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Abstract 

A tough challenge in nanomaterials chemistry is the determination of the structure of 

multicomponent nanosystems. Dye-zeolite L composites are building blocks of hierarchically 

organized multifunctional materials for technological applications. Supramolecular organization 

inside zeolite L nanochannels, which governs electronic properties, is barely understood. This is 

especially true for confined close-packed dye molecules, a regime not investigated in applications 

yet and that might have great potential for future development in this field. Here we realize for the 

first time composites of zeolite L with maximally-packed fluorenone molecules and elucidate their 

structure by integrated multi-technique analyses. By IR, thermogravimetric and X-ray diffraction 

we establish the maximum degree of dye loading obtained (1.5 molecules per unit cell) and by 

modeling we reveal that at these conditions fluorenone molecules form quasi 1-D supramolecular 

nanoladders running along the zeolite channels. Spatial and morphological control provided by the 

nanoporous matrix combined with a complex blend of strong dye-zeolite and weaker dye-dye van 

der Walls interactions lie at the origin of this unique architecture, which is also stabilized by the 

hydrogen bond network of co-adsorbed water molecules surrounding the dye nanoladder and 

penetrating between its rungs.  

 

Keywords: Zeolite L; supramolecular organization; host-guest systems; organic-inorganic 

hybrids; X-ray powder diffraction; computational modeling 
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1. Introduction 

Zeolites, beside their well-established use as catalysts and molecular sieves, are becoming 

increasingly popular in the cutting-edge field of design and fabrication of advanced functional 

materials.1 The regular pore systems of nanometric openings exhibited by the framework make 

zeolites ideal host matrices for achieving supramolecular organization of photoactive species, 

leading to versatile building blocks for the realization of hierarchically organized multifunctional 

composite materials.1,2,3  Microlasers, pigments, optical switches, or artificial antenna systems are 

only few of the possible applications of these fascinating systems.4,5,6,7,8,9,10 To date, different 

zeolites with suitable channel dimensions, such as AlPO4-5,11,12 zeolite Y, 13 zeolite L,14,15 as well 

as mesoporous materials like MCM-41, 16  have been successfully adopted as nanosized host 

matrices for the synthesis of these composites. In this rapidly evolving scenario, the inclusion of 

photoactive molecules into one-dimensional channel systems is of paramount relevance for further 

progress in some of the most challenging fields of nanoscience and nanotechnology. Since the 

nanometric diameter channels of zeolites may induce an anisotropic arrangement of photoactive 

molecules, the resulting host-guest materials show outstanding energy transfer capabilities, 

mimicking the functionalities of the antenna systems of living plants. 17,18,19,20,21 This is a key 

requirement for the fabrication of increasingly sophisticated optical devices which might open 

novel pathways in areas such as solar energy harvesting, information processing and 

nanodiagnostics.22,23,24 

Zeolite L (ZL) is a very appealing host matrix for the realization of one dimensional 

photoactive domains. Due to the narrow openings (free diameter 7.8 Å) and maximum diameter 

(~12 Å) of its channels, sufficiently bulky dye molecules are constrained to align to the channel axis 

and are prevented from passing each other. Moreover, ZL crystal growth is not affected by stacking 

fault problems that might occlude the parallel channel system.25,26 By virtue of such feature, it is 

indeed possible to obtain high concentrations of well oriented dye molecules, which are crucial for 

realizing e.g. artificial antenna systems. An atomistic-detail knowledge of these organized 

arrangements of dyes would be fundamental for the future development of molecular-based optical 

devices. 

Supramolecular organization in ZL nanochannels largely depends, at a microscopic level, on 

the orientation of the molecules with respect to the channel axis, which in turn depends on the size, 

shape, charge and concentration of the photoactive guests, as well as on the presence and nature of 

the adopted co-solvent medium.1 In addition, molecular packing plays a key role in modulating the 
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dye orientation, and therefore the properties of the composites, especially when dye molecules 

significantly smaller than the ZL channel aperture are included.1,3 In this case, the molecules are no 

longer constrained to align to the channel axis: due to the larger orientation freedom, their 

distribution is not uniform and their orientation depends on the local concentration. In such 

conditions, it becomes extremely difficult to predict the structural details of the supramolecular 

arrangement inside ZL simply on the basis of the geometrical parameters of the guest molecules.2,3 

Experimental information might be gathered by structural X-ray diffraction studies. However, in the 

case of dye-ZL systems, difficulties arise from the high symmetry of the zeolite, from the low 

amount of the light atoms of the dye (which do not allow the determination of a possible symmetry 

lowering) and from the non-coincidence of the point symmetry of ZL with that of the dye. In 

addition, because of the non-uniform concentration/orientation of the dye, disorder along the 

channel could be also present. Furthermore, due to the small size of available ZL crystallites, single 

crystal X-ray diffraction is not affordable.27 As a consequence, X-ray structural determinations on 

this kind of materials are extremely challenging: as a matter of fact, only few diffraction studies are 

available in the literature.28,29  

Some insight can be provided by optical spectroscopy of oriented dye-ZL monolayers 30,31 

or by fluorescence microscopy approaches.32,33,34 Since both techniques probe the orientation of the 

electronic transition dipole moment of the molecules with respect to the ZL channel axis, only 

indirect information on the actual geometrical features of supramolecular organization can be 

obtained. Moreover, data interpretation is not straightforward because even single crystal 

microscopy data are the result of averaging over a large number of situations (e.g. a 600 nm 

diameter ZL crystal contains roughly 100000 parallel channels)1 stemming from the non-uniform 

orientation of the molecules. In this context, modelling dye-ZL composites could be of great help 

for understanding the organization of molecules confined in nanochannels. For example, theoretical 

investigations on xanthene dye-ZL composites unraveled the orientation of the dye and revealed 

that it was influenced by the water co-solvent.35 On the other hand, in the case of the dye fluorenone 

(FL), orientation was found to be governed by the strong interaction between the ZL 

extraframework potassium cations and the fluorenone carbonyl oxygen. Such an interaction was 

responsible of the stability of the fluorenone-ZL composite as well as of its substantial anisotropy, 

independently of the water content inside the channels.36,37  

All of these studies were performed by modeling a low dye loading in order to mimic the 

dye concentrations generally adopted in actual dye-ZL composites, which are normally below 0.5 

molecules per unit cell.23 The structure, properties and behavior of highly packed dye-ZL materials, 
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i.e., characterized by a high degree of dye loading, have never been explored to date, neither by 

experiment, nor by modeling. A deep understanding of this regime might provide novel ideas and 

alternative routes for advances in the fabrication of ZL-based devices, and this work represents the 

first contribution toward this goal. 

By exploiting the full potential of a multi-technique integrated experimental-computational 

approach, here we study for the first time high dye-loading ZL/FL materials and shed light on how 

dye molecules are organized in closely packed ZL/FL systems. In the following, the results of 

combined X-ray diffraction/IR/thermogravimetric analyses on ZL/FL systems characterized by 

different FL content are reported, discussed, and rationalized by theoretical modeling on the basis 

of a complex balance of interactions among dye molecules, water and ZL matrix. 

 

2. Experimental section 

2.1 Materials 

Host: Potassium zeolite L (LTL-framework type,26 Si/Al ratio 2.9) was purchased from 

Tosoh Corporation (Japan) (code HSZ-500). LTL framework (space group P6/mmm) is built of 

columns of cancrinite cages stacked with double six membered rings (D6R) along the c axis. These 

columns are connected to form large circular 12-ring (12MR) channels of size 7.4 × 7.8 Å and 

smaller elliptical 8-ring (8MR) ones of 1.9 × 5.6 Å, both running along the c axis. The main 

channels are connected to the parallel 8MR ones by non-planar boat-shaped 8 membered rings 

(Figure 1a,b).  
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Figure 1. a) Projection along [001] of zeolite L structure. Light grey: water sites; dark grey: K sites  b) Side 

view of the 12 MR channel running along the c axis. c) SEM picture of as-synthesized zeolite L crystals. 

 

The scanning electron microscopy (SEM) picture in Figure 1c shows the typical barrel shape 

of the crystals and a rather homogeneous size distribution of about 400 × 600 nm. The chemical 

composition of the zeolite was determined by X-rays fluorescence and thermogravimetric analysis. 

The resulting chemical formula is K8.46 (Al8.35 Si27.53) O72 
●17.91H2O. 

The XRPD pattern of the as-synthesized ZL (Figure S1 in the Supporting Information, 

hereafter SI) confirms the good cristallinity of the material and the absence of impurities. 

Guest: 9-fluorenone (C13H8O), purchased as analytical standards by Sigma-Aldrich with a 

purity of 98.0%, was used without further purification. The dye is a neutral and flat organic 

molecule, with a carbonyl as functional group.38 In Figure 2 the structure and the dimensions of the 

molecule are shown. 
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Figure 2. Structure, bond lengths (Å) and bond angles (°) of 9-fluorenone molecule.38 

 

Synthesis of ZL/FL composites: FL was inserted into the channels of ZL by using gas-phase 

adsorption. Four ZL/FL samples were synthesized with nominal loadings of 0.5, 1.0, 1.5 and 2.25 

molecules per unit cell, following the experimental set up reported in Ref. 23 (the samples are 

hereafter reported as ZL/0.5FL, ZL/1.0FL, ZL/1.5FL and ZL/2.25FL). ZL was first dehydrated at 

200°C for 4 h in vacuum (10-4 mbar), on the basis of the results of the dehydration and rehydration 

study reported by Gigli et al.39 Dehydrated ZL was mixed, in inert atmosphere (operating in a glow 

box fluxed with high purity dry N2), with FL powder - in ratios corresponding to the desired 

loadings - and placed in a rotating oven. The mixtures were kept at 120 °C for 24 h in order to 

ensure the encapsulation of the dye and its homogenous distribution in the zeolite channels. The 

composites were characterized by thermogravimetric analysis (TGA), ATR-IR spectroscopy and 

XRPD.    

 

2.2 Methods 

TGA-MSEGA 

The chemical and structural characterizations of ZL/FL composites were carried out in air at 

room temperature (RT), i.e. in conditions of possible rehydration.  

The thermal analyses (TGA coupled with Evolved Gas Mass Spectrometry, (MSEGA)) of as-

synthesized ZL, pure FL and of the four ZL/FL composites were performed on a Seiko SSC 5200 

thermal analyzer equipped with a quadrupole mass spectrometer (ESS, GeneSys Quadstar 422) 

using the following experimental conditions: 10°C/min heating rate, from RT to 900°C, 100 µl/min 

of air flux. The gas emitted during the thermal reactions was monitored in order to allow the 

unambiguous identification of the species responsible of the weight loss observed in the TGA. Gas 

analyses were carried out in Multiple Ion Detection mode (MID), following the intensity changes of 

8 species (m/z = 16 (CH4), 18 (H2O), 28 (CO), 30 (CH3CH3), 44, 45 (CO2), 78 (C6H6) and 180 
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(C13H8O)) vs temperature. Before starting MID analysis, background subtraction was applied to set 

the zero point conditions. 

ATR-IR spectroscopy 

Infrared spectra (2 cm-1 resolution, average on 256 scans) were collected in Attenuated Total 

Reflection (ATR) mode on loose powder on a Bruker Vertex70 instrument (DTGS detector), 

equipped with a Bruker OPTIK Platinum ATR accessory (internal reflection element in diamond). 

Atmospheric carbon dioxide and moisture signals have been subtracted to all the spectra by 

applying the Atmospheric Correction tools, as implemented in the Opus 6.5 software. 

X-ray powder diffraction 

Preliminary XRPD tests on all the synthesized composites have been performed using a 

Philips PW1729 diffractometer (Ө/Ө geometry, CuKα radiation). The powder was loaded on a zero 

background quartz sample holder. Data were collected in the 2 Ө range 3–120° with steps of 0.02 

and at 5.5 s per step speed.  

The structural refinements of selected samples (as-synthesized ZL, ZL/0.5FL, ZL/1.0FL and 

ZL/1.5FL) were based on high resolution XRPD patterns collected at the SNBL (BM01a) beamline 

at ESRF (European Synchrotron Radiation Facility) in transmission geometry, with a fixed 

wavelength of 0.6825 Å. The powder samples were loaded and packed in a 0.3 mm boron capillary, 

mounted on a standard goniometric head and spun during data collection. Bidimensional diffraction 

patterns were recorded on a PILATUS3 M-Series detector (pixel dimension 172 µm) at a fixed 

distance of 193 mm from the sample. One-dimensional diffraction patterns were obtained in the 2Ө 

range 0–50° by integrating the two-dimensional images with the program FIT2D.40 

Structural refinements 

Structural refinements were performed by full profile Rietveld analysis using the GSAS 

package41 with EXPGUI inter-face.42 Since no evidence of superstructure and symmetry change in 

the ZL/FL composites was detected from the analysis of the powder patterns, the refinements were 

performed in P6/mmm space group. The framework and potassium atom coordinates reported in 

Ref. 39 for the room temperature refinement were used as a starting model. For all tetrahedral 

atoms, the Si scattering factor was used, neglecting the amount of Al atoms. The Bragg peak profile 

was modeled using a pseudo-Voigt function with 0.01% cut-off peak intensity. The background was 

empirically fitted using a Chebyschev polynomial with 20 variable coefficients. The scale factor, 

the 2θ-zero shift and unit-cell parameters were accurately refined. Table 1 reports the refinement 

parameters for ZL and for three composites. The thermal displacement parameters were constrained 

in the following way: the same value for all the tetrahedral atoms, a second value for all the 
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framework oxygen atoms, a third one for the oxygen atoms of water molecules and a fourth one for 

the FL molecule atoms. The thermal parameters of the K sites were allowed to vary. Occupancy 

factors and isotropic thermal displacement factors were refined in alternate refinement cycles. In the 

ZL/FL samples, the water and FL molecules were located after the inspection of the Fourier 

difference maps. H atoms were not considered during the structure refinement due to their low 

scattering factors. Soft constraints were imposed on tetrahedral bond lengths (Si–O=1.63 Å) as well 

as on the C–C (in the range 1.39-1.48 Å) and C–O (1.22 Å) distances, with tolerance values of 0.03 

Å. These latter constraints could not be removed without unrealistic bond distances emerging in the 

structure due to the high number of variables in the refinement and to the extremely low scattering 

power of the FL molecules; hence the weight on the constraints was kept at a value of 1000 in the 

last cycles of the refinements. The occupancy of FL carbon sites was allowed to vary in the first 

refinement cycles and successively was fixed to the average value. 

 

Samples ZL ZL/0.5FL ZL/1.0FL ZL/1.5FL 

Space Group P6/m m m P6/m m m P6/m m m P6/m m m 
a (Å) 18.3795(4) 18.3860(6) 18.3940(6) 18.4211(7) 

c (Å) 7.5281(2) 7.5228(3) 7.5203(3) 7.5117(4) 

V (Å3) 2202.4(1) 2202.4(1) 2203.5(1) 2207.5(2) 

Rp    (%) 2.8 3.0 2.9 3.1 

R wp   (%) 3.8 4.2 4.2 4.3 

R F**2 (%) 7.3 7.5 7.8 8.7 

No. of variables 73 84 81 107 
No. of 
observations 

1319 1187 1319 1187 

No. of reflections 944 726 946 729 
 

Table 1. Experimental and refinement parameters for ZL and for the ZL/0.5FL, ZL/1.0FL and 
ZL/1.5FL composites. 
 

The final atomic positions and thermal parameters for the four refinements are given in 

Table S1. The framework and extraframework interatomic distances for ZL and for the composites 

are reported in Tables S2 and S3. The final observed and calculated powder patterns of as-

synthesized ZL and of the ZL/0.5FL, ZL/1.0FL, ZL/1.5FL composites are shown in Figure S1. 

Models and calculations  

Density functional theory (DFT) calculations were performed on a series of models for the 

ZL/1.0FL and ZL/1.5FL composites. The PBE approximation43 with periodic boundary conditions 

and Grimme corrections44 for the FL-FL interactions was applied throughout. For both systems the 

simulation cell was twice the experimental unit cell (u.c.) of the ZL host along c. Calculations on 
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the ZL/0.5FL composite (simulation cell stoichiometry: K18[Al18Si54O144]·FL) with the PBE 

functional and periodic boundary conditions were previously performed and thoroughly described 

in refs. 36,37. 

Electronic wavefunctions were expanded in planewaves up to a kinetic energy cutoff of 25 Ry 

(200 Ry for the density). Electron-ionic cores interactions were computed with ultrasoft Vanderbilt 

pseudopotentials for H, C, O, norm conserving pseudopotentials for Si, Al, K (semi-core in the case 

of K).45,46,47,48 This electronic structure computational scheme provided a proper description of the 

ZL/0.5FL composite,36,37 as well as of other large organic-inorganic systems.49,50,51,52,53,54,35 All 

calculations were performed with the CPMD code,55 a particularly valuable approach in the study of 

quasi one-dimensional supramolecular systems inside zeolite nanochannels.56,57,58,59 

In order to try establishing which close packing arrangements of FL molecules could be 

possible inside ZL channels, dry ZL/FL models were first considered. Local energy minima for the 

dry ZL/1.0FL and ZL/1.5FL models, characterized by simulation cell stoichiometries 

K18[Al18Si54O144]·2FL and K18[Al18Si54O144]·3FL respectively, were obtained by geometry 

optimization of different guess configurations. The guess configurations for the ZL/1.0FL and 

ZL/1.5FL systems were built by inserting two and three FL molecules per simulation cell, 

respectively (convergence criterion: 5.×10-4 au for forces on atoms). In the ZL/1.5FL model, one 

ZL unit cell contained 2 FL molecules and the adjacent one 1 FL molecule. In the case of the 

ZL/1.0FL system, two different models were considered: model 1-1, characterized by an occupancy 

of 1 FL molecule per ZL unit cell, and model 2-0, where one ZL unit cell contained 2 FL molecules 

and the adjacent one 0 FL molecules. The guess geometries of both the 1-1 and 2-0 models were 

built by positioning the FL molecules so that their C=O groups were either in a parallel (“sin”) or 

antiparallel (“anti”) configuration. In all cases, the stabilization energy of the composites with 

respect to the isolated ZL and FL components was calculated with Equation 1: 

 

∆E(ZL·nFL)= E(ZL·nFL) - E(ZL) - n×E(FL)                  (1) 

 

where E(ZL·nFL) is the energy of the optimized dry ZL/nFL model (n=2,3 for ZL/1.0FL and 

ZL/1.5FL, respectively), E(ZL) is the energy of the empty ZL, while E(FL) is the energy of an 

isolated FL molecule calculated in the same simulation cell. 

In the case of the low FL-content system, i.e., the ZL/0.5FL composite, an atomistic-level 

structural description was obtained from both 0 K energy minimization and room temperature first 
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principles molecular dynamics trajectories, as discussed in ref. 36, to which we refer for further 

details.  

Once obtained the minimum energy structure of the dry ZL/1.5FL system, corresponding to 

the maximum degree of FL loading, several hydrated models characterized by stoichiometry 

K18[Al18Si54O144]·3FL·13H2O were built by adding 13 water molecules in the simulation cell. 

Nevertheless, ZL/1.5FL models containing 12 and 14 water molecules were also considered. 

Stabilization energies of the hydrated ZL/1.5FL models with respect to the isolated components 

were calculated with Equation 2: 

 

∆ E(ZL·3FL·xH2O)= E(ZL·3FL·xH2O) - E(ZL) - 3×E(FL) - x× E (H2O)    (2) 

 

where E(ZL·3FL·xH2O) is the energy of the optimized hydrated ZL/1.5FL model (x=12,13,14), 

E(ZL) is the energy of the empty ZL, while E(FL) and E (H2O) are respectively the energies of an 

isolated FL molecule and of an isolated water molecule calculated with the same simulation cell 

parameters. The relative stabilities of the systems with 12 and 14 water molecules with respect to 

that containing 13 H2O’s, were calculated with Equations 3 and 4, respectively:  

 

∆ E(12/13) = E(ZL·3FL·12H2O) - [E(ZL·3FL·13H2O) - E (H2O)]     (3) 

∆ E(14/13) = E(ZL·3FL·14H2O) - [E(ZL·3FL·13H2O) + E (H2O)].     (4) 

 Stabilization energies and relative stabilities reported in the following are given in kJ per mol of 

simulation cell. 

 

3. Results and Discussion 

3.1 TGA-MSEGA  

Water and fluorenone contents in the ZL/FL composites were determined by TGA-MSEGA. 

Figure 3 shows the TG (a) and DTG curves (b) as a function of temperature for the as-synthesized 

ZL, for pure crystalline FL and for the ZL/FL composites. 

The as-synthesized ZL loses most of its water content (11.9%) in the 30–120°C temperature 

range, with a maximum in the DTG curve at 110 °C. However, the weight loss keeps on up to 

250°C, as shown by the slight slope of the TGA curve. A water loss at such a low temperature is 

consistent with the ZL structure; in fact, among the 18 extraframework water molecules localized in 

the 12MR channel, only 5 are coordinated to K cations, while the remaining are weakly bonded to 

each other.26,39 
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Figure 3. TG (a) and DTG curves (b) vs temperature for ZL (black solid curve), for pure FL (grey solid 

curve) and for the FL/0.5ZL (dashed black line), FL/1.0ZL (dashed-double dot black line), FL/1.5ZL (dotted 

black line) and FL/2.25ZL (dashed-dot black line) composites.  

 

The thermal analysis of crystalline fluorenone (grey solid line in Figure 3) exhibits only one 

fast weight loss at 220°C and the mass spectrometry reveals that FL does not decompose in sub-

moieties, but is released in its molecular form. 

 

Table 2. Water release temperature, water weight loss, number of water molecules per unit cell determined 

by TGA-MSEGA (TGA) and by the Rietveld refinement (R) for the ZL/FL composites; FL release 

temperature, FL weight loss, number of FL molecules per unit cell determined by TGA-MSEGA (TGA) and 

by the Rietveld refinement (R) for the ZL/FL composites. 

 

As shown in Figure 3 and Table 2, in the four composites the water release occurs at about 

Sample 
Water loss  

T (°C) 
Water 
wt. % 

Water  
(TGA) 

Water  
(R) 

FL 
loss  

T(°C) 

FL 
wt.% 

FL  
(TGA) 

FL  
(R ) 

ZL 110 11.9 18 18 - - - --- 

ZL/0.5FL 106 8.7 13.6 14.7 500 2.8 0.43 0.49 

ZL/1.0FL 104 7.3 11.5 9.7 440 5.6 0.88 0.98 
ZL/1.5FL 101 5.5 8.8 7.0 403 8.7 1.43 1.48 

ZL/2.25FL 102 5.4 8.8 -- 400 9.5 1.50 -- 
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100°C and the weight losses are 8.7%, 7.3%, 5.5% and 5.4% (corresponding to 13.6, 11.5, 8.8 and 

8.8 H2O molecules per u.c.) in ZL/0.5FL, ZL/1.0FL, ZL/1.5FL and ZL/2.25FL, respectively. The 

water loss temperature slightly decreases when the water amount in the composite decreases, as a 

consequence of the FL penetration. The fluorenone release in the composites occurs again in one 

step, but at higher temperature with respect to pure FL (in the range 300 - 500°C). This indicates 

that FL is not simply physisorbed on the zeolite surface, but is encapsulated inside the zeolite 

channels. It is worth noting that the release temperature decreases with increasing the FL loading, 

indicating an influence of loading on the host-guest FL-ZL interactions. The sample ZL/2.25FL 

shows a further weight loss at 170°C, absent in the TG curve of all the other composites. This can 

be interpreted as the result of the removal of a portion of FL present as crystalline phase, not 

confined in zeolite porosities. This fact is confirmed by the XRPD pattern collected on that sample, 

showing reflections pertaining to the crystalline fluorenone phase (Figure 4).  

 

 

Figure 4. XRPD pattern of the ZL/2.25FL composite. The asterisks indicate the peaks of crystalline FL not 

adsorbed in ZL channels.  

 

On the basis of the mass spectrometry results, we observed that, when confined in the 

zeolite L, FL is released as CO2 and C6H6  as a consequence of the higher release temperature. The 

weight losses corresponding to the encapsulated FL are: 2.8%, 5.6%, 8.7% and 9.5% 

(corresponding to 0.43, 0.88, 1.43 and 1.50 FL molecules) in the ZL/0.5FL, ZL/1.0FL, ZL/1.5FL 

and ZL/2.25FL composites, respectively (Table 2). These results, and in particular the presence of 

only 1.5 molecules in the sample ZL/2.25FL, indicate that the maximum possible loading of the dye 

in zeolite L is 1.5 molecules per unit cell. The crystalline fluorenone detected in the case of the 

ZL/2.25FL composite corresponds to the exceeding dye on the zeolite surface. Consequently, this 
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sample was not further investigated. In all of the investigated composites, the amounts of water and 

FL are, as expected, inversely correlated, indicating that fluorenone molecules entering the channels 

replace the water molecules. 

 

3.2 ATR-IR spectroscopy 

Figure 5 shows the IR spectra of FL in solid state and in solution in cyclohexane (upper 

section “FL”) compared with the spectra of bare ZL (dotted black line) and ZL mixed with FL 

before (middle section) and after (lower section) thermal treatment.  

 
Figure 5. ATR-IR spectra, in the 3800-3000 and 1750-1500 cm-1 ranges of FL, ZL and ZL/FL mixtures and 

composites.  “FL” upper section: fluorenone in solid state (dotted light gray line) and in cyclohexane 

solution (dotted gray line).  “Before” middle section: bare ZL (dotted black line) and  ZL/FL mixtures before 

the thermal treatment, namely  ZL/0.5FL (solid light gray), ZL/1.0FL (solid gray) and ZL/1.5FL (solid black 

line). “After” lower section: bare ZL (dotted black line, the same as above) and  ZL/FL composites after 

thermal treatment, namely  ZL/0.5FL (solid light gray), ZL/1.0FL (solid gray) and ZL/1.5FL (solid black 

line). Within the middle and lower sections,  spectra have been normalized to the intensity of the ZL 

framework band centered at ca 1005 cm-1 (see Figure S2 in the SI).  

 

Among the IR signals, the stretching vibration of the carbonyl group of FL (at 1711 cm-1 in 

solid and 1716 cm-1 in cyclohexane solution) is expected to be particularly informative on the 
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nature of the chemical environment around the FL molecule, being easily red shifted if directly 

involved in interactions with positive charges (as in the case of FL grafting on K+ ions). Conversely, 

the C=C ring in plane stretching modes vibrating at 1610 and 1598 cm-1 are expected to be 

insensitive to the interaction of FL with the environment. The exposure of bare ZL to air for 

recording the IR spectrum resulted in the adsorption of water molecules within the zeolite channels, 

as witnessed by the presence of the broad bands at 3400 and 1640 cm-1, due to H2O stretching and 

bending modes, respectively.60 These spectral features remain essentially unchanged in the spectra 

of ZL simply mixed with FL (middle section), this latter producing bands almost coincident with 

those of FL in the solid state.  Anyway, it is worth to notice that an additional weak component can 

be observed at 1693 cm-1, which can be attributed to the C=O group of  FL interacting with positive 

charges,61 likely K+  ions present on the external surface of zeolite crystals.  Conversely, the band at 

1693 cm-1 becomes the dominant νC=O signal after thermal treatment of ZL/FL mixtures (lower 

section), while the H2O band decreases in intensity. In particular, the presence of an isosbestic point 

between the 1640 and the 1693 cm-1 peaks is a clear indication that a diffusion of FL in the pores 

occurred, with dye molecules occupying positions no longer available for the adsorption of water 

molecules when the composites were exposed to air.  

All the IR features of FL result to be strongly increased in intensity after the grafting, as 

expected for the introduction of the molecule in a strongly polarizing environment as the ZL pores. 

From these findings, it is evident that most of the FL molecules enter into the zeolite channels 

during the 120 °C thermal treatment forming the ZL/FL composites. It is important to stress how 

the ATR-IR technique reveals its suitability to quickly and easily verify the grafting of dye 

molecules, bearing a functional group, as C=O, spectroscopically highly sensitive to the chemical 

environment. 

 

3.3 Structure refinement 

As-synthesized ZL sample 

The structure refinement of the as-synthesized ZL indicated the following extraframework 

species distribution (see Tables S1 and S3): 

(i) site KB – in the center of the cancrinite cage – is fully occupied and coordinated to six 

framework oxygen atoms;  

(ii) site KC – in the center of the 8MR channel parallel to the c axis, midway between the 

centers of two adjacent cancrinite cages – is fully occupied and coordinated by four 

oxygen atoms; 
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(iii) site KD – in the main 12MR channel – is partially occupied and coordinated to six 

oxygen atoms and two water molecules.  

The water content, corresponding to 18 molecules, is distributed over five extraframework 

sites located in the main channel, labeled WF, WH, WI, WJ and WK. They are partially occupied 

and weakly bonded to the framework. 

The XRPD patterns collected on ZL and on the ZL/FL composites show differences in the 

intensity of some diffraction peaks, the most significant being related to the low 2Ө angle region 

(Figure S1). It is well known that, in zeolites, the intensities of the low angle peaks of the 

diffraction pattern are related to the extraframework species distribution. Thus, these changes are 

consistent with the FL penetration and in agreement with the TGA and ATR-IR results. Only small 

changes in the cell parameters occur, in particular a slight increase of a and a decrease of c 

parameters are observed in the composites with respect to the original material (Table 1).  

By comparing the results of the structural refinements of ZL with those of the three 

composites, slight deformations of both the channels running along c axis can be observed by 

increasing the FL loading. In particular, the 12MR channel becomes more circular, while the 8MR 

one assumes a more elliptical shape (Figure 6). The combined effect of widening/contraction of the 

two channels justifies the minor variations in the unit cell parameters reported in Table 1. 

 

 

Figure 6. Dimensions of the 12MR and 8MR channels parallel to [001] before (ZL) and after the adsorption 

of fluorenone. 

 

As regards the extraframework species, in all the studied samples we observe a general 

disordered distribution of water and FL molecules on partially occupied positions. Only the 
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extraframework sites KD, WI and WJ undergo small coordinates changes, as a consequence of the 

dye penetration, as discussed in the following sections.  

The structural refinements of the ZL/0.5FL and ZL/1.0FL composites gave similar results and 

are hence described together in the following section. 

 

 

ZL/0.5FL and ZL/1.0FL composites 

The refinements revealed the presence of 0.49 and 0.98 FL molecules per unit cell in both 

ZL/0.5FL and ZL/1.0FL composites, respectively, in good agreement with the indications of the 

TGA analysis (Table 2). These molecules are sited on the mirror planes parallel to c axis, 

statistically occupying one of the six equivalent positions - generated by the presence of the 6-fold 

axis parallel to [001] (Table S1, Figure 7a, b). In both composites, the oxygen of the carbonyl group 

(OFL) is oriented towards the two equivalent potassium sites (KD), located along the walls of the 

12MR channel. The distances between OFL and KD (2.81(6) and 2.86(7) Å for the ZL/0.5 FL and 

ZL/1.0 FL composites, respectively) confirm that in both samples there is a strong interaction 

between these two atomic species, in keeping with the data of ATR-IR analysis (Figure 5). 

 

 

Figure 7. View along [001] and along [100] of the arrangement of the FL and water molecules in the 

ZL/0.5FL and ZL/1.0FL composites (a, b) and in the ZL/1.5FL composite (c,d), as obtained by Rietveld 

refinements. The position of only one FL molecule in the ZL/0.5FL and ZL/1.0FL composites and of three 

(one FL and two FL’) FL molecules in the ZL/1.5FL composite are represented for sake of clarity.  

 

Along with the dye, water molecules were also located in the 12MR channel; specifically, 

14.7 molecules/u.c. in the ZL/0.5FL composite (distributed over the three independent partially 

occupied sites WH, WJ and WI) and 9.7 molecules/u.c. in the ZL/1.0FL one (distributed over the 

two independent partially occupied sites WJ and WI) (Table S1). The OFL oxygen atom and C3 

carbon occupy the same positions occupied by water molecules WI and WJ in ZL. These sites, 
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hereafter labeled OFL/WI and C3/WJ (Tables S1 and S3), showed occupancy factors higher than 

those of the other carbon sites, hence suggesting a possible sharing of these positions by water 

molecules and FL atoms (Figure 7a, b). These results, in particular the higher amount of water in 

the less loaded sample, are in good agreement with what found by TGA and IR analysis. 

 

ZL/1.5FL composite 

From the refinement of the ZL/1.5FL composite, 1.48 FL molecules per unit cell were 

located, distributed over partially occupied sites, in line with the TGA analysis (Table 2). However, 

the disordered distribution of water and FL molecules greatly contributes to make the determination 

of the FL positioning/orientation from electronic density maps a very challenging task. 

Nevertheless, exploratory structure refinement attempts were performed by forcing the ZL 

framework 6-fold symmetry, and two FL orientations were found. The first (FL in Table S1, 

accounting for 0.5 molecules per unit cell) corresponds to the orientation found in the ZL/0.5FL and 

ZL/1.0FL composites. The second (FL’ in Table S1, accounting for 1.0 molecule per unit cell) 

features the FL molecular long axis parallel to c axis, but with some atoms outside the mirror plane 

parallel to [001]. On the basis of the size and geometry of FL molecules, and considering the bond 

distances among the dye molecules obtained by the refinement, the only possible FL distribution is 

that reported in Figure 7c,d. In particular, if we consider two adjacent unit cells, one should be 

occupied by two equivalent nearly parallel FL’ molecules (among the 12 symmetrically equivalent 

ones) while the other should contain one FL molecule. Also in this model every oxygen atom of the 

guest molecules is coordinated to two KD sites (Table S3).  

As already observed in the ZL/0.5FL and ZL/1.0FL composites, the refinement located the 

water molecules in the OFL/WI and C3/WJ sites (Tables S1 and S3). The FL’-water distances 

however showed values well below those expected from the corresponding Van der Waals radii, 

e.g., the OFL’ atom is at distances of 1.07 Å and 2.89 Å from WI and WJ, while C3’ is at distances 

of 2.87 Å and 1.31 Å from WI and WJ. These short distances are due to the partial occupancy of the 

sites and to the great variability of the positions of the water molecules from unit cell to unit cell 

because of their dependence on the location of FL. Therefore, even though the R/F2 value for this 

refinement may be considered rather good (8.7 %) in view of the high number of variables, the 6-

fold symmetry constraint imposed in the refinement resulted in a too short C-C distance (2.56 Å) 

between FL and FL’ molecules present in two adjacent cells. To solve this structural inconsistence 

and provide a realistic structural model of the FL packing inside the composite, density functional 

calculations were performed.  
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3.4 Simulation results 

Modeling of dry ZL/FL adducts. 

In order to try unraveling the structure of the FL organization in ZL nanochannels, let us first recall 

that the fluorenone molecular length, 8.9 Å along its longest axis, is greater than the ZL cell 

dimension along the channel (7.52 Å). FL is however noticeably shorter than the maximum channel 

opening (~12 Å), indicating that this dye could have orientation freedom inside the zeolite and 

should not necessarily align with the ZL channel axis. Actually, by increasing the FL content, a 

modest shortening of the cell along the c axis is detected, suggesting that, at high FL loading, an 

organization of the FL molecules in single file should be rather improbable. As reported in refs. 36 

and 37, at low loading (i.e. 0.5 FL per u.c.) the calculated minimum energy structure for a dry 

ZL/0.5FL system is characterized by a FL molecule coordinated, via the carbonyl oxygen, to a K+ 

cation and oriented with its long molecular axis forming an angle of about 30º with the c axis. The 

stabilization energy of this structure with respect to the isolated ZL and FL components amounts to 

-80.8 kJ mol-1. Even though a geometry with FL long axis aligned with the channel direction is only 

12.1 kJ mol-1 less stable than the minimum energy structure, at room temperature the FL most 

probable orientation is that with the molecular long axis at 30º with respect to the channel axis. 

Such angle decreases to 20º upon hydration, indicating that in humid conditions not only FL keeps 

contact with K+ but also its average position and orientation inside the channel are not substantially 

influenced.36,37 Also, configurations with the FL long axis perpendicular to the channel axis, where 

the FL carbonyl oxygen is far from the extraframework potassium cations, are much higher in 

energy than those aligned with the channel axis and become unstable at room temperature 

conditions, as evidenced by first-principles molecular dynamics.37  

Based on the above results and on host-guest structural properties, in the case of the ZL/1.0FL 

composite the most probable supramolecular organization should feature the FL molecules 

approximately aligned with the channel axis and with their carbonyl oxygen directed towards the 

channel walls, where accessible K+ ions are located. With this in mind, two kinds of arrangements, 

described as (2,0) or (1,1), could be devised, corresponding to: i) two adjacent ZL unit cells 

approximately occupied by two and 0 FL molecules (2,0); ii) each ZL unit cell containing 1 FL 

molecule (1,1). Two different orientations of the C=O group of the two FL molecules were 

considered: (i) anti, characterized by an antiparallel arrangement of the C=O groups; (ii) sin, where 

the C=O groups are parallel. Geometry optimization of several ZL/1.0FL models exhibiting these 

arrangements indicates that different optimized structures have comparable energies, separated by 
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less than 4 kJ mol-1 (see Figure 8). The most stable structure is an anti-(2,0) configuration, (Figure 

8a) and has a stabilization energy of -141.4 kJ mol-1 with respect to the isolated components (see 

Equation 1). A sin-(2,0) arrangement (Figure 8b) is however nearly isoenergetic, being less stable 

than the minimum energy structure by only 5.0 kJ mol-1. Also an anti-(1,1) structure (Figure 8c) is 

of comparable energy, being only 3.8 kJ mol-1 less stable than the anti-(2,0) one. On the other hand, 

the most stable among the sin-(1,1) arrangements (Figure 8d) is 33.5 kJ mol-1 higher in energy than 

the anti-(2,0). Since all of these structures are characterized by distances between the FL carbonyl 

oxygen and K+ in line with the corresponding experimental values and compatible with a strong 

potassium-FL interaction, their different relative stabilities mainly derive from FL-FL interactions. 

Actually, the minimum energy structure for the ZL/1.0 FL system is just the one characterized by 

the highest degree of FL close-packing, which maximizes the favorable van der Waals interactions 

between the dye molecules.  
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Figure 8. Graphical representation of minimum energy structures calculated for the ZL/1.0FL models. a): 

anti-(2,0) arrangement of the FL molecules; b): sin-(2,0) arrangement; c): anti-(1,1) arrangement; d): sin-

(1,1) arrangement. ZL framework atoms represented as sticks (brown: Si, green: Al, red: O), K+ as yellow 

spheres. FL atoms are in van der Waals representation (cyan: C, red: O, white: H). 

 

Also for the maximum loading of 1.5 FL per u.c. we performed geometry optimization on 

different guess structures, all characterized by a (2,1) FL arrangement (see Figure 9a). The 

stabilization energy of the resulting minimum energy structure with respect to the isolated 

components (Equation 1) amounts to -266.5 kJ mol-1. Here the supramolecular organization consists 

of two FL molecules, FL1 and FL2, (in a sin configuration) located approximately inside one of the 

ZL unit cells with their long axes nearly parallel to each other and to the channel direction, while 

the third one, FL3, is positioned in the adjacent unit cell and oriented at about 45º with respect to 

the ZL channel axis. Indeed, the stronger intermolecular interactions and the severe structural 

constraints implied by confinement in nanochannels at high packing conditions force the FL 

molecules to organize just like a ladder with inclined rungs running along the ZL channel, as clearly 

evidenced in Figure 9. Indeed, the molecules are essentially planar and show only slight distortions 

from the ideal gas-phase FL structure, indicating that this ladderlike supramolecular architecture is 

achieved without any significant perturbation of the FL molecular geometry. Moreover, the FL 

nanoladder still maintains some resemblance to the structure of the FL crystal,38 suggesting that, at 

high loading regimes, also guest-guest van der Waals interactions, and specifically π- π stacking, 

are pivotal in governing supramolecular organization. The confining environment provided by the 

ZL nanochannels prevents the formation of the thermodynamically stable bulk solid FL, and 

constrains the dye molecules to self-assemble into a new, low-dimensionality solid phase: the FL 

nanoladder. Nevertheless, such stunning example of spatio-morphologically controlled 

crystallization owes its existence also to noncovalent though directional host-guest interactions, 

which drive the positioning and orientation of each individual dye molecule forming the 

nanoladder. In this respect, we notice that each FL is in close contact with the ZL K+ cations via its 

carbonyl oxygen, in line with the previously discussed experimental evidences. More specifically, 

the distances of the three carbonyl oxygens from the zeolite K+ cations amount to 2.539, 2.570, 

2.676 Å respectively, indicating that, like in the case of lower FL-loading ZL/FL systems,36,37 also 

strong C=O/K+  interactions play a key role in supramolecular organization.   
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Figure 9. Graphical representation of the minimum energy structure calculated for the: a) dry ZL/1.5FL 

model; b) hydrated ZL/1.5FL model (with 13 H2O in the simulation cell). Atom color codes as in Figure 8. 

 

Hydrated system with 1.5 FL per u.c. 

Several hydrated models of the ZL/1.5FL system were considered, characterized either by a 

different number of water molecules in the simulation cell (in the 12 – 14 range) or by a different 

starting arrangement of the FL and H2O molecules. The minimum energy structure obtained by 

placing 13 water molecules in the simulation cell is shown in Figure 9b. In this structure, 8 water 

molecules are located in the unit cell containing FL3 and the remaining 5 in that occupied by the 

FL1 and FL2 molecules. In line with results obtained on other dye-ZL composites,35,54 the water 

molecules are mainly clustered in the ZL channel region characterized by a lower local 

concentration of the dye and try to adopt a quasi-tetrahedral organization mimicking that of water in 

the condensed phases, in order to maximize the number and strength of hydrogen bonds. Indeed, the 

high value of the stabilization energy calculated for this structure, 752.7 kJ mol-1 (Equation 2), 

indicates that water actively contributes to stabilize close packing of dye molecules inside zeolite 
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nanochannels. As clearly evidenced in figure 9, besides slight deformations related to the water co-

presence, the arrangement of the FL molecules resembles quite closely the FL nanoladder found in 

the dry ZL/1.5FL composite. It can therefore be concluded that, at ambient temperature and 

pressure conditions, water molecules do not significantly perturbate the FL supramolecular 

organization. This finding is nicely in line with the fact that FL molecules interact more strongly 

with the zeolite than water does, as demonstrated in ref. 36. Due to the dominant FL-K+ interaction, 

water molecules cannot displace the dye from the zeolite, but they seamlessly incorporate FL 

molecules into the hydrogen bond network and finely tune FL positioning and orientation inside the 

ZL channel through hydrogen bond interactions. Actually, the distances of the three carbonyl 

oxygens from the zeolite K+ cations, amounting to 2.524, 2.590, 2.848 Å respectively, are very 

close to those of the dry ZL/1.5FL system, confirming that the presence of water has only  minor 

structural effects on the FL arrangement. As far as the water content is concerned, by applying 

Equations 3 and 4, we calculated that the system containing 13 H2O (namely, 6.5 H2O per 

crystallographic cell) is more stable of both the systems containing 12 or 14 water molecules, by 

149.4 and 38.5 kJ mol-1 respectively. The greater energy stability of the 13 H2O composite, with 

respect to the 12 H2O one, can be easily rationalized on the basis of the higher number of hydrogen 

bond interactions. Nevertheless, the minimum energy structure obtained at higher water content (14 

H2O) is less stable than the 13 H2O one because, as a result of the reduced available space inside the 

ZL channel, the geometry of the FL molecules exhibits larger distortions from the ideal planar FL 

structure. Therefore, computational results, besides integrating experimental data on the high FL 

content composite, shed light and rationalize several aspects of supramolecular organization inside 

ZL channels, thus enabling us, for the first time, to catch a fleeting glimpse of how promisingly 

appealing could be to explore close-packed dye molecules self-assembled in 1-D confining 

environments. 

 

 

4. Conclusions 

To unravel the supramolecular organization of close-packed photoactive molecules confined 

in one dimensional nanochannels, ZL-FL composites characterized by different dye loading have 

been synthesized. Results of thermogravimetric, IR, and X-ray structural refinements established 

that the maximum degree of FL loading corresponds to 1.5 FL molecules per ZL unit cell. A 

thorough characterization of structural properties and energetics of this dye-zeolite system has been 

accomplished by DFT-based modeling, which revealed the template-directed self assembly of 
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planar dye molecules into a noncovalent nanoladder. 

By increasing loading from 0 to 1.5 molecules per cell, fluorenone gradually replaces water 

molecules in ZL in view of its stronger interaction with the zeolite and fills the nanochannel by 

organizing into arrangements that concomitantly maximize the π-stacking (intermolecular guest-

guest interactions) and allow each FL carbonyl group to interact with a K+ (host-guest interactions). 

Such organized FL distributions only at maximum loading can be considered as a single, continuous 

nanostructure of dye molecules. This arrangement, formed by pairs of π-stacked molecules 

connected by a single FL, holds some resemblance with the structure of solid fluorenone (the FL 

pairs); however, the confinement inside ZL channels and the different dimensions of FL molecule 

and ZL unit cell prevent the connectivity of consecutive pairs of molecules like in crystalline 

fluorenone, thus resulting in the formation of a unique architecture.  Interestingly, the progressive 

filling of FL is accompanied by slight though appreciable deformations of the channel apertures, 

indicating that also zeolite framework flexibility contributes to achieve the optimal FL organization  

(i.e., that characterized by the highest stability) at the maximum loading. Moreover, the water 

molecules  inside the channel after FL intrusion are arranged in such a way to maximize hydrogen 

bonds interaction thus providing further stabilization to the system without altering the FL 

distribution, which is governed by the stronger FL-FL and FL-ZL interactions.   

On the whole, all of the results presented in this study highlight the key role of the ZL 

channels in providing spatial, directional and morphological control over the realization of 

supramolecular nanoarchitectures of photoactive species and stress the relevance of  

extraframework K+ cations in stabilizing carbonyl-functionalized species inside ZL and in fine-

tuning their organization.  

Among the ZL/FL composites investigated in this study, only the maximally loaded system 

features a continuous and organized distribution of dye molecules inside ZL nanochannels.  By 

virtue of this architecture, the ZL/1.5FL composite should be the most promising candidate for 

technological applications. Following this hypothesis, future work specifically aimed at electronic 

and optical properties of close-packed FL/ZL composites will essentially focus on the maximally 

loaded system.   Nevertheless, the identification of the first continuous and quasi 1-D dye 

nanostructure self-assembled into a zeolite, accompanied by the understanding of the interplay of 

host-guest/guest-guest interactions governing supramolecular organization at high packing 

conditions gathered in this study, strongly suggests that high-loading regimes are promising and 

deserve to be deeply investigated, giving thus further momentum to the design of dye-ZL 

composites for innovative optical devices.  
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