
25 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Achieving completeness in the verification of action theories by Bounded Model Checking in ASP

Published version:

DOI:10.1093/logcom/ext067

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/145906 since 2016-07-11T10:25:49Z

	
	
	
	

Achieving completeness in the verification of action theories

by Bounded Model Checking in ASP

L. Giordano, A. Martelli and D. Theseider Dupre’

(preliminary version)

published in

 Journal of Logic and Computation 25(6), pp 1307-1330 (2015)

							http://logcom.oxfordjournals.org/content/25/6/1307	

Achieving completeness in the verification of action
theories by Bounded Model Checking in ASP

Laura Giordano1, Alberto Martelli2, and Daniele Theseider Dupré1

1 DISIT, Università del Piemonte Orientale, {laura.giordano,dtd}@mfn.unipmn.it
2 Dipartimento di Informatica, Università di Torino, mrt@di.unito.it

Abstract. Temporal logics are well suited for reasoning about actions, as they al-
low for the specification of domain descriptions including temporal constraints as
well as for the verification of temporal properties. The paper deals with verifica-
tion of action theories defined in a temporal extension of answer set programming
which combines ASP with a dynamic linear time temporal logic (DLTL). The pa-
per proposes an approach to bounded model checking which exploits the Büchi
automaton construction while searching for a counterexample, with the aim of
achieving completeness. The paper provides an encoding in ASP of the temporal
action domains and of Bounded Model Checking of DLTL formulas. The paper
also deals with reasoning about epistemic knowledge and incomplete states.

1 Introduction

Temporal logics have been extensively used in the specification and verification of ac-
tion domains in many fields, from planning to web services. In planning, both CTL [29,
34] and LTL [6, 3] have been used in the specification of temporally extended goals.
The need for state trajectory constraints has been advocated in PDDL3 [20]. [2] ex-
ploits a first order linear temporal logic for defining domain dependent search control
knowledge in the planner TLPlan, and in [13] strong fairness constraints expressed in
LTL are used to restrict nondeterminism in generalized planning. LTL has been used
in the verification of agent interaction protocols [24] and for enforcing regulations in
automatedWeb service composition [35]. In the context of reasoning about action, [11]
introduced a second order extension of the temporal logic CTL*, ESG, to reason about
non-terminating Golog programs.

In this paper, we start from the temporal action theories introduced in [26], formu-
lated in a temporal extension of answer set programming (ASP [18]) based on Dynamic
Linear Time Temporal Logic (DLTL [31]) and we exploit Bounded Model Checking
(BMC) techniques for the verification of properties of such action theories. BMC [7] is
an efficient model checking technique which does not require a tableau or automaton
construction. Given a system model (a transition system) and a property to be checked,
it searches for a counterexample of the property as a path of length k, generating a
propositional formula that is satisfiable iff such a counterexample exists. The bound k
on the length of the path is iteratively increased and, if no counterexample exists, the
procedure never stops, i.e., it is a partial decision procedure for checking validity. Tech-
niques for achieving completeness have been described e.g. in [7], where upper bounds

for k are determined for some classes of properties, namely unnested properties. To
deal with completeness, [10] proposes a semantic translation scheme, based on Büchi
automata.

In [30] Helianko and Niemelä developed a compact encoding of bounded model
checking of LTL formulas as the problem of finding stable models of logic programs.
Since ASP naturally accommodates for reasoning about actions, in [26] this encoding
is extended to DLTL formulas, for reasoning about theories including complex actions
and programs. These papers do not address the problem of achieving completeness.

In this paper we propose an alternative encoding of BMC of DLTL formulas in ASP,
with the aim of achieving completeness. Unlike [30, 26], the search for a counterexam-
ple exploits the Büchi automaton construction [21] as well as the transition system.
Unlike [10], a “counterexample” path is searched for, without assuming that the Büchi
automaton is constructed in advance. Our counterexample is an accepting path of the
product Büchi automaton which can be finitely represented as a (k,l)-loop, i.e., a finite
path of length k, in which the states are all distinct from each other, and terminating in
a loop back to a previous state l. The procedure for verifying a given property searches
for a (k,l)-loop providing a counterexample to the property, increasing k until either a
counterexample is found, or no path of length k of distinct states can be found.

As in [26], verification is performed on a transition system provided by a domain
description in a temporal action theory, and our BMC approach is used for proving
properties of domain descriptions. The action theory is given in a temporal extension of
ASP, based on the generalization of the notion of answer set [18] to temporal answer
sets. The temporal properties of a domain description can be proved by combining the
construction of temporal extensions of the domain with the verification of their proper-
ties, according to a tableaux-based procedure which provides an encoding of BMC in
ASP. In particular, an incremental encoding in iClingo [17] is provided. The proposed
approach provides a decision procedure for the verification of satisfiability and validity
properties of an action domain in a temporal action theory. The paper also addresses the
problem of verification of domain descriptions with incomplete knowledge introducing
epistemic modalities.

2 Dynamic Linear Time Temporal Logic

In this paper we refer to a formulation of DLTL (dynamic linear time temporal logic),
in [31], where the until operator Uπ is indexed by a program π which, as in PDL, can be
any regular expression built from atomic actions using sequence (;), nondeterministic
choice (+) and finite iteration (∗).

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let Σ∗ and
Σω be the set of finite and infinite words on Σ. LetΣ∞ =Σ∗ ∪Σω. We denote by σ,σ′

the words over Σω, by τ, τ ′ the words over Σ∗ and by ε the empty word. Moreover,
we denote by ≤ the usual prefix ordering over Σ∗, namely, τ ≤ τ ′ iff ∃τ ′′ such that
ττ ′′ = τ ′, and τ < τ ′ iff τ ≤ τ ′ and τ ̸= τ ′. For u ∈ Σ∞, we denote by prf(u) the set
of finite prefixes of u.

Let the set of programs (regular expressions) generated by Σ be Prg(Σ) ::= a |
π1 + π2 | π1;π2 | π∗, where a ∈ Σ and π1,π2,π range over Prg(Σ). A set of finite

words can be associated with each program by the mapping [[]] : Prg(Σ)→ 2Σ∗ in the
usual way. Let P = {p1, p2, . . .} be a countable set of atomic propositions. The set of
formulas of DLTL(Σ) is defined as: DLTL(Σ) ::= p | ¬α | α∨β | αUπβ, where p ∈ P ,
π ∈ Prg(Σ) and α,β range over DLTL(Σ).

A model of DLTL(Σ) is a pairM = (σ, V) where σ ∈ Σω and V : prf (σ)→ 2P

is a valuation function. Given a model M = (σ, V), a finite word τ ∈ prf (σ) and a
formula α, the satisfiability of a formula α at τ in M , written M, τ |= α, is defined as
usual for boolean formulas and as follows for atomic and until formulas:

– M, τ |= p iff p ∈ V (τ);
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |= β.
Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′,M, ττ ′′ |= α.

A formula α is satisfiable iff there is a modelM = (σ, V) and a finite word τ ∈ prf (σ)
such thatM, τ |= α. The symbols⊤ and⊥ can be defined as:⊤ ≡ p∨¬p and⊥≡ ¬⊤.
The derived modalities ⟨π⟩α, [π]α, ⃝ (next), U , ✸ and ✷ can be defined as follows:
⟨π⟩α ≡ ⊤Uπα, [π]α ≡ ¬⟨π⟩¬α, ⃝α ≡

∨
a∈Σ⟨a⟩α, αUβ ≡ αUΣ∗

β, ✸α ≡ ⊤Uα,
✷α ≡ ¬✸¬α, where α is a formula and, in UΣ∗ , Σ is taken to be a shorthand for the
program a1 + . . . + an.

3 Temporal action language

Let L be a first order language which includes a finite number of constants and vari-
ables, but no function symbol. Let P be the set of predicate symbols, V ar the set of
variables and C the set of constant symbols. We call fluents atomic literals of the form
p(t1, . . . , tn), where, for each i, ti ∈ V ar ∪ C. A simple fluent literal l is an atomic
literal p(t1, . . . , tn) or its negation ¬p(t1, . . . , tn). We denote by LitS the set of all
simple fluent literals, including ⊥ and ⊤, the false and true literals. LitT is the set of
temporal fluent literals: if l ∈ LitS , then [a]l,⃝l ∈ LitT , where a is an action name
(an atomic proposition, possibly containing variables), and [a] and⃝ are the temporal
operators introduced in the previous section. Let Lit = LitS ∪ LitT . Given a (simple
or temporal) fluent literal l, not l represents the default negation of l. A (simple or tem-
poral) fluent literal, possibly preceded by default negation, will be called an extended
fluent literal.

A domain description Π is a set of laws describing the effects of actions and their
executability preconditions. The laws are formulated as rules of a temporally extended
logic programming language. Rules have the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where the li’s are either simple fluent literals or temporal fluent literals, with the fol-
lowing constraints: (i) If l0 is a simple fluent literal, the body cannot contain temporal
literals (in this case, the rule is called static); (ii) If l0 = [a]l, the temporal literals in
the body must have the form [a]l′; (iii) If l0 = ⃝l, the temporal literals in the body
must have the form⃝l′. With these restrictions, possible successors of a state w only
depend on w (see Proposition 2 at the end of the Section 3.1). As usual in ASP, rules
with variables are a shorthand for the set of their ground instances.

A state, informally, is a set of ground simple fluent literals closed with respect to the
rules above (see Section 3.1). A state is consistent if it is not the case that both f and ¬f
(for some ground fluent f) belong to it, or that ⊥ belongs to it. A state is complete if,
for each ground fluent f ∈ P , either f or ¬f belongs to it. The execution of an action
in a state may change the values of fluents in the state through its direct and indirect
effects, thus giving rise to a new state. We assume that a law as (1) can be applied in all
states, while when prefixed with Init, it only applies to the initial state.

Example 1. This example describes a mail delivery system, which checks if there is
mail in the mailbox of employees and delivers mail to them. The actions in Σ are:
sense (verifying if there is mail in any of the mailboxes), deliver(E) (delivering the
mail to employee E), wait. The fluents are mail(E) (there is mail in the mailbox of
E).Π contains the following immediate effects and persistence laws:

[deliver(E)]¬mail(E)
[sense]mail(E)← not [sense]¬mail(E)
⃝mail(E)← mail(E), not⃝ ¬mail(E)
⃝¬mail(E)← ¬mail(E), not⃝mail(E)

Their meaning is that: after delivering the mail to E, there is no mail for E any more;
the action sensemay (non-monotonically) causemail(E) to become true. The last two
rules define the persistence of fluentmail.

Observe that the persistence laws interact with the immediate effect laws above. The
execution of sense in a state in which there is no mail for some E (¬mail(E)), may
either lead to a state in whichmail(E) holds (by the second action law) or to a state in
which ¬mail(E) holds (by persistence of ¬mail(E)), whilemail(E) always persists.
Thus, sense is a nondeterministic action. The following precondition laws:

[deliver(E)] ⊥← ¬mail(E)
[wait] ⊥← mail(E)

specify that, if there is no mail forE, deliver(E) is not executable, and, if there is mail
for E, wait is not executable.

We assume that there are only two employees, a and b, and that in the initial state
there is mail for a and not for b, i.e.Π includes Init mail(a) and Init ¬mail(b).

The language is also well suited to describe causal dependencies among fluents [26]
by the definition of static and dynamic causal laws similar to the ones in the action
languagesK [15] and C+ [27].

3.1 Temporal Answer Sets

In this section, we recall the notion of temporal answer set in [26], which extends the
notion of answer set [18], and we prove properties of the transition system associated
with a domain description. To this purpose, we let Π be the ground instantiation of the
domain description, and Σ the set of all the ground instances of the action names inΠ .

A temporal interpretation is defined as a pair (σ, S), where σ ∈ Σω is a sequence
of actions and S is a consistent set of ground literals of the form [a1; . . . ; ak]l, where
a1 . . . ak is a prefix of σ and l is a ground simple fluent literal, meaning that l holds in
the state obtained by executing a1 . . . ak in (σ, S). S is consistent iff it is not the case

that both [a1; . . . ; ak]l ∈ S and [a1; . . . ; ak]¬l ∈ S, for some l, or [a1; . . . ; ak]⊥ ∈ S. A
temporal interpretation (σ, S) is total if either [a1; . . . ; ak]p ∈ S or [a1; . . . ; ak]¬p ∈ S,
for each a1 . . . ak prefix of σ and for each fluent name p.

The notion of satisfiability of a rule in a temporal interpretation (σ, S), as well as the
notion of reductΠ(σ,S) of (a domain description)Π relative to (σ, S) can be defined as
natural extensions of Gelfond and Lifschitz’s ones [18]. With these notions, a temporal
answer set of Π is defined as a temporal interpretation (σ, S) such that S is minimal
(in the sense of set inclusion) among the S′ such that (σ, S′) is a partial interpretation
satisfying the rules in the reductΠ(σ,S).

The satisfiability of a simple, temporal or extended literal t in a partial temporal
interpretation (σ, S) in the state a1 . . . ak, (written (σ, S), a1 . . . ak |= t) is defined as
follows:

(σ, S), a1 . . . ak |= ⊤, (σ, S), a1 . . . ak ̸|= ⊥
(σ, S), a1 . . . ak |= l iff [a1; . . . ; ak]l ∈ S, for l simple literal
(σ, S), a1 . . . ak |= [a]l iff [a1; . . . ; ak; a]l ∈ S or a1 . . . ak, a is not a prefix of σ
(σ, S), a1 . . . ak |=⃝l iff [a1; . . . ; ak; b]l ∈ S, where a1 . . . akb is a prefix of σ

The satisfiability of rule bodies in a temporal interpretation is defined as usual. A rule
H ← Body is satisfied in a temporal interpretation (σ, S) if, for all action sequences
a1 . . . ak (including the empty action sequence ε), (σ, S), a1 . . . ak |= Body implies
(σ, S), a1 . . . ak |= H . A rule Init H ← Body is satisfied in a partial temporal inter-
pretation (σ, S) if, (σ, S), ε |= Body implies (σ, S), ε |= H . A rule [a1; . . . ; ah](H ←
Body) (that we will introduce below for defining the reduct ofΠ) is satisfied in a tem-
poral interpretation (σ, S) if, (σ, S), a1 . . . ak |= Body implies (σ, S), a1 . . . ak |= H .

Definition 1. [26] Let Π be a set of rules over an action alphabet Σ, not containing
default negation, and let σ ∈ Σω. A temporal interpretation (σ, S) is a temporal answer
set ofΠ if S is minimal (in the sense of set inclusion) among the S′ such that (σ, S′) is
a partial interpretation satisfying the rules inΠ .

To define temporal answer sets of a program Π containing negation, given a tem-
poral interpretation (σ, S) over σ ∈ Σω, we define the reduct,Π(σ,S), of Π relative to
(σ, S) extending Gelfond and Lifschitz’ transform [19] to compute a different reduct of
Π for each prefix a1, . . . , ah of σ. Observe that Π(σ,S) is an infinite set of rules, but
each reduct ofΠrelative to a prefix a1, . . . , ah is finite.

Definition 2. [26] The reduct, Π(σ,S)
a1,...,ah

, of Π relative to (σ, S) and to the prefix
a1, . . . , ah of σ , is the set of all the rules [a1; . . . ; ah](H ← l1, . . . , lm) such that
H ← l1, . . . , lm, not lm+1, . . . , not ln is in Π and (σ, S), a1, . . . , ah ̸|= li, for all
i = m + 1, .. , n.Π(σ,S)

ε is defined similarly, but [ε] in front of the rules is omitted. The
reductΠ(σ,S) ofΠ relative to (σ, S) is the union of allΠ(σ,S)

τ for all prefixes τ of σ.

Definition 3. [26] A temporal interpretation (σ, S) is a temporal answer set of Π if
(σ, S) is a temporal answer set of the reductΠ(σ,S).

Although the temporal answer sets of a domain description Π are partial interpre-
tations, in some cases, e.g., when the initial state is complete and all fluents are inertial,
it is possible to guarantee that the temporal answer sets of Π are total. In case the

initial state is not complete, we consider all the possible ways to complete the initial
state by introducing in Π , for each fluent name f , the rules: Init f ← not ¬f and
Init ¬f ← not f .

The case of total temporal answer sets is of special interest, as a total temporal
answer set (σ, S) can be regarded as temporal model (σ, VS), where, for each finite
prefix a1 . . . ak of σ, VS(a1, . . . , ak) = {p : [a1, . . . , ak]p ∈ S}.

A total temporal interpretation (σ, S) provides, for each prefix a1 . . . ak, a complete
state corresponding to that prefix.We denote byw

(σ,S)
a1...ak

the state obtained by the execu-
tion of the actions a1 . . . ak in the sequence, namelyw

(σ,S)
a1...ak

= {l : [a1; . . . ; ak]l ∈ S}.
Given a domain description Π over Σ with total answer sets, a transition system

(W, I, T) can be associated with Π as follows: (a1) W is the set of all the possible
consistent and complete states of the domain description; (a2) I is the set of all the
states in W satisfying the static initial state laws in Π ; (a3) T ⊆ W × Σ ×W is the
set of all triples (w, a, w′) such that: w, w′ ∈ W , a ∈ Σ and for some total answer set
(σ, S) ofΠ : w = w

(σ,S)
[a1;...;ah] and w′ = w

(σ,S)
[a1;...;ah;a], for some h. We can show that:

Proposition 1. Each infinite path of the transition system TS = (W, I, T) associated
with a domain descriptionΠ , which starts from a state in I , corresponds to a temporal
answer set ofΠ; and vice-versa.

Proof. We prove the first part. Letw0, w1, . . . be an infinite path in the transition system
TS such that w0 ∈ I and (wh−1, ah, wh) ∈ T , for all h = 1, 2, We define a total
temporal interpretation (σ, S) of Π such that: σ = a1a2 . . . is the sequence of actions
occurring in the path and S is defined as follows:

[a1; . . . ; ah]l ∈ S if and only if l ∈ wh

where wh is the h-th state in the path. We show that (σ, S) is a temporal answer set
of Π by showing that S is minimal among those R such that the interpretation (σ, R)
satisfies the rules in the reductΠ(σ,S).

Let us first prove that (σ, S) satisfies all rules [a1; . . . ; ah](H ← l1, . . . , lm) in
Π(σ,S). Consider the transition (wh, a, wh+1) in the path (where a = ah+1). By defi-
nition of TS there must be an answer set (σ′, S′) of Π such that wh = w

(σ′,S′)
[b1;...;bk] and

wh+1 = w
(σ′,S′)
[b1;...;bk;a], for some prefix b1, . . . , bk of σ′. Hence, for all simple literals l:

l ∈ wh iff [b1; . . . ; bk]l ∈ S′

l ∈ wh+1 iff [b1; . . . ; bk; a]l ∈ S′

Therefore, from the definition of S: (a) [a1; . . . ; ah]l ∈ S iff [b1; . . . ; bk]l ∈ S′; (b)
[a1; . . . ; ah; a]l ∈ S iff [b1; . . . ; bk; a]l ∈ S′. From these, we can prove that, for all
simple and temporal literals l: (c) (σ, S), a1, . . . , ah |= l iff (σ′, S′), b1, . . . , bk |= l.
For simple literals, (c) is an immediate consequence of (a), while for temporal literals,
it is a consequence of (b). As a consequence of (c) we have that:

[a1; . . . ; ah](H ← l1, . . . , lm) ∈ Π(σ,S) iff [b1; . . . ; bk](H ← l1, . . . , lm) ∈ Π(σ′,S′)

To show that (σ, S) satisfies [a1; . . . ; ah](H ← l1, . . . , lm), assume that (σ, S), a1,
. . . , ah |= li, for all i = 1, . . . , m. By (c), (σ′, S′), b1, . . . , bk |= li, for all i = 1, . . . , m.

Moreover, [b1; . . . ; bk](H ← l1, . . . , lm) is in Π(σ′,S′). As (σ′, S′) is an answer set of
Π , then (σ′, S′) satisfies Π(σ′,S′) and, hence, (σ′, S′), b1, . . . , bk |= H . Again by (c),
(σ, S), a1, . . . , ah |= H . Therefore, (σ, S) satisfies [a1; . . . ; ah](H ← l1, . . . , lm).

We still need to prove that S is minimal among those R such that (σ, R) satisfies
Π(σ,S). Suppose, by absurdum, it is not and there is an R such that (σ, R) satisfies
Π(σ,S) and R ⊂ S. We want to show that this leads to a contradiction.

As R ⊂ S, there must be a smallest h such that [a1; . . . ; ah−1; a]l ∈ S and
[a1; . . . ; ah−1; a]l ̸∈ R. Let us consider the states wh−1 = w

(σ,S)
[a1;...;ah−1] and wh =

w
(σ,S)
[a1;...;ah−1;a] on the path and the transition (wh−1, a, wh) ∈ T (for a = ah). By con-
struction of TS, there must be an answer set (σ′, S′) ofΠ going through this transition,
i.e. a (σ′, S′) such that, for some prefix b1, . . . , bk of σ′, wh−1 = w

(σ′,S′)
[b1;...;bk−1] and

wh = w
(σ′,S′)
[b1;...;bk−1;a]. It is easy to see that, for all simple and temporal literals l:

(σ, S), a1, . . . , ah−1 |= l iff (σ′, S′), b1, . . . , bk−1 |= l
and hence, that:
[a1; ..; ah−1](h← l1, .., lm) ∈ Π(σ,S) iff [b1; ..; bk−1](h← l1, .., lm) ∈ Π(σ′,S′) (2)

[a1; ..; ah−1; a](l0 ← l1, .., lm) ∈ Π(σ,S) iff [b1; ..; bk−1; a](l0 ← l1, .., lm) ∈ Π(σ′,S′)

(3)
where l0 is a simple literal (as well as all the literals in (3)).

We show that, starting from (σ, R), we can build an interpretation (σ′, R′) such that
(σ′, R′) satisfies the rules in Π(σ′,S′) and R′ ⊂ S′, thus contradicting the minimality
of the answer set (σ′, S′) ofΠ . We define the interpretationR′ as follows:

[b1, . . . , bk−1; a]l ∈ R′ iff [a1, . . . , ah−1; a]l ∈ R (4)

[b1, . . . , bj]l ∈ R′ iff [b1, . . . , bj]l ∈ S′, for all prefixes b1 . . . bj of σ′ with j ̸= k (5)

(observe that bk = a). It is clear thatR′ ⊂ S′. The proof that the interpretation (σ′, R′)
satisfies the rules [b1; . . . ; bj](H ← l1, . . . , lm) in Π(σ′,S′) can be done by cases, by
considering the different cases for j (j < k − 1, j = k − 1, j = k and j > k) and for
H (simple or temporal literal).

Let us consider the case j = k. Consider the rule [b1; . . . ; bk−1; a](l0 ← l1, . . . , lm)
inΠ(σ′,S′) with l0 simple literal. If (σ′, R′), b1, . . . , bk−1, a |= lj (for j = 1, . . . , m, the
lj’s are also simple), then [b1; . . . ; bk−1; a]lj ∈ R′ and, by (4), we have [a1; . . . ; ah−1; a]lj ∈
R. We have assumed that (σ, R) satisfies all the rules inΠ(σ,S), an in particular, by (3),
it satisfies [a1; . . . ; ah−1; a](l0 ← l1, . . . , lm). Hence, [a1; . . . ; ah−1; a]l0 ∈ R and, by
(4), [b1; . . . ; bk−1; a]l0 ∈ R′. Therefore, (σ′, R′) satisfies the above rule inΠ(σ′,S′).

Consider the rule [b1; . . . ; bk−1; a](H ← l1, . . . , lm) in Π(σ′,S′), with H = ⃝l.
Suppose (σ′, R′), b1, . . . , bk−1, a |= lj (for j = 1, . . . , m). We can show that (σ′, S′),
b1, . . . , bk−1, a |= lj (for j = 1, . . . , m). By condition (iii) on the rules, lj can either
be a simple fluent literal or a temporal literal of the form ⃝l′. Consider the case lj
is a simple literal. Then [b1; . . . ; bk−1; a]lj ∈ R′ and, by (4), [a1; . . . ; ah−1; a]lj ∈ R.
By definition ofR,R ⊂ S, hence [a1; . . . ; ah−1; a]lj ∈ S and, as by constructionwh =

w
(σ′,S′)
[b1;...;bk−1;a], [b1; . . . ; bk−1; a]lj ∈ S′. In the case lj =⃝l′, then (σ′, R′), b1, . . . , bk−1,

a, bk+1 |= l′, i.e. [b1; . . . ; bk−1; a; bk+1]l′ ∈ R′ and, by (5), [b1; . . . ; bk−1; a; bk+1]l′ ∈
S′. Thus, (σ′, S′), b1, . . . , bk−1, a |=⃝l′.

As (σ′, S′), b1, . . . , bk−1, a |= lj (for j = 1, . . . , m) and (σ′, S′) satisfies the rules
in Π(σ′,S′), we have (σ′, S′), b1, . . . , bk−1, a |= H . As H = ⃝l, [b1; . . . ; bk−1; a;
bk+1]l ∈ S′ and, by (5), [b1; . . . ; bk−1; a; bk+1]l ∈ R′. Hence, (σ′, R′), b1, . . . , bk−1, a |=
H , and (σ′, R′) satisfies the rule. We proceed similarly in caseH = [b]l.

Let us consider the case j = k−1. Consider the rule [b1; . . . ; bk−1](H ← l1, . . . , lm)
in Π(σ′,S′), with H = [a]l. Let (σ′, R′), b1, . . . , bk−1 |= lj (for j = 1, . . . , m). By (2),
we have that [a1; . . . ; ah−1](H ← l1, . . . , lm) is in Π(σ,S). We can show (see below)
that (σ, R), a1, . . . , ah−1 |= lj (for j = 1, . . . , m). Given that (σ, R) satisfies all the
rules inΠ(σ,S), it follows that (σ, R), a1, . . . , ah−1 |= [a]l, and [a1; . . . ; ah−1; a]l ∈ R.
Thus, by (4), [b1; . . . ; bk−1; a]l ∈ R′, and therefore (σ′, R′), b1, . . . , bk−1 |= [a]l.

Let us show that (σ, R), a1, . . . , ah−1 |= lj (for j = 1, . . . , m). If lj is simple,
then by definition of R′ (5), (σ′, S′), b1, . . . , bk−1 |= lj (for j = 1, . . . , m) and, also,
(σ, S), a1, . . . , ah−1 |= lj (for j = 1, . . . , m). As wh is the first state on which R
differs form S, (σ, R), a1, . . . , ah−1 |= lj (for j = 1, . . . , m). If lj = [a]l, from
(σ′, R′), b1, . . . , bk−1 |= [a]l we get (σ′, R′), b1, . . . , bk−1, a |= l and, by (4): (σ, R),
a1, . . . , ah−1, a |= l and (σ, R), a1, . . . , ah−1 |= [a]l. We proceed similarly in case
H =⃝l.

The case for j = k−1 withH simple literal, and the cases for j < k−1 and j > k
are straightforward.

The fact that (σ′, R′) satisfies the rules inΠ(σ′,S′) contradicts the minimality of S′

and the assumption that (σ′, S′) is an answer set. Hence assuming that S is not minimal
among the R such that (σ, R) satisfies Π(σ,S) leads to a contradiction. This concludes
the first part of the proof.

The second part of the proof (the vice-versa) follows trivially from the definition of
transition system associated withΠ . ✷

The following proposition can be proved in a similar way:

Proposition 2. The next states of a state w in a transition system TS only depend on w
and not on previous states.

In the following section, we make use of a next state function nextTSstate that, given
a state w and an action a, determines all the states reachable in the transition system
from w by a (if any). Observe, that restrictions (i) - (iii) on rules (1) , are essential to
ensure that possible successors of a state w only depend on w. For instance, with rules
of the form l2 ←⃝⃝ l1 or⃝⃝ l2 ← l1 Proposition 2 would not hold.

3.2 Verification of Enriched Domain Descriptions

As a total temporal answer set of a domain description can be interpreted as a DLTL
model, it is easy to combine domain descriptionswith DLTL formulas. This can be done
by adding to the domain description Π a set of DLTL formulas C used as constraints
on the executions of the domain description. We denote by (Π, C) the enriched domain
description, and we define the extensions of (Π, C) to be the temporal answer sets (σ, S)
ofΠ satisfying the constraints C. For example, taking begin as a new action name,
⟨begin⟩⊤

✷[begin]⟨sense; (deliver(a) + deliver(b) + wait); begin⟩⊤

impose that the agent continuously executes a loop where it senses mail and delivers it.
DLTL formulas can be used to encode properties to be verified on the enriched domain
description; for example, ✷(mail(a) ⊃ ✸¬mail(a)), i.e., if there is mail for a, the
agent will eventually deliver it. This does not hold: a run is possible where there is
always mail for both a and b, but the mail is repeatedly delivered to b and never to a.

Given an enriched domain description (Π, C), some problems, e.g. planning, can be
formulated as satisfiability of a formula ϕ, and others, such as the one in the example
above, as validity of a formula ϕ. Usually, the validity of a property ϕ formulated as a
DLTL formula is reduced to the unsatisfiability of ¬ϕ. In this case, if a model satisfying
¬ϕ is found, it represents a counterexample to the validity of ϕ.

4 Bounded Model Checking with Büchi Automata

Satisfiability and validity problems can be solved by model checking. The standard
approach to model checking for LTL is based on Büchi automata. A Büchi automaton
over an alphabetΣ is a tuple B = (Q,→, Qin, F) where:

• Q is a finite nonempty set of states;
•→⊆ Q×Σ ×Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf (σ) → Q such that ρ(ε) ∈
Qin and ρ(τ)

a
→ ρ(τa) for each τa ∈ prf (σ) with a ∈ Σ. The run ρ is accepting

iff inf(ρ) ∩ F ̸= ∅, where inf(ρ) ⊆ Q is given by: q ∈ inf (ρ) iff ρ(τ) = q for
infinitely many τ ∈ prf (σ). Finally L(B), the language of ω-words accepted by B, is:
L(B) = {σ|∃ an accepting run of B over σ}.

The satisfiability problem for a LTL formula α can be solved by constructing a
Büchi automaton Bα such that the language of ω-words accepted by Bα is non-empty
if and only if α is satisfiable [21]. Given a system modeled by a transition system TS,
corresponding to a Büchi automaton BTS , model checking verifies that α holds for the
system, building the product automaton BTS × B¬α and checking for emptiness of the
accepted language.

Biere et al. [7] showed that model checking is sometimes more efficient if, instead of
building the product automaton, a path of the transition system satisfying¬α is searched
for. This technique is called bounded model checking (BMC), since it looks for infinite
paths which can be represented as a finite path of length k with a back loop from state k
to a previous state l in the path (a (k,l)-loop); the search proceeds iteratively, increasing
k until a model satisfying α (a counterexample) is found— if one exists.

A BMC problem can be efficiently reduced to a propositional satisfiability problem
or to an ASP problem [30]. If no model exists and the transition system contains a loop,
the iterative procedure in general does not stop, i.e., it is a partial decision procedure
for validity. Techniques for achieving completeness are described e.g. in [7] for some
kinds of LTL formulas.

In this paper, we propose an approach to model checking which combines the ad-
vantages of BMC, in particular the possibility of formulating it easily and efficiently
as an ASP problem, with the advantages of reasoning on the product Büchi automaton
described above, mainly its completeness.

In the following we show how to adapt the procedure for building a Büchi automa-
ton corresponding to a given DLTL formula [23] to the “on-the-fly” construction of the
product Büchi automaton, and we show how this construction can be used to build a
(k,l)-loop corresponding to a run of this automaton.

In this constructionwe assume that, as in [23], until formulas are indexedwith (non
deterministic) finite automata rather than regular expressions, i.e., we have αUA(q)β in-
stead of αUπβ, whereL(A(q)) = [[π]]. We denote withA(q) a finite automatonAwith
initial state q and transition relation δ. For instance, we introduce an automaton A(q0)
equivalent to the regular program sense; (deliver(a) + deliver(b) + wait); begin, as
follows:A has states {q0, q1, q2, q3}, initial state q0, final state q3 and transition function
{q1} = δ(q0, sense), {q2} = δ(q0, deliver(a)) = δ(q0, deliver(b)) = δ(q0, wait),
{q3} = δ(q2, begin).

The following equivalences hold for the until operator [31]:

αUA(q)β ≡ (β ∨ (α ∧
∨

a∈Σ⟨a⟩
∨

q′∈δ(q,a) αU
A(q′)β)) (q is a final state of A)

αUA(q)β ≡ (α ∧
∨

a∈Σ⟨a⟩
∨

q′∈δ(q,a) αU
A(q′)β) (q is not a final state of A)

The construction of the nodesmakes use of tableau rules which handle DLTL signed
formulas, i.e. formulas prefixed with the symbol T or F. These rules are used for ex-
panding a set of formulas1 with the following notation and meaning:

– φ⇒ ψ1,ψ2, if φ belongs to the set of formulas, then add ψ1 and ψ2 to the set;
– φ ⇒ ψ1|ψ2, if φ belongs to the set of formulas, then make two copies of the set
and add ψ1 to one of them and ψ2 to the other one.

The rules are the following:

Tor: T(α ∨ β)⇒ Tα|Tβ
For: F(α ∨ β)⇒ Fα,Fβ
Tneg: T¬α⇒ Fα
Fneg: F¬α⇒ Tα
TuntilFS: TαUA(q)β ⇒ T(β ∨ (α ∧

∨
a∈Σ⟨a⟩

∨
q′∈δ(q,a) αU

A(q′)β)) (q final state)
TuntilNFS: TαUA(q)β ⇒ T(α ∧

∨
a∈Σ⟨a⟩

∨
q′∈δ(q,a) αU

A(q′)β) (q non-final state)
FuntilFS: FαUA(q)β ⇒ F(β ∨ (α ∧

∨
a∈Σ⟨a⟩

∨
q′∈δ(q,a) αU

A(q′)β)) (q final state)
FuntilNFS: FαUA(q)β ⇒ F(α ∧

∨
a∈Σ⟨a⟩

∨
q′∈δ(q,a) αU

A(q′)β) (q non-final state)
We use a function tableau which takes as input a set of formulas s, adds to it

T
∨

a∈Σ⟨a⟩⊤, and returns a (possibly empty) set of sets of formulas, obtained by repeat-
edly applying the above rules (by possibly creating new sets) until all non-elementary
formulas in all sets have been expanded. We call elementary formulas the formulas
of the form Tφ or Fφ where φ is either ⊤, or ⊥, or a proposition or ⟨a⟩α. Formula
T

∨
a∈Σ⟨a⟩⊤ makes explicit that in DLTL each state must be followed by a next state.

1 In this section “formula” means “signed DLTL formula”.

If the expansion of a set of formulas produces an inconsistent set, then this set is
deleted. A set of formulas s is inconsistent in the following cases: (i) T⊥ ∈ s; (ii)
F⊤ ∈ s; (iii) Tα ∈ s and Fα ∈ s; (iv) T⟨a⟩α ∈ s and T⟨b⟩β ∈ s with a ̸= b, because
in a linear time logic two different actions cannot be executed in the same state.

Given a DLTL formula α, the procedure in [23] builds a Büchi automaton Bα by as-
sociating with each state of the automaton a triple (F , x, f), whereF is an expanded set
of formulas, x ∈ {0, 1} and f ∈ {↓, !} are used to track fulfillment of until formulas,
as we will describe below.

Here instead we assume to be given a transition system TS for a domain description
Π , and a DLTL formula α describing constraints and the negation of the property to be
proved.We want to extend the construction in [23] to obtain a product automaton whose
states combine the states of Bα with those of the transition system TS. Thus each state s
of the product automaton will be a tuple (F , w, x, f), whereF , x, f are as above, while
w is a state of the transition system whose literals are represented as signed formulas
(namely, p is represented with Tp and ¬p is represented with Fp), with the constraint
that F ∪w is consistent.

The initial states have the form (F0, w0, 0, !), where F0 is a set of formulas ob-
tained by applying function tableau to α, and w0 is an initial state of TS, such that
F0 ∪ w0 is consistent.

To define the transitions of the product automatonwe use the functionsnextTSstates(w, a),
which returns the set of the states of the transition system TS reached with a transi-
tion a from state w, and nextF(F , a), defined in Figure 1, which returns a set of set
of formulas obtained by propagating the formulas in F through action a. This func-
tion first checks whether it is possible to execute action a from F , then propagates
elementary temporal formulas through a and expands them with tableau. Function
next states(s, a), in Figure 2, returns the set of successor states of s after a.

function nextF(F , a)
if F does not contain a formula T⟨a⟩⊤ then return ∅
else return tableau({Tα|T⟨a⟩α ∈ F} ∪ {Fα|F⟨a⟩α ∈ F})

Fig. 1. Function nextF

function next states((F ,w, x, f), a)
return {(F ′, w′, x′, f ′) such that

F ′ ∈ nextF(F , a), w′ ∈ nextTSstates(w,a), F ′ ∪ w′ is consistent,
if there exist no T⟨a⟩αUA(q)

x β ∈ F then x′ = 1 − x; f ′ = !

else x′ = x; f ′ =↓ }

Fig. 2. Function next states

The fields x and f are used to characterize accepting states of the product automa-
ton, and are used to check that all until formulas are fulfilled in a finite number of steps.

If a state si of an accepting run ρ contains the until formula TαUA(q)β, then there
must be a state sj , i ≤ j in ρ satisfying the conditions given by the semantics of un-
til. We say that sj fulfills the until formula. If si does not fulfill the until formula,
then it is possible to show that, according to the axioms of until, si contains a formula
T⟨ai⟩αUA(q′)β, where q′ ∈ δ(q, ai) and, according to function nextF(Fi, ai), si+1

contains a formula TαUA(q′)β. We say that this until formula is derived from formula
TαUA(q)β in state si. If a state contains an until formula which is not derived from
a predecessor state, we say that the formula is new. New until formulas are obtained
during the expansion of tableau.

In order to check fulfillment of until formulas, we must be able to track them along
the states of the run. This is done using the field x and by extending accordingly signed
formulas so that all true until formulas have a label 0 or 1, i.e. they have the form
TαUA(q)

l β where l ∈ {0, 1}. For each state (F , w, x, f), the label of an until formula
in F is assigned as follows: if it is a derived until formula, then its label is the same
as that of the until formula in the predecessor state it derives from, otherwise, if the
formula is new, it is given the label 1− x.

Let us assume that in a state si we have x = 0. Then all new until formulas of si

have label 1, and all until formulas with label 0 must be derived from previous states.
If si belongs to an accepting run, all until formulas will be fulfilled in a finite number
of steps. The value 0 of x is propagated to the next states until a state sj does not
contain any more until formulas with label 0. Then x is switched to 1, and we proceed
in the same way. Whenever x changes its value, we set f = !. A state with f = !

is an accepting state of the product automaton, and a run ρ containing infinitely many
accepting states is an accepting run. It is possible to prove that:

Proposition 3. (a) Any accepting run of the product automaton corresponds to an infi-
nite path of the transition system satisfying the initial DLTL formulaα; (b) every infinite
path of the transition system which is a model of α corresponds to an accepting run of
the product automaton.

The proof is based on the following theorems proved in [23], dealing with the Büchi
automaton Bα constructed for the formula α.
Theorem 3 in [23]. Let M = (σ, V) and M, ε |= α. Then σ ∈ L(Bα).
Given a temporal modelM of α, Theorem 3 states that there exists an accepting run ρ
of Bα over σ, where Bα is the Büchi automaton associated with α. In particular, ρ is a
sequence of nodes of the form ρ(τ) = (Fτ , xτ , fτ), analogous to states of the product
automaton, but without the second componentw. By construction of ρ, (and by Lemma
2 in [23]), for each prefix τ of σ, the formulas in Fτ are satisfied inM at τ .
Theorem 4 in [23]. Let σ ∈ L(Bα). There is a modelM = (σ, V) such thatM, ε |= α.
In fact, given an accepting run of Bα over σ, a temporal modelM = (σ, V) of α can be
defined in such a way that: if Tp ∈ Fτ , then p ∈ V (τ) and, if Fp ∈ Fτ , then p ̸∈ V (τ).
For those propositions p such that neither Tp ∈ Fτ , nor Fp ∈ Fτ , V can assign an
arbitrary value to p in τ .

Proof of Proposition 3. (a) By construction, any accepting run ρ of the product automa-
ton is both a path of the transition system and an accepting run of Bα. According to
Theorem 4 in [23], for each accepting run ρ of Bα over σ there is a model (σ, V) of
α. As, for any prefix τ of σ, the propositions (fluents) which do not appear in F can
be assigned an arbitrary value in V (τ), we choose for them the valuation given by the
w component of the state (note that, by construction, F and w are consistent and w is
complete). Thus the infinite path ρ of the transition system is a model of α.

(b) Let ρ over σ be the infinite path of TS, which defines a model M = (σ, V) of α
where V (τ) is the set of propositions true in the state wτ obtained after τ in ρ. Then,
by Theorem 3 in [23], Bα has an accepting run ρ′ over σ, such that for each prefix τ of
σ, the formulas in Fτ are satisfied inM at τ . So, in particular, they are consistent with
wτ and, thus, we can merge ρ and ρ′ by obtaining a run of the product automaton. ✷

functionBMC()
k := 0

do paths := {s0
a0→ s1

a1→ . . . sk+1 such that sj ̸= sm for 0 ≤ j < m ≤ k}
if paths = ∅ then return failure

path := choose in {s0
a0→ s1

a1→ . . . sk+1 such that
s0

a0→ s1
a1→ . . . sk+1 ∈ paths, sl = sk+1 for some l ≤ k,

sacc is an accepting state for some l ≤ acc ≤ k}
k := k + 1

while path = null

return path

Fig. 3. Function BMC

The construction of the (k,l)-loop is described by the function BMC in Figure 3.
The construct choose in S returns any of the elements of set S or null if S = ∅. With
s0

a0→ s1
a1→ . . . si we represent a finite path of the product automaton, where s0 is an

initial state and si ∈ next states(si−1, ai−1).
BMC executes a loop by incrementing k at each step. It first checks if there is a

simple path, i.e., a path of the product automaton without repeated states, of length
k. If there is no such path, BMC terminates with failure, because there cannot be a
longer simple path. Otherwise it looks for a (k,l)-loop, that is a path of length k + 1
such that sk+1 = sl for some previous state sl in the path. Furthermore the loop must
contain an accepting state. If such a loop is found, it finitely represents an accepting
run. Otherwise, k is increased. This algorithm always terminates because the maximal
length of the simple paths of the Büchi automaton is finite, and thus BMC returns either
a (k,l)-loop if there is one, or failure if it reaches the maximal length without finding
a loop. In case of failure, the following property, analogous to Theorem 1 in [10] (as
regards the first completeness threshold there), guarantees that the product automaton
has no accepting run and hence, by Proposition 3, that there is no path in the transition
system satisfying the formula.
Property. Given a Büchi automaton B, L(B) is nonempty iff there is a simple path
s0, . . . , sk with a back arc (sk, sl) such that path sl, . . . , sk contains an accepting state.

The proof is analogous to part (b) of the proof of Theorem 1 in [10]. In fact, from
a counterexample having the form of a non-simple path s0, . . . , sk with a back arc
(sk, sl), one with a simple path can be obtained with the (possibly repeated) applica-
tion of the same transformations in that proof. Observe that in the standard approach
for BMC in [7] the path of length k is a path of the transition system and the search
cannot be restricted to simple paths without missing solutions. [7] defines techniques
for achieving completeness for unnested properties.

The set of tableau rules can be easily extended to deal with other boolean connec-
tives and derived modal operators. In the following, we use tableau rules for ✷ and ✸,

using the equivalences ✷β ≡ (β ∧⃝✷β)) and ✸β ≡ (β ∨⃝✸β)). Observe that, as
false box formulae correspond to negated until formulas, we need to label them with x.

Example 2. Consider the domain description given in Example 1 with the constraints
and the property given in Section 3.2. We describe some steps of the (non determin-
istic) construction of a (k,l)-loop for k = 7. For the initial state s0 we have w0 =
{Tmail(a),Fmail(b)}, x0 = 0, f0 = !. F0 contains the following formulas:

F0.1 : T⟨begin⟩⊤
F0.2 : T✷[begin]⟨A(q0)⟩⊤
F0.3 : F✷1(mail(a) ⊃ ✸¬mail(a))
F0.4 : T[begin]⟨A(q0)⟩⊤− from F0.2
F0.5 : T⃝ ✷[begin]⟨A(q0)⟩⊤ from F0.2
F0.6 : F⃝ ✷1(mail(a) ⊃ ✸¬mail(a)) from F0.3

The first two formulas are the two constraints, where A(q0) is the automaton equiva-
lent to the regular program sense; (deliver(a)+deliver(b)+wait); begin introduced
above. The third formula is the property with the F label. Note that the ✷ operator has
label 1 since x0 = 0. All other formulas are obtained by applying the tableau rules2.

Since F0 contains the formula T⟨begin⟩⊤, we can only execute action begin in s0.
In s1 we have w1 = {Tmail(a),Fmail(b)}, from the domain description, and x1 = 1,
f0 = !. x1 changes its value from the previous state, because there are no formulas
in s0 with label 0. F1 is obtained by propagating the “next” formulas in F0 and by
applying tableau to them:

F1.1 : T⟨A(q0)⟩0⊤ from F0.4
F1.2 : T✷[begin]⟨A(q0)⟩⊤ from F0.5
F1.3 : F✷1(mail(a) ⊃ ✸¬mail(a)) from F0.6
F1.4 : T⟨sense⟩⟨A(q1)⟩0⊤ from F1.1
F1.5 : T[begin]⟨A(q0)⟩⊤ from F1.2
F1.6 : T⃝ ✷[begin]⟨A(q0)⟩⊤ from F1.2
F1.7 : F(mail(a) ⊃ ✸¬mail(a)) from F1.3
F1.8 : F¬mail(a)) from F1.7
F1.9 : F✸¬mail(a)) from F1.7
F1.10 : F⃝✸¬mail(a)) from F1.9

Because of F1.4 the next action will be sense. This action is non deterministic, and we
choose w2 = {Tmail(a),Tmail(b)}. By continuing with the construction, we can get
the following path (we omit the value of the Fi’s in the states):
(F0, {Tmail(a),Fmail(b)}, 0, !)

begin
→ (F1, {Tmail(a),Fmail(b)}, 1, !)

sense
→

(F2, {Tmail(a),Tmail(b)}, 0, !)
deliver(b)
→ (F3, {Tmail(a),Fmail(b)}, 0, ↓)

begin
→

(F4, {Tmail(a),Fmail(b)}, 0, ↓)
sense
→ (F5, {Tmail(a),Tmail(b)}, 1, !)

deliver(b)
→

(F6, {Tmail(a),Fmail(b)}, 1, ↓)
begin
→ (F7, {Tmail(a),Fmail(b)}, 1, ↓)

sense
→

(F8, {Tmail(a),Tmail(b)}, 0, !)
Since F8 = F2 , the two states n8 and n2 are equal. Thus we have an arc back from
s7 to s2, and the path from s2 to s7 contains an accepting state. The path represents a
counterexample to the property we wanted to prove.
2 We consider only the most significant formulas.

Let us modify the domain description by adding a fluent pr(E) which associates a
priority to the mailboxes. We can add the following rules:

[deliver(E)]¬pr(E)
[deliver(E)]pr(E′)← E ̸= E′, mail(E′)
[deliver(E)] ⊥← ¬pr(E), pr(E′), E ̸= E′

Init ¬pr(a) and Init ¬pr(b).
By executing functionBMC, we obtain failure after 15 steps. Therefore the property
✷(mail(a) ⊃ ✸¬mail(a)) holds in the modified domain description.

5 An ASP Encoding of BMC

We now provide a translation into ASP of the above procedure for building a path
of the product Büchi automaton. We use predicates like fluent, action, state to
express the type of atoms. As we are interested in infinite runs represented as (k,l)-loops,
we assume a bound k (a constant) to the number of states. States are represented in ASP
as integers from 0 to k. The predicate occurs(Action,State) describes transitions.

To encode disjunction we use “choice constructs” provided by clingo [16] and other
ASP solvers. Thus we encode a disjunction a ∨ b ∨ c with 1{a,b,c}, meaning: choose
a subset of {a, b, c} of cardinality at least one.

Occurrence of exactly one action per state is encoded as follows, where “:action(A)”
constrains A to be an action, and 1{}1 constrains cardinality to 1:

1{occurs(A,S) : action(A)}1 :- state(S).

As we have seen, states are associated with a set of fluent literals, a set of signed
formulas, and the values of x and f . Fluent literals are represented with the pred-
icate holds(Fluent,State) or -holds(Fluent,State), T or F formulas with
tt(Formula,State) or ff(Formula, State), xwith the predicate x(Val,State)
and f with the predicate acc(State), which is true if State is an accepting state.

States on the path must be all different, and thus we need to define a predicate
eq(S1,S2) to check whether the two states S1 and S2 are equal:
eq(S1,S2):- state(S1), state(S2),not diff(S1,S2).

diff(S1,S2):- state(S1),state(S2),tt(F,S1),not tt(F,S2).

diff(S1,S2):- state(S1),state(S2),holds(F,S1),not holds(F,S2).

and similarly for all the other components of a state.
The following constraint requires all states up to k to be different:

:-state(S1),state(S2),S1!=S2,eq(S1,S2),S1<=k,S2<=k.

Furthermore we need constraints stating that there is a transition from state k to a
previous state L, and that there is a state S, L ≤ S ≤ k, such that acc(S) holds, i.e. S
is an accepting state. To do this we compute the successor of state k, and check that it
is equal to L3.
1{loop(L) : state(L) : L<=k}1.

:- state(L), loop(L), not eq(L,k+1).

accept:- loop(L), L<=S, S<=k, acc(S).

:- not accept.

3 Since states are all different, there will be at most one state equal to the successor of k.

Given a domain descriptionΠ and ϕ1, . . .ϕn, representing DLTL constraints or the
negated property, we want to compute the temporal answer sets of the domain descrip-
tionΠ satisfying the temporal formulas, if any. The rules in Π can be easily translated
to ASP, similarly to [18]. In the following we provide the translation of our running
example, see [26] for details.
action(sense). action(wait).

action(deliver(a)). action(deliver(b)).

fluent(mail(a)). fluent(mail(b)).

action effects:
holds(mail(E),NS):- occurs(sense,S), fluent(mail(E)),NS=S+1,

not -holds(mail(E),NS).

-holds(mail(E),NS):-occurs(deliver(E),S),fluent(mail(E)),NS=S+1.

persistence:
holds(F,NS):- holds(F,S), fluent(F),NS=S+1,not -holds(F,NS).

-holds(F,NS):- -holds(F,S),fluent(F),NS=S+1,not holds(F,NS).

preconditions:
:- occurs(deliver(E),S),-holds(mail(E),S).

:- occurs(wait,S), holds(mail(E),S).

initial state:
-holds(mail(a),0). -holds(mail(b),0).

DLTL formulas are represented as ASP terms. In the encoding, each formula αUA(q)β
is represented as until(A,q,alpha,beta), where the automaton A is described by
the predicates trans(A,Q1,Act,Q2) defining transitions, and final(A,Q) defining
final states. Predicate x(L,S) gives the value L = 0, 1 of x in state S. We introduce the
terms until(A,q,alpha,beta,L) and diamond(Act,alpha) for encoding labeled
until formulas and ⟨a⟩α formulas. The expansion of signed formulas can be formulated
by means of ASP rules corresponding to the tableau rules given in the previous section.
Disjunction:

1{tt(F1,S),tt(F2,S)}:- tt(or(F1,F2),S).

ff(F1,S):- ff(or(F1,F2),S).

ff(F2,S):- ff(or(F1,F2),S).

Negation:
ff(F,S):- tt(neg(F),S).

tt(F,S):- ff(neg(F),S).

Until:
tt(until(Aut,Q,F1,F2,1-Lab),S):-

tt(until(Aut,Q,F1,F2),S),x(Lab,S), state(S).

tt(or(F2,and(F1,cont until(Aut,Q,F1,F2,Lab))),S):-

tt(until(Aut,Q,F1,F2,Lab),S), state(S), final(Aut,Q).

tt(and(F1,cont until(Aut,Q,F1,F2,Lab)),S):-

tt(until(Aut,Q,F1,F2,Lab),S), state(S), not final(Aut,Q).

ff(or(F2,and(F1,cont until(Aut,Q,F1,F2))),S):-

ff(until(Aut,Q,F1,F2),S), state(S), final(Aut,Q).

ff(and(F1,cont until(Aut,Q,F1,F2)),S):-

ff(until(Aut,Q,F1,F2),S), state(S), not final(Aut,Q).

where cont until(Aut,Q,F1,F2) represents the nested disjunction contained in the
equivalences for until formulas given in Section 4. Thus it can be expanded as:
1{tt(diamond(A,until(Aut,Q1,F1,F2,Lab)),S) : trans(Aut,Q,A,Q1)}:-

tt(cont until(Aut,Q,F1,F2,Lab),S).

ff(diamond(A,until(Aut,QN,F1,F2)),S):-

ff(cont until(Aut,Q,F1,F2),S), trans(Aut,Q,A,QN).

Diamond
occurs(Act,S):- tt(diamond(Act,F),S).

tt(F,NS):- tt(diamond(Act,F),S), NS=S+1.

ff(F,NS):- ff(diamond(Act,F),S),occurs(Act,S), NS=S+1.

Inconsistency of signed formulas is formulated with the following constraints:
:- ff(true,S), state(S).

:- tt(F,S), ff(F,S), state(S).

:- tt(F,S), not holds(F,S).

:- ff(F,S), not -holds(F,S).

As a difference with the tableau construction, rather than introducing the translation
of formula T

∨
a∈Σ⟨a⟩⊤ in the initial state, we include the rule

tt(diamond(A,true),S):- occurs(A,S).

as we know that at least one action (and at most one) occurs in a state.
Predicates x and acc are defined as follows:

cont(S):-state(S),x(Lab,S),tt(diamond(,until(, , ,Lab)),S).

x(Lab,SN):- x(Lab,S),SN=S+1, cont(S).

-acc(SN):- x(Lab,S),SN=S+1, cont(S).

x(1-Lab,SN):- x(Lab,S),SN=S+1, not cont(S).

acc(SN):- x(Lab,S),SN=S+1, not cont(S).

x(0,0). acc(0).

Finally, we must add a fact tt(tr(ϕi),0) for each DLTL formula ϕi to be satisfied
in the model, where tr(ϕi) is the ASP term representing ϕi. It is easy to see that:

Proposition 4. The size of grounding of the ASP encoding is O((|f | + |φ|3)× k2).

Observe that the number of ground instances of predicate holds is O(|f |× k) and that
the number of ground instances of predicates eq and diff is O(k2). The derived until
of a formula αUA(q)β are at most |Σ|× |A(q)|. Hence, the number of the subformulas
of the initial formula φ is overapproximated by |φ|3 and the number of the ground
instances of predicates tt, ff is O(|φ|3 × k). Thus, the number of ground rules in the
encoding is O((|f | + |φ|3)× k2) for DLTL (but O((|f | + |φ|) × k2)) for LTL.

We can prove that there is a one to one correspondence between the temporal answer
sets of a domain description satisfying a given temporal formula and the answer sets of
the ASP program encoding the domain and the formula.

Theorem 1. Let Π be a domain description whose temporal answer sets are total and
let φ be a DLTL formula. If there is a temporal answer set ofΠ that satisfies the formula
φ, then there exists, for some k, an answer set of the ASP program tr(Π)∪ tt(tr(φ), 0)
(where tr(Π) is the ASP encoding of Π and tr(φ) is the ASP term representing φ) ;
and vice-versa.

Proof sketch. For the first part, let (σ, S) be a temporal answer set of Π satisfying
φ. By Proposition 1, it corresponds to a run in the transition system satisfying φ. By
Proposition 3, there is an accepting run of the product automaton of BTS and Bφ. Then,
in the product automaton there must be an accepting run which is a (k,l)-loop and is
computed by the function BMC. We can show that from any (k,l)- loop computed by
function BMC, we can construct an answer set of the ASP program tr(Π)∪tt(tr(φ), 0).
Indeed, any (k,l)-loop computed by function BMC corresponds, by Proposition 3, to a
run in the transition system satisfying φ and, hence (by Proposition 1) to a temporal
answer set (σ′, S′) ofΠ satisfying φ, where the sequence σ′ can be finitely represented
as a (k,l)- loop. By a proof similar to the one of Theorem 1 in [26] we can construct
a corresponding answer set of the ASP program tr(Π). It is possible to see that this
answer set can be extended to an answer set of tr(Π)∪tt(tr(φ), 0) proving that the ASP
encoding of the tableau rules mimics the tableau construction. For the other direction,
we can show that, given an answer set of the ASP program tr(Π)∪tt(tr(φ), 0), we can
construct a (k,l)-loop which is non-deterministically computed by function BMC (and
is an accepting run of the product automaton). By Proposition 3, it corresponds to an
infinite path of the transition system satisfying the formula φ and, by Proposition 1 it
corresponds to a temporal answer set ofΠ satisfying φ. ✷

According to the construction of the product automaton described in this paper, each
state in the path depends only on the previous state. This suggests that the performance
of the ASP solver might be improved using an incremental ASP solver. In particular
we used iClingo [17]. The rules in an iClingo program are divided into three parts:
#base contains all static rules, #cumulative k contains all rules which depend on k
and which will be accumulated over a whole incremental computation, #volatile k
whose rules hold only in step k and are dismissed in the next step. In our case, the
cumulative part contains all the rules which define the structure of a state, the next
action and equality of states. The volatile part contains the rule which define a loop
and the presence of an accepting state within the loop (the rule for predicates loop and
accept). For achieving completeness, we must first search for the longest simple path
and then use it as an upper bound in the search for a counterexample. The search for the
longest simple path can be done removing from the iClingo encoding the volatile part
and stopping the computation as soon as an unsatisfiable stepmax is found (there is no
simple path of lengthmax).

Problem Tableau-BMC BMC Problem Tableau-BMC BMC
DP(6) 0.11 0.18 MAIL(5) 0.13 0.03
DP(8) 0.78 0.59 MAIL(10) 3.52 10.23
DP(10) 9.89 3.68 MAIL(15) 28.15 timeout
DP(12) 146.51 33.01 MAIL(20) 183.11 timeout

Table 1. Results, compared with the method in [26]

Table 1 provides some results to compare this approach with the method (“BMC”)
which does not use Büchi automata in [26], in particular, with a Clingo implementation
of that method where the solver is invoked with increasing values of k until a model is
found. “BMC” is implemented in Clingo, because in the standard formulation of BMC,

the truth value of a temporal formula in a state depends on the next state, and therefore
the ASP rules defining the formulas cannot be put in the cumulative part of iClingo.
The table provides running times in seconds, or “timeout” for more than 1 hour, on a
machine with Intel Xeon E5520 processors (2.26Ghz) and 32 GB RAM, for finding a
model for two classes of problems: DP(n), the dining philosophers problems in [30]
and appendix C of [26], and MAIL(n), on the domain used as a running example in this
paper, with n mailboxes, where a model is searched for the formula:
✸(

∧n
i=1 mail(i)∧✸(⟨deliver(1)⟩⊤∧✸(⟨deliver(2)⟩⊤∧. . .∧✸⟨deliver(n)⟩⊤) . . .))
For DP(n), the scalability of the two approaches is similar. ForMAIL(n), the method

in this paper is superior; in particular, the weakness of “BMC” is in detecting that there
is no model for values of k smaller than the one for which there is a model.

The search for the longest path is practically feasible only for problems where the
action domain is sufficiently constrained. In a variation of the MAIL(n) problems, with
the original property to be verified (✷(mail(1) ⊃ ✸¬mail(1))), which holds due to
causal rules which impose to serve the full mailboxes in round robin (so that the next
mailbox to serve is uniquely defined, in a more general way wrt the case of 2 mailboxes
in Section 4), such a search is feasible up to n = 6 (162.31 seconds).

6 Reasoning about epistemic knowledge and incomplete states

As we have seen in the previous sections, our approach to action theories verification
is defined for domain descriptions which have total temporal answer sets. This is due
to the fact that total temporal answer sets correspond to temporal models (in a two
valued temporal logic), and we can verify the satisfiability of temporal formulas over
such models. In many situations, however, we may be interested in reasoning about
incomplete states, i.e., states in which some fluent is known to be true, some fluent
is known to be false, while other fluents are unknown. Answer sets allow a natural
representation of incomplete states by partial interpretations. For a proposition p, three
cases can be distinguished: either p belongs to the answer set or ¬p belongs to the
answer set or neither p nor ¬p belong to the answer set.

However, shifting to partial temporal answer sets would produce a mismatch be-
tween the three-valued temporal action logic and the two-valued temporal semantics
which is used for verification. To avoid this mismatch, we introduce an epistemic op-
erator in the language to represent epistemic knowledge (and, in particular, epistemic
fluent literals) and its dynamic, allowing for actions with knowledge producing and
knowledge reducing effects. This approach has the advantage that the ASP encoding
of bounded model checking developed in the paper can be exploited as it is, to reason
about epistemic states.

The approach we propose is related to Demolombe and Pozos Parra’s [14] approach
in the situation calculus, to Baral and Son’s 0-approximation [5], to the treatment of
epistemic fluents in the language Dylog [4], as well as to the treatment of incomplete
states in the planning literature [33, 32].

To represent an incomplete state in a concise way, we introduce epistemic fluent
literals of the formKl and ¬Kl, whereK is an epistemic modality and l a simple fluent
literal. Kl means that l is known to be true. We assume K to be a normal modality,

with a serial accessibility relation (i.e., modal axioms K and D hold for K). Positive
and negative introspection axioms do not hold for K. Indeed, following the solution
proposed in [4, 22], we restrict epistemic modalities to occur only in front of literals. In
particular, there are no nested epistemic modalities nor can they be applied to a boolean
combination of literals (in particular,K(l1∨ l2) is not allowed in epistemic states). With
these restrictions, positive and negative introspection axioms are clearly useless and the
addition of the epistemic operator only doubles the number of fluents in the domain
description with respect to the non-epistemic case.

An epistemic state (or, simply, a state) is defined as a set of ground epistemic literals.
It is said to be consistent if, for all simple fluent literals l, it is neither the case that both
Kl and ¬Kl belong to the state, nor that both Kl and K¬l belong to the state, nor that
⊥ belongs to the state. We say that an epistemic state is (epistemically) complete if, for
each ground fluent literal l, eitherKl or ¬Kl belongs to the state. A consistent epistemic
state provides a three-valued interpretation of fluents in which a fluent p is true when
Kp holds, is false when K¬p holds, and undefined otherwise.

An epistemic domain description is a set of epistemic rules of the form:

t0 ← t1, . . . , tm, not tm+1, . . . , not tn (6)

where the ti’s are either epistemic fluent literals or temporal-epistemic fluent literals,
i.e., literals of the form [a]t and⃝t, with t an epistemic fluent literal. Rule (6) is subject
to restrictions (i)-(iii) as rule (1) in Section 3 (where “simple literals” are replaced by
“epistemic literals”).

The notion of temporal answer set is suitably extended to define temporal epistemic
answer sets, where each action sequence a1, . . . , ak is associated with an epistemic state
w

(σ,S)
K: a1...ak

= {t : [a1; . . . ; ak]t ∈ S and t is an epistemic literal}. The execution of the
actions makes the epistemic state evolve, producing a revision of knowledge. Observe
that rules of the form (6) are well suited for modeling the epistemic effect of actions,
including knowledge producing actions and knowledge losing actions. Consider, for
instance, the rules

[drop]Kbroken ← Kfragile
[drop]¬K¬broken ← ¬K¬fragile
[drop]¬K¬broken ← Kweakly fragile
[sense b]Kbroken← not [sense b]K¬broken
[sense b]K¬broken← not [sense b]Kbroken

meaning that: if the object is known to be fragile, then it is known to be broken after
dropping it; if the object may be fragile, then it may be broken after dropping it; if the
object is known to be weakly fragile, then it may be broken after dropping it; the action
of sensing causes to knowwhether the object is broken or not. Notice that, in the second
and third rules, the action drop may cause a loss of information (when executed in a
state in which K¬broken holds), while the action sense b has the effect of acquiring
information. This shows that the epistemic language allows for a richer representation
of actions that, at the object level (with two valued interpretations) is not possible.

To guarantee that Kf and K¬f cannot both hold in an epistemic state (as required
by seriality), the two causal laws ¬Kf ← K¬f and ¬K¬f ← Kf are introduced,

for each fluent f . Persistence is applied to epistemic literals Kl and ¬Kl (for each l)
and makes an epistemic state evolve into a new one. For instance, ⃝K broken ←
K broken∧not ⃝¬K broken and⃝¬K broken← ¬K broken∧not ⃝K broken
model the persistence of the epistemic literals K broken and ¬Kbroken; similar per-
sistence laws apply to the epistemic fluent K¬broken.

To verify temporal properties of epistemic domain descriptions we extend DLTL
formulas as well, to include epistemic fluent literals. Essentially, the epistemic atomsKl
play the role of atomic propositions in DLTL formulas. In particular, we assume that in
an epistemic DLTL formula all simple fluent literals must occur within the scope of the
epistemic operator K and that epistemic operators K can only occur in front of simple
fluent literals. Although we could define a decidable epistemic extension of DLTL,
extending its language with a normal and serial modality K and providing a suitable
Kripke semantics for the epistemic and temporal modalities, the strong restrictions we
pose on the occurrence of epistemic modalities in the formulas make this extension
useless for the definition and verification of our action theory: we can simply regard
the epistemic formulas Kl as being new fluent names, with the seriality requirement
encoded by the laws introduced above4.

The verification of a temporal formula containing epistemic fluents over a temporal
epistemic answer set requires, as in the non-epistemic case, that the temporal answer
set is total, that is, it is a sequence of consistent and complete epistemic states. In par-
ticular, rules of the form ¬Kl ← not Kl are introduced for each epistemic atom Kl
to get complete epistemic initial states: if Kl does not hold in the initial state, ¬Kl is
assumed to hold. Observe that, as for the non-epistemic case, when the above rules for
completing the initial state are present in the domain description and all the epistemic
fluents are persistent, one can guarantee that the temporal epistemic answer sets of the
domain description are total.

Each total temporal epistemic answer set (σ, S) can be seen as corresponding to
a branch in a temporal epistemic model which satisfies the formulas in S (a similar
correspondence is stated for temporal deontic models in Proposition 2 of [25]). The
evaluation of temporal epistemic properties of the domain description can then be done
over the temporal epistemic models corresponding to the answer sets of the domain
description. In practice, however, given the restriction on the occurrence of the epis-
temic operator in the language, the verification of a temporal epistemic formula over an
epistemic domain description can be reduced to an object-level verification once all the
epistemic literals Kp and K¬p are regarded as object-level literals.

As an example of epistemic domain description, let us consider the “bomb in the
toilet” problem [15]:

Example 3. We have been alarmed that there is a bomb (exactly one) in a lavatory.
There are suspicious packages which could contain the bomb. There is one toilet bowl,
and it is possible to dunk a package into it. If the dunked package contains the bomb,
4 A deontic extension of DLTL for reasoning about obligations has been introduced in [25] to
model obligations with deadlines. While in [25] temporal formulas are allowed to occur inside
the scope of deontic modalities, here we do not allow temporal formulas to occur within the
scope of epistemic operators: the consistency of an epistemic state can be easily be enforced
through constraints.

the bomb is disarmed. Here, we consider the variant with uncertain clogging (example
BTUC(p) in [15]): the toilet may be clogged or not after having dunked a package in it.
The toilet can be unclogged by flushing it.

We consider the fluent names armed(P) and clogged and the action names dunk(P)
and flush. The domain descriptionΠK contains the following laws:
[dunk(P)]¬Kclogged [dunk(P)]K¬armed(P)
[dunk(P)]¬K¬clogged [dunk(P)]⊥ ← ¬K¬clogged
[flush]K¬clogged

A package P is known to be non-armed after dunking it, while clogged becomes un-
known; P cannot be dunked if the toilet is not known to be unclogged. After flushing,
the toilet is known to be unclogged. Persistence laws are introduced for all epistemic
fluents Kclogged,K¬clogged,Karmed(P),K¬armed(P) and their negations, as de-
scribed above. The initial state is specified as { K¬clogged}, and the rules for complet-
ing the initial state add to it the epistemic literals ¬K armed(p) and ¬K¬armed(p),
for all packages p.

Given the specification above, we may want to check, for example, the validity of
the following formulas: (F1) ✷(K¬armed(1)→ ✷K¬armed(1)), i.e., when in a state
package 1 is known to be disarmed, it is also known to be disarmed for all later states;
(F2) ¬✸(Kclogged ∧ ⟨dunk(1)⟩⊤), i.e., there is no reachable state in which the toilet
is clogged and package 1 is dunked. Table 2 reports, in columnΠK, the running times
in seconds for verifying F1 and F2 for different values of n, the number of packages in
ΠK. Both the time to compute the upper bound (longest path length) and the time for
verification, given the bound, are reported.

Problem Π ΠK ΠK
1

t bound t verif t bound t verif t bound t verif
F1, n=3 16.75 12.19 2.30 2.40 0.19 0.21
F1, n=4 262.17 103.85 15.58 6.25 0.72 0.55
F1, n=5 timeout - 366.19 30.38 4.44 1.65
F2, n=3 1.05 0.28 0.29 0.29 0.05 0.05
F2, n=4 10.50 10.82 1.91 0.81 0.12 0.13
F2, n=5 134.53 134.27 13.48 3.59 0.39 0.28
F2, n=6 timeout - 192.80 5.78 5.43 0.57

Table 2.

We also consider an enriched domain description ΠK
1 with the following addi-

tional preconditions that avoid useless actions: [dunk(P)]⊥ ← K ¬armed(P), and
[flush]⊥ ← K ¬clogged. Table 2 also reports the execution times for the verification
of F1 and F2 in ΠK

1 , showing significant savings.
In our experimentswe also considered an object-level specificationΠ of the first do-

main description ΠK, in which action dunk(P) non-deterministically causes clogged
or ¬clogged and all the possible completions of the initial state are considered (each
package may be either armed or not in the initial state). The formulas to be verified
are obtained by removing epistemic operators from F1 and F2. We can see that the
epistemic version is substantially faster (“timeout” means > 1000).

The main difference between our formalization and the one in [15] is that the lan-
guage K does not introduce explicit epistemic constructs: it simply represents the fact
that “p is known” by p, the fact that “¬p is known” by ¬p, and the fact that “p is un-
known” by the absence of both p and ¬p in the state. Hence, as observed in [15], K
has no specific constructs to express directly the effect of some fluent being unknown.
To represent the fact that clogged is unknown after executing dunk(P), clogged and
¬clogged are considered to be inertial only for actions different from dunk(P). Of
course, the solution in [15] is more concise as it avoids the introduction of negated epis-
temic literals, and the approach with epistemic fluents could of course be exploited in
K as well. We do not adopt the solution proposed in [15] because we require states to
be complete for verification.

A knowledge-based approach has also been used to define the PKS planner, allow-
ing to plan under conditions of incomplete knowledge and sensing [33]. PKS general-
izes the STRIPS approach, by representing a state as a set of databases that model the
agent’s knowledge.

7 Conclusions

The paper presents a bounded model checking approach for the verification of proper-
ties of temporal action theories in ASP. The temporal action theory is formulated in a
temporal extension of ASP, where DLTL constraints in domain descriptions allow for
state trajectory constraints as advocated in PDDL3 [20]. The approach provides a uni-
form ASP methodology for specifying and verifying domain descriptions. It combines
the flexibility of knowledge representation in ASP to encode action domains (and, in
particular, to model defeasible actions and causal rules) with temporal verification capa-
bilities providing, unlike [26], a decision procedure for verification and an incremental
approach to BMC in ASP. In principle, the approach is applicable to other action lan-
guages, provided it is possible to define a transition system, in which a state is only
determined from the previous one by a next state function.

Helianko and Niemelä [30] developed a compact encoding of boundedmodel check-
ing of LTL formulas as the problem of finding stable models of logic programs. In [26]
this encoding is extended to address the verification of action domains including DLTL
constraints. In this paper, we follow a different approach to BMC which exploits the
Büchi automaton construction to achieve completeness.

[10] first proposed the use of the Büchi automaton in BMC. Our encoding in ASP
is defined without assuming that the Büchi automaton is computed in advance. The
states of the automaton are computed on-the-fly, building the path of the product au-
tomaton. This requires equality among states to be checked during the construction of
a (k,l)-loop, which makes the size of translation quadratic in k. [8] develops efficient
encodings of BMC for LTL extended with past operators. In particular, it develops an
incremental encoding based on SAT techniques which can be extended with a termi-
nation check, thus achieving completeness in the proof of properties. Our incremental
encoding exploits the state of the art ASP solver iClingo [17].

The action language in this paper is related to the logic programming based plan-
ning language K [15] and to the languages C and C+ [28, 27]. Unlike K, C and C+, our

action language does not allow for concurrent actions, but it provides general temporal
constraints. K, C and C+ can perform several kinds of reasoning, such as prediction,
postdiction and planning. However, they do not exploit standard temporal logic con-
structs to reason about actions. A detailed comparison of the language introduced in
Section 3 and the languagesK, C and C+ can be found in [26].

The presence of temporal constraints in our action language is related to the work
on temporally extended goals in [12, 6], which, however, is concerned with expressing
preferences among goals and exceptions in goal specification.

ESG [11] is a second order extension of CTL* for reasoning about nonterminating
Golog programs. The paper presents a method for verification of a first order CTL frag-
ment of ESG, using model checking and regression-based reasoning. Due to first order
quantification, this fragment is in general undecidable. DLTL [31] is a decidable LTL
fragment of ESG for which standard LTL model checking techniques can be adopted
[23]. Satisfiability in DLTL is known to be PSPACE-complete, as for LTL [31].

In [1] the verification problem for action logic programswith nonterminating behav-
ior is addressed using an action formalism based on a temporalized description logic,
ALCO-LTL. DLTL does not allow for first order constructs as ALCO-LTL, while it
allows for the specification of regular expressions.

In [9] Cabalar introduces normal forms for Temporal Equilibrium Logic (TEL),
an extension of the Answer Set semantics to arbirary theories in the syntax of Linear
Temporal Logic. The rules in Π , in our action theories, appear to be in normal form
and it would be interesting to investigate the possibility of mapping the LTL fragment
of our action theories into TEL.

Acknowledgments:We thank the anonymous referees for their helpful comments. This
work has been partially supported by Regione Piemonte, Project ICT4LAW.

References

1. F. Baader, H. Liu, and A. ul Mehdi. Verifying properties of infinite sequences of description
logic actions. In ECAI, pages 53–58, 2010.

2. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning. Artificial Intelligence, 116(1-2):123–191, 2000.

3. J. A. Baier, F. Bacchus, and S. A. McIlraith. A heuristic search approach to planning with
temporally extended preferences. Artificial Intelligence, 173(5-6):593–618, 2009.

4. M. Baldoni, A. Martelli, V. Patti, and L. Giordano. Programming rational agents in a modal
action logic. Ann. Math. Artif. Intell., 41(2-4), 2004.

5. C. Baral and T. C. Son. Formalizing Sensing Actions - A transition function based approach.
Artificial Intelligence, 125(1-2):19–21, 2001.

6. C. Baral and J. Zhao. Non-monotonic temporal logics for goal specification. In IJCAI 2007,
pages 236–242, 2007.

7. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
Advances in Computers, 58:118–149, 2003.

8. A. Biere, K. Heljanko i, T. Junttila, T. Latvala, and V. Schuppan. Linear encodings of
bounded ltl model checking. Logical Methods in Computer Science, 2 (5:5):1–64, 2006.

9. P. Cabalar. A normal form for linear temporal equilibrium logic. In JELIA, LNCS 6341,
pages 64–76, 2010.

10. E.M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and complexity of
bounded model checking. In VMCAI, pages 85–96, 2004.

11. J. Claßen and G. Lakemeyer. A logic for non-terminating Golog programs. In Proc. KR
2008, pages 589–599, 2008.

12. U. Dal Lago, M. Pistore, and P: Traverso. Planning with a language for extended goals. In
Proc. AAAI02, 2002.

13. G. De Giacomo, F. Patrizi, and S. Sardiña. Generalized planning with loops under strong
fairness constraints. In Proc. KR 2010, 2010.

14. R. Demolombe and M. Pozos Parra. A simple and tractable extension of situation calculus
to epistemic logic. In ISMIS, pages 515–524, 2000.

15. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to
knowledge-state planning: Semantics and complexity. ACM TOCL, 5(2):206–263, 2004.

16. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Comm., 24(2):105–124, 2011.

17. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. Engineering
an incremental ASP solver. In Proc. ICLP08, volume 5366 of LNCS, pages 190–205, 2008.

18. M. Gelfond. Handbook of Knowledge Representation, ch. 7, Answer Sets. Elsevier, 2007.
19. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Logic

Programming, Proc. of the 5th Int. Conf. and Symposium, 1988.
20. A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. Technical Report,

Department of Electronics and Automation, University of Brescia, Italy, 2005.
21. R. Gerth, D. Peled, M.Y.Vardi, and P. Wolper. Simple on-the-fly automatic verification of

linear temporal logic. In 15th Work. Protocol Specification, Testing and Verification, 1995.
22. L. Giordano and A. Martelli. Reasoning about web services in a temporal action logic. In

Reasoning, Action and Interaction in AI Theories and Systems, LNAI 4155. Springer, 2006.
23. L. Giordano and A. Martelli. Tableau-based automata construction for Dynamic Linear time

Temporal Logic. Annals of Mathematics and AI, 46(3):289–315, 2006.
24. L. Giordano, A. Martelli, and C. Schwind. Specifying and verifying interaction protocols in

a temporal action logic. Journal of Applied Logic, 5:214–234, 2007.
25. L. Giordano, A. Martelli, and D. Theseider Dupré. Temporal deontic action logic for the

verification of compliance to norms in asp. In ICAIL 2013, 14th Int. Conf. on AI and Law.
26. L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about actions with temporal

answer sets. TPLP, 13(2), 2013.
27. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, , and H. Turner. Nonmonotonic causal

theories. Artificial Intelligence, 153(1-2):49–104, 2004.
28. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary

report. In AAAI/IAAI, pages 623–630, 1998.
29. F. Giunchiglia and P. Traverso. Planning as model checking. In Proc. The 5th European

Conf. on Planning (ECP’99), pages 1–20, 1999.
30. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models. TPLP,

3(4-5):519–550, 2003.
31. J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic. Annals of Pure

and Applied logic, 96(1-3):187–207, 1999.
32. H. Palacios and H. Geffner. Compiling uncertainty away: Solving conformant planning

problems using a classical planner (sometimes). In AAAI, pages 900–905, 2006.
33. R. P. A. Petrick and F. Bacchus. A knowledge-based approach to planning with incomplete

information and sensing. In AIPS, pages 212–222, 2002.
34. M. Pistore and P. Traverso. Planning as model checking for extended goals in non-

deterministic domains. In Proc. IJCAI 2001, pages 479–486, 2001.
35. S. Sohrabi and S. A. McIlraith. Optimizing web service composition while enforcing regu-

lations. In ISWC 2009, Chantilly, USA, LNCS 5823, pages 601–617, 2009.

