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Kriging for functional data: uncertainty
assessment

Kriging per dati funzionali: valutazione dell’incertezza

Maria Franco-Villoria and Rosaria Ignaccolo

Abstract We predict a curve at an unmonitored site taking into account exogenous

variables using a functional kriging model with external drift and, alternatively, an

additive model with a spatio-temporal smooth term. To evaluate uncertainty of the

predicted curves, a semi-parametric bootstrap approach is used for the first, while

standard inference is used for the second. The performance of both approaches is

illustrated on pollutant functional data.

Abstract Allo scopo di predire una curva in un sito non monitorato, tenendo conto

di variabili esogene, viene usato un modello di kriging funzionale con deriva esterna

ed in alternativa un modello additivo con una componente spazio-temporale.

L’incertezza viene valutata usando un approccio bootstrap semi-parametrico nel

primo caso e inferenza classica nel secondo. La performance dei due approcci é

illustrata su dati funzionali di inquinamento.

Key words: kriging, P-spline, confidence bands, performance index

1 Introduction

Spatial prediction of particulate matter (PM) concentration is useful in order to as-

sess air quality and health risk where no monitoring stations are available. The ob-

served air pollutants and meteorological variables time series, collected at various

locations of a monitoring network, can be treated as spatially dependent functional

data. Several papers consider ordinary kriging models for functional data under the

assumption of a constant mean (e.g. [4, 5, 9]). The more recent ones consider the
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mean as a function of longitude and latitude [1, 8] and (both scalar and functional)

exogenous variables [6]. However, uncertainty evaluation about prediction remains

an open issue, as kriging variance is constant in time. Given the difficulty to de-

rive sampling distributions for functional data, confidence band calculation can be

approached using resampling methods. We adapt the semi-parametric bootstrap ap-

proach for spatially correlated data proposed in [7] to the case of functional data.

Confidence bands are obtained by ordering the bootstrapped predicted curves in two

different ways, based on functional depth and on distance between curves. Alterna-

tively, spatially dependent functional data can be modelled in a longitudinal per-

spective by means of an additive model that includes a smooth function of longitude

and latitude, exploiting the close connection between penalized spline smoothing

and kriging [12]. Uncertainty for a predicted curve can be assessed using classical

inference. The two approaches are illustrated on pollutant functional data.

2 Case study: PM10 concentration in Piemonte

Our case study consists of daily PM10 concentrations (in µg/m3) measured from

October 2005 to March 2006 by the monitoring network of Piemonte region (Italy)

in 24 sites (red triangles in Fig. 1(a)), and in 10 more sites used as validation stations

(blue dots in Fig. 1(a)). Data were log transformed to stabilize the within-station

variances and normalize the marginal distribution of PM10 data. The covariates con-

sidered are: coordinates and altitude (scalar); daily maximum mixing height, daily

total precipitation, daily mean wind speed, daily mean temperature and daily emis-

sion rates of primary aerosols (functional). Since the ranges of the covariates are

quite different, a standardization procedure is applied (for further details see [2]).

3 Functional Kriging with External Drift (FKED)

Let ϒs = {Ys(t);t ∈ T} be a functional random variable observed at location s ∈ D ⊆
R

d , whose realization is a function of t ∈ T , where T is a compact subset of R.

Assume that we observe a sample of curves ϒsi
, for si ∈ D, i = 1, . . . ,n, that take val-

ues in a separable Hilbert space of square integrable functions. The set {ϒs,s ∈ D}
constitutes a functional random field or a spatial functional process [4], that can

be non-stationary and that is supposed to be decomposed as ϒs = µs + εs. The term

µs is interpreted as a drift describing a spatial trend while εs represents a residual

random field that is zero-mean, second-order stationary and isotropic. At site si,

i = 1, . . . ,n, and point t, the model can be rewritten as a functional concurrent linear

model Ysi
(t) = µsi

(t)+ εsi
(t) with the drift

µsi
(t) = α(t)+∑

p

γp(t)Cp,i +∑
q

βq(t)Xq,i(t) (1)
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where α(t) is a functional intercept, Cp,i is the p-th scalar covariate at site si, Xq,i is

the q-th functional covariate at site si, γp(t) and βq(t) are the covariate coefficients

and εsi
(t) represents the residual spatial functional process {εs(t), t ∈ T,s ∈ D} at

site si. Model (1) is fitted by means of a GAM representation (see [6]), and the

functional residuals esi
(t) = Ysi

(t)− µ̂si
(t) can be used to predict the residual curve

at a new site s0 via ordinary kriging for functional data [5], according to which

ês0
(t) = ∑n

i=1 ξiesi
(t), with kriging coefficients ξi ∈ R. More complex alternatives

considering non-constant kriging coefficients are available [6]. Prediction at the un-

monitored site s0 is obtained by adding up the two terms, i.e. Ŷs0
(t) = µ̂s0

(t)+ ês0
(t),

where µ̂s0
(t) = α̂(t)+∑p γ̂p(t)Cp,0 +∑q β̂q(t)Xq,0(t).

3.1 Uncertainty Evaluation: a bootstrap approach

To evaluate the uncertainty of a predicted curve Ŷs0
(t), t = 1, . . . ,M, we extend the

semi-parametric bootstrap approach for spatially correlated data proposed by [7] to

the functional context. The bootstrapping algorithm can be summarized as follows:

1. Estimate and remove the drift µs following Model (1) to obtain the functional

residuals esi
(t) = Ysi

(t)− µ̂si
(t).

2. Estimate the residuals covariance matrix Σ through the trace-semivariogram:

υ̂(h) =
1

2 |N(h)| ∑
i, j∈N(h)

∫

T

(

esi
(t)− es j

(t)
)2

dt

where N(h) = {(si,s j) :
∥

∥si − s j

∥

∥ = h}. A parametric model (exponential or

Matérn for example) can be fitted to the points (hg, υ̂(hg)),g = 1, . . . ,G, as it

is done in classical geostatistics. Using the Cholesky decomposition Σ̂ = ÛÛT ,

the functional residuals can be transformed to become spatially uncorrelated:

ζn×M =
(

ζ (s1)
′, . . . ,ζ (sn)

′
)′
= Û−1

n×n (Yn×M − µ̂n×M) .

3. Generate B bootstrap samples ζ ∗(s1), . . . ,ζ
∗(sn) from ζ (s1), . . . ,ζ (sn) using the

smoothed bootstrap as suggested in [3], replacing the empirical distribution func-

tion of {ζ (s1), . . . ,ζ (sn)}, denoted as Fn, by a smooth version F̂n .

4. The final bootstrap sample is determined using an inverse transform:

Y ∗
si
(t) = µ̂si

(t)+Ûζ ∗
si
(t).

The bootstrap samples are then fed into the FKED method to obtain B prediction

curves at the 10 validation sites. These B prediction curves need to be ordered to

determine the upper and lower limits of the confidence band. Here we consider two

ordering techniques based on band depth and L2 distance between curves.

Band depth [11] can be defined for any set of k curves (here k = 2). The sample

band depth (BD) of y(t) can be calculated as the proportion of bands delimited by 2



4 Maria Franco-Villoria and Rosaria Ignaccolo

curves containing the whole curve y(t) [11]. The modified band depth (MBD), that

takes into account whether a portion of the curve is in the band, is defined as

MBDn,2(y)=

(

n

2

)−1

∑
1≤i1<i2≤n

λ ({t ∈ T : minr=i1,i2yr(t)≤ y(t)≤ maxr=i1,i2yr(t)})

λ (T )

where λ is the Lebesgue measure on T (for details see [11]). The lower/upper limits

of a 95% confidence band (based on band depth) are obtained by taking the point-

wise (w.r.t. t) minimum/maximum of the 95% deepest curves (i.e. closest to the

center of the distribution). On the other hand, the 95% confidence ball (based on L2

distance) is made of the 95% curves closest to the FKED predicted curve Ŷs0
(t) [3].

3.2 Uncertainty Evaluation: a GAM approach

We incorporate a smooth function of longitude, latitude and time, namely f (lon, lat, t),
in Model (1). By setting a penalized bivariate spline basis for longitude and latitude

a spatial covariance structure is implicit in the model [10], allowing for spatial pre-

diction. The model is linear in the coefficients and can be written in matrix form

as Ŷ = SY where S = X(X ′X +ηP)−1X ′ is the smoothing matrix, X is the design

matrix, P is the penalty matrix and η is the smoothing parameter. At a new location

s0, the predicted value is given by Ŷs0
(t) = Ss0

y, where Ss0
= Xs0

(X ′X +ηP)−1X ′.

Approximate 95% confidence bands can be calculated as [12]:

Ŷs0
(t)± 1.96σ̂ε

√

1+ ||Ss0
||2. (2)

Alternatively, uncertainty can be evaluated using the reformulation of the model as

a mixed model so that bias is taken into account (see [12], p.138).

4 Results

Predictions at the 10 validation sites were obtained by means of FKED as summa-

rized in Section 3 and a fully additive model as described in Section 3.2. Four perfor-

mance indices were calculated to compare the spatial prediction of the two models

considered and are summarized in Figure 1(b). The indices are: RMSE, Pearson

correlation, Normalized Mean Bias Factor and weighted normalized MSE of the

normalized ratios (WNNR), that takes into account peaks in observed data, where

the normalized ratio is defined as exp(−| ln( f itted/observed)|) (see [6] for details).

All four indices suggest that FKED provides better predictions for the 10 validation

sites. For each of these sites, a bootstrap sample of predicted curves of size 1000

was obtained following the algorithm illustrated in Section 3.1. Band depth was

calculated using the modified version MBD. The resulting confidence balls/bands,
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as well as 95% confidence bands according to Eq. (2), are shown in Figure 2 for

two of the 10 sites, namely 25-Biella-Largo Lamarmora and 30-Saliceto. Overall,

the two (band and ball) bootstrap based uncertainty measures seem to agree well.

For Biella-Largo Lamarmora, nearly all (92.3%) the observed data lie within the

bootstrap based confidence ball/band, while for Saliceto, there is a high percentage

(32.4%) of observed values that lie outside the confidence ball/band. This reflects

the performance of the corresponding kriging predictions, good in the first valida-

tion site (the predicted curve agrees well with the observed values), but not in the

second. On the other hand, all data points lie outside the inference confidence bands,

which are much narrower than the bootstrap ones. Part of this difference can be at-

tributed to the fact that bootstrap based confidence bands are simultaneous, while

inference based ones are pointwise.

5 Discussion and Future Work

Spatial functional analysis provides an alternative to spatio-temporal modelling ca-

pable of predicting a whole curve taking into account exogenous covariates. How-

ever, uncertainty evaluation remains an open issue. Here, two different approaches

are illustrated. The resulting confidence bands differ considerably, with the boot-

strap based ones being too wide while inference based ones are too narrow. Despite

being easy to implement, the bootstrap approach seems to be non ideal; it can be

computationally expensive and in our case study there are time periods at which

the confidence region becomes unjustifiably wider. In the case of the fully additive

model, the width of the (inference based) interval remains fairly constant, being

slightly wider at the beginning and end of the predicted curve. Improving uncer-

tainty estimation through a mixed model approach is part of our ongoing research.
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Fig. 1 (a) Locations of 24 PM10 monitoring sites (red triangles) and 10 validation stations (blue

dots). (b) Boxplot of performance indices distribution over the validation stations.

Fig. 2 Original data (black

dots), GAM predicted curve

(green) and corresponding

95% confidence band (dashed

green line), FKED predicted

curve (red), 95% confidence

ball (grey) based on L2 dis-

tance and 95% confidence

band (blue) based on MBD

for locations 25 and 30 in

Figure 1(a).
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