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Abstract

Single-walled zigzag Beryllium Oxide (BeO) nanotubes are simulated with anab initio quan-

tum chemical method. The (n,0) family is investigated in the range fromn= 8 (32 atoms in

the unit cell and tube radiusR= 3.4 Å) ton= 64 (256 atoms in the cell andR= 27.1 Å). The

trend towards the hexagonal monolayer (h-BeO) in the limit of large tube radiusR is explored

for a variety of properties: rolling energy, elastic modulus, piezoelectric constant, vibration

frequencies, infrared (IR) intensities, oscillator strengths, electronic and nuclear contributions

to the polarizability tensor. Three sets of IR-active phonon bands are found in the spectrum.

The first one lies in the 0 - 300 cm−1 frequency range and exhibits a very peculiar behavior:

the vibration frequencies do tend regularly towards zero whenR increases while their IR in-

tensities do not; the nature of these normal modes is unveiled by establishing a connection

between them and the elastic and piezoelectric constants ofh-BeO. The second (680 - 730

cm−1) and third (1000 - 1200 cm−1) sets tend regularly, but with quite different slope, to the

optical modes of theh-BeO layer. The vibrational contribution of these modes to the two com-

ponents (parallel and perpendicular) of the polarizability tensor is also discussed. Simulations

are performed using the CRYSTAL program which fully exploits the rich symmetry of this class

of one-dimensional periodic systems: 4n symmetry operators for the general (n,0) tube.

Introduction

Since their discovery,1 carbon nanotubes (CNTs) have attracted the attention of the scientific com-

munity for their unique electrical, mechanical and thermalproperties.2 The search for non-carbon

nanotubes started soon after in the domain of highly anisotropic layered phases such as hexagonal

boron nitride (BN) and transition metal disulfides, which canalso adopt cage-like structures such as

fullerenes.3–5 Indeed, it is known that inorganic compounds overcome one ofthe main problems

in the technological use of CNTs that is, the dramatic dependence of their electronic properties

on rolling direction and tube diameter. Nowadays, part of the interest in nanotubes is redirected

to isotropic semiconducting and inorganic materials.6 Among these, metal oxides stand out as
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some of the most versatile compounds, with possible applications ranging from microelectronics

to catalysis and chemical sensors production.7,8

In this respect, beryllium oxide (BeO) is an interesting material, which constitutes a limit case

between ionic compounds and semiconducting binary materials such as BN or ZnO.9,10 In contrast

with other alkaline earth oxides, crystalline BeO shows manytypical properties of covalent solids:

beryllium and oxygen atoms are bound together bysp3 hybridized bonds in a compact wurzite-

type structure. It combines insulating behavior (band gap of ∼ 10.6 eV) with very high thermal

conductivity and high melting point, so it is often used as a refractory material in metallurgy or

heat-removing insulator in electronics.11,12 A graphitic meta-stable layered phase, analogous to

the stable hexagonal BN, was also predicted.13

Recently, BeO nanotubes have been proposed as rolled up monolayers that are isoelectronic

to carbon and BN nanotubes and exhibit the same structure, with the main difference being the

increased polarity of the bond.14 A larger band gap and properties weakly dependent on nanotube

radius and chirality - even more so than for BN nanotubes - can be expected. It has been suggested

that BeO nanotubes can be synthesized by plasma-chemical reaction or through chemical vapor

deposition,14 a method that has successfully been applied to other metal oxide nanotubes.7,8

Recent theoretical investigations, performed within the Density Functional Theory (DFT) with

linear density approximation (LDA) and self-interaction corrected LDA confirm their insulating

character and mechanical properties comparable to those ofCNTs.14,15 The effect of impurities

and defects has been investigated theoretically,16,17 as well as their adsorption properties18 and

optical response in the high-frequency range.19

In the present work we study the properties of BeO nanotubes ofthe (n,0) family (fromn = 8

to n = 64) throughab initio quantum mechanical simulations performed with the hybrid B3LYP

(Becke, three-parameter, Lee-Yang-Parr) functional.20,21The same approach has been successfully

applied to the investigation of CNTs,22,23BN nanotubes,24–27ZnO nanotubes,28 imogolite,29 and

chrysotile.30 Recent improvements in the CRYSTAL program permit to fully exploit the symmetry

of the system (the point group contains as many symmetry operators as there are atoms in the unit
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cell, up to 64×4 = 256 for then = 64 tube) and to drastically reduce the computational cost.Thus,

we are now able to extend our simulations to larger tube diameters with respect to calculations

reported in the literature so far,15 and, as a consequence, to improve the description of the conver-

gence of a variety of tube properties to those of the corresponding flat monolayer. The total energy

and its difference with respect to the BeO hexagonal monolayer (h-BeO), relaxation geometries

and energies, elastic moduli and piezoelectric constants,vibrational frequencies and infrared (IR)

intensities are all investigated as a function ofn. The polarizability of the tube (electronic and nu-

clear contribution) is also explored. Some emphasis is given on the relative speed with which each

property converges to corresponding value of the monolayer. All the above mentioned properties

but the elastic one are here computed and discussed for the first time in the literature as concerns

BeO nanotubes. From the accurate simulation of these convergences, some connections are dis-

cussed between physical properties of nanotubes and flat monolayer: the relationship between a

particular set of IR-active vibration modes of the nanotubes, with vanishing vibration frequency as

a function ofn, and the elastic and piezoelectric constants ofh-BeO is illustrated and discussed.

The paper is organized as follows. A detailed description ofthe methodological and computa-

tional setup used is presented in Section , in particular as regards the calculation of the vibration

frequencies and related properties with a full exploitation of symmetry. Results are presented and

discussed in Section , conclusions drawn in Section .

Computational Method

All the calculations reported in the manuscript are performed with the program CRYSTAL for ab

initio quantum chemistry of solid state.31,32 An all-electron atom-centered Gaussian-type-orbital

basis sets (BS) is adopted in conjunction to the popular hybrid functional B3LYP.20,21 The BS

used has been obtained by partially splitting thespcontractions and re-optimizing the outermost

exponents of a standard 6-311G∗ split-valence BS: the exponents, in bohr−2, of the most diffuse

functions are 0.1222 and 0.5580 forspandd Be orbitals and 0.2720 and 1.2500 forspandd O
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orbitals. The adopted BS is reported on the CRYSTAL website.33

The level of accuracy in evaluating the infinite Coulomb and Hartree-Fock exchange series is

controlled by five parameters,31 for which values of 8,8,8,8,16 are used. The threshold determin-

ing the energy convergence of the self-consistent-field (SCF) step of the procedure is set to 10−9

hartree for geometry optimizations, 10−10 hartree for the calculation of the electronic contribution

to the polarizabilities and 10−11 for the calculation of vibrational frequencies and IR intensities.

Reciprocal space is sampled according to a sublattice with shrinking factor set to 8, correspond-

ing to 5, 10 and 50 independent~k-points in the irreducible part of the first Brillouin zone in the

nanotubes, monolayer and bulk BeO, respectively. The DFT exchange-correlation contribution

to the energy is evaluated by numerical integration over theunit cell volume. The most accurate

predefined pruned grid available in the CRYSTAL program (namely,XXLGRID keyword) is used

for numerical integration whose accuracy can be estimated by the error in the electronic charge per

unit cell: 2.5×10−4|e| out of a total of 384|e| for the (16,0) BeO nanotube, for instance.

All the structures have been optimized by using analytical energy gradients with respect to both

atomic coordinates and lattice parameters,34–36 with a quasi-Newton scheme combined with the

BFGS algorithm for Hessian updating.37–40The convergence of the optimization has been checked

on both gradient components and nuclear displacements, forwhich the default values are chosen.31

The calculation of the vibrational frequencies at theΓ point (i.e. at the center of the first

Brillouin zone;~k =~0) is performed within the harmonic approximation; the mass-weighted Hessian

matrixW is constructed by numerical differentiation of the analytical gradients with respect to the

atomic Cartesian coordinates:

WΓ
ai,b j =

1√
MaMb

(

∂ 2E
∂ rai∂ rb j

)

, (1)

whereMa andMb are the atomic masses of atomsa andb and rai is the displacement of atom

a from its equilibrium position along thei-th Cartesian direction. Details on the calculation of

vibrational frequencies with CRYSTAL can be found elsewhere41,42 as well as some examples of
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application.43–45 Integrated intensities for IR absorptionIp are computed for each modep by

means of the mass-weighted effective mode Born charge vector~Zp,46,47evaluated through a Berry

phase approach:48,49

Ip =
π
3

NA

c2 ·dp ·
∣

∣

∣

~Zp

∣

∣

∣

2
, (2)

with
∣

∣

∣

~Zp

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∂
∂Qp

~µ

∣

∣

∣

∣

∣

2

, (3)

whereNA is Avogadro’s number,c the speed of light,dp the degeneracy of thep-th mode,~µ the

cell dipole moment,Qp the normal mode displacement coordinate. More details on the calculation

of the infrared intensities can be found elsewhere.50

The electronic contribution to the static polarizability is evaluated through a Coupled-Perturbed

Kohn-Sham/Hartree-Fock (CPKS/HF) scheme51 adapted to periodic systems.52 This is a pertur-

bative, self-consistent method that focuses on the description of the relaxation of the crystalline

orbitals under the effect of an external electric field. The perturbed wave-function is then used to

calculate the dielectric properties as energy derivatives. The reader who might be interested in both

the method and its implementation in the CRYSTAL code can find all the details elsewhere.26,53–56

The total static polarizabilityα0 is the sum of the electronic and the vibrational contributions:

α0
i j = αel

i j +αvib
i j = αel

i j +∑
p

Zp,iZp, j

ν2
p

, (4)

whereνp is the vibrational frequency of the modep andi, j = x,y,z label Cartesian directions.

The elements of the elastic tensor, for 3D systems, are usually defined as:57

Cvu =
1
V

∂ 2E
∂εv∂εu

∣

∣

∣

∣

∣

0

, (5)

whereε is the rank-2 symmetric tensor of pure strain and Voigt’s notation is used according to

which v,u = 1, . . .6 (1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy).58 Since volumeV is not

defined for 1D and 2D systems, it is here omitted (length or surface could be used instead) and
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Figure 1: (color online) Graphical representation of the structure of (a) the 3D wurzite-like BeO,
(b) theh-BeO monolayer and (c) the (10,0) BeO nanotube. These pictureshave been prepared
using the J-ICE online interface to Jmol.61

all the elements involving non-periodic directions (y,z for 1D andz for 2D systems) are null by

definition.

The piezoelectric tensoreelements (rank-3) can be defined as (in Voigt’s notation):59,60

eiv =
∂Pi

∂εv

∣

∣

∣

∣

0
, (6)

where~P is the polarization (i = 1,2,3) and the derivative is calculated at zero strain. In CRYSTAL

the polarization can be computed either via localized Wannier functions or via the Berry phase

(BP) approach.49 The latter scheme is used in the present study. Again, since the volume is not

defined for 1D and 2D systems, here the polarization~P reduces to a dipole moment.
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Results and Discussion

Bulk and monolayer

In this section we briefly discuss structural, electronic and vibrational properties of BeO in its bulk

form, that is, with a wurzite-type structure, and flat monolayer form with hexagonal symmetry.

The structure of the bulk, slab and (10,0) nanotube of BeO are graphically compared in Figure 1.

The data reported in this section will serve as a reference inthe next ones.

The calculated lattice parameters for the bulk area = 2.701 Å andc = 4.383 Å, corresponding

to a Be-O distance of 1.649 Å. In the monolayer, the bond distance shrinks of 4% to 1.537 Å,

corresponding to a lattice parametera = 2.662 Å. The polarity of the bond inh-BeO is also found

to be reduced with respect to the bulk with atomic Born chargeschanging from 1.84|e| to 1.52|e|.

The calculated electronic band gap in the bulk is 10.1 eV, to be compared with an experimental

value of 10.6 eV,62 while for the slab an indirect gap of 9.6 eV and aΓ direct gap of 10.2 eV are

predicted. The energy difference between bulk and monolayer is 7.16 mHa per BeO formula unit.

The IR spectrum of the bulk consists of two modes: a non-degenerate and a twofold degenerate.

The longitudinal (transverse) optical frequencies are 682(1109) and 725 (1123) cm−1 and the

corresponding IR intensities 1192 and 2256 km/mol, respectively. TheΓ vibration modes for the

flat monolayer are three: a non degenerate mode at 721 cm−1 and two degenerate modes at 1016

cm−1, with intensities of 48 and 1371 km/mol respectively.

The electronic polarizability of the bulk is almost isotropic, with αe
xx = αe

yy = 1.974 Å3 and

αe
zz= 2.030 Å3. A certain degree of anisotropy appears in the static total polarizability tensor:

α0
xx= α0

yy= 4.742 whileα0
zz= 5.308 Å3. The in-plane polarizability ofh-BeO is somehow similar

to the one of the bulk:αe
‖ = 2.254 Å3 andα0

‖ = 4.925 Å3. Conversely, the out-of-plane polariz-

ability is much lower:αe
⊥ = 0.708 Å3 andα0

⊥ = 1.076 Å3.

Elastic and piezoelectric constants ofh-BeO have been computed with the automated algo-

rithms implemented in the CRYSTAL program.57 The nonzero components of the elastic tensor

of the monolayer areC11 = C22 = 2.223 Ha,C12 = 0.810 Ha andC66 = 1/2(C11−C12) = 0.707
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Figure 2: Rolling energy∆E with respect to the slab (red squares) and geometrical relaxation
energyδE (blue circles) of BeO nanotubes of the (n,0) family as a function ofn. All energies are
reported per BeO unit. For the rolling energy, the result of a fitting with the function∆E = a/n2

is shown as well. The inset shows the effect of the structuralrelaxation as concerns Be and O
subrings for the (8,0) nanotube (side and front views).

Ha. The only independent component of the piezoelectric tensor ise11 = −e12 = −e26 = 0.926

|e|×bohr; here units follow from neglecting the volume (not defined ina 2D system) in the defi-

nition of elastic and piezoelectric constants.

Structure and stability

The formation of a BeO nanotube is endothermic. The energy cost of its formation is quantified

by the rolling energy∆E, defined as the difference between the energy of the relaxed tube and

that of the relaxed monolayer. The rolling energy can be separated in a positive contribution, the

cost of constructing the unrelaxed tube simply by rolling upthe relaxed monolayer, and a negative

contribution resulting from the subsequent relaxation. Wethen define the relaxation energy of the

tube,δE, as the difference between the energies of the relaxed and unrelaxed tube structures.

Both quantities are reported in Figure 2 as a function ofn. For the smallest tube (n = 8) δE

is about 1 mHa per BeO unit, then it rapidly decreases: atn = 64 it is two orders of magnitude
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smaller, 11µHa. The rolling energy∆E turns out to be four-five times larger thanδE and exhibits

a clear 1/n2 behavior; in order to highlight this aspect, the rolling energy has been fitted to the

function ∆E = a/n2 and the results reported in Figure 2. This behavior is in agreement with the

predictions of the classical theory of elasticity,63 as already noticed for carbon nanotubes.64 While

atn= 8 ∆E has a value that is comparable with the energy difference between bulk and monolayer,

atn= 64 it is almost negligible, 71µHa.

The explicit values of∆E and δE for eachn are reported in Table 1. The rolling energies

of the BeO nanotubes are found to be lower, at comparable radii, than those reported for BN

nanotubes.26 This is promising for actual production of BeO nanotubes, although we also notice

that the formation of BeO monolayers from bulk crystals is unfavorable with respect to the BN

case.

Structure parameters are also reported in Table 1. For eachn, the unrelaxed tube radius Ru (as

obtained simply by rolling up the monolayer without allowing any atomic relaxation) is reported as

well as RBeand RO that represent the radii of Be and O subrings after atomic relaxation. Relaxation

is relatively small in all cases, with the exception of the smallest tubes. Both Be and O atoms tend

to move outwards, in order to reduce the strain. Forn= 8, the radius of the Be subring increases by

0.02 Å whereas O atoms move further by 0.06 Å, in order to reduce steric repulsion due to enhanced

population of valence atomic orbitals; the inset in Figure 2shows the effect of structural relaxation

as concerns Be and O subrings for the (8,0) nanotube. For largetubes, Be-O interatomic distances

are the same as in the slab (1.537 Å), while for the smallest tubes the two inequivalent distances

have a slightly different length (the difference being 0.01Å for the n= 8 tube, for instance) with

the resulting formation of BeO units which are separated fromone another. Lattice parameters are

stable within 5‰, and correspond to
√

3a, wherea is the monolayer lattice parameter. Ionicity of

Be-O bonds can be estimated by means of the Born charges which increase from about 1.3|e| for

n= 8 to 1.5|e| for n= 64, already at theh-BeO limit.
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Table 1: Calculated properties of the (n,0) series of BeO nanotubes and BeO monolayer
(h-BeO). δE and ∆E are the relaxation and rolling energies, respectively (seetext for a defi-
nition); their values are in µHa per BeO unit. Ru is the unrelaxed radius of the tube;RBe and
RO are the radii of the Be and O subrings after relaxation (in Å). The band gap (BG) is re-
ported in eV. Ys is the modified elastic modulus in TPa×nm and e is the piezoelectric constant
in a.u. (|e|× bohr) per BeO unit. α‖ and α⊥ are the longitudinal and transverse components
of the electronicαe and static α0 polarizabilities per BeO unit (in Å 3). The last row reports
the n→ ∞ limit deduced from monolayer properties; see text for the derivation in the case of
elasticity and polarizabilities.

α‖ α⊥

n δE ∆E Ru RBe RO BG Ys e αe α0 αe α0

8 -1007 4003 3.389 3.412 3.473 9.09 0.130 -1.452 2.265 5.034 1.166 1.874
10 -571 2501 4.236 4.255 4.302 9.32 0.132 -1.380 2.262 5.012 1.194 1.948
12 -358 1722 5.083 5.099 5.138 9.38 0.134 -1.337 2.260 5.001 1.219 2.019
14 -246 1269 5.930 5.944 5.977 9.43 0.135 -1.316 2.259 4.994 1.240 2.084
16 -187 982 6.777 6.790 6.819 9.47 0.135 -1.299 2.258 4.990 1.259 2.143
20 -113 652 8.472 8.482 8.505 9.50 0.136 -1.282 2.257 4.984 1.289 2.245
24 -79 463 10.166 10.175 10.194 9.51 0.136 -1.273 2.256 4.982 1.312 2.328
32 -44 254 13.555 13.561 13.575 9.53 0.136 -1.264 2.255 4.976 1.345 2.452
48 -19 124 20.332 20.337 20.347 9.54 0.137 -1.258 2.255 4.976 1.383 2.611
64 -11 71 27.110 27.114 27.121 9.55 0.137 -1.257 2.254 4.973 1.405 2.703

∞ 9.58 0.137 -1.255 2.253 4.971 1.476 3.065

Monolayer 9.62 0.137 -1.263 2.254 4.982 1.481 3.088

Elasticity and piezoelectricity

A technologically interesting and widely discussed feature of nanotubes is their response to uniax-

ial strain along the nanotube axis.2,65 This property is described by Young’s modulus:

Y =
1
V

∂ 2E
∂ε2

∣

∣

∣

∣

∣

ε=0

, (7)

whereε is the applied strain. This expression looks a bit ambiguousin the case of nanotubes where

the definition of the volumeV requires a conventional choice for the thickness of a monoatomic

layer. Different conventions for the shell thickness have been among the main causes of the scat-

tered values obtained for Young’s moduli in the early studies of Carbon nanotubes. An alternative

definition which is independent of shell thickness was introduced by Hernándezet al.:65

YS=
1
S

∂ 2E
∂ε2

∣

∣

∣

∣

∣

ε=0

, (8)
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whereS= 2πRnL, with Rn tube radius andL length of the tube cell. Our calculated values ofYS

for BeO nanotubes are reported in Table 1 and are consistent with those obtained at LDA level.15

The elastic modulus is seen to be quite independent of tube size n. A comparison with the

corresponding elastic constantC11 of the h-BeO monolayer is not straightforward. When a nan-

otube is stretched (compressed) in the axial direction, indeed, the radius reduces (increases) in

order to minimize the total energy. In a corresponding deformation of the monolayer Poisson’s

effect has necessarily to be taken into account, that is, thedeformation of a material orthogonally

to the applied strain. As shown in Appendix , in the infinite radius limit, the Young modulus of the

nanotubes tends to(1−σ2)C11, whereσ is Poisson’s ratio.(1−σ2)C11 = 0.137 TPa nm is then

the value reported in the last row of Table 1.

The calculated values of the Young modulus are about 30% of those reported for Carbon nan-

otubes65 and 40-50% of those reported for BN nanotubes15,65 with the same radii: these are still

rather high values, that make BeO nanotubes potentially interesting for the synthesis of highly

resistant insulating composite materials.

BeO nanotubes also exhibit a longitudinal piezoelectric response, with the values reported in

Table 1. The values are about 25% higher with respect to BN nanotubes of comparable radii,

which in turn are already quite large among those of low-dimensional systems.66 The comparison

of those values with that of the monolayer requires again to take into account Poisson’s effect: the

limit value is then−(e11−σe12) = −1.263 a.u. as shown in Appendix . The minus sign comes

from the inversion of thex direction between slab and nanotube geometry.

Vibration Properties

As happens for single-walled nanotubes of any composition,the IR-active vibration modes of (n,0)

BeO nanotubes can be subdivided into distinct groups, with their vibration frequenciesν tending

to either an optical frequency of the monolayer or zero.24 There are eight of this modes regardless

of tube size: three modes are characterized by vanishing frequencies while increasing tube radius

(to be referred to as A modes), two modes have vibration wave-numbersν = ν/c, with c speed of
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Figure 3: Vibration wave-numbersν = ν/c of the A set of IR active modes as a function of 1/n in
the (n,0) series of BeO nanotubes. The results of a linear fitting on the four largest tubes are shown
as well.

light, that tend to 721 cm−1 (B modes) and three to 1016 cm−1 (C modes).

The vibration wave-numbers of the eight IR active modes of each tube are reported in Table 2

as well as their IR intensity, computed according to equation (2). In that table, all non-degenerate

modes belong to the totally-symmetric irreducible representation (irrep) of the group while all

twofold degenerate modes, marked with an asterisk, belong to the same two-dimensional irrep. The

most intense IR peaks correspond to modes C2, C3∗ and B1∗, following the notation introduced in

Table 2. All B and C modes look very close to the correspondingmonolayer optical modes and,

with the exception of C3∗, they are characterized by vibration frequencies almost independent of

the tube size. The frequencies of the A modes decrease linearly with 1/n (see Figure 3) and tend to

zero asn increases; these are collective modes without a direct correspondence in the vibrational

spectrum of theh-BeO monolayer, as explained in what follows.

Collective Modes and Monolayer Elasticity

The A set contains three collective IR active modes: the firstand third ones, A1∗ and A3∗, are

twofold degenerate (i.e. the two degenerate modes only differ by a permutation between atomic
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displacements alongy andz). In A1∗, Be and O atoms are both displaced towards+x at the top

of the ring and towards−x at its bottom,x being the periodic direction of the tube. The overall

dipole moment variation alongx is null but minor displacements of the Be and O atoms produce

a dipole moment in theyzplane. The A2 mode corresponds to ring breathing; while mostof the

vibration takes place in theyzplane, small opposite displacements of Be and O atoms alongx make

it slightly IR active in the axial direction. The third mode,A3∗, corresponds to the rigid clockwise

rotation of half the ring in theyz plane and anti-clockwise of the other half ring. It is slightly

IR active in theyzplane. Due to their IR activity, these three modes contribute to the vibrational

polarizability of the nanotube according to equation (4): however, only A1∗ and A2 contributions

are non-vanishing in the limit of large tube radius.

It has recently been illustrated for BN nanotubes, that, in the large radius limit, all these modes

can be related to elastic deformations rather than to vibration modes of the monolayer.24 The

appearance of these vibration modes in the 1D nanotube structures can be interpreted in terms of

the reduction of elastic degrees of freedom observed from a 2D to a 1D system. Due to hexagonal

symmetry of theh-BeO monolayer, its elastic tensorC exhibits the following structure:

C=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C11 C12 0

C12 C11 0

0 0 1
2(C11−C12)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (9)

The elements of this tensor are known as elastic constants. They have been computed with the

fully automated procedure implemented in the CRYSTAL program57 for the h-BeO monolayer

where just two of them,C11 andC12, are independent:C11 =C22 = 2.223 hartree andC12 = 0.810

hartree, so thatC66 = 1/2(C11−C12) = 0.707 hartree.

By imposing equality between elastic and vibration strain energies, in then → ∞ limit, the

coefficient of the linear behavior of these wave-numbers shown in Figure 3, can be expressed as a

function of the elastic constants of the 2D monolayer: for instance, for the A1∗ and A2 modes we
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Table 2: Vibration wave-numbers ν = ν/c (cm−1) and IR intensities I (km/mol per BeO
unit) of the IR active modes of the (n,0) series of BeO nanotubes. Twofold degenerate modes
are indicated with an asterisk.

n A1∗ A2 A3∗ B1∗ B2 C1∗ C2 C3∗

ν I ν I ν I ν I ν I ν I ν I ν I

8 134.9 0.16 234.0 0.88 315.6 0.06 678.6 58.6 727.3 0.82 1002 0.09 1005 679 1161 291
10 108.3 0.12 188.8 0.54 259.0 0.03 687.8 57.4 725.2 0.49 10070.07 1009 681 1158 326
12 90.4 0.10 158.0 0.36 218.8 0.02 693.6 56.3 723.9 0.30 1010 0.05 1011 682 1150 356
14 77.5 0.08 135.8 0.27 189.1 0.01 697.6 55.4 723.1 0.20 1011 0.04 1012 682 1143 381
16 67.8 0.07 119.1 0.20 166.3 0.01 700.5 54.7 722.6 0.15 1012 0.03 1013 683 1135 403
20 54.3 0.05 95.4 0.13 133.9 0.00 704.5 53.6 721.8 0.09 1014 0.02 1014 683 1121 440
24 45.2 0.04 79.6 0.09 112.0 0.00 707.2 52.8 721.5 0.06 1014 0.01 1015 684 1109 468
32 33.9 0.02 59.8 0.05 84.3 0.00 710.7 51.7 721.2 0.03 1015 0.01 1015 684 1093 508
48 22.6 0.01 39.9 0.02 56.4 0.00 714.3 50.6 721.1 0.01 1015 0.01 1016 684 1072 556
64 16.9 0.01 29.9 0.01 42.3 0.00 716.0 50.0 721.1 0.01 1016 0.00 1016 684 1063 584

get

νA1∗ =

√

C66

(MBe+MO)

1

n|a2D
2 | , (10)

νA2 =

√

C22

(MBe+MO)

1

n|a2D
2 | . (11)

whereMBe andMO are the atomic masses of Be and O atoms anda2D
2 is the transverse lattice

parameter ofh-BeO. A similar expression holds for A3∗: νA3∗ =
√

2νA2. The values resulting

from this procedure areνA1∗ = 1079.6/n cm−1, νA2 = 1915.3/n cm−1 andνA3∗ = 2708.6/n cm−1,

in agreement with those obtained by fitting the wave-numbersin Figure 3 forn ≥ 24: νA1∗ =

1084.3/n cm−1, νA2 = 1913.2/n cm−1 and νA3∗ = 2701.8/n cm−1. Bearing in mind that the

properties involved in the comparison (vibration frequencies of the nanotubes and elastic constants

of the monolayer) are computed quite differently, agreement is remarkable.

Polarizability

In Table 1 we also report the values of the electronic and total static polarizability for the BeO

nanotubes. The nuclear contribution to the polarizability, neglected in previous studies,19 is here

found to be as relevant as the electronic contribution in thelow-frequency range, at variance with

both Carbon and BN nanotubes.24
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The last row of Table 1 reports the corresponding monolayer (2D) limit values, to be defined

in this section. The longitudinal component of electronic polarizability α‖
e tend to the in-plane

monolayer value. The static polarizabilityα‖
0 of the tubes contains the contribution due to mode

A2, which is not present in the monolayer value. Analogouslyto the relationship between vibration

frequencies and elasticity (discussed in Section ), a connection can be established between the vi-

bration contribution of collective modes to the polarizability and the monolayer piezoelectricity.24

In this case:

α‖
0(n→ ∞) = α‖

0(2D)+
e2

12

C22
= (4.925+0.057) Å3 , (12)

wheree12 is a piezoelectric constant ofh-BeO. As concerns the transverse component of the elec-

tronic nanotube polarizabilityα⊥
e , it can be shown by circular averaging67 that in the large radius

limit the following relation holds with the monolayer polarizability values:

α⊥
e (n→ ∞) =

1
2

(

α⊥
e (2D)+α‖

e(2D)
)

. (13)

As in the case ofα‖, in order to discuss the limit of the total static polarizability we need to take

into account the contribution of the collective modes: thatof A3∗ vanishes atn→ ∞ and is, in any

case, negligible for alln values. The contribution of A1∗ is again connected with the piezoelectric

properties of the monolayer, so that:

α⊥
0 (n→ ∞) =

1
2

(

α⊥
0 (2D)+α‖

0(2D)
)

+
1
2

e2
26

C66
=

=

(

1
2
(1.076+4.925)+0.088

)

Å3 , (14)

wheree26 = e12 is another piezoelectric constant ofh-BeO.

A very satisfactory agreement is observed in the convergence as a function ofn of all these

properties. Figure 4 reports longitudinal (upper panel) and transverse (lower panel) total static

polarizabilities of BeO nanotubes of the (n,0) family as a function ofn. The corresponding mono-

layer limit values are reported as dotted lines. The longitudinal (α‖) components converge rapidly

16



Figure 4: Longitudinalα‖ (upper panel) and transverseα⊥ (lower panel) total static polarizability
of BeO nanotubes of the (n,0) family as a function ofn. Also shown: the results of a fit with a
third-order polynomial in (1/n) for the six largest tubes (solid lines), and monolayer limit values
as defined in the text (dotted lines).

with n. The convergence ofα⊥ is much slower, with a difference up to 40% for the smaller tubes.

Conclusions

This paper reports the results of anab initio quantum chemical study of a variety of properties

of single-walled zigzag Beryllium Oxide nanotubes, of the (n,0) family and, in particular, of their

connection with the properties of the hexagonal monolayer (h-BeO). Nanotubes are investigated in

the range fromn= 8 (32 atoms in the unit cell and tube radiusR= 3.4 Å) ton= 64 (256 atoms in

the cell andR= 27.1 Å) that is, much larger radii than previously reported.Vibration frequencies,

infrared (IR) intensities, piezoelectric constant and nuclear contributions to the polarizability tensor

are among the properties that are here discussed for the firsttime as concerns these materials.

Rolling energy, elastic modulus and electronic polarizability are also computed and discussed.

BeO nanotubes are confirmed to be wide band gap insulators withproperties weakly depen-

dent on the tube diameter and elastic moduli comparable withthose of carbon nanotubes. Their
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piezoelectric response is also found to be large, making them suitable for nano-electromechanical

applications. The nuclear contribution to the static polarizability is comparable with the electronic

one.

Recent improvements in the CRYSTAL program permit full use of symmetry (the point group

contains as many symmetry operators as atoms in the unit cell) and to drastically reduce computa-

tional cost. Thus, we can perform accurate simulations of much larger tubes than before and im-

prove the description of the convergence of a variety of tubeproperties to the flat monolayer. From

a careful analysis of such convergences, connections are established between physical properties

of nanotubes and flat monolayer: the relationship between a particular set of IR-active vibration

modes of the nanotubes, with vanishing vibration frequencyas a function ofn, and the elastic and

piezoelectric constants ofh-BeO is illustrated and discussed.

IR-active vibration modes are separated into three distinctsets. The first set, in the 0 - 300

cm−1 frequency range, is characterized by vanishing vibration frequencies at infiniteRwhile their

IR intensities do not vanish; the nature of these normal modes is illustrated by establishing a

connection between them and the elastic and piezoelectric constants ofh-BeO. The second (680 -

730 cm−1) and third (1000 - 1200 cm−1) sets tend regularly to the optical modes of the monolayer.
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Connection between Nanotubes and Monolayer Elastic Constants

The definition of elastic constants given in equation (5) takes into account relaxation of the nuclei

upon strain, thus allowing to go beyond the so-called “clamped ion” approximation,68,69 but not

that of the lattice parameters orthogonally to applied strain (Poisson effect). It follows that, when

strainε1 is applied to a monolayer, no relaxation of the cell can occurin the transverse direction;
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the case is different for a nanotube where the application ofε1 still allows to the system, to relax

along the transverse direction (i.e. to change the tube radius). When comparing then→ ∞ limit

of the nanotube with the monolayer, we must consider that the1D limit includes Poisson’s effect

whereas the monolayer does not. The monolayer elastic valuehas to be modified according to

Poisson’s ratio:70,71

σ =
dε2

dε1
=−C12

C22
. (15)

We can use the total derivative theorem to obtain the derivative of the energy with respect to the

strain applied to the monolayer, including Poisson’s effect:

dE
(

ε1,ε2(ε1)
)

dε1
=

∂E
∂ε1

+
∂E
∂ε2

dε2

dε1
=

∂E
∂ε1

+
∂E
∂ε2

σ . (16)

Since we are here interested in calculating how Poisson’s effect affects theC11 elastic constant of

h-BeO, we work out the following second derivative of the energy:

d2E
dε1

2 =
∂

∂ε1

(

∂E
∂ε1

+σ
∂E
∂ε2

)

+σ
∂

∂ε2

(

∂E
∂ε1

+σ
∂E
∂ε2

)

=

=
∂ 2E
∂ε1

2 +2σ
∂ 2E

∂ε1∂ε2
+σ2 ∂ 2E

∂ε2
2 =

=C11+2σC12+σ2C22 =

=C11−2
C2

12

C22
+

(

C12

C22

)2

C22 =C11−
C2

12

C22
. (17)

The BeO monolayer is isotropic in the layer plane that is,C11 ≡C22. It then follows that:

d2E
dε1

2 =C11

(

1−σ2
)

. (18)

The Poisson-corrected monolayer value turns out to beC11, damped by a factor
(

1−σ2
)

. For

h-BeO, withC11 = 2.223 hartree andC12 = 0.810 hartree, we obtain|σ | = 0.364 and(1−σ2) =

0.8672. The damping effect is significant in this case due to therelatively high ionicity of the Be-O

bond. It is worth mentioning that|σC| < |σBN| < |σBeO|, so that for Carbon and BN monolayers
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the(1−σ2) correction is almost negligible, amounting to factors of 0.970 and 0.955, respectively.

Similarly, when considering the piezolectric effect in a nanotube we must take into account

the variation of the polarization vector due to the relaxation of the tube radius. Analogously to

equation (16), the corresponding monolayer property is then:

dPx
(

ε1,ε2(ε1)
)

dε1
=

∂Px

∂ε1
+

∂Px

∂ε2

dε2

dε1
=

∂Px

∂ε1
+

∂Px

∂ε2
σ , (19)

wherex is the monolayer direction corresponding to the longitudinal direction of the nanotube.

Then:
dPx

dε1
= e11−

C12

C11
e12 , (20)

according to the definition of piezoelectric constants in equation (6).
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