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Abstract

Several nucleic acid amplification techniques (NAATs), particularly PCR and real time PCR, are 

currently used in the routine clinical laboratories. Such approaches have allowed rapid diagnosis 

with a high degree of sensitivity and specificity. However, conventional PCR methods have several 

intrinsic disadvantages such as the requirement for temperature cycling apparatus, and sophisticated 

and costly analytical equipments. Therefore, amplification at a constant temperatures is an attractive 

alternative method to avoid these requirements. A new generation of isothermal amplification tech-

niques are gaining a wide popularity as diagnostic tools due to their simple operation, rapid reaction 

and easy detection. The main isothermal methods reviewed here include loop-mediated isothermal 

amplification (LAMP), nucleic acid sequence-based amplification (NASBA), and helicase-depend-

ent amplification (HDA). In this review, design criteria, potential of amplification, and application 

of these alternative molecular tests will be discussed and compared to conventional nucleic acid 

amplification techniques.

Keywords: LAMP, NASBA, HDA, isothermal amplification, virological diagnosis.
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Introduction

At present, a wide variety of diagnostic techniques are applied for the detection of viral pathogens. 

Traditional diagnostic methods, like virus isolation and serology, have been the mainstay of the 

clinical laboratory, especially in the past two decades. In recent years several previously unknown 

viral pathogens have been discovered for which classical culture is unrealized or even lacks sensit-

ivity.  To overcome the shortcomings of the traditional diagnostic methods, molecular techniques 

have been developed. Several nucleic acid amplification techniques (NAATs), particularly PCR and 

real time PCR, are currently used in the routine clinical laboratories. Such approaches have allowed 

rapid diagnosis with a high degree of sensitivity and specificity. Moreover, NAATs have offered 

additional advantages over traditional methods by production of easily standardized protocols, thus 

resulting a potential for automatization with a range of options for real time detection chemistries.  

The advent of fully automated systems with faster turnaround times has given clinical laboratories 

the tools necessary to report out accurate and sensitive results to clinicians. However, all these in  

vitro nucleic acid amplification methods have several intrinsic disadvantages, such as the require-

ment for precision thermal cycling between three temperatures during the reaction and an elaborate 

method for detection of amplified products. Moreover, real time-PCR machines are very expensive 

requiring an instrumentation platform that consists of a thermal cycler, computer, optics for fluores-

cence excitation, emission collection, data acquisition and analysis software. In this context, a new 

generation of isothermal amplification techniques are gaining a wide popularity as diagnostic tools 

due to their simple operation, rapid reaction and easy detection. These new techniques do not re-

quire thermal cycler and can be performed simply by using a heating block and/or water bath with a 

low-energy consumption. The main isothermal methods reviewed here include loop-mediated iso-

thermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), and helicase-

dependent amplification (HDA). Moreover, in this review, design criteria, potential of amplifica-

tion, and application of these alternative molecular tests in the detection of viral pathogens will be 

discussed. 
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Loop-mediated isothermal amplification (LAMP)

Loop-mediated isothermal amplification (LAMP) represents today a better innovative nucleic acid 

amplification  method which exceeds the classical  PCR in its  reaction  simplicity,  accuracy,  and 

higher amplification efficiency. The whole procedure is very rapid and the nucleic acid amplifica-

tion can be completed in less than 1 hour under isothermal conditions. The main advantage of the 

LAMP technique is that it does not require thermocyclers and the amplification can be performed 

simply  with  a  water  bath  or  heating  block  necessary  to  maintain  the  required  temperature. 

Moreover, the design of LAMP assay is very simple requiring only the DNA polymerase along with 

dNTPs, reaction buffer, and two sets of specially primers that can be developed using the free soft-

ware Primer Explore (LAMP primer designing support software program, Net laboratory,  Japan, 

http://venus.netlaboratory.com). The addition of reverse transcriptase make it possible to amplify 

cDNA from RNA sequences (RT-LAMP).

The LAMP method

LAMP is an one-step amplification reaction that amplifies target DNA from a few copies to 109 

-1010 copies and proceeds at isothermal conditions for 1 hour or less depending on the efficiency of 

the designed primers. LAMP employs a DNA polymerase with strand displacement activity (Bst 

DNA polymerase),  along with two internal primers (FIP, BIP), and two outer primers  (F3, B3) 

which recognize six different sequences in the DNA template, by incubating all the reagents in a 

single tube at a constant temperature, usually 63 °C which is optimum for the activity of DNA poly-

merase (Fig. 1). The chemistry of LAMP amplification is based on the principle of strand displace-

ment reaction which has been described thoroughly by Notomi and colleagues (1). In particular, the 

mechanism of the reaction can be explained in three steps, an initial non-cyclic step, a cyclic ampli-

fication step, and an elongation step. An animation that is useful for better understanding of the 

principle  is available  at  the web site  http://loopamp.eiken.co.jp/e/index.html.  The addition of a 
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primer set that anneals at the loop structure in LAMP amplicons enhances specificity of the reaction 

and accelerates further the amplification time (2). In particular, using these specific primers, named 

loop-primers (LF, LB), the reaction time is reduced by half, making it a more efficient tool used in 

the practical applications of LAMP. Moreover, the employment of reverse transcriptase in addition 

to DNA polymerase allows the synthesis of cDNA molecules from RNA template. Reverse tran-

scriptase is added to the reaction mixture and, after mixing and incubating at a constant temperature 

between 60-65 °C, amplification and detection can be carried out in a single step (RT-LAMP). As 

concerns the visualization of amplified product obtained from LAMP reaction,  several methods 

may be used. Firstly,  product is visualized by agarose gel analysis  stained with an intercalating 

agent such as ethidium bromide or SYBR Green I using a common UV transilluminator. As the 

product of the LAMP is a mixture of different length DNA fragments, the gel will show several  

bands which will appear as a smear. Another method, based on real time turbidity measurement, al-

lows to quantify the amount of DNA template formed by LAMP amplification. The increase of tur-

bidity in the reaction mixture is directly proportional to the amount of DNA synthesized. Precisely, 

the LAMP method yields large amounts of pyrophosphate ions in the course of the amplification re-

action leading to a white precipitate of insoluble magnesium pyrophosphate in the reaction mixture. 

Since the production of precipitate correlates with the increase of turbidity, real time monitoring of 

the LAMP reaction kinetics can be achieved by measurement of turbidity using an inexpensive tur-

bidimeter. Gene copy number can also be quantified by using a standard curve obtained from differ-

ent concentrations of gene copy number plotted against time of positivity. Finally, a new detection 

method of amplified products has been developed (3). This method uses fluorescent intercalating 

dye, like calcein, the fluorescence of which is quenched by the binding of manganese ions bound by 

pyrophosphate ions produced in the course of the amplification reaction. The presence of fluores-

cence indicates the presence of DNA template and a simple visual detection can be achieved by us-

ing an UV lamp. Recently, LAMP products have also been detected electrochemically in a micro-

chip (4). Based on these assumptions, it is possible to make a number of considerations. LAMP as-
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say is more specific towards the template sequences than classical PCR. This is caused because four 

primers recognize six separate regions within a target DNA and the amplification reaction occurs 

only when all these six regions are correctly recognized by the primers.  Furthermore, LAMP is 

more sensitive than conventional DNA-based detection systems and its ability to amplify from few-

er copies of initial target DNA than PCR has been demonstrated (5-8). In particular, the LAMP as-

say was found to be 10-100 fold more sensitive than PCR with a detection limit of 0.01-10 pfu of  

virus (9-11). The development of LAMP assay is very simple and allows the use of cost-effective 

reaction equipment. The simplicity of this method comes from the facility of designing primers and 

from the fact that only the DNA polymerase along with dNTPs, reaction buffer, and a common wa-

ter bath or heating block are necessary for the development of LAMP assay. Moreover, LAMP has 

higher amplification efficiency compared with the PCR, with DNA being amplified 109-1010 times. 

This high amplification efficiency is attributed to no time loss of thermal change because of its iso-

thermal reaction. Finally, RT-LAMP assay demonstrated faster in comparison to conventional RT-

PCR (30 minutes versus 3-4 hours), because no additional reverse transcriptase step is required.

Applications of LAMP assay

A survey of the literature shows that the LAMP has already been applied to detect many kinds of 

pathogens including viruses and bacteria (12-14). In particular, the LAMP method has been de-

veloped for most emerging human viral pathogens like West Nile, Dengue, Chikungunya, Japanese 

Encephalitis,  SARS, highly pathogenic avian influenza (HPAI) H5N1, and Norwalk viruses (9-

11,15-19). RT-LAMP assays for rapid detection of several respiratory viruses as influenza A and B 

virus, measles virus, and mumps virus have also been evaluated (20-24). Moreover, the usefulness 

of LAMP for amplification of DNA viruses was also reported for cytomegalovirus, herpes simplex 

virus, varicella zoster virus, human herpes virus 6-7, adenovirus, BK virus, and human papilloma 

virus type-6, 11, 16, 18 (25-36). The LAMP technology has now been developed into commercially 

available detection kits and some of them have been adopted as the officially recommended meth-
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ods for detecting various pathogens. LAMP kits for the detection of Escherichia coli, Mycobacteri-

um,  Salmonella,  Legionella,  Vibrio cholerae,  Listeria,  Campylobacter, and  Criptosporidium  have 

been commercialized (37-40). Considering the advantages of rapid amplification, and easy detec-

tion, the current focus of LAMP methodology is towards a simple diagnostic tool to be routinely 

employed in resource-limited laboratories in developing countries where many fatal tropical dis-

eases are endemic, without requiring sophisticated equipment or skilled personnel. However, the 

combination of LAMP methodology and innovative microchip technologies may facilitate the real-

ization of novel testing systems to be used by both developed and developing countries in the near 

future.

Nucleic acid sequence-based amplification (NASBA)

Nucleic acid sequence-based amplification (NASBA) technology has provided an alternative meth-

od to conventional procedures with a broad application for the detection of several nucleic acid tar-

gets.  In  particular,  NASBA is  an isothermal  transcription-based amplification  method,  first  de-

scribed by Guatelli and colleagues, particularly suitable for the detection and quantification of gen-

omic, ribosomal, and messenger RNA (41). NASBA offers potential advantages compared to con-

ventional RT-PCR. First of all, it is a continuous, isothermal process that does not require a thermo-

cycler and the optimal annealing temperature for primers does not have to be determined empiric-

ally. Moreover, because NASBA is a method based on the isothermal reaction occurring at a tem-

perature of 41 °C, and does not require denaturation, it prevents amplification of DNA genome in 

case of contamination, thus being very selective for RNA target amplification. However, the low 

temperature occurring in the reaction could be represent a risk factor for the specificity of the meth-

od. Anyhow, the specificity rate is increased by a well-constructed method for detecting amplified 

products using additional hybridization with target-specific probes. Another advantage is that no ad-

ditional reverse transcriptase step is required, thus saving time and reducing the risk of contamina-
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tion. The only restriction of NASBA method is probably that individual preparation of the chemical 

reagents mixture is difficult and commercial kits are expensive.

The NASBA method

NASBA amplification consists  of a repeated process of primer annealing,  formation of double-

stranded DNA molecule containing a T7 promoter site, and T7-RNA polymerase mediated tran-

scription of multiple anti-sense copies of RNA amplicons (Fig. 2). Held at 41 °C, the reaction uses 

two oligonucleotide primers specific to the RNA target, P1 (forward primer), P2 (reverse primer), 

and three enzymes:  avian myeloblastosis  virus reverse transcriptase  (AMV-RT) which has  also 

polymerase activity, RNase H, and T7 RNA polymerase. During the reaction, a DNA intermediate 

is generated through a process that involves the hybridization of a primer to the RNA target. This  

primer (P1), which contains a T7 RNA polymerase promoter sequence, is then extended by AMV-

RT to form a RNA-DNA hybrid. The digestion of the RNA component of the hybrid by RNase H 

permits the binding of a second primer (P2) to the remaining DNA strand. The second primer is 

then extended by AMV-RT to form the double-stranded DNA intermediate, which contains the T7-

RNA polymerase promoter needed for transcription. Finally, the T7 RNA polymerase produces nu-

merous RNA copies and once transcription is  initiated,  the resulting single-stranded RNA tran-

scripts, which are anti-sense to the original RNA, can serve as a template to start a new amplifica -

tion process. The amplification product of NASBA can be detected by liquid or gel-based probe-hy-

bridisation  assays,  electrochemiluminescence,  or  microfluidic  electrochemical  detection  (42-45). 

Recently, real time assays incorporating amplification and detection in a single step have been re-

ported and applied to a wide range of targets. In particular, quantitative real time NASBA assays us-

ing molecular beacons have been developed and utilized for the detection and quantification of sev-

eral RNA target in all published real time procedures whether for commercially available kits or for 

in-house diagnostic assays (46,47). These real time NASBA assays appear to be rapid (about 1.5 

hour),  specific  and  sensitive  with  RNA  amplification  and  a  target-specific  fluorescent  signal 
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achieved simultaneously in one tube with measurements obtained by using a simple fluorometer. 

Real time NASBA methodology seems to be a suitable alternative to other real time amplification 

techniques such as RT-PCR without the need for expensive thermocyclers. 

NASBA kinetics

Because NASBA amplification involves three separate enzymes with their own kinetic parameters, 

variability in every measurement is inevitable (48). Weusten et al. were the first to describe a math-

ematical model for RNA amplification of both target and internal calibrator RNA in a molecular  

beacon-based NASBA reaction to normalize enzyme efficiency differences between reactions (49). 

However, the description of this model did not include all of the essential parameters needed to op-

erate the model. Consequently, analysis using this model requires software calibrated to each target 

and is commercially available for only a few specific targets. On the contrary, in our study an al-

ternative method for normalizing NASBA data by using a simple time to positivity (TPP) calcula-

tion in the presence of an internal control that reduces the variability between replicates has been 

described (47). To date, the role of primers and KCl concentration for NASBA optimization has not 

been considered. NASBA is able to specifically amplify target RNA by using specific primers in the 

presence of KCl. Initially, the primers concentration is very high and is not rate limiting; relatively 

small amounts of primers are consumed in depletion of the initially present pool of RNA copies 

(linear phase of NASBA process). At some time point, the primers concentrations do become rate 

limiting and decline towards zero. At this time point, the DNA intermediate levels have reached 

their peak and RNA production proceeds at high speed. From now on the only reaction that can pro-

ceed is T7 RNA polymerase-mediated formation of RNA from the DNA intermediate templates.  

This time interval represents the second phase of NASBA process characterized by an exponential 

kinetics (Fig. 2). In our study, we evidenced for the first time that high concentrations of primers 

and KCl elongate the linear phase of NASBA process by shorting the exponential amplification; 

whereas, low concentrations of primers and KCl promote the exponential phase (47). In particular, 
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in our study we used relatively low concentrations of primers and KCl (0.3 μM and 80 mM, re -

spectively) to elongate the exponential phase of NASBA process, and accordingly, to minimize the 

reaction-to-reaction variation. 

Applications of NASBA assay

NASBA has proven to be a useful technique for the highly sensitive detection of several pathogens 

in clinical, environmental, and food samples including, in particular, different RNA viruses (Table 

1). Although NASBA methods offer a powerful tools for molecular diagnosis, their sensitivity and 

specificity are limited by several factors. Amplification inhibitors and RNA integrity are the main 

cause of concern when preparing clinical specimens for NASBA. Efficiency of RNA extraction 

methods is determined by the RNA recovery rate and NASBA inhibitor reduction during RNA ex-

traction. Many RNA commercial extraction methods have been tested for the reduction or removal 

of NASBA inhibitors. In particular, RNA extraction originally performed with phenol-chloroform 

has been widely replaced by the Boom method which is suitable for use in NASBA and reagents for 

this are commercially available (73). However, these methods are time consuming, labor intensive 

and susceptible to contamination. Lately, complete automatization was introduced performing RNA 

extraction within 20-40 minutes on high numbers of samples. Several studies showed that robotic 

automated sample preparation and the performance of the automated MagNaPure and the NucliSens 

extraction procedures (EasyMAG and miniMAG) were more consistently than manual techniques 

(74,75). As concerns the development of in-house real time NASBA assays, a commercial kit is 

available (“NucliSens EasyQ® Basic kit” ([BioMérieux]) (76). It contains the necessary reagents for 

NASBA amplification process including AMV-RT, RNase H, T7 RNA polymerase enzymes in the 

form of lyophilized spheres, the enzyme diluent that consists of sorbitol in aqueous solution, the re-

agent  lyophilized  spheres  containing  nucleotides,  dithiothreitol,  MgCl2 with  their  diluent 

(TRIS/HCl, 45% DMSO), and KCl solution. The primers and specific probe are to be synthesized 

for each target. In particular, the design of primers and probe for NASBA can be performed using  
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the “Beacon Designer™” program developed by PREMIER Biosoft International (www.premier-

biosoft.com), and the stability of predicted structure beacons can be analysed by using the European 

MFOLD  server  (http://frontend.bioinfo.rpi.edu/applications/mfold/cgi-bin/dna-form1.cgi).  The 

amplification conditions for real time NASBA are generally constant, and optimization of condi-

tions for each new assay can be simpler than RT-PCR. The concentration of enzymes is standard-

ized and does not differ from assay to assay. The variable factors that have to be optimized are the 

KCl, primers and probes concentrations. In conclusion, NASBA is a simple and rapid  alternative 

method to conventional procedures, and its isothermal nature and specificity for RNA versus DNA 

make it an important technique in RNA research and diagnostics.

Helicase-dependent amplification (HDA)

Helicase-dependent amplification (HDA) is an isothermal  amplification reaction inspired by the 

natural mechanism of the DNA replication fork. This new technology mimics DNA replication  in  

vivo  by using a DNA helicase to separate two complementary DNA strands (dsDNA) into each 

single-stranded  templates  for  primers  hybridization  and  subsequent  extension  by a  DNA poly-

merase. As the DNA helicase unwinds double-stranded DNA enzimatically, the initial heat denatur-

ation and subsequent thermocycling are not necessary,  and the entire HDA reaction can be per-

formed at a single uniform temperature. Thus, this alternative technique provides a useful tool to 

amplify DNA in vitro under isothermal conditions with a very simple reaction scheme. 

The HDA method

The amplification scheme of the HDA method is shown in Fig. 3. In this method, double-stranded 

DNA is unwound enzimatically by a DNA helicase in the presence of chemical energy. The dis-

placed DNA strands are stabilized by single-stranded DNA (ssDNA)-binding proteins (SSBs). In 

particular, these SSB proteins bind specifically to the single-stranded part of DNA in order to pre-

vent reannealing of the complementary ssDNA templates and to protect them from degradation. 
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Two sequence-specific primers hybridize to the 3’-end of each ssDNA template, and a DNA poly-

merase extends the primers annealed to the templates to produce a dsDNA. The two newly synthes-

ized dsDNAs are used as substrates by the DNA helicase, entering the next round of the reaction. 

Therefore, a simultaneous chain reaction proceeds resulting in exponential amplification of the se-

lected target sequence. It has been reported that RNA target as well as DNA was also amplified and 

detected by HDA method followed by reverse transcription step (77,78). Initially, the HDA systems 

were developed using  Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase. These 

current HDA systems will be briefly described in this review with consideration of the processivity 

and efficiency of DNA amplification.

HDA system using Escherichia coli UvrD helicase

The first HDA system for isothermal DNA amplification was developed by using  E. coli UvrD 

DNA helicase (~82 kDa) along with a DNA polymerase, and two accessory proteins (SSBs): T4 

gene 32 or RB 49 gene 32 proteins (79,80). Initially,  E. coli UvrD helicase was chosen due to its 

ability to unwind blunt-end substrates (dsDNA) as well as nicked circular DNA (81). This HDA 

system mimics the  in vivo DNA replication and is able to amplify several hundred base pairs of 

DNA with a detection limit ranging from 10 to 103 DNA copies in less than 1 hour (82,77,83,84). 

Moreover, to further improve the sensitivity and specificity of DNA amplification in the HDA reac-

tion a very simple expedient as the use of thermostable UvrD helicase at an elevated temperatures 

(60-65 °C) was considered. However, the efficient amplification of long target sequences is not pos-

sible, probably due to the low processivity and limited speed of DNA synthesis by UvrD helicase. It  

has been reported that UvrD helicase has a limited speed (20 bp/s) and processivity (less than 100 

bp per binding) (85,86). The performance of an HDA system may be further improved by testing 

different helicases. A new HDA system with high processivity and speed was developed by using 

the T7 bacteriophage gp4 helicase.
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HDA system using T7 bacteriophage gp4 helicase (T7 bacteriophage replisome)

The T7 bacteriophage replisome consists of four proteins necessary for amplification process: T7 

gp4 helicase-primase, T7 gp5 DNA polymerase, T7 gp2.5 (SSB protein), and the processivity factor 

E. coli thioredoxin (trx) (87,88). The T7 gp4 helicase-primase is an hexameric protein composed by 

two subunits, the gp4A (~63 kDa) with both helicase and primase activities, and the gp4B (~56 

kDa) with only helicase activity (87,89,90). In the T7 helicase-based HDA system, the helicase T7 

gp4 unwinds the dsDNA at a rate of 300 bp/s with high processivity, whereas the primase domain 

of T7 gp4 produces the primers (91). In particular, this HDA system has been applied to amplify 

both long linear and circular ssDNA templates, and the primase activity of T7 gp4 allows for whole 

genomes to be amplified without the need for additional DNA primers (92). As concerns the T7 gp5 

DNA polymerase activity itself is not processive, whereas together with the processivity factor E. 

coli thioredoxin (T7 gp5 DNA polymerase-E. coli thioredoxin complex), the speed and processivity 

are enhanced by up to >100 nt/s and >10 kb per binding, respectively (93). Recent progress in un-

derstanding the function of helicases has enabled researchers to use a helicase/polymerase pair (hel-

icase/polymerase fusion complex) which can move in a coordinated way to further improve the 

speed and the processivity of HDA systems, allowing for the amplification of DNA fragments up to 

2.3 kb compared to the original limit of 400 bp (94). Future experiments will be certainly directed 

towards improving the performance of HDA systems by testing several helicases/polymerases com-

plex, and by optimizing the existing HDA systems. 

Applications of HDA assay

HDA assay has been used to detect several viruses in different clinical samples. In particular, Tang 

and colleagues developed an innovative isothermal amplification HDA with lateral flow to detect 

HIV-1 in human plasma, whereas Kim and colleagues developed a qualitative HDA method for the 

detection of herpes simplex virus (HSV) types 1 and 2 from genital lesions (95,96). Moreover,  a 

novel one-tube isothermal reverse transcription-thermophilic helicase-dependent amplification (RT-
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tHDA) system has been developed to detect RNA viruses, including enterovirus and ebola virus 

(77). Thermophilic HDA in combination with enzyme-linked immunosorbent assay was also used 

by Gill and colleagues for the detection of Helicobacter pylori. In addition, they also developed a 

colorimetric method to detect  H. pylori by using isothermal helicase-dependent amplification and 

gold nanoparticle probes (97,83). Andresen et al. incorporated HDA on a microarray for quantitat-

ive detection of antibiotic-resistant pathogens  Neisseria gonorrhoeae and  Staphylococcus aureus 

(98). Microfluidic chips have also been developed for HDA at 62 °C for quantification of SARS 

cDNA (99).  A fully  integrated  microfluidic  device  for  DNA extraction  and helicase-dependent 

amplification at 65 °C on samples containing live bacteria has been developed by Mahalanabis et  

al. This microfluidic device was the first to combine bacterial lysis, nucleic acid extraction, and 

DNA amplification on the same chip (100). Finally, Kivlehan and colleagues reported for the first 

time the utilization of a quantitative electrochemical method to monitor in real time the HDA of 

nucleic acids in less than 1 hour at a single constant temperature. The principle of detection consists 

of monitoring a decrease in the electrochemical current response of a reporter probe during the 

amplification process. The detection strategy is analogous to that of real time HDA assay. However, 

this innovative electrochemical method offers some advantages compared to conventional real time 

assays being potentially more robust, simpler, and less expensive (101). Isothermal HDA kits are 

currently available and commercially developed at BioHelix (Beverly, MA, USA). In conclusion, it 

is expected that more useful and simpler isothermal amplification techniques will be invented to be 

used for the detection of different pathogens.
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Figure  1.  Schematic  representation  of  primer  design  for  LAMP  assay.  The  figure  shows  the 

position of six primers (FIP, BIP, F3, B3, Loop F, Loop B) spanning the target gene.

Figure  2.  Schematic  representation  of  NASBA  process  using  molecular  beacons  probes  as  a 

detection  system.  The  figure  shows  the  two  phases  of  the  NASBA  amplification  process 

characterized by a linear and exponential kinetics.

Figure 3. Amplification scheme of HDA method. (Step 1) DNA helicase unwinds double-stranded 

DNA.  (Step  2)  SSB  proteins  stabilize  the  displaced  DNA  strands.  (Step  3)  Specific  primers 

hybridize to the ssDNA template and are extended by DNA polymerase. (Step 4) A double-stranded 

copy of the DNA target is produced.  

Table 1. Applications of NASBA assay in the detection of several RNA viruses.

aH1N1v, H1NI variant.
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Table 1.

RNA viruses Reference (s)
Enterovirus 50-52
Influenza A virus 53,52
Influenza B virus 54,52
Influenza A virus (H1N1v)a 55
Influenza A virus (H5N1) 56
Respiratory syncytial virus 57,52
HIV-1 58-60
Parainfluenza virus type 1 52
Parainfluenza virus type 2 52
Parainfluenza virus type 3 52
Parainfluenza type 4 52
Norovirus 61
Metapneumovirus 62
SARS coronavirus (SARS-CoV) 63
Chikungunya virus 64
St. Louis Encephalitis virus 65
Dengue virus 66
West Nile virus 65
Hepatitis A virus 67
Hepatitis C virus 68,69
Human Rhinovirus 70,47
Measles virus 71
Rubella virus 52
Rabies virus 72
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