
12 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Detecting  expert's eye using a multiple-kernel Relevance Vector Machine

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/148186 since



Journal of Eye Movement Research
7(2):3, 1-15

Detecting expert’s eye using a multiple-kernel Relevance Vector
Machine

Giuseppe Boccignone
Dip. Informatica, Università di Milano, Italy
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Sofia Crespi
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Decoding mental states from the pattern of neural activity or overt behavior is an
intensely pursued goal. Here we applied machine learning to detect expertise from
the oculomotor behavior of novice and expert billiard players during free viewing of
a filmed billiard match with no specific task, and in a dynamic trajectory prediction
task involving ad-hoc, occluded billiard shots. We have adopted a ground framework
for feature space fusion and a Bayesian sparse classifier, namely, a Relevance Vector
Machine. By testing different combinations of simple oculomotor features (gaze shifts
amplitude and direction, and fixation duration), we could classify on an individual
basis which group - novice or expert - the observers belonged to with an accuracy
of 82% and 87%, respectively for the match and the shots. These results provide
evidence that, at least in the particular domain of billiard sport, a signature of
expertise is hidden in very basic aspects of oculomotor behavior, and that expertise
can be detected at the individual level both with ad-hoc testing conditions and under
naturalistic conditions - and suitable data mining. Our procedure paves the way
for the development of a test for the “expert’s eye”, and promotes the use of eye
movements as an additional signal source in Brain-Computer-Interface (BCI) systems.

Keywords: eye movements, expertise, billiards, mind reading, machine learning,
feature fusion, relevance vector machine

Introduction

Eye movements can be a useful source of informa-
tion to infer cognitive processes (Buswell, 1935; Yarbus,
1967; Rayner, 1998; Viviani, 1990; Henderson, 2003).
Among the various top-down factors that guide our
gaze, expertise plays a prominent role, and can ef-
fectively drive the ocular exploratory behavior. The
scanpath, i.e., the sequence of saccades and fixations,
(Noton & Stark, 1971), of expert and novice observers
differs when they look at pictures or art pieces (Nodine,
Locher, & Krupinski, 1993; Zangemeister, Sherman, &
Stark, 1995; Vogt & Magnussen, 2007; Humphrey &
Underwood, 2009; Pihko et al., 2011), interpret med-
ical images (Nodine, Kundel, Lauver, & Toto, 1996;
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Donovan & Manning, 2007), drive (Underwood, 1998),
read music (Waters, Underwood, & Findlay, 1997), play
chess (Chase & Simon, 1973; Reingold & Sheridan,
2011), practice or watch sports (Vickers, 2007). Thus,
from the characteristics of eye movements it is possible
to extrapolate important information about expertise in
several knowledge and activity domains.

We have recently provided evidence that the eye
movements of novice and expert billiard players
differ when they have to predict the outcome of
partially-occluded single shots (Crespi, Robino, Silva,
& de’Sperati, 2012). Specifically, in order to solve the
visual prediction task, novices tended to adopt a strat-
egy based on mental extrapolation of the ball trajectory,
whereas experts monitored certain diagnostic points
along the trajectory. By exploiting the eye movements
differences of novices and experts, we could also iden-
tify the temporal boundaries of the single billiard shots
contained in a videoclip, thus in fact realizing a sort
of physiologically-based video parser (Robino, Crespi,
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Silva, & de’Sperati, 2012).
In the present study we extend our previous work

and ask whether the differences in eye movements of
novices and experts are robust enough to detect exper-
tise i) at the individual level, and ii) under not only ad-
hoc, controlled conditions but also naturalistic, uncon-
strained conditions i.e., during free viewing of a bil-
liard match without a specific task. Also, iii) we aim to
detect the “expert’s eye” by analyzing the data regard-
less of the visual stimulus, that is, relying only on the
oculomotor behaviour. Meeting these three conditions
would be an important step towards automatic exper-
tise detection.

Quantifying reliably and uniquely a complex be-
havior such as a sequence of exploratory eye move-
ments (the so-called scanpath) is a non-trivial chal-
lenge. The existing methods can be classified into
two broad classes, both pioneered by Larry Stark (see
Hacisalihzade, Stark, & Allen, 1992, for a combined
use of both). The first approach aims at characteriz-
ing the spatial distribution of fixations on the scene
(spatio-temporal, in case of dynamic scenes) and to
provide some similarity metrics (Brandt & Stark, 1997).
Methods following this approach can be further distin-
guished as content-driven or data-driven (Grindinger et
al., 2011).

The content-driven approach largely relies upon Re-
gions Of Interest (ROIs), identified a priori in the stim-
ulus and analyzed in terms of fixations falling inside
them. The data-driven approach, in contrast, directly
exploits scanpaths, or features extracted from them, in-
dependent of whatever was presented as the stimulus.
An important advantage of the latter approach is that
it obviates the need of arbitrary ROI definition.

The similarity of two scanpaths can be measured
in principle by using ROI-based methods followed by
coding of the sequence in which ROIs are visually
inspected. A common method is the string edit, in
which a string is defined by assigning each ROI a
discrete symbol (e.g., a character), so that each scan-
path is transformed in a string of symbols. Then the
editing cost of transforming one string into another
one is computed (e.g., by computing the Levenshtein
distance, which measures the editing cost of trans-
forming one string into another one, Brandt & Stark,
1997; Choi, Mosley, & Stark, 1995; Hacisalihzade et al.,
1992; Foulsham & Underwood, 2008). Other methods
are also used, such as the Needleman- Wunsch algo-
rithm borrowed from bioinformatics (Cristino, Mathôt,
Theeuwes, & Gilchrist, 2010). However, ROI based
method suffer from well-known limitations, mostly
related to how to cluster and regionalize fixations
(Hacisalihzade et al., 1992; Privitera & Stark, 2000). For
instance many methods rely upon dividing the image
into a regular grid, but this way of operating loses any
reference to the content of the image, and introduces
quantization errors; in this limit case string edit tech-
niques turns into a data-driven approach, while exploit-

ing an oversimplified representation of data. Seman-
tic ROIs could be used instead (Privitera & Stark, 2000;
Josephson & Holmes, 2006), but these have by defini-
tion different sizes, and therefore the approximation of
fixation position can be very coarse and subtle differ-
ences in oculo-motor behavior cancelled. In the last
few years, heatmaps have become a very popular, data-
driven , tool: heatmaps are plots in which a given ocu-
lomotor quantity (typically, the fixation dwell-time) is
coded as colored, semi-transparent “bubbles” superim-
posed to the bi-dimensional image. This graphical rep-
resentation is very appealing, but it is mostly used to
convey an immediate, qualitative impression of the at-
tended regions within a figure (see, however, Caldara
& Miellet, 2011; Crespi et al., 2012). Other methods
have also been proposed, based on the construction
of an average scanpath (Hembrooke, Feusner, & Gay,
2006), or that minimize an energy function (Dempere-
Marco, Hu, Ellis, Hansell, & Yang, 2006), or that end
up with a multidimensional vector rather than a sin-
gle scalar quantity (Jarodzka, Holmqvist, & Nyström,
2010). A main concern of these approaches is to quan-
tify the similarity between scanpaths, which is a crucial
issue in certain applications where an average observer
is needed (Boccignone et al., 2008).

The second approach, again pioneered by Stark,
takes straightforwardly into account the very stochas-
tic nature of scanpaths. Indeed, gaze-shift processes,
and especially saccadic eye movements, exhibit noisy,
idiosyncratic variation of visual exploration by differ-
ent observers viewing the same scene, or even by the
same subject along different trials; this is a well-known
issue debated since the early eye tracking studies by
Ellis and Stark (1986), who modeled sequences using
Markov transition probability matrices identified from
experimental sequences (see Hayes, Petrov, & Seder-
berg, 2011 for a detailed discussion on methods aim-
ing at capturing statistical regularities in temporally ex-
tended eye movement sequences). Here we follow this
second approach or, more precisely, the very rationale
behind such approach: namely, we consider the gaze
shift behavior as a realization of a stochastic process
(Feng, 2006; Brockmann & Geisel, 2000; Boccignone &
Ferraro, 2014, 2013b, 2013a). In other terms, the dis-
tribution functions and the temporal dynamics of eye
movements are specified by the stochastic process. In
this perspective the visual exploratory features we can
measure (saccade amplitude and direction, fixation du-
ration) can be thought of as random variables gener-
ated by such a process, however complex it may be
(Tatler & Vincent, 2008, 2009).

In order to discriminate between different oculomo-
tor behavior exhibited by novices and experts, there
are two options: to provide a model for the generat-
ing process, or to exploit the generated oculomotor pat-
tern. For what concerns the first option, investigating
expertise differences in dynamic tasks, such as a bil-
liard match, is a complex modeling issue, and involves
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aspects far beyond the limits of current computational
models (Borji & Itti, 2013). The second option, i.e., an-
alyzing the generated oculomotor pattern, relies upon
the rationale that the key requirements of expertise are
discriminability and consistency across different stim-
uli (Shanteau, Weiss, Thomas, & Pounds, 2002), prop-
erties that should be reflected in the generated pattern.

In the present study we applied machine learn-
ing techniques to discriminate eye movements of ex-
perts and novices at the individual level. Among ma-
chine learning techniques, the Support Vector Machine
(SVM, Cristianini & Shawe-Taylor, 2000) is widely used
to classify noisy signals (see Murphy, 2012 for a gen-
eral discussion), including eye movement data (Lagun,
Manzanares, Zola, Buffalo, & Agichtein, 2011; Eivazi &
Bednarik, 2011; Bednarik, Kinnunen, Mihaila, & Fränti,
2005; Vig, Dorr, & Barth, 2009). Methods simpler than
SVM have also been used to classify eye movements
(e.g., Henderson, 2003).

Specifically, in this study we have tried to deal with
two problems. First, machine learning approaches as
usually applied to the analysis of eye-movements tend
to overlook the feature representation problem. In or-
der to spot behavioral characteristics - expertise or cog-
nitive impairments - in a data-driven way, a scanpath
can be analyzed by using several features (e.g., Lagun
et al., 2011). Each feature, in turn, might be differently
related to a number of factors, from low-level biome-
chanics, to learnt knowledge of the structure of the
world and the distribution of objects of interest (Tatler
& Vincent, 2009). Thus, within a machine learning per-
spective, we are dealing with features from different
sources and where there may be limited or no a priori
knowledge of their significance and contribution to the
classification task. Clearly, concatenating all the fea-
tures into a single feature space does not guarantee an
optimum performance, while facing the “curse of di-
mensionality” problem.

Second, though SVM methodology has proven to be
a powerful one, it has a number of well-known limi-
tations (Tipping, 2001; Murphy, 2012). Although rel-
atively sparse, SVMs make unnecessarily liberal use
of basis functions since the number of support vec-
tors required typically grows linearly with the size
of the training set; predictions are not probabilistic,
which is particularly crucial in classification where pos-
terior probabilities of class membership are necessary
to adapt to varying class priors and asymmetric mis-
classification cost; the kernel function must satisfy Mer-
cer’s condition, namely, it must be the continuous sym-
metric kernel of a positive integral operator.

In order to cope with these problems, we have ex-
ploited a ground framework for feature space fusion
followed by a Bayesian sparse classification technique
(Tipping, 2001) with the ability of achieving sparse
solutions that utilize only a subset of the basis func-
tions. In particular, we have considered the basic ocu-
lomotor parameters of saccade amplitude, direction,

and fixation duration as different information sources
that are combined within a composite kernel space
level and classified through a Relevance Vector Ma-
chine (RVM), namely a multiple-kernel RVM (mRVM,
(Psorakis, Damoulas, & Girolami, 2010; Damoulas &
Girolami, 2009a)). See Appendix A, for a detailed dis-
cussion of the RVM approach and its main differences
with respect to SVMs.

To the best of our knowledge this approach has
never been used with eye movement data.

Materials and Methods

The present analyses were performed on raw data
acquired in the course of previous experiments (Crespi
et al., 2012; Robino et al., 2012). The reader is referred
to that work for details concerning stimuli and data ac-
quisition.

Participants

Forty-two healthy participants volunteered for the
experiment (all men but one, with normal or corrected-
to-normal vision, aged between 27 and 70 years, naı̈ve
as to the purpose of the experiment). Half of them were
elite billiard players, recruited on the basis of their na-
tional ranking, whereas the other half had no or occa-
sional experience in billiard playing. The study was
conducted in accordance with the recommendations of
the Declaration of Helsinki and the local Ethical Com-
mittee. Before starting the experiments, all participants
signed the informed consent.

Stimuli and procedure

The stimuli were movies of a billiard match or of
individual shots, recorded from the top of the billiard
table. The stimuli were subsequently presented on a
computer screen. Whereas the former stimulus rep-
resented a real match without any experimental con-
straint, the shots were prepared by asking a profes-
sional player to execute a number of ad-hoc shots.

Match. This stimulus typology consisted of a piece of
a billiard match (M), in which two professional players
(the opponents) alternated in launching with the stick
the cue ball (own ball) towards the target ball (oppo-
nent’s ball) in such a way that the latter - but not the for-
mer - would knock down as many skittles as possible
(there were 5 skittles in the central region of the table)
and/or touch a third ball (a small red ball). The movie
lasted 5 minutes and contained 11 shots, alternating
naturally between the two opponents. The shots were
obviously different for complexity, orientation, number
of cushions, duration, ball velocity, and spin. The bil-
liard match was always presented first.
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Shots. The other stimulus typology consisted of 24
different shots with no spin, ultimately directed to-
wards the central skittle. The shots were either short
(2 cushions, SS) or long (5 cushions, LS). The initial di-
rection of the shot (immediately after the contact with
the stick) was either towards the right or the left, or to-
wards the upper or the lower side of the table, in a bal-
anced design. There were three versions of the shots,
in one version the central skittle was knocked down, in
the other two versions the ball passed just beside the
skittle, to the right or to the left. In each shot, the fi-
nal part of the trajectory was occluded 200 ms after the
ball bounced on the second (SS) or the third (LS) cush-
ion, because the observers’ task was to tell whether or
not the ball would strike the skittle (see below). There
were 2 repetitions for each shot, for a total of 48 stimuli,
presented in a pseudo-random sequence. The duration
was 15 minutes. The shot trajectories, including the oc-
cluded portion, are illustrated in Figure 2.

Procedure. Observers watched the stimuli while seat-
ing about 57 cm in front of the computer screen, with
the head resting on a forehead support. For the match
stimulus, the observers were simply instructed to pay
attention to the movie in order to answer to some gen-
eral question afterwards. For the shots stimulus, their
task was instead to predict, with a verbal response for
each trial, whether or not the ball would strike the skit-
tle. Eye movements were acquired through infrared
video-oculography (Eyegaze System, LC Technologies;
sampling frequency: 60 Hz; nominal precision: 0.18
deg). Monocular recordings were performed unobtru-
sively via a remote camera mounted below the com-
puter screen. Gaze direction was determined by means
of the pupil-center-corneal reflection method

Data Analyses

Ocular fixations were identified by means of a dis-
persion criterion: We defined gaze samples as belong-
ing to a fixation if they were located within an area of
25 pixels (corresponding to 0.67 deg) for a minimum
duration of 6 video frames (corresponding to 100 ms).
Gaze shifts were defined as the transition from one fix-
ation to the next.

The problem of distinguishing billiard experts from
novice observers, by assessing their oculomotor be-
havior, can be recasted as a classification procedure
in a supervised learning setting. A feature set should
be defined in order to capture the oculomotor behav-
ior of the observers. To this end, for each observer,
given the sequence of fixations {rt}NT

t=1, where the vec-
tor rt represents the fixation position (coordinates) at
time t, we computed the amplitude and direction of
each gaze shift {lt ,θt}NT

t=1, where lt is defined as the Eu-
clidean distance between two successive fixations, and
θt = tan−1 ∆yt

∆xt
the direction of the gaze shift between

successive fixations, ∆xt ,∆yt being the horizontal and

vertical components. These two features are good de-
scriptors of the exploratory oculomotor activity (Tatler
& Vincent, 2008, 2009; Boccignone & Ferraro, 2013b,
2013a). As a third feature we used the fixation duration
{ ft}NT

t=1, which is also a useful descriptor of the oculo-
motor behavior in terms of visual processing (Viviani,
1990).

Because we assume that the scanpath is the re-
sult of an underlying stochastic process (Boccignone
& Ferraro, 2014), we summarize the random sample
{lt ,θt , fn}NT

t=1 through the empirical distribution func-
tions (histograms), which we denote as the random
vectors xl =

[
xl

1 · · ·xl
D
]T , xθ =

[
xθ

1 · · ·xθ
D
]T and x f =[

x f
1 · · ·x

f
D

]T
, respectively, where the vector dimension D

represents the number of bins of the histogram. In the
following analyses D = 6 is used. The feature vector xs

is thus a summary of the behavior of a single observer
with respect to a particular feature space or source of
information s = 1, . . .S, here S = 3.

In conclusion, each observer n, n = 1, · · · ,N is repre-
sented in the dataset {X, t}, where the matrix X is the
collection of features from all N observers, whose be-
haviour is summarized by the three feature vectors of
dimension D, xs

n ∈RD , s = 1, · · · ,3. The target vector t =
[t1 · · · , tN ]T denotes the collection of random variables tn,
taking values (labels) in C , a classification space of di-
mension C. In our case, C = {expert,novice}, thus C = 2
(binary classification). Then, the posterior probability
for observer n to be classified as expert or novice will be
P(tn|x1

n, ...,xS
n) and according to Bayesian decision the-

ory we would assign the observer n to the class that
has the maximum a posteriori probability (MAP).

From a pattern recognition perspective, one could in
principle use different classifiers trained on the differ-
ent feature spaces, but classifier combination method-
ologies (product combination rule, mean combination
rule, etc.) then would require specific assumptions
such as independence of the feature spaces or, on the
opposite, extreme correlation. Here we adopt the strat-
egy of combining the feature spaces, and, in particu-
lar, we exploit the composite kernel construction tech-
nique (Damoulas, Ying, Girolami, & Campbell, 2008;
Damoulas & Girolami, 2009a, 2009b), which is summa-
rized at a glance in Figure 1.

First, the individual feature vectors were mapped
into kernels (the kernel trick, Murphy, 2012) and thus
embedded in Hilbert spaces via base kernels, that can
be represented as the matrix Ks ∈ RN×N . Each element
of Ks can be constructed through a suitable kernel func-
tion, which can be chosen based on prior knowledge,
cross-validation or even via inference from a pool of
kernel functions. Different choices are possible for the
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Figure 1. Data analysis in multiple-kernel representation.
The fixation sequence is represented in different feature
spaces s = 1, · · · ,S; each feature xs is then separately mapped
in a kernel space, each space being generated via kernel Ks

of parameters θs. The separate kernel spaces are then com-
bined in a composite kernel space, which is eventually used
for classification

kernel functions, among which the most used are:

Ks(xs
i ,x

s
j) = xsT

i xs
j, Ks(xs

i ,x
s
j) = exp

(
−
‖xs

i −xs
j)‖2

2ρ2

)
,

namely the linear and Gaussian kernel respectively.
In turn, base kernels can be combined into a compos-

ite kernel Kb ∈ RN×N whose elements are:

Kβ(xi,x j) =
S

∑
s=1

β
sKs(xs

i ,x
s
j) (1)

This way, the composite kernel is a weighted sum-
mation of the base kernels with βs as the correspond-
ing weight for each one. Also, notice that in a multiple
kernel setting we are free to choose different kernels
for constructing the individual kernel spaces. As far as
we employ at least two different feature spaces, even
when the same kernel shape (e.g., Gaussian) is adopted
for both spaces (cfr., Figure 1), nevertheless the multi-
ple kernel learning (MKL) procedure permits to adapt
individual kernel parameters so to capture the statis-
tics of information source s as represented in the corre-
sponding feature space (data-driven approach).

The detection of expertise in the eye movements
of the n-th subject in terms of maximum a posteriori
P(tn|x1

n, ...,xS
n), can be obtained at the most general level

as:
P(tn|x1

n, ...,x
S
n) = P(tn|W,kβ

n), (2)

where the term on the r.h.s. is the Multinomial pro-
bit likelihood for the calculation of class membership
probabilities (see Appendix A for a discussion and
Damoulas & Girolami, 2009a; Psorakis et al., 2010 for
further details). In Eq. 2. In the same equation,
W ∈ RN×C is the matrix of model parameters; the vari-
able kβ

n is a row of the kernel matrix Kβ ∈RN×N - whose
elements are the Kβ(xi,x j) defined in Eq. 1 - and it ex-
presses how related, based on the selected kernel func-
tion, observation xn is to the others of the training set

(Appendix A). Given the posterior P(tn|x1
n, ...,xS

n), clas-
sification tn = c, c∈ C is attained by using the MAP rule:

c = argmax
tn

P(tn|x1
n, ...,x

S
n). (3)

The Multinomial probit likelihood P(tn|W,kβ
n) in Eq.

2 above can be computed provided that the parameters
W,kβ

n are known. In a Bayesian framework, the latter
can be inferred (learned) from data by introducing a
prior distribution for the regression parameters W (cfr.
Appendix A), and to such end one suitable methodol-
ogy is the Relevance Vector Machine (RVM, Tipping,
2001) framework in the variant proposed in (Psorakis
et al., 2010). RVMs can be considered the Bayesian
counterpart of SVMs. They are Bayesian sparse ma-
chines, that is they employ sparse Bayesian learning
via an appropriate prior formulation. Not only do they
overcome some of the limitations affecting SVMs (Ap-
pendix A), but also they achieve sparser solutions (and
hence they are faster at test time) than SVM (Tipping,
2001; Murphy, 2012). In particular, we have exploited
the multi class RVM (precisely, m-RVM1, Psorakis et
al., 2010). Clearly, in our case the multi-class capabil-
ity of the m-RVM1 (Psorakis et al., 2010) is redundant,
since we are dealing with a binary classification prob-
lem (C = 2). However, essential in our case is the ability
of achieving sparse solutions that utilize only a subset
of the basis functions, the relevance vectors (Murphy,
2012), together with a ground framework for feature
space fusion (Damoulas & Girolami, 2009a).

To sum up, the train and test procedure adopted has
been the following. We have exploited a leave-one-out
approach, where, for all observers, at each step, N− 1
observers are enrolled for the training set and the N-th
observer is used as one sample of the test set (Murphy,
2012) to be classified as in Eq. 3.

The input to the train and test procedure has been
shaped in the form of all possible combinations of
the feature vectors (histograms) {xs}S

s=1 (single fea-
tures, pairs, or the full set, see the Supplementary
Table ). Further, given the input, all possible map-
pings using either the linear and/or the Gaussian ker-
nel have been considered. Since the Gaussian kernel
has a free parameter, the scale ρ, at each learning step
a 5-fold cross validation procedure was accomplished
for tuning such parameter; validation has been per-
formed by varying the scale parameter in the range
ρ ∈

[
2−15, · · · ,23

]
. Such interval has been discretised us-

ing a sampling step δ = 0.5. The learning and classifica-
tion steps accomplished in the leave-one-out schedule
(see Appendix A for a general description) have been
performed by using the MATLAB software implemen-
tation of the m-RVM1 available at http://www.dcs.gla
.ac.uk/inference/pMKL, with standard parameter ini-
tialization.

In the following Section, results reported have been
obtained after 5 classification runs for each kernel and
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feature configuration taken into account, each run ex-
ploiting the leave-one-out procedure described above.
At the beginning of each run the input data were ran-
domly shuffled.

Results
Expert and novice observers exhibited rather simi-

lar exploratory eye movements when watching a given
stimulus - at least this is the qualitative impression
when observing the cumulative gaze position over
time condensed in single snapshots (Figure 2). Exam-
ples of individual scanpaths are illustrated in Figure 3.
Here too, as in the pooled data of Figure 2, a certain
degree of similarity between experts and novices can
be appreciated at visual inspection. For example, in the
single shots the ball trajectories can be often glimpsed
from the raw scanpaths. We quantified the scanpaths
by means of three oculomotor features, namely, fixation
duration, gaze shift amplitude and gaze shift direction,
which were used as input to the classifier either as sin-
gle features or concatenated in pairs or in a triplet.

The distributions of these basic oculomotor features
looked very similar between experts and novices (Fig-
ure 4), with very close median values (fixation duration
- novices vs. experts: 247 vs. 231 ms, 231 vs. 215 ms,
247 vs. 230 ms, respectively for SS, LS and Match; gaze
shift amplitude - novices vs. experts: 2.219 vs. 2.458
deg, 2.383 vs. 2.525 deg, 2.076 vs. 2.150 deg, respec-
tively for SS, LS and Match). Also the shapes of the
gaze shift direction distributions looked rather similar

(a) Novices (b) Experts
Figure 2. Raw eye position (yellow) recorded during shot
and match viewing, for both novices (2(a)) and experts (2(b)).
All data from all participants are superimposed. The traces
recorded during shot viewing have been re-oriented onto a
single shot trajectory (red arrows, with the dashed part rep-
resenting the occluded portion of the trajectory) for the clar-
ity of the graphical presentation. Rows, from top to bottom:
Short shots (SS), Long shots (LS), Match (M).

(polar plots in Figure 4). Despite this apparent similar-
ity, however, in all cases there were statistically signifi-
cant differences between experts’ and novices’ distribu-
tions (2-samples Kolmogorov-Smirnov test for fixation
duration and gaze shift amplitude, always p < 0.01;
2-samples Kuiper test for gaze shift direction, always
p < 0.01). Indeed, across the 3 shots experts had on
average slightly shorter fixations (−16 ms), and some-
what larger and more counterclockwise-rotated gaze
shifts (+0.15 deg and +0.336 rad).

Such small differences, however, can be exploited to
discriminate between novices and experts when raw
features are processed by a suitable classifier. For this
purposes a RVM has been chosen as classifier. We first
used equal kernel functions (linear and Gaussian) for
all feature channels (cfr., Figure 1), while taking into
consideration different numbers of sources/feature
spaces s. Analysis of the results showed that classifier
performances for the features xθ derived from saccadic
directions were worse in case of the Gaussian classifier:
that lead us to use mixed functions kernels, namely
a Gaussian kernel for the length of shifts and fixation
times, and a linear one for directions.

The outcomes obtained from the different kernels
were quite similar, as can be seen in Supplementary Ta-
ble 1. Therefore, the following analysis is performed
solely on the results obtained with the multiple kernel
approach, because it is a more flexible and novel than
single kernel methods. Moreover, except for the case
of short shots, it was the only approach where the best
performance was attained with more than one feature

(a) Novices (b) Experts
Figure 3. Examples of scanpaths of individual observers, for
both novices (left panels) and experts (right panels), for the
three typologies of shots (M, SS, LS). For both SS and LS, 24
scanpaths, lasting individually about ten seconds, are super-
imposed in each panel (one for each trial), whereas during
match observation, there is only a single, 5 min long continu-
ous scanpath. For simplicity, the same background table im-
age has been used in all panels. Here the ocular traces during
shot viewing are shown in their original orientation.
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(a) Fixation duration

(b) Gaze shift amplitude

(c) Gaze shift direction
Figure 4. Distributions of the three oculomotor features used
to classify expertise. Top panels (4(a)), fixation duration;
middle panels (4(b)), gaze shift amplitude; bottom panels
(4(c)), gaze shift direction. Vertical solid lines, median values.
SS=Short Shots, LS=Long Shots.

or combination of features - actually three for the long
shots and two on the match - thus indicating a higher
efficiency than the other approaches.

Tables 1 and 2 report results in terms of the accu-
racy (percent correct) and discriminability (d

′
), respec-

tively. Accuracy was defined as Nc/Ntot , where Nc is
the number of trials in which correct classification was
attained, regardless of the stimulus (novice or expert).
Discriminability was computed as ZH − ZF , where ZH
is the z-transformed hit rate (a hit being a “novice“
classification given a “novice“ stimulus) and ZF is the

Table 1
Mean classification accuracy with the Multiple Kernel anal-
ysis. Base features: gaze shift amplitude (A), gaze shift direc-
tion (D), fixation duration (F). Best and worst performances
are marked in green and in red, respectively

Mean accuracy (%)
Features Short Shots Long Shots Match

A 79.52 83.33 80.95
D 70.95 86.19 71.42
F 88.09 80.47 81.90

A + D 68.57 86.19 72.85
A + F 68.09 80.00 81.90
D + F 68.57 86.19 63.80

A + D + F 67.61 85.23 77.61

Table 2
Classification discriminability (d

′
) with the Multiple Kernel

analysis. Base features: gaze shift amplitude (A), gaze shift
direction (D), fixation duration (F). Best and worst perfor-
mances are marked in green and in red, respectively

Discriminability (d
′
)

Features Short Shots Long Shots Match
A 1.709 1.948 1.766
D 1.077 2.220 1.137
F 2.399 1.726 1.836

A + D 0.991 2.206 1.198
A + F 0.959 1.700 1.852
D + F 0.992 2.211 0.717

A + D + F 0.935 2.120 1.512

z-transformed false alarms rate (a false alarm being
a “novice“ classification given an “expert“ stimulus).
Discriminability represents the capability of the classi-
fier to separate novices and experts, regardless of the
decision criterion.

For both accuracy and discriminability the reported
tables represent the mean values across the 5 classi-
fier repetitions, separately for each feature or feature
combination and for each stimulus typology. We de-
fine the best performance as the highest classification
score reported within each stimulus typology (short
shots, long shots, match), regardless of which feature,
or combination thereof, contributed to it. In case of ties,
the best performance was stipulated to be the one in
which both accuracy and discriminability were highest.
From Table 1 it can be seen that the classification rate
was rather good (range: 63.80%− 88.09%) and always
above chance (p < 0.01 even for the lowest classifica-
tion rate, one-tail binomial test), with a rather high best
performance within each stimulus typology (88.09%,
86.19% and 81.90%, marked in green; red denotes the
worst performances within each stimulus typology).

In the best case (88.09%) this amounts to saying that
the RVM correctly distinguished as being a novice or
an expert 37 out of 42 observers, with a moderate bias
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to classify correctly novices better than experts (predic-
tive value for novices: 0.917; predictive value for ex-
perts: 0.851). By considering the best performances,
which show the achievement of the classifier, accu-
racy was higher with the short shots (88.09%) than the
match (81.90%), with the performance with the long
shots being somewhat intermediate (86.19%). A one-
way ANOVA among the 3 best performances showed
a marginally significant effect of classification condi-
tions (either stimulus type or feature; F(2,12) = 3.547,
p = 0.062). Post-hoc LSD pairwise tests indicated that,
whereas the two former figures (88.09% and 86.19%)
did not differ significantly from each other (p> 0.4), the
difference with the accuracy measure obtained with the
match stimulus (81.90%) was statistically significant or
marginally significant (p = 0.023 and p = 0.097, respec-
tively).

No clear tendency could be appreciated as to which
feature, or combination of features, best contributed
to the classification. From Table 1 it can be seen that
in no case the same feature, or combination thereof,
determined the best accuracy across the three stimu-
lus typologies. In terms of mean performance, us-
ing single features provided a somewhat better result
(80.31%) than combining them in pairs (75.13%) or
triplet (76.82%). The best classification performance
within each stimulus category was never obtained with
the triplet of features, though only in one case the
triplet determined the worst performance (67.61%). An
almost identical pattern of results was obtained by
computing d

′
as index of performance (Table 2). Again,

the best performance within each stimulus category
was higher with the shots than with the match. Inter-
estingly, also the three worst performances (marked in
red in the Tables) were coincident for accuracy and dis-
criminability, and were higher for the long shots than
the short shots.

Discussion

In this study we have applied machine learning tech-
niques (MKL-based feature combination and RVM)
to analyze the oculomotor behavior of individual ob-
servers engaged in a visual task, with the aim of classi-
fying them as experts or novices. To this end, we have
administered to 42 subjects, half novices and half ex-
pert billiard players, various visual stimuli and tasks.
As stimuli we used a portion of a real match, video-
recorded from the top, containing several shots of vari-
able length and complexity, as well as a number of
ad-hoc individual shots, also videorecorded from the
top in a real setting. The match stimulus was asso-
ciated to a free-viewing observation condition, while
for the individual shots, which were occluded in the
final part of the trajectory, observers were asked to pre-
dict the outcome of the shot, which placed implicitly a
significant constraint on the deployment of visuospa-
tial attention, and, consequently, on the overt scan-

path. Thus, we demonstrated that, in both constrained
and unconstrained naturalistic viewing conditions, eye
movements contain enough information to detect an
internal state such as expertise.

To our knowledge this is the first time that MKL-
based feature combination and RVM techniques are
applied to eye movement data. A very recent study
by Henderson, Shinkareva, Wang, Luke, and Olejar-
czyk (2013) inferred successfully the observers’ cogni-
tive task (search, memorizing, reading) through clas-
sification. However, for the purpose of that study, a
dedicated classifier was trained for each observer, and
a simple baseline technique as the Naı̈ve Bayes’ clas-
sifier was sufficient. Clearly, when addressing a sce-
nario in which individual observers are classified as
belonging to one or another population, more sophis-
ticated machine learning tools are needed. Many stud-
ies used an approach based on SVM classification (e.g.,
Lagun et al., 2011; Eivazi & Bednarik, 2011; Bednarik
et al., 2005; Vig et al., 2009; Tseng et al., 2013; Bulling,
Ward, Gellersen, & Trster, 2011; Bednarik, Vrzakova,
& Hradis, 2012). Beyond some limitations inherent to
SVM (Tipping, 2001; Murphy, 2012), it is worth point-
ing out that the final classification step is just one side
of the problem when spotting expertise from scanpaths
in a data-driven way, the other side being how features
are best combined and exploited. As anticipated in the
Introduction, to address these issues we have adopted
a feature fusion strategy relying on multiple kernel
combination.

A comment is due on the choice of the features. The
feature we have used are typical basic parameters that
characterize saccadic exploration of static scenes. How-
ever, our stimuli contained also moving elements (e.g.,
the ball motion) capable of eliciting smooth pursuit eye
movements, which are characterized by different pa-
rameters. Thus, it may be argued that using saccade
parameters is not too appropriate. Let us firstly note
that in our experiment smooth pursuit eye movements
were in fact not frequent. Although this may sound
surprising, consider that our observers were not in-
structed to follow the moving target; also, the ball mo-
tion occupied only a minor part of the overall stimulus
duration, and furthermore its motion was not continu-
ous but interrupted by bounces, which implied rather
frequent catchup/anticipatory saccades. To take spe-
cific figures, consider the shot trials (Crespi et al., 2012):
the ball was in motion for about 2.1 seconds in each
trial, on average. During this short time window, the
eyes spent on average only 63% of the time in slow
motion (tangential velocity between 0.5 and 40 deg/s
with a minimum duration of 100 ms), which amounts
to about 1.3 seconds per trial. Considering that the
mean recording window within a trial was 12.4 sec-
onds, this indicates that smooth pursuit eye move-
ments contributed to the overall eye movements pat-
tern for only about 10% of the time. We did not mea-
sure all these parameters in the match task, but we can
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assume comparable figures. Secondly, much of the dif-
ference between experts and novices was found when
the ball was not moving (ROI analysis, figs. 5 and 6
in Crespi et al., 2012; VDA peaks, fig. 2 in Robino
et al., 2012). Thirdly, and more importantly, from the
perspective of machine learning, segmenting a gradu-
ally changing signal into discrete elements and using
them as features for the classifier is perfectly legitimate.
Using virtual fixations or whatever other signal pre-
processing of the oculomotor traces before the classi-
fication step is just a matter of convenience, as it is well
known that machine learning techniques are blind as
to the nature of the underlying processes. To the extent
that features bring information, they work (features do
not introduce new information).

Indeed, by combining only three basic parameters
of visual exploration, the overall classification accu-
racy, expressed as percent correct and averaged across
stimulus types and oculomotor features, scored a re-
spectable 78%. More interesting is to consider the
best performance for each stimulus type, which testi-
fies the achievement of the classifier, and which de-
pends on the features used. The best performance
ranged between 81.90% and 88.09% - 1.852 to 2.399
in terms of d

′
, which is a quite remarkable result, es-

pecially considering that a naturalistic, unconstrained
viewing condition was included (M). Beside confirm-
ing that eye movements contain a signature of billiard
expertise (Crespi et al., 2012), this finding demonstrates
that, even ignoring “where” the gaze is directed, i.e., to
which objects or events overt visuospatial attention is
allocated ( content-driven approach), the “expert’s eye”
can be identified at the individual level from “how”
the gaze is shifted, i.e, from basic oculomotor features
such as saccade amplitude and direction and fixation
duration (data-driven approach). Clearly, this does not
amount to saying that the physiology of eye move-
ments is modified by expertise, nor that expertise in
a given field could be detected by using whatever vi-
sual stimulus, but simply that there is not always the
need to match the oculomotor features with the visual
features, a common approach that we also used in our
past work (Crespi et al., 2012; Robino et al., 2012). No-
tably, expertise detection was successful at the level of
individual observers (see below).

The classification accuracy was higher with the shots
than the match. This difference, despite being small,
is in keeping with the idea that the individual scan-
path provides an indication about the degree of “exper-
tise allocation”, that is, how much an observer is actu-
ally using knowledge: The more expertise is used, the
larger the systematic differences in visual exploration
between a novice and an expert, hence the higher the
classification performance. For example, the prediction
task in which participants had to make a rapid guess as
to the outcome of the shots (“will the ball hit the central
skittle?”) would seem to leave little room for free ocular

exploration, especially for the short shots, thus reduc-
ing the idiosyncratic component of ocular exploration.
As a consequence, the systematic differences between
novices and experts emerge more clearly. Conversely,
the fact that during match observation observers had
no specific task, and that the pace of the shots was
relatively relaxed, allowed more free eye movements,
especially after the shots. In other words, the differ-
ence between the classification accuracy when the shots
rather than the match stimulus is used might depend
on the different degree of “expertise allocation” in the
two conditions, being higher in the shot prediction task
than in the relatively unconstrained match observation
task. Indeed, we had previously proposed that, during
billiard match observation, it is precisely the alterna-
tion between the focusing of attention on the upcom-
ing shot and the post-shot relaxation that allowed us to
successfully parse the shot alternation exclusively on
the basis of the scanpath differences between novices
and experts (Robino et al., 2012).

The above considerations underscore the impor-
tance of selecting a proper test setting in order to de-
tect expertise from the scanpath. On the one hand, it
is clearly better to find the conditions (i.e., stimuli and
tasks) that best elicit the use of expertise. These should
be as stringent and controlled as possible, such as for
example the ad-hoc shots coupled with the prediction
task that we have used, where the highest classifica-
tion performance was attained. On the other hand,
it is intriguing that the RVM yielded a high accuracy,
though not the highest, also with the match stimu-
lus (81.90%). Considering the uncontrolled variabil-
ity of a real billiard match, coupled with the lack of
a specific task for the observers, we think this is a
remarkable achievement in terms of capability to ex-
tract information from eye movements in naturalis-
tic conditions. Pervasive behavioural monitoring of
real-life visual exploration through wearable eye track-
ers may take advantage of high-performance classifi-
cation methods such as RVM (Schumann et al., 2008;
Hart, Onceanu, Sohn, Wightman, & Vertegaal, 2009;
Noris, Nadel, Barker, Hadjikhani, & Billard, 2012; Vi-
dal, Turner, Bulling, & Gellersen, 2012). Furthermore,
especially for real-life conditions, it is crucial that the
scanpath analysis can be data-driven, at least as much as
possible, as a content-driven approach would inevitably
require manual labeling of each video frame in terms
of semantically-identified regions or visual elements.
Indeed, this would preclude an automatic analysis of
real-life scanpaths, and even more so for a real-time
analysis.

Besides confirming that top-down cognitive pro-
cesses are an important factor in gaze guidance
(Buswell, 1935; Yarbus, 1967; Rayner, 1998; Viviani,
1990; Henderson, 2003), our study has an applicative
potential.

Firstly, our findings suggest that a number of low-
level physiological parameters of visual exploration be-
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havior could be suitably used to automatically decode
inner cognitive processes to the benefit of BCI systems.
In the field of neuro-rehabilitation, for example, many
efforts are directed at decoding motor imagery and
covert motor commands from brain signals with the
goal of driving prosthetic devices and boosting motor
improvement through neurofeedback training (Silvoni
et al., 2011). Central to this endeavor is the capability
to extract in the simplest possible way useful neural in-
formation from subjects engaged in some sort of men-
tal imagery tasks. For this, brain activity is recorded
via amplifiers and decoded using on-line classification
algorithms. Brain signals are not the only physiological
correlate of mental imagery, however. Eye movements
have been shown to tag in a precise way an elusive
covert process such as mental imagery (Brandt & Stark,
1997; Johansson, Holsanova, Dewhurst, & Holmqvist,
2012), and, more specifically, dynamic motion imagery
(de’Sperati, 1999, 2003; de’Sperati & Santandrea, 2005;
Jonikaitis, Deubel, & de’Sperati, 2009; Crespi et al.,
2012). Thus, the methodological approach that we have
described in the present study might be profitably ap-
plied to extract eye movements information to drive
BCI external devices. For example, automatically clas-
sifying good and bad imagery performance could help
to refine the mental training procedures until expertise
is achieved, or to avoid that incorrect signals are erro-
neously sent to the BCI device. Also, a classifier could
detect spurious eye movements - or their absence - that
might mean that visuospatial attention has been drawn
from the current imagery task. In sum, an oculomotor-
based channel with efficient classification capabilities
could be suitably paired to EEG-based or fMRI-based
channels to improve mind reading performance in hy-
brid, multiple input signal sources BCI systems (Amiri,
Fazel-Rezai, & Asadpour, 2013).

Another potential application of our approach is
the development of an expertise test based on the
“expert’s eye”. Clearly, a general expertise test can-
not exist. Expertise is specific to particular domains,
and it can be of various types and qualities (e.g.,
declarative-conceptual, procedural, strategic; (De Jong
& Ferguson-Hessler, 1996). Although expertise is ulti-
mately established by directly measuring performance
(e.g., through questionnaire scores, as in school grades,
or with official rankings, as in sports), an indirect as-
sessment of the visual exploratory behaviour may un-
cover subtle aspects underlying expertise in all those
cases where visual information is crucial (e.g. under-
standing the working of a mechanical apparatus, or
providing legal authentication of a painting, or play-
ing chess, or detecting faults in sports). For example, in
our previous study on billiard expertise we have doc-
umented, through eye movement recording, the pas-
sage from intuitive, procedural knowledge based on
mental imagery, a strategy typical of novices, to rule-
based, conceptual knowledge, which was expressed
only in experts (Crespi et al., 2012). Incidentally, this

may explain the small bias that we have found with
the best performance towards a higher misclassifica-
tion of experts than novices: because experts can adopt
a novice’s strategy but a novice cannot adopt an ex-
pert’s strategy, a classifier can be fooled by an expert
but not by a novice.

The capability to detect expertise automatically, that
is, without the need of semantically analyzing which
particular objects and events of a visual scene the gaze
of an observer is directed to, will enhance “mind read-
ing” methods. However, it should be borne in mind
that a psychophysiological test for the expert’s eye
would not substitute direct measures of expertise, but
rather complement them. Thus, finding a mismatch
between the output of an automatic “ocular expert-
meter” and the outcome of direct evaluation of exper-
tise obtained with classical methods (e.g., testing, ques-
tionnaires) could raise issues as to what strategy or
what evidence has actually been used. For example, as-
suming that the scanpath is indicative of expertise, the
finding of an anomalous scanpath in inspecting the fig-
ures of a difficult geometry exam would perhaps ques-
tion what mental procedure was used by a student who
nonetheless provided all correct answers; An alterna-
tive interpretation could be that the student answered
correctly by chance.

The automatic recognition of individual traits
through behavioral analyses is an intensely pursued
goal. Biometrics is a field of study aimed at identify-
ing individuals through their unique biological char-
acteristics or behavioral patterns. Biological methods
in biometrics include for example fingerprint, face, or
iris verification, whereas behavioral methods include
voice, signature, typing or gait analysis. Recently,
behavioral biometrics has been applied to eye move-
ments, with the goal of identifying individuals through
their oculomotor patterns (Holland & Komogortsev,
2011), even in a task-independent way (Bednarik et al.,
2005; Kinnunen, Sedlak, & Bednarik, 2010). In these
studies various methods to analyze eye movements
have been used, with an ensuing performance how-
ever still short of the accepted standards for biomet-
rics systems. Our work was aimed at distinguishing
a novice from an expert, that is, two classes of indi-
viduals rather than a given individual as in biometrics.
Though, the high classification rates that we obtained,
even in a poorly constrained scenario such as match ob-
servation, suggests that our approach based on feature
space fusion and a Bayesian sparse classifier could be
profitably applied to personal identification as well. It
is interesting that a similar set of eye movements fea-
tures (e.g., duration and amplitude of saccades) can
be used successfully for both individual and categor-
ical classification (personal identity or expertise). This
seems to confirm that these basic features are more than
just oculomotor traits.
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Appendix
RVM and SVM

Denote {xn, tn}N
n=1 a training data set of N samples

with xn ∈RD and tn ∈ C , C being the classification space
of dimension C. The SVM approach (Cristianini &
Shawe-Taylor, 2000) relies on building a classifier of the
form sign [ f (x;w)] where tn ∈ {−1,1} (binary classifica-
tion, C = 2) and

f (x;w) =
M

∑
i=1

wiφi(x) = wT
φ(x), (4)

is a linear regression model t̂ = f (x;w) that approx-
imates the true mapping function t. In Eq. 4, φ(·)
represent a generally nonlinear and fixed basis func-
tions, mapping the input space in a higher dimen-
sional space, and w ∈ RM are adjustable parameters (or
weights) that appear linearly in (4). Note that, though
the model is linear in the parameters, it may still be
highly flexible as the size of the basis set, M, may be
very large. The objective of training is to estimate good
values for those parameters, which in the SVM frame-
work is accomplished through an optimization tech-
nique (Cristianini & Shawe-Taylor, 2000). Also, in the
SVM, the model is implicitly defined such that M = N ,
i.e. designining one basis function for each example in
the training set. A particular kind of function known as
kernel function is employed, which provides an implicit
calculation of the product between φ(xi) and φ(x j), i.e.,
K(xi,x j) =< φ(xi),φ(x j) >; thus, predictions are based
on the function:

f (x;w) =
M

∑
i=1

wiK(x,xi). (5)

The key feature of the SVM is that, in the classification
case, its target function attempts to minimise a mea-
sure of error on the training set while simultaneously
maximising the margin between the two classes (in the
feature space implicitly defined by the kernel). This is
a highly effective mechanism for avoiding over-fitting,
which leads to good generalisation. It furthermore re-
sults in a sparse model dependent only on a subset of
kernel functions: those associated with training exam-
ples xn that lie either on the margin or on the “wrong”
side of it, namely the support vectors (Cristianini &
Shawe-Taylor, 2000).

The RVM has the same functional form as SVMs, but
is conceived in a Bayesian framework (Tipping, 2001).
Following the standard probabilistic formulation, the
targets are assumed to be samples generated from the
model (4) perturbed with a noise process ε:

tn = f (xn;w)+ εn. (6)

Here ε represents the error between the estimated
targets t̂ and the true ones t, which is assumed to be

normally distributed with zero mean and unknown
variance σ2, i.e. tn ∼ P(tn|xn,w,σ2) = N (tn| f (xn;w),σ2),
where the latter notation specifies a Gaussian distribu-
tion N over the target labels with mean f (xn;w) and
variance σ2. Under independent and identical distribu-
tion generation of the observations, the data likelihood
can be written as:

P(t|w,σ2) =
N

∏
n=1

N (tn| f (xn;w),σ2). (7)

From now on, we will write terms such as P(t|x,w,σ2)
as P(t|w,σ2). Omitting to include x variables is purely
for notational convenience and it implies no further
model assumptions.

In a Bayesian framework, model parameters w and
σ2 are considered as random variables. These are es-
timated by first assigning prior distributions and then
estimating their posterior distribution using the likeli-
hood of the observed data (Eq. 7). The key of the RVM
approach (Tipping, 2001) is to define a prior conditional
distribution on each coefficient wi, such that, according
to the Automatic Relevance Determination (ARD) mecha-
nism (MacKay, 1992), all coefficient which are unneces-
sary are pruned:

P(w|α) =
N

∏
n=1

N (wn|0,α−1
n ), (8)

where α = [α1, · · · ,αN ]
T is the vector of RVM hyper-

parameters. Since many of such hyper-parameters usu-
ally assume elevated values, their associated weights
will be sharply peaked around zero. This has the effect
of switching off basis functions for which there is no
evidence in the data, yielding sparse prediction mod-
els. Thus, unlike the SVM, the RVM explicitly encodes
the criterion of model sparsity as a prior over the model
weights. Whilst in SVM regression/classification a de-
sirable level of sparsity has to be brought about indi-
rectly by determining an error or margin parameter
via a cross-validation scheme, the Bayesian formula-
tion of the regression problem in the RVM allows for
a prior structure that explicitly encodes the desirability
of sparse representations (Tipping, 2001).

As a practical consequence, for SVM the support
vectors are typically formed by “borderline” , difficult-
to-classify samples in the training set, which are located
near the decision boundary of the classifier; in contrast,
for RVM the relevance vectors are formed by samples ap-
pearing to be more representative of the two classes,
which are located away from the decision boundary of
the classifier.

To sum up, from a Bayesian standpoint, the goal is
to estimate from data the model parameters w,α,σ2;
unfortunately an analytical expression for the poste-
rior distribution P(w,α,σ2|t) is not available. How-
ever, the posterior can be factorised as P(w,α,σ2|t) =
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P(w|t,α,σ2)P(α,σ2|t). The first term P(w|t,α,σ2) is the
posterior probability of the weights given α,σ2, namely
via Baye’ rule,

P(w|t,α,σ2) =
P(t|w,σ2)P(w|α)

P(t|α,σ2)
, (9)

which, by considering Eqs. 7 and 8, is normally dis-
tributed. The second term P(α,σ2|t) is the posterior
probability of α and σ2. For an in-depth discussion
about the calculus of these probabilities, the reader
should refer to (Tipping, 2001).

The RVM classifier based on Multiple Kernels
(Damoulas & Girolami, 2009a; Psorakis et al., 2010) can
be obtained by generalizing Eq. (5) as follows. A base
kernel can be combined into an N ×N composite ker-
nel as Kβ(xi,x j) = ∑

S
s=1 βsKs(xs

i ,xs
j) (Eq. 1, Data analyses

Section).
More precisely, denote with the matrix X ∈RN×D the

input data from which the kernel matrix Kβ ∈ RN×N

is derived, where each row kβ
n expresses how related,

based on the selected kernel function, observation xn is
to the others of the training set. The learning process
involves the learning of model parameters W ∈ RN×C,
which by the quantity WT Kβ act as a voting system to
express which relationships of the data are important in
order for our model to have appropriate discriminative
properties

By introducing the auxiliary variables Y ∈ RN×C, we
regress on Y with a standardized noise model; thus, for
a sample n and a class c, Eq.7 can be written as:

ync|wc,kβ
n ∼Nync(k

β
nwc,1), (10)

where the vector wc defines the c-th column of the
model parameters matrix W. The regression target
is linked to the classification label by setting tn = 1 if
yin > y jn ∀ j 6= i.

This way, the posterior class membership distribu-
tion is the multinomial probit likelihood (details in
Damoulas & Girolami, 2009a)

P(tn = i|W,kβ
n) = Ep(u)

{
∏
j 6=i

Φ(u+kβ
n(wi−w j))

}
(11)

where u ∼ N (0,1) and Φ is the Gaussian cumulative
distribution function. Following the RVM approach,
the elements wnc of matrix W follow a standard normal
distribution with zero mean and variance α−1

nc , where
the latter are the elements of the hyper-parameter ma-
trix A∈RN×C, P(W|A) = ∏

N
n=1 ∏

C
c=1 N (wn|0,α−1

nc ), while
αnc follow a Gamma distribution, thus P(A|a,b) =

∏
N
n=1 ∏

C
c=1 G(a,b). With sufficiently small hyper-

parameters a,b(< 10−5) the scales A restrict W around
its zero mean due to small variance.

The learning procedure for latent variables Y
and parameters W,A,β is a generalised Expectation-
Maximization algorithm, which can be summarised as
follows.

Step 1: use a type-II Maximum Likelihood (ML) pro-
cedure, which maximises the log of the marginal likeli-
hood logP(Y|Kβ,A) = log

∫
P(Y|Kβ,W)P(W|A)dW with

respect to A, and boils down to either add a sample
or update its associated hyper-parameter αnc; thus, the
model can start with a single sample and proceed in a
constructive manner.

Step 2: perform an M-step for obtaining W.
Step 3: perform an E-step for Y.
Step 4: obtain βs weights via constrained Quadratic

Programming.
Step 1 to 4 are iterated using as a convergence mea-

sure the % mean change of (Y−KβW)2. Once the
parameters of the model have been learned, then the
Multinomial probit likelihood for the calculation of
class membership probabilities P(tn = i|W,kβ

n) (Eq. 11)
is computed by resorting to Quadrature approximation
for solving the expectation integral. For details, see
(Damoulas & Girolami, 2009a; Psorakis et al., 2010).
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Eye-movements as a biometric. In H. Kalviainen, J. Parkki-
nen, & A. Kaarna (Eds.), Image analysis (Vol. 3540, p. 780-
789). Springer Berlin Heidelberg.

Bednarik, R., Vrzakova, H., & Hradis, M. (2012). What do you
want to do next: A novel approach for intent prediction in
gaze-based interaction. In Proceedings of the Symposium on
Eye Tracking Research & Applications (ETRA ’12) (pp. 83–90).
New York, NY, USA: ACM.

Boccignone, G., & Ferraro, M. (2013a). Feed and fly control of
visual scanpaths for foveation image processing. annals of
telecommunications–annales des télécommunications, 68(3-4),
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