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Abstract 

The coronary artery disease is a leading cause of death and morbidity worldwide. This disease has a 

complex pathophysiology that includes multiple mechanisms. Among these is the 

oxidative/nitrosative stress. Paradoxically, oxidative/nitrosative signaling plays a major role in 

cardioprotection against ischemia/reperfusion injury. In this context, the gas transmitter nitric oxide 

(NOֹ) may act through several mechanisms, such as guanylil cyclase activation and via S-

nitrosylation (SNO) of proteins. The latter is a covalent modification of a protein cysteine thiol by 

an NO-group that generates an S-nitrosothiol. Here we report data showing that NOֹ and SNO of 

proteins play a pivotal role not only in preconditioning, but also in postconditioning 

cardioprotection. 
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Introduction 

Nitric oxide (nitrogen monoxide, NOֹ) is synthesized by various nitric oxide synthase (NOS) 

enzymes or can be produced by other reactions in the biological systems, which are collectively 

called "non-NOS" processes. The latter includes “non-enzymatic” reactions which are favored by 

acidic conditions, such as reduction of nitrite to NOֹ, and reactions catalyzed by “non-NOS 

enzymes”, such as cytochrome c, hemoglobin and xanthine oxidoreductase1-3. 

There are three known isoforms of NOSs, besides endothelial NO-synthase (eNOS), cardiac 

myocytes constitutively express neuronal NO-synthase (nNOS). These two NOSs are 

Ca++/calmodulin controlled isoenzymes and within the organ and cells they are localized to different 

microdomains, and are linked to selective signaling that is further impacted by a broad array of key 

processes in health and disease4,5 (see also below). Moreover, the cardiovascular system can express 

an inducible isoform of NOS (iNOS), which can produce in immune and pathological processes a 

large amount of NOֹ independently of the level of Ca++ in the cell. Besides the differences in Ca++ 

dependency the three NOSs bind calmodulin with different affinities: the general order of affinity is 

iNOS>>eNOS>>nNOS, so that calmodulin can be considered a subunit of iNOS6,7. Whether 

mitochondria also contain a specific NOS contributing to overall NOֹ generation is a matter of 

debate8. 

Nitric oxide is considered a free radical with primary regulatory functions in the heart. It is well 

known that NOֹ modulates cell function by the activation of soluble guanylyl cyclase (sGC) to form 

cyclic guanosine monophosphate (cGMP). However, several recent studies suggest that, in addition 

to activating cGMP-dependent signaling pathways, NOֹ generates redox/nitrosative processes, 

including the posttranslational modification known as protein S-nitrosylation (SNO), which, as we 

will see in more detail, consists in the covalent attachment of an NO-moiety to a nucleophilic 

protein sulfhydryl resulting in S-nitrosothiol formation9,10 (Fig 1). 

The effective targeting of oxidative/nitrosative process in the cardiovascular system critically 

depends on identifying the primary intracellular regulators. As a matter of fact, both reactive 



oxygen and nitrogen species (ROS/RNS) are localized signaling molecules, at least in physiological 

conditions9-18. In particular, targets of NOֹ and ROS/RNS are involved in several processes of 

cardioprotection, including preconditioning (PreC) and postconditioning (PostC) phenomena.  

Both PreC and PostC have been demonstrated to significantly attenuate ischemia/reperfusion injury. 

While PreC can be obtained with one or more brief coronary occlusions of a few minutes (from 2 to 

10 min) each before the infarcting ischemia19,20, PostC may be performed with one or more brief 

occlusions of a few seconds (from 5 to 60 s) each, starting very early in reperfusion, i.e. a few 

seconds after the end of the infarcting ischemia21,22. These two cardioprotective strategies not only 

reduce infarct size and affect all form of cell death, but they also attenuate post-ischemic contractile 

dysfunction, arrhythmias and endothelial dysfunction. Specifically, both PreC and PostC limit 

endothelial cell dysfunction by increasing eNOS activity and NOֹ  bioavailability in neighboring 

cells23-27. The formed NOֹ may be responsible for nitrosative signaling, including nitration and 

nitrosylation of proteins in these two cardioprotective mechanisms (see below). 

From the concepts described above can be inferred that the protein S-nitrosylation is primarily a 

protective reaction. However, we must keep in mind that S-nitrosylation may also have deleterious 

effects on cardiovascular function in some specific conditions. For instance, iNOS may be part of 

pathological processes, such as mitochondrial dysfunction and septic shock28-30. In these conditions 

an excessive S-nitrosylation can have deleterious effects on cardiac and endothelial function (see 

also below)31,32. Although this is true, within the heart iNOS acts as a potent protective enzyme 

against ischemia/reperfusion injury in the so-called second window of preconditioning (SWOP)33. 

In this setting, it has been reported that atorvastatin may reduce infarct size by increasing the 

activity of iNOS and cyclooxygenase (COX-2). Of note, it has been demonstrated that COX-2 is 

activated by iNOS-dependent S-nitrosylation34. Actually, the SWOP, which occurs 12-24 hours 

after the preconditioning stimuli, is primarily mediated by gene induction and protein synthesis. For 

the mechanisms involved in this window of protection the reader is referred to other excellent 

reviews on this topic20,35-37. 



Our mini-review will focus on acute cardioprotection mechanisms (PreC and PostC), which are 

primarily mediated by activation of signaling pathways and post-translational modification of 

proteins. In particular, in this mini-review we focus on the role of S-nitrosylation of proteins in 

cardioprotection. The distinction of “nitration”  from one side and “nitrosation or nitrosylation” 

from the other side will be first considered. Then the biological conditions that can favor the 

reaction of S-nitrosylation will be analyzed in the context of preconditioning and postconditioning. 

 

What is protein S-nitrosylation? 

The biology and chemistry of NO. is quite complex, for example a) it plays a plethora of regulatory 

roles in normal physiology and is involved in several pathophysiological and pathological 

processes; b) it can be generated by enzymatic and non-enzymatic processes; and c) it is involved in 

several processes of both pro-oxidation and anti-oxidation. In this respect NO. is involved in a 

cornucopia of redox reaction leading to processes of nitration or alternatively to processes of 

nitrosation/nitrosylation (for reviews see also9,10,38-41). 

 Nitrosation or nitrosylation: are they synonyms? 

Although nitrosation has been defined as the formation of a covalent bound between a nitrosonium 

equivalent (NO+) and a nucleophilic amine, whereas nitrosylation can be defined as the addition of 

NOֹ without change in the formal charge of the substrate38, nitrosation and nitrosylation are often 

used interchangeably to refer to the same substrate modification. As such, nitrosation/nitrosylation 

of proteins (i.e. the incorporation of NO-moieties by covalent bonding to various protein groups) is 

chemically possible not only in the case of cysteine thiols, which leads to the formation of a 

thionitrite, but also in the case of tryptophan indols, and amines (lysine and N-terminal)39,40. 

Therefore, from a terminology viewpoint, the incorporation of NOֹ/NO+ moiety to a thiol can be 

clearly individuated because of the prefix ‘‘S’’ , referring to the incorporation of the moiety to a 

sulfur atom to form the S-NO bond. 



The S-nitrosylating species: nitrogen oxidized species are the most likely candidates for the 

modification of a reduced thiol. Actually, NO2 and N2O3 have been considered the typical S-

nitrosylating species. They are the higher oxidation state (one-electron oxidation) of nitrogen oxides 

and are formed by the reaction of NOֹ with molecular oxygen (O2) or with peroxynitrite (ONOO-), 

or, alternatively, from acidified nitrite. The reaction of NOֹ  with the superoxide anion (O2
-.) will 

lead to ONOO-, which, however, may react again with NOֹ (the so-called secondary reaction)41 

forming the nitrosylating species N2O3. 

These species reacting with thiol groups of cysteine modify proteins. This post-translational 

modification can be referred to as S-nitrosation which, in analogy with the phosphorylation of 

proteins, has become popular as protein S-nitrosylation or protein SNO (or SNO of proteins). From 

here on, we will prefer either the term "nitrosylation" to refer in general to substrate modification by 

this kind of reaction or the term “SNO of proteins” to refer to this specific type of reaction observed 

in biological system, which involves cysteine thiols. 

 Nitration 

Before to consider the biology of protein S-nitrosylation let’s consider nitration to distinguish it 

from nitrosylation. In fact, nitration must not to be confused with nitrosylation/nitrosation. 

Nitration involves an electrophilic addition of a nitrotriatomic group, such as an NO2
+ equivalent 

(nitronium, an electron acceptor), to an aromatic ring (the site of electron density)38. In the 

biological system, the term nitration refers to the incorporation of the nitrotriatomic group at 

position 3 of the phenolic ring of tyrosine residues (nitration of tyrosine at its ortho position, which 

is known as 3-nitration of tyrosine or 3-NT). This protein modification is clearly related to an 

oxidative stress by the formation of ONOO-, from the reaction of NOֹ with O2
- , in the patho-

physiology of the cardiovascular system42-44.  

However, it must be stressed that nitrosylation and nitration, though they are two different types of 

reactions, are not mutually exclusive events, but are related in a continuum or Yin-Yang process and 

can lead in several circumstances to identical final products29. Even ONOO- can lead to the 



chemistry of the nitrosylation pathway; for instance, it has been suggested that only when the ratio 

between NOֹ and O2
- is close to 1:1 the formation of ONOO- can lead to nitration, whereas a small 

excess of NOֹ will lead to nitrosylation, perhaps via the secondary reaction38. For example, it has 

been suggested that 3-NT formation is a step of cardioprotective pathways45,46. We have recently 

suggested that after an initial increase of 3-NT, during cardioprotective maneuvers, a subsequent 

SNO of proteins may prevail in the cardioprotective scenario when NOֹ may be in excess with 

respect to O2
-47-49. We suggest avoiding the use of nitrotyrosilation to indicate tyrosine nitration, 

since the use of nitrotyrosilation may make confusion with nitrosylation that is a different reaction, 

as above reported. 

Denitrosylation  

Clearly S-nitrosylation is a labile modification, and the levels of nitrosothiols in the biological 

system are low, due to a rapid turnover. Its transience makes it a typical reaction of nitrosative 

signaling. Therefore, the concept of denitrosylation has been introduced. It consists in the removal 

of the nitroso-group and is an important aspect of S-nitrosylation signaling. In fact denitrosylation 

may limit the amount of protein SNO in order to avoid ”excessive’’ S-nitrosylation, as can occur, 

for instance, when iNOS is produced in pathological processes comprising nitrosative stress30-32.  

Denitrosylation was firstly considered as a spontaneous and non-regulated process. Recently several 

non-enzymatic and enzymatic mechanisms of denitrosylation have been described in vitro and in 

vivo. Non-enzymatic processes include reactions mediated by ascorbate, nucleophilic compounds 

and transition metal ions that have the possibility to also occur in vivo (for reviews see18,50). 

Enzymatic processes may be attributed to denitrosylases, whose actions would be analogous to 

those of the phosphatases in kinase-signaling. Several denitrosylases may contribute to the 

compartmentalization of the action of S-nitrosylation of proteins. Although, S-nitrosoglutathione 

reductase and the thioredoxin system have emerged as the two main enzymatic processes of 

denitrosylation in vivo, several other enzymes with denitrosylase capability have been observed in 

vitro and/or in vivo, including carbonyl reductase-1, disulfide isomerase, glutathione peroxidase, 



superoxide dismutase and xanthine oxidase47,51-58. With respect to thioredoxin system, it has been 

observed that both cytosolic and mitochondrial isoforms of thioredoxin (Trx1 and Trx2, 

respectively), as well as the reductases that recharge them, TR1 and TR2, are involved in the 

process of denitrosylation in a NADPH-dependent manner56,59. Yet, the removal of the NO -moiety 

by glutathione reductase may depend on the transnitrosation of SNO with GSH to form GSNO (S-

nitrosoglutathione), which will be enzymatically removed. That is, GSH can remove SNO from 

proteins to generate GSNO which is then converted back to GSH by S-nitrosoglutathione reductase. 

Similarly thioredoxins can denitrosylate proteins and thioredoxin is then regenerated by thioredoxin 

reductase. Alternatively, a disulfide bond and a concomitant release of NO-moiety can occur by 

nucleophilic attack of vicinal protein thiols. The importance of dynamic S-

nitrosylation/denitrosylation reactions are essential in cardiovascular regulation as demonstrated, for 

instance, in genetically modified models of increased or decreased activity of S-nitrosoglutathione 

reductase. In fact in these models the sepsis-induced myocardial depression is positively influenced 

by denitrosylation32,58-60. For reviews on denitrosylation see18,57,60. 

 Biology of S-Nitrosylation 

Nitric oxide is produced by many cell types and has many diverse biological functions. In the 

cardiovascular system, NOֹ is a key regulator of vascular tone61,62; where it is known to mediate its 

effects, in part, by binding to the heme moiety of its effector, soluble GC, with the formation of 

cGMP and subsequent activation of cGMP-dependent signaling. The effects of cGMP are mainly 

mediated by cGMP-dependent protein kinases, cGMP-regulated ion channels and by cGMP-

dependent phosphodiesterases63 (Fig 1). 

There are many additional cGMP-independent actions of NOֹ that rely on modifications of 

biomolecules, including the posttranslational modification of proteins, such those that are 

considered here, i.e., reactions with a reactive cysteine residues to lead to S-nitrosylation or with 

tyrosine to lead to 3-nitrotirosine formation. 



Clearly, S-nitrosylation is the most important and, perhaps, the most frequent process of nitrosation 

in ischemia/reperfusion and cardioprotection scenarios. In fact NOֹ is clearly involved in 

cardioprotection and within tissues there are many proteins with cysteine/thiol groups, especially 

within mitochondria membrane. Moreover, because of NOֹ high reactivity the occurrence of SNO 

in biological systems is quite probable and it is likely that will influence many protein functions. In 

fact, S-nitrosylation has emerged as an intriguing signaling modality, effectively acting as a 

reversible molecular switch analogous to phosphorylation.  

Importantly, these changes (e.g., S-nitrosylation or tyrosine nitration) have each been shown to 

occur with physiological and/or pathophysiological levels of NOֹ. Moreover, these modifications 

have only been found on a limited number of residues in a subset of proteins in in vivo and in vitro 

studies, suggesting that the modifications do not occur randomly and, therefore, may constitute a 

signaling event, akin to phosphorylation9,10,64,65. As said, mitochondrial proteins would be 

preferably S-nitrosylated. In fact, it has been reported that within the hydrophobic environment of 

biological membranes the reaction between NOֹ and O2 is accelerated, thus favoring protein 

nitrosylation66,67 ; it has also been suggested that the high level of reactive-cysteines in 

mitochondrial proteins, and the increased stability of N2O3 in the hydrophobic milieu of the 

mitochondria, would favor S-nitrosylation9,68. 

Several studies have shown that nitrosative protein modifications can alter protein function. In 

particular, there is evidence that S-nitrosylation is reversible, as above described. On the contrary, 

tyrosine nitration is considered mainly as an irreversible modification that can impact on some 

signaling pathways associated with formation of ONOO- and NO2
69,70. As said, NO• may react with 

O-
ֹ to form ONOO-  and it is widely accepted that enhanced ONOO- formation is cytotoxic via 

nitrosative stress. Its toxicity is also in line with the irreversibility of the reaction. However, we 

should keep in mind that physiologic levels of ONOO- may contribute to regulation of normal 

cellular functions via SNO of mitochondrial and non-mitochondrial proteins69-71. Nevertheless, 

several NO-mediated positive signaling appears to derive from SNO of proteins. In fact, many 



physiological cellular functions in which NO is involvedֹ , such as excitation-contraction coupling, 

G-protein coupled receptor signaling, cardioprotection and regulation of cell death processes (i.e., 

apoptosis and/or autophagy), require directly protein SNO and/or are mediated by process that 

follow SNO of proteins (see also below). Although autophagy may be a death process (especially 

when apoptosis is disabled), it is a pro-survival process that has been seen operative in several 

mechanisms of cardioprotection72,73. 

For some authors, SNO of proteins may be considered the typical reaction occurring in redox 

signaling. In fact a number of S-nitrosylated proteins have been identified in cardiomyocytes57,61-

6365,71,74,75 and cardiomyocyte mitochondria in physiological conditions and in 

cardioprotection47,65,76. Yet SNO can be reversed by intracellular reductants such as glutathione or 

ascorbate9,77, as well as by several enzymes, including SOD9,52 (see also below). Therefore, 

dynamic S-nitrosylation/de-nitrosylation reactions, which are reminiscent of phosphorylation/de-

phosphorylation processes, seem essential in cardiovascular regulation58.  

How is protein SNO protective?  

There is a large and growing list of proteins for which SNO has been shown to alter activity and/or 

function (see for example9,64,65,78,79). S-nitrosylation of proteins fulfills the requirements for a 

signaling post-translational modification: SNO is stimulus mediated and is initiated by processes 

that favor NO• formation, either involving or not NOSs. Nitric oxide formed by NOSs or by “non-

NOS” processes can directly (or indirectly, see above) lead to SNO of proteins, which can bind to 

other proteins and can lead to SNO of additional proteins by trans-nitrosylation. 

Similarly to other post-translational modifications, SNO can alter the structure, activity, localization 

and/or stability of proteins, thus altering cell function. Moreover, the nitrosylated cysteine residues 

result “protected” from irreversible oxidation. Similar to phosphorylation, SNO appears to be not 

only reversible, but also targeted to specific cysteines. In fact, target proteins may have thousands of 

cysteine residues, but only a few are reversibly targeted for SNO, as it occurs for ryanodine receptor 



1 (RyR-1)80,81. The de-nitrosylation processes are important for the role of SNO, which can put a 

stop to the signaling, as above described. 

SNO has been shown to modify the activity of proteins in virtually all cellular pathways. However, 

a large number of ion channels seem preferred targets by SNO80,82-86; this is in line with the 

observation that SNO formation is favored by membrane microdomains and it is especially 

important in the context of cardioprotection. For instance Ca++ channel SNO may reduce calcium 

overload in I/R (see also below). 

Although there are no doubts that S-nitrosylation modifies protein and cell function, the protective 

effects of these modifications can be gleaned from specific modifications only. For example, 

protein kinase B (Akt) is a kinase that when phosphorylated plays an important role in signaling 

cardioprotection and PTEN (phosphatase and tensin homologue deleted on Chromosome 10) is a 

phosphatase that dephosphorylates Akt. Both Akt and PTEN have been reported to be subjected to 

process of SNO. While SNO of Akt prevents the formation of a disulfide bond and attenuates the 

activity of the enzyme87, SNO of PTEN results in its ubiquitination and degradation, thus limiting 

Akt dephosphorylation88. These modifications may be a sort of brake booster, so that Akt activity is 

permitted, but its exaggerated activation is avoided. In fact prolonged/exaggerated Akt activation 

has been proposed to be deleterious89. 

As above stated, SNO has also been suggested to shield thiol groups from irreversible oxidation. In 

fact, there are data suggesting that S-nitrosylated thiols are protected from irreversible oxidation90-92 

and this may play a very important role in cardioprotection93,94. Redox stress and redox signaling 

are very important in the genesis of cardiac injury and cardioprotection, respectively10,95. Moreover, 

SNO can also favor other redox modifications, such as disulfide bond formation or glutathiolation 

that may also regulate function. For example, a disulfide bond between the subunits of protein 

kinase A (PKA) is formed after treatment with nitrocysteine, an NO donor, thus leading to PKA 

activation96, which has been also involved in cardioprotection97-99. Moreover S-nitrosylation, by 

enhancing S-glutathiolation of aldose reductase or mitochondrial complex II increases the activity 



of these enzymes100,101. Therefore S-glutathiolation favors the reduction of aldehydes and the 

electron transfer, respectively. Interestingly, S-glutathiolation of both complex II and aldose 

reductase is decreased during reperfusion following ischemia100,101; it might be interesting to 

determine whether cardioprotective maneuvers reverse the loss of S-glutathiolation in reperfusion. 

Preconditioning and Postconditioning 

As above stated, PreC and PostC are two cardioprotective strategies against ischemia/reperfusion 

injury.  

Post-ischemic reperfusion may result in exaggerated ROS generation, Ca++ overload, and reduced 

availability of NO.. These modifications together to swift pH recovery may favor prolonged 

opening of mitochondrial permeability transition pore (mPTP), and other processes contributing to 

cell death, myocardial infarction, stunning (a transient post-ischemic contractile dysfunction), and 

arrhythmias (for reviews see26,102-104).  

Ischemic preconditioning can be obtained with brief periods (a few minutes) of intermittent 

ischemia and reperfusion. These maneuvers trigger two periods of cardioprotection: one 

immediately after the preconditioning maneuvers that elapse two-three hours (early preconditioning 

also known as first window of protection) and a second period of protection (SWOP, also known as 

late preconditioning) that starts 12-24 hours after the preconditioning maneuvers and elapse 48-72 

hours22,35-37,105. Here we consider the first window of protection, which is applied immediately 

before the infarcting ischemia and exerts the most potent protection against infarct size. Recent data 

suggest that early preconditioning cardioprotection is also operative during reperfusion (i.e., in the 

post-ischemic phase) and limits much of the damage due to ischemia and to reperfusion106-109 (see 

also below). 

Postconditioning can be defined as brief (a few seconds) intermittent cycles of reperfusion 

alternating with coronary re-occlusion applied immediately after the infarcting ischemic event. It 

has been shown to reduce ischemia/reperfusion damage, in some cases equivalent to that observed 

with preconditioning.  



Either pre- or post-conditioning phenomena can be triggered by pharmacological interventions, 

including exogenous NO-donors; namely pharmacological PreC or pharmacological PostC110-115. 

After the discovery of PreC and PostC phenomena, reperfusion injury has been appreciated as a 

reality from which protection is feasible, especially with PostC, which is under the control of 

physicians. Some potentially cooperative protective signaling cascades are recruited by both pre- 

and postconditioning, namely the RISK (Reperfusion Injury Salvage Kinase), the SAFE (Survival 

Activating Factor Enhancement) and the cGMP/protein kinase G (PKG) pathways (Fig 2; these 

pathways have been described in several recent reviews, for example27,116-122). In brief, several 

extracellular factors produced endogenously (e.g., adenosine, bradykinin, opioids, etc) bind to cell 

surface receptors promoting the activation of kinase signaling pathways. The extent of interaction 

between different pathways and the precise sequence of elements in these pathways are unclear. 

Nevertheless, a pivotal role has been attributed to the activation of phosphatidyl inositol 3 kinase 

(PI3K)/Akt and p42/p44 extracellular signal-regulated kinase (ERKs)116-118. This pathway, known 

as the RISK pathway, leads to the inhibition of mPTP opening at reperfusion, via downstream 

components of the cascade which include the inhibition of glycogen synthase kinase 3 ß (GSK3ß). 

A pivotal role is also played by NOS and NOֹ. Although the extent to which cGMP/PKG pathway 

contributes to protection is not clearly established at the present, several studies support the 

involvement of NO/cGMP/PKG activation in cardioprotection via the attenuation of Ca++ overload, 

which may be responsible for mPTP opening in reperfusion117. Moreover, it has been suggested that 

the activation of intra-mitochondrial PKCε may cause opening of the mitochondrial KATP channel 

(mKATP), resulting in a slight increase in ROS, which together with NOֹ may favor SNO formation 

which, in turn, may favor mPTP inhibition (Fig 2)119. An additional pathway, the so-called SAFE 

pathway, has been proposed to play a role in cardioprotection. The principal components of the 

SAFE pathway are TNFα, the kinase JAK which phosphorylates the transcription factor STAT3121. 

Besides the nucleus, STAT3 translocates to the mitochondria where it phosphorylates critical 



components conferring cardioprotection (Fig 2). However, the actions of several components of 

these pathways need to be finally proven. 

As said, the cardioprotective signaling pathways are thought to converge on mitochondria, and 

various mitochondrial proteins have been identified as targets of post-transitional modifications in 

both pre- and postconditioning. In these protective pathways, phosphorylative/dephosphorylative 

processes are widely represented. However, cardioprotective modalities of signal transduction also 

include redox signaling by ROS, S-nitrosylation by NO. and derivative, S-sulfhydration by 

hydrogen sulfide, as well as O-linked-glycosylation with beta-N-acetylglucosamine10,123,124. All 

these modalities can interact and regulate an entire pathway, thus influencing each other. For 

instance, enzymes can be phosphorylated and nitrosylated in specific and different site(s) with 

consequent increase or decrease of their specific activity. For example, ERKs may be S-

nitrosylated, thus inhibiting its phosphorylation and activation125. Another protein that may undergo 

NO-mediated S-nitrosylation and phosphorylation is the regulator protein phospholamban, which is 

involved in the control of cardiac contractility and protection9,126,127. 

Both pre and post-conditioning may be triggered by endogenous and exogenous NO9,21,26,27,128. The 

relative importance of classical cGMP/PKG pathway and non-classical processes, such as 

nitrosylation are under intense investigation.  

There are several lines of evidence that S-nitrosylation of critical proteins plays a pivotal role in 

cardioprotection by preconditioning34,129-132 (see also below). Whether S-nitrosylation is involved in 

cardioprotection by PostC is going to be clarified in recent years (see also below). In fact, a 

PubMed search for the words “nitric oxide and preconditioning” gives out thousands articles, 

whereas a search for the words “nitric oxide and postconditioning” returns hundreds of items. 

Moreover, a PubMed search for the words “S-nitrosylation and cardioprotection” gives out sixteen 

items9,34,47,64,65,129-140, six of which34,64,129,130,134,137 are found also with the words “S-nitrosylation 

and preconditioning” that gives out in total seventeen references19,34,64,129-132,134,137-148. However, 

four items only are found with the words “S-nitrosylation and postconditioning”10,47,141,149. 



Nevertheless, with a more accurate search we could found few other articles that discuss the role of 

SNO of proteins in postconditioning. Some of these studies used NO-donors in reperfusion 

(pharmacological PostC) as protective agents and analyzed the role of protein SNO28,46,150-153. 

Intriguingly, in a recent Editorial by R. Schulz and P. Ferdinandy144, which was written as a 

comment to an interesting article of Sun et al154, the authors wonder whether or not “nitric oxide 

signaling differ in pre- and post-conditioning” and in particular they wonder whether “S-

nitrosylation is involved in postconditioning’s protection”. Below we will see that S-nitrosylation is 

involved in both ischemic and pharmacological postconditioning. 

 

Protein S-nitrosylation in preconditioning 

Several reports have shown that PreC maneuvers induce NOֹ production by activation of NOSs. 

While the iNOS is involved in the second window of protection36,37, both constitutive isoforms of 

NOS, namely eNOS and nNOS, are implicated in the first window of protection99,155,156. 

Nevertheless, inhibition of NOS not always abolishes the cardioprotection induced by PreC156-159. 

Therefore the “non-NOS” production of NOֹ may also play a role in PreC scenario160. It has been 

suggested that PreC may provide an environment that favors NOֹ production and SNO of proteins. 

Among pro-SNO conditions are included favorable ion content, redox equilibrium and acidic pH129. 

In particular, acidic conditions favor non-enzymatic nitrite reduction to NOֹ and render protein 

cysteine residues with the pKa lower than intracellular pH more sensitive to SNO. However, S-NO 

bonds are unstable in acidic conditions, so that the observation that pH is transiently acidic in early 

reperfusion of protected hearts (see also below) is in line with an important role of protein S-

nitrosylation for protection against reperfusion injury. In fact it has been suggested that transient 

acidic pH in early reperfusion “triggers” SNO formation and the subsequent recovery of pH may 

avoid S-NO bond instability47. 



The “classical” protection induced by NOֹ in PreC is dependent, at least in part, by the activation of 

GC/ cGMP/ PKG, which in turn may lead to the opening of the mKATP channel in cooperation 

with intra-mitochondrial PKCε13,33(Fig 2). 

Recently, Sun et al., have reported that the protective effect of NOֹ is not related primarily to 

activation of the sGC/cGMP/PKG signaling pathway, but rather through SNO signaling in PreC-

induced early cardioprotection (Fig 1)154. In fact the infusion of the inhibitor of sGC, 1H-

[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), did not abolish completely the cardioprotection 

induced by PreC. Intriguingly, hearts treated with ODQ displayed enhanced protection concomitant 

with a higher SNO level. These results suggest that NOֹ mediated cardioprotection is regulated by 

SNO of proteins rather than through activation of the sGC/cGMP/PKG signaling154,161. With an 

elegant experimental approach the same group131 has demonstrated in isolated heart that caveolin-3-

associated eNOS/NOֹ trafficking between plasma membrane and mitochondria provides an 

important signaling pathway regulating SNO of mitochondrial proteins. It seems that the NOֹ/SNO 

signaling induced by PreC maneuvers is transported to mitochondria starting from the caveolae. In 

fact the caveolae are important for many signaling pathways and the disruption of caveolae could 

inhibit protection by blocking a number of signaling pathways162,163. This is in line with the 

observation that blockade of the internalization of signaling molecules associated with G-protein-

coupled receptors inhibits cardioprotection afforded by PreC164 and it is in line with the central role 

of mitochondria in cardioprotection165,166. However, as above said, a role for sGC in 

cardioprotection has been demonstrated several times, including studies which used a specific sGC 

activator167-169. This suggests that both effects (sCG activation and protein SNO) may take place in 

cardioprotection, with, perhaps, the prevalence of one or the other effect in the different phases of 

the cardioprotective signaling cascade. 

Several nitrosylated proteins have been somehow involved in cardioprotection (Table 1)65. Here we 

consider some of them involved in preconditioning only. The action of S-nitrosylation during PreC 

is important for many enzymes and cellular structures. In fact, SNO induces modification of the 



activity of both metabolic enzymes155 and proteins involved in the mechanisms for calcium 

control171, which are particularly important for cardioprotection (Fig 3). In fact, in cardiac cells the 

levels of Ca++ are regulated by different mechanisms, including Ca++ handling by trans-membrane 

calcium channels129,172, mitochondrial transporters and sarcoplasmatic components, such as 

ryanodine receptor 2 (RyR-2) and sarcoplasmatic reticulum pump (SERCA2)
129,171 (Fig 4). The 

relative contribution of each of these mechanisms to the intracellular Ca++  levels is different in pre-

ischemic, ischemic and post-ischemic conditions with also gender-based differences (for reviews 

see130,173).  

Similarly to RyR-1 in skeletal muscle175,176, RyR-2 in cardiac cells177 is endogenously S-

nitrosylated, suggesting that SNO is a physiological modulator of both skeletal and cardiac cell 

excitation-contraction coupling. In particular, a number of studies have reported that NO-donor 

concentration, oxygen tension, membrane potential, the presence of RyR agonists and other 

sulfhydryl modifying reagents may influence the effect of SNO on RyR activity175-181. The majority 

of studies report an increased Ca++ release following SNO of RyR-1 in skeletal muscle, whereas the 

effect of RyR-2 SNO is less clear in cardiac muscle (question mark in Fig 4). Some evidences 

suggests that RyR-2 SNO increased Ca++ release while other data suggest that RyR-2 SNO reduced 

Ca++ release. In fact, it has been reported that like RyR-1, RyR-2 activity is dependent on oxygen 

tension. However, unlike RyR-1, RyR-2 was not effectively S-nitrosylated and activated by NO-

donor. Yet, RyR-2 was modified and activated by GSNO, ONOO- and HNO (one-electron 

reduction product of NO.)177,179,182,183. Ischemic PreC and application of GSNO, HNO and NO 

donors resulted in cardiac protection against I/R injury and elicited a similar pattern of protein 

SNO129,182,184. This suggests that S-nitrosylation of protein protects cells from I/R damage. 

Although it is likely that RyR-2 is modified in the ischemic/reperfused and conditioned hearts, the 

redox modifications and activity are unclear. 

The effects of NO-related activity and cellular thiol redox state on basal L-type calcium current, 

(ICa,L), have been studied using the patch clamp technique. It has been found that both cGMP-



dependent and redox-dependent mechanisms (i.e., S-nitrosylation and/or thiol oxidation) are 

involved in inhibition and stimulation of ICa,L, respectively. These findings suggest that direct 

redox modulation of sarcolemmal L-type calcium channels is a physiologically relevant mechanism 

for modulation of cardiac mechanical function185. However, it has been reported that nitrosothiols 

induce inhibition of L-type calcium channels (Fig 4), and that this inhibition involves both a 

reduction of the open probability of the single channel and a reduction of the 

conductance129,172,186,187. Importantly, it has been reported that α1-subunits of the Ca++ channels are 

constitutively S-nitrosylated in the mouse heart. Yet, their nitrosylation increases after ischemia 

leading to the inhibition of the channels in female hearts only, supporting gender differences in 

post-ischemic Ca++-overload in cardiac cells, which can be at the basis of smaller infarct size in 

females84. In particular, the S-nitrosylation of α1 subunit is increased during PreC maneuvers. 

Moreover, the pharmacological PreC with GSNO (a nitric oxide donor) reduces the damage after 

I/R and is associated with a decreased Ca++ entry through L-type calcium channels129. Similarly, the 

pharmacological preconditioning induced by PAF (platelet activating factor) leads to the S-

nitrosylation of calcium channels and consequent reduction of post-ischemic Ca++ overload132,188. 

Another important protein that is S-nitrosylated is the SERCA2 pump129, which is also involved in 

calcium handling and is associated to infarct size reduction and improved cardiac function 

following myocardial ischemia129,189. In fact, during ischemia and early reperfusion, SERCA2 pump 

activity may reduce calcium overload, also improving diastolic cardiac relaxation190. Importantly, 

PreC and GSNO pretreatment (concentration-dependently) increase SERCA2 activity. Moreover, it 

has been suggested that SERCA2 pump SNO is responsible for the increased activity, which is 

associated to a reduced open probability of mPTP (Figs 2, 3 and 4). In fact, as said, the pore 

opening depends on calcium levels.  

Besides single protein S-nitrosylation, such as Ca++ channels and SERCA2, multiple S-nitrosylated 

proteins have been shown by proteomic studies after PreC64,191. Many of these proteins have been 

found within mitochondria. In fact, PreC increases the S-nitrosylation of different proteins 



responsible for mitochondrial metabolism (e.g. alpha-ketoglutarate dehydrogenase, glycogen 

phosphorylase, aconitase,), with modification and preservation of their activity65,138,192. During PreC 

was also observed the inhibition of F0F1-ATPase by S-nitrosylation, with consequent reduction of 

ATP consumption by reserve mode of F0F1-ATPase, which typically occurs in ischemic 

conditions138,192 (Fig 3). The inhibition of F0F1-ATPase preserves ATP levels and reduces the 

mitochondrial membrane potential, thereby reducing the driving force for calcium uptake into the 

mitochondrial matrix, thus increasing tolerance to ischemia160. Another important component that is 

subjected to S-nitrosylation during PreC, is the mitochondrial respiratory complex I, which is 

reversible inhibited when nitrosylated151. An irreversible inhibition of this complex can occur when 

it is subjected to nitrosation by ONOO-9,193. 

As stated above, an important effector of cardioprotection is the inhibition of mPTP 

opening25,165,194. In fact this pore is regulated by ROS, calcium and mitochondrial membrane 

potential, which are regulated by SNO of proteins. Not only the decrease of calcium loading by 

increased reuptake by SNO of SERCA2, but also the S-nitrosylation of F0F1-ATPase reduces 

indirectly the opening of mPTP, which reduces the breakdown of glycolytic ATP and the 

acceleration of the fall in the mitochondrial membrane potential. Moreover, S-nitrosylation of 

CyPD (cyclophillin D)195 and/or of VDAC (voltage dependent anion channel)149, two putative 

components of mPTP rich in thiol groups, may occur in cardioprotection. 

Recently Kohr et al134 using two different methods to measure protein oxidation have shown that 

preconditioning leads to SNO of many proteins and that a large majority of these proteins are 

protected from oxidation. 

All together, these data support the view that S-nitrosylation of mitochondrial proteins serves as an 

important mechanism of preconditioning cardioprotection. 

 

Is S-nitrosylation important for postconditioning’s protection?  



Several lines of evidence and experimental data suggest that S-nitrosylation is involved in 

postconditioning’s protection. 

As stated, NOֹ can derive from enzymatic and non-enzymatic processes and the latter are favored 

by acidosis1,196, a condition  that is of paramount importance in inducing postconditioning’s 

cardioprotection128. As reported by several authors, PostC attenuates endothelial cell dysfunction by 

increasing eNOS activity and NOֹ bioavailability 21,197. Activation of PKC plays a central role in 

cardioprotection26 and postconditioning198,199, and, importantly, PKC activation via redox-sensible 

S-nitrosylation process has been also suggested91. We should recall that PKC is also a target of 

PKG, thus further supporting a protective role of sGC/cGMP/PKG signaling. Whether PKG may 

target directly or indirectly PKC is a matter of debate13,149,200,201.  

We have found that PostC discretely changes the activity of antioxidant enzymes in early 

reperfusion, slightly decreasing SOD and increasing catalase activity47. Since SOD may be a de-

nitrosylating enzyme9, these effects may favor S-nitrosylation thus reducing injury due to oxidative-

stress (Fig 5).  

The instantaneous redox state and ultrastructural accessibility of cysteine residue(s) under low-

oxygen tension, such as hypoxia, ischemia and postconditioning intermittent ischemia/reperfusion 

may determine whether a particular thiol in a given protein is subjected to S-nitrosylation202. 

We have shown in rat hearts that after 7-min of reperfusion ischemic PostC induces a reduction in 

3-nitrotyrosine levels and an increase in S-nitrosylation of proteins, which persist for at least the 

120 min of reperfusion47. The reduced levels of 3-nitrotyrosine in PostC have also been observed by 

Inserte et al49. Very recently, we have shown that protein S-nitrosylation occurs mainly in 

mitochondria either after ischemic PostC or pharmacological PostC induced by Diazoxide149 (a drug 

supposed to promote ROS-signaling through actions on mKATP channels and connexin 43)25,203-205. 

In another study, addition of a mitochondria-targeted SNO at the start of reperfusion (i.e., 

pharmacological PostC) has also been found to be cardioprotective206. The NOֹ-donor used in this 

study is the so-called MitoSNO, which comprises the well known NOֹ-donor SNAP (S-nitroso-N-



acetylpenicillamine) conjugated to a triphenylphosphonium (TPP) moiety. The lipophilic TPP 

allows MitoSNO to pass rapidly through membranes driven by the membrane potential and 

therefore to accumulate several-hundred-fold within the mitochondria, where it generates NOֹ and 

S-nitrosylates thiol proteins206. The nitrosylation of proteins by MitoSNO and other donors has been 

confirmed by other authors both in basal conditions and in the context of postconditioning 

cardioprotection206,207. Intriguingly, in a recent study Methner et al150 have reported that the most 

abundant isoforms of PKG (PKGI) within cardiomyocyte is involved in cardioprotection against 

ischemia/reperfusion injury. However, after cardiomyocyte-specific ablation of the PKGI gene in 

the mouse, these authors have shown that it is possible to protect the hearts with several 

interventions, including PostC with intermittent ischemia or with the NOֹ donor MitoSNO, via S-

nitrosylation of mitochondrial proteins. Therefore, the authors concluded that PostC may afford 

protection either by-passing PKGI or by acting independently or downstream of it. Using this 

conditional knockout approach to inactivate PKGI the authors suggested differences between 

cGMP/PKGI pathway in myocytes and other cardiac cell types during ischemic PostC’s protection 

in vivo. However they cannot rule out that the exogenous and endogenous NOֹ may act to protect 

the heart from reperfusion injury in a manner that depends on PKG in other cardiac cell types. In 

fact, PKG has been involved in PostC protection in different models by several authors49,150,208,209. 

Therefore, for the reasons above reported, NO appears to be an important mediator in PostC and 

both cGMP/PKG-dependent signaling49,150,208and mitochondrial protein S-nitrosylation47,149play a 

pivotal role in postconditioning’s cardioprotection (Fig 5). 

Our recent finding that PostC with Diazoxide enhances S-nitrosylation, supports the idea that an 

appropriate redox environment is necessary for SNO-mediated cardioprotection 25,149,203-205. 

Intriguingly, Diazoxide enhances protein SNO also in the absence of ischemia, thus suggesting that 

part of the preconditioning effect induced by this drug may be attributed to the S-nitrosylation of 

critical proteins. 



During the first minutes of reperfusion usually a typical large burst of ROS occurs in naïf (not 

protected) hearts. The ROS burst is well documented to result in the irreversible oxidation of a 

number of important proteins. These proteins are irreversibly modified and need to be degraded and 

re-synthesized to regain normal function, otherwise myocardial injury occurs. Because SNO is a 

transient readily reversed modification, the shielding effect of SNO must be timing. This could be 

of paramount importance during PostC maneuvers. In fact the ROS burst is attenuated by PostC 

maneuvers and SNO occurring during PostC may shield modified cysteines from more irreversible 

states of oxidation till the burst of ROS vanishes. This point of view is in line with the experimental 

evidence that a delay in performing PostC maneuvers results in a loss of protection22,94,210. 

It has been find that protein nitration may be beneficial45,46or deleterious49,211,212in PostC. We have 

proposed that protein nitration may be a transient effect of PostC, which is suddenly followed by 

the prevalence of protein S-nitrosylation47.  

Further studies are needed to fully explore the role of protein SNO in both cardiomyocytes and in 

non-myocyte cell populations as well as the signaling pathways involved in cardioprotection. In 

particular, it is necessary to individuate the specific S-nitrosylated proteins, their main localization 

and the role they have in PostC cardioprotection. 

 

Conclusions 

Coronary heart disease is a major cause of death and morbidity worldwide. Nitrosative and 

oxidative/reductive stress is among the major contributors to its varied pathophysiology. New 

insights into the sources of oxidative/nitrosative stress, its compartmentalized targets, and the 

understanding of endogenous and exogenous modulators “designed” to control this stress may pave 

the road for novel approaches and therapies. These can go further to oxidant-scavenging therapies 

for cardiovascular disease that have been disappointing to date. With no doubt SNO is gaining 

much attention in the “cardiovascular community” and the understanding of its precise role may 

open new perspectives in the field of ischemic heart disease. As evidenced in this minireview the 



nitrosative/oxidative signaling is a major player in the triggering of cardioprotection and among the 

plethora of reaction mediated by this signaling the covalent attachment of an NO-moiety to a 

nucleophilic protein sulfhydryl resulting in SNO is a fundamental step for cardioprotection. Here, 

we have highlighted experimental evidences of SNO contribution in both pre and postconditioning 

and have considered the possible cooperation between nitration and nitrosylation in inducing 

postconditioning protection.  
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Legends 

Figure 1. Nitric Oxide Based Signaling.  

Many of the effects mediated by nitric oxide (NO.) are due to production of cyclic guanosine 

monophosphate (cGMP) or posttranslational protein modifications, such as S-nitrosylation (SNO). 

These processes are deactivated by cGMP-phosphodiesterase (PDE), which hydrolyzes cGMP to 

guanosine monophosphate (GMP), and by de-nitrosylation, respectively. 

GTP: guanosine triphosphate; Protein-Cys-SH: protein cysteine thiols; sGC: soluble guanylyl 

cyclase. 

 

Figure 2. Cardioprotective Pathways Activated by Preconditioning and Postconditioning. 

Preconditioning and postconditioning, obtained with brief intermittent ischemia or with 

pharmacological agents, allow the heart to activate cardioprotective signal pathways, including the 

so-called cGMP/PKG, RISK (Reperfusion Injury Salvage Kinase) and SAFE (Survival Activating 

Factor Enhancement) pathways; three pathways which interact to convey the protective stimulus 

from the cell surface to the mitochondria, where many of the pro-survival signals appear to 

converge in reperfusion phase. These pathways comprise the involvement of NOS and the 

production of nitric oxide (NO.) and, in fact, several mitochondrial proteins are nitrosylated (SNO). 

AKT: protein kinase B; cGMP: cyclic guanosine monophosphate; eNOS: endothelial nitric oxide 

synthase; ERK: p42/p44 extracellular regulated kinase; GC: guanylyl cyclase; GPCR: G-protein 

coupled receptor; GSK3β: glycogen synthase kinase 3 beta; gp130: ligand-binding molecule; IL-6: 

interleukin 6; JAK: Januse kinase; MEK: mitogen extra regulated kinase; mKATP mitochondrial 

KATP channels; mPTP: mitochondrial permeability transition pore; PI3K: phosphatidyl inositol 3 

kinase; PKG: protein kinase G; PKCε: protein kinase C epsilon; STAT3: Signal transducer and 

activator of transcription 3; TNF: Tumor necrosis factor; TNFR2: Tumor necrosis factor receptor 2. 

 

Figure 3. S-Nitrosylated Proteins during Preconditioning (PreC) 



S-nitrosylated proteins produced by the PreC maneuvers can contribute to cardioprotection 

influencing mechanisms for calcium control and inhibiting opening of mitochondrial permeability 

transition pore (mPTP). 

During PreC several proteins are nitrosylated (SNO). These include L-type calcium channels 

sarcoplasmatic reticulum pump 2 (SERCA2) which are responsible for a decreased of Ca++ loading 

and consequent reduced open probability of mPTP. Moreover the inhibition of F0F1-ATPase 

reduces indirectly the opening probability of mPTP. In fact F0F1-ATPase inhibition preserves ATP 

levels and reduces the mitochondrial potential, thereby reducing the driving force for Ca++ uptake 

into the mitochondrial matrix. PreC also increases the S-nitrosylation of different  proteins involved 

in mitochondrial metabolism (i.e. Alpha-ketoglutarate dehydrogenase (αKGDH), mitochondrial 

respiratory complex I). 

ANT: adenine nucleotide translocator; CyPD: cyclophilin D; IMM: inner mitochondrial membrane; 

OMM: outer mitochondrial membrane; ROS: reactive oxygen species; VDAC: voltage dependent 

anion channel. 

 

Figure 4. Control of Ca++ Handling by S-Nitrosylation. 

SNO affects the activity of proteins involved in the mechanisms of Ca++ handling. The cardiac form 

of the tetrameric ryanodine receptor/Ca++ release channel (RyR2) colocalizes with neuronal nitric 

oxide synthase (nNOS) in the sarcoplasmic reticulum membrane. S-nitrosylation of RyR2 (RyR-

SNO) may affect Ca++ release; however whether RyR-SNO increases or decreases Ca++ release is 

not clear in cardiac muscle (question mark). The sarcoplasmic reticulum Ca++ ATPase pump 

(SERCA2) is also S-nitrosylated and is associated to infarct size reduction as well as to improved 

cardiac function following myocardial ischemia. While S-nitrosilatyon increases activity of 

SERCA2, it induces the inhibition of L-type calcium channels colocalized on sarcolemma with 

endothelial NOS (eNOS). 

 



Figure 5. Protein S-Nitrosylation During Intermittent Reperfusion in Postconditioning. 

Intermittent reoxygenation, and acidosis are conditions that may allow nitric oxide (NO.) production 

and S-Nitrosylation (SNO) of mitochondrial proteins, while limiting 3-nitrotyrosine (P-Tyr-3-NO2) 

formation. Superoxide dismutase (SOD) downregulation may limit the process of denitrosylation.  

ANT: adenine nucleotide translocator; N2O3: dinitrogen trioxide; NOSs: nitric oxide synthases; O2
-.: 

superoxide anion; ONOO-: peroxynitrite; VDAC: voltage dependent anion channel. 

 

 



 

 

 

 

 



 

 

 

 



 



 


