuge, the healthy prey and
the predators at equilibrium increase in a linear fashion their numbers as s grows, while
the infected appear to reach a plateau. When the infected prey have a cover, there is a
threshold value of its size p beyond which the disease disappears and the other populations
suddenly jump to the level of the corresponding demographic, disease-free, classical model
and stay there independently of the value of p. A similar result holds also when it is the
contact rate that gets reduced, i.e. for model (18). In this case the equilibria behavior
before the threshold value of q is reached appears to be smoother than in the previous case
of system (12).
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Figure 5: Equilibrium population values of system (1) as function of the refuge size s.
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Figure 6: Equilibrium population values of system (12) as function of the refuge size p.

We also plot the equilibrium levels of the various populations as function of the disease
parameters λ and ω versus the refuge parameters s, p and q in Figures 8-13
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Figure 7: Equilibrium population values of system (18) as function of the contact rate
reduction coefficient q.

Comparing the susceptible levels in Figure 8, when the contact rate is high, an improve-
ment in the equilibrium value is obtained for larger value of the refuge s in model (1), while
for (12) and (18) an increase in the refuge size is irrelevant, the equilibrium configuration
is determined essentiall by the contact rate λ. A similar behavior holds for the predators
as well, Figure 10. A corresponding opposite effect is noted among the infected, Figure 9.
In (1) a larger s smoooths out the growth of the equilibrium value, which is much sharper
for the other two models, once the contact rate crosses the critical threshold.

Considerations along the above lines can be also made when comparing the refuge usage
versus the disease recovery rate ω. Comparing Figures 11-13, we see the marked similarities
between the equilibrium surfaces of the models (12) and (18), for all the populations in-
volved. Both healthy prey and predators show a linear increase as function of the recovery
rate, while the niche apparently does not play any essential role. The infected prey instead
seem to reach a plateau. Instead, for the model 1, we find again a linear increas in terms
of ω, but what is more important, also a sharp increase of healthy prey and predators as
function of the niche size s. A corresponding decrease of infectives can also be observed,
which is more marked for high values of the niche size and of the recovery rate, as it should
be expected.

Based on these overall considerations, it appears that the model (1) shows the best
characteristics in terms of disease reduction. Thus in this type of predator-prey ecoepidemic
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system with disease just in the prey, for an endemic disease, the ecosystem with a place
where some of the healthy individuals can be segregated from coming in contact with disease
carriers would exhibit the best features to preserve the epidemics to spread. This result
could possibly give some hints to field ecologists as how to fight diseases in wild populations,
in case some artificial refuges, unreachable by the diseased individuals, can be provided in
specific real-life situations.
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top, refuge size s in model (1); middle,
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duced contact rate q in model (18). Other
parameter values as in (11).
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refuge size s in model (1); middle, refuge
size p in model (12); bottom, reduced
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Figure 11: Equilibrium population value
for the healthy prey as function of the
disease contact rate ω and refuge size:
top, refuge size s in model (1); middle,
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refuge size s in model (1); middle, refuge
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