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via Carlo Alberto 10, 10123 Torino – Italy

camillo.costantini@unito.it

Sandro Levi

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca
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Abstract

In this article we study gap topologies on the subsets of a metric space (X, d) induced
by a general family S of nonempty subsets of X. Given two families and two metrics
not assumed to be equivalent, we give a necessary and sufficient condition for one induced
upper gap topology to be contained in the other. This condition is also necessary and
sufficent for containment of the two-sided gap topologies under the mild assumption that
the generating families contain the singletons. Coincidence of upper gap topologies in the
most important special cases is attractively reflected in the underlying structure of (X, d).
First and second countability of upper gap topologies is also characterized. This approach
generalizes and unifies results in [12] and [19] and gives rise to a noticeable family of subsets
that lie between the totally bounded and the bounded subsets of X.

Introduction

A dominant theme in the study of set convergence and related topologies on subsets of a
metric space (X, d) has been the interplay between convergence and geometric extended

∗2000 Math. subj. class.: primary 54B20, 54A10, 54E35, 54D70, 54A25; secondary 54A20, 54D65,
54D10, 54D15.
Keywords: metric space, metrizable space, separable metric space, total boundedness, boundedness, hy-

perspace, gap, gap topology, Wijsman topology, Hausdorff pseudometric topology, Attouch-Wets topology,
proximal topology, bounded proximal topology, first countability, second countability, Γ operator
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real-valued set functionals. The most important set-functionals are distance functionals,
gap functionals, and excess functionals, as perhaps first analyzed systematically as a group
in [13]. When the setting is specialized to convex subsets of a normed linear space, other
functionals come into play, most notably, support functionals.

Not unexpectedly, distance functionals first received attention. Cornet [16] first sug-
gested a unified program of topologies on nonempty closed subsets by viewing such sets as
sitting in C(X,R) equipped with topologies of uniform convergence on various bornologies,
identifying each nonempty closed set A with its distance functional d(·, A). For the topol-
ogy of uniform convergence on X one gets the classical Hausdorff pseudometric topology
(see, e.g., [4, 26]); for the topology of uniform convergence on finite subsets, one gets noth-
ing more than the topology of pointwise convergence, and the resulting topology is called
the Wijsman topology, subsequently studied extensively by the authors and their associates
[5, 12, 17, 18, 19, 21, 24]; for the topology of uniform convergence on bounded sets, one
gets the Attouch-Wets topology [1, 4, 26, 27, 28], which plays a fundamental role in convex
analysis, as it is stable with respect to duality in arbitrary normed linear spaces, as shown
by Beer [2]. Both Hausdorff metric convergence and Attouch-Wets convergence are special
cases of so-called bornological convergence as introduced by Lechicki, Levi and Spakowski
[25] and studied by the present authors and their associates in subsequent papers [7, 10, 11].
In particular, bornological convergence is reconciled with uniform convergence of distance
functions in [6, 14].

As is easily seen, the Wijsman topology is the weakest topology on the nonempty closed
subsets such that for each x ∈ X, A 7→ d(x,A) is continuous. Varying metrics as well as
points, one obtains three topologies of both historical and practical importance as weak
topologies on the nonempty closed subsets P0(X) of X:

• The classical Vietoris topology is obtained letting x vary over X and d vary over all
metrics compatible with the topology of X [12];

• The proximal topology, a uniform variant of the Vietoris topology, is obtained letting
x vary over X and d vary over all metrics uniformly equivalent to a initial fixed
compatible metric [4, 12];

• The slice topology [3, 4, 15] - also known as the Joly topology [22] - on the nonempty
closed convex subsets of a normed linear space is obtained by letting x vary over X
and d vary over all metrics induced by norms equivalent to the initial norm [5].

Now the distance d(x,A) from a point x to a nonempty subset A of X admits two natural
extensions replacing x by a nonempty set B, called the gap Dd(B,A) between B and A
and the excess ed(B,A) of B over A:

Dd(B,A) := infx∈B d(x,A) and ed(B,A) = supx∈B d(x,A).

Note that while gap is a symmetric functional, excess is not. Some representative results
here are the following:
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• The weak topology generated by {Dd(B, ·) : B nonempty and closed} agrees with
the weak topology generated by {ρ(x, ·) : x ∈ X and ρ uniformly equivalent to d}
and is called the proximal topology [12];

• The Hausdorff pseudometric metric topology is the weak topology generated by
{Dd(B, ·) : B nonempty and closed} ∪ {ed(B, ·) : B nonempty and closed}[13];

• The Hausdorff pseudometric topology is also the weak topology generated by {ed(B, ·) :
B nonempty and closed and ρ uniformly equivalent to d}[13];

• The slice topology for a normed linear space is also the weak topology generated by

{Dd(B, ·) : B nonempty, closed, bounded and convex} where d is the metric induced
by the initial norm [3].

The reader can find many other results in this vein in the survey [4] and in the bibliog-
raphy therein, where the emphasis is on topologies on nonempty subsets. Here we prefer
to work more generally, adopting this standard convention: d(x, ∅) = +∞, which allows
us to define gap topologies on families of subsets of X that include the empty set.

It is the purpose of this paper to study gap topologies, by considering for a given collec-
tion S of nonempty subsets of (X, d) the weakest topology GS ,d on the power set P(X)
of X for which all functionals of the form

C 7→ Dd(S,C) (S ∈ S )

are continuous. In accordance with a customary behaviour of hypertopologists, we may
more primitively decompose each such GS ,d into two halves, namely G+

S ,d (its upper part)

and G−S ,d (its lower part). The upper (resp. lower) part is the weakest topology such
that each gap functional is lower (resp. upper) semicontinuous on P(X). Between the
two, the former appears to play a much more influential rôle, inasmuch as whenever the
collection S fulfils the rather reasonable condition of containing all the singleton subsets
of X, G−S ,d turns out to coincide with the classical lower Vietoris topology whose structure
is completely transparent. Furthermore, for arbitrary metrics d and ρ on X, it turns out
that when S and T both contain the singletons, the two-sided gap topology GS ,d will
be finer than (or equal to) another gap topology GT ,ρ if and only if G+

S ,d is finer than (or

equal to) G+
T ,ρ. Either condition ensures that d is stronger than ρ, so that if S and T

both contain the singletons, equivalence of upper gap topologies ensures equivalence of the
metrics.

Separately, coincidence of upper gap topologies alone when the two underlying families
are chosen from the following three basic bornologies on X

• the family of nonempty finite subsets F0(X) of X;

• the family of nonempty bounded subsets Bd(X) of X;
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• the family of nonempty subsets P0(X);

is reflected in the structure of the underlying metric space (X, d), as shown in the final
section of the paper.

For these reasons, and in the interest of realizing an article of moderate length, we focus
our attention almost exclusively on the structure of upper gap topologies.

In §2 we devise and prove a necessary and sufficient condition for an upper gap topol-
ogy G+

S ,d to be finer than (or equal to) another upper gap topology G+
T ,ρ, where d, ρ are

metrics on a set X not a priori assumed equivalent and S ,T are collections of nonempty
subsets of X (see Theorem 2.2). It is to be observed that this result generalizes, in a quite
faithful way, an analogous result for the upper Wijsman topology [19, Theorem 5′], which
could now be deduced as a corollary. Combining this necessary and sufficent condition
with its converse, we obtain a characterization of coincidence of G+

S ,d with G+
T ,ρ. By our

remarks of the preceding paragraph, this yields as corollaries characterizations for contain-
ment/coincidence of two-sided gap topologies when both families contain the singletons.

At the heart of our analysis is the introduction of an operator S 7→ Γρ,d(S ) in §3 that
yields for a family S of nonempty subsets of X the largest family of subsets T of X such
that G+

S ,d is finer than (or equal to) G+
T ,ρ. Of particular interest is the case d = ρ, where

Γd,d(S ) contains S and is the largest family whose upper gap topology coincides with
G+

S ,d. In this case, for simplicity, we will simply write Γ for the operator Γd,d. Particular
attention is given to the operator as applied to F0(X), the family of nonempty finite
subsets of (X, d).

In §4 we investigate the properties of first and second countability of upper gap topolo-
gies, providing characterizations which rely on intrinsic properties of the base space (The-
orems 4.4 and 4.7). The condition characterizing second countability, in particular, can be
expressed in terms of our operator S 7→ Γ(S ). Then, applying Theorem 4.4 to the upper
Wijsman topology, we obtain a result which seems not to be present in the literature: first
countability of W+

d is equivalent to the separability of the base space (X, d) (notice that
an analogous result, where we consider instead the two-sided Wijsman topology Wd, is
well-known and certainly easier to prove—see [4, Theorem 2.1.5]). We also point out that
second countability of the upper Hausdorff pseudometric topology is equivalent to the total
boundedness of the base space.

In the final section, §5, we show that each of the following structural properties of a
metric space (X, d)

• boundedness of (X, d),

• total boundedness of (X, d),

• total boundedness of each bounded subset of X,

can ultimately be expressed in terms of coincidences of upper gap topologies, noting that
the upper Wijsman, the upper Attouch-Wets topology, and the upper Hausdorff pseudo-
metric topology can be so realized. Separately, we can express each of these structural
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properties in terms of the behavior of S 7→ Γ(S ) applied to F0(X) or to Bd(X), the
family of nonempty bounded subsets of X.

1 Preliminaries and basic results

In a metric space (X, d), we denote the open ball with center x and radius ε > 0 by Bd(x, ε).
If A ⊆ X, we write Bd(A, ε) for the ε-enlargement of A, that is ∪a∈ABd(a, ε). Paralleling
our notation for the nonempty bounded subsets of X, we denote the nonempty totally
bounded subsets of X by T Bd(X). We will denote by C (X) and C0(X) the collections of
all closed subsets and all nonempty closed subsets of X, respectively. When we speak of a
hyperspace in the sequel we mean a family of subsets of X equipped with some topology,
and when we speak of the hyperspace we mean P(X) so equipped.

We will have occasion to consider two basic operators on subfamilies of P0(X) that we
denote by Σ and ↓. Let S be a nonempty family of nonempty subsets of X.

Σ(S ) := {T ∈P0(X) : T is a finite union of elements of S };

↓ S := {T ∈P0(X) : ∃S ∈ S with T ⊆ S}.

Notice Σ(↓ S ) =↓ Σ(S ) is the smallest ideal of nonempty subsets of X that contains S .
An ideal of nonempty subsets that is also a cover is called a bornology [9], and Σ(↓ S ) is
a bornology if and only if S is a cover.

For L,M ⊆ X, we define the gap between L and M by:

Dd(L,M) = inf {d(x, y) |x ∈ L, y ∈M}.

Notice that Dd(L,M) = +∞ if and only if either L or M is empty. For the record, we note
the following interesting formula for gap given in [4, p.30] in the hope that some reader
might apply it:

Dd(L,M) = inf
x∈X

d(x, L) + d(x,M)

We will use the following notation which is given with respect to the environment P(X),
but is also to be understood with P(X) replaced by either C (X) or P0(X), or C0(X)
with the obvious modifications. For S1, . . . , Sn nonempty subset of X and ε1, . . . , εn > 0,
we set

A +
d (S1, . . . , Sn; ε1, . . . , εn) = {C ∈P(X) |Dd(C, Si) > εi for i = 1, . . . , n}. (1; 1)

Let S be a collection of nonempty subsets of X; then the collection{
A +
d (S1, . . . , Sn; ε1, . . . , εn)

∣∣n ∈ N, S1, . . . , Sn ∈ S , ε1, . . . , εn > 0
}

5



is closed under finite intersections, and so adjoining P(X) to the collection, we get a base
for a topology on P(X) which we will call the upper gap topology (relative to the metric
d and the collection S ), and denote by: G+

S ,d. Without loss of generality one can assume

in the definition that S ⊆ C0(X) because whenever S 6= ∅, we have Dd(S, ·) = Dd(S, ·).
Observe that, for every A ∈P(X), the collection{

A +
d (S1, . . . , Sn; ε1, . . . , εn)

∣∣n ∈ N ∧ S1, . . . , Sn ∈ S ∧ ε1, . . . , εn > 0

∧ ∀i ∈ {1, . . . , n} : Dd(A, Si) > εi
}

plus P(X) itself is a local base for G+
S ,d at A. It turns out, in particular, that the

unique G+
S ,d-neighbourhood of X is P(X), while each open set in the hypertopology is a

neighborhood of ∅.
Let us recall the following standard definition in the theory of hyperspaces.

Definition 1.1 A topology γ on a nonempty family of subsets E of a topological space X
is an upper (resp. lower) topology if for every A ∈ γ, for every C ∈ A , whenever D ∈ E
and D ⊆ C (resp C ⊆ D), then D ∈ A .

It is straightforward to verify that upper gap topologies are actually “upper” in the sense
of the previous definition. Note that G+

S ,d-convergence of a net of sets to a subset B implies
convergence of the net to any superset of B and that every net converges to X.

We will freely use in the text the following simple fact: for every S,A ⊆ X and every
ε > 0

Bd(A, ε) ∩ S = ∅ ⇔ Dd(S,A) ≥ ε (1; 2)

The next result characterizes G+
S ,d-convergence of nets of elements of P(X).

Theorem 1.1 Let (X, d) be a metric space and S a collection of nonempty subsets of X.
For every net (Aσ)σ∈Σ in P(X) and every A ∈P(X), the following are equivalent:

(1) (Aσ)σ∈Σ

G+
S ,d−→ A;

(2) ∀S ∈ S : Dd(S,A) ≤ lim infσ∈Σ Dd(S,Aσ);

(3) ∀S ∈ S , ∀0 < µ < α, A ∩Bd(S, α) = ∅ implies Aσ ∩Bd(S, µ) = ∅ eventually.

Proof. We consider two cases: (i) A 6= ∅, and (ii) A = ∅.
Case (i):

(1) ⇒ (2). Suppose that (Aσ)σ∈Σ

G+
S ,d−→ A, and let S ∈ S be given: to prove that

Dd(S,A) ≤ lim infσ∈Σ Dd(S,Aσ), we have to show that for every ε > 0 there is σ ∈ Σ
such that infσ′≥σDd(S,Aσ′) ≥ Dd(S,A) − ε, i.e. such that Dd(S,Aσ′) ≥ Dd(S,A) −
ε for every σ′ ≥ σ. Actually, for every ε > 0, if Dd(S,A) − ε ≤ 0 then the above
inequality is obvious for every σ′ ∈ Σ; if, on the contrary, Dd(S,A)− ε = δ > 0, then the
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collection A +
d (S, δ) = {M ∈P(X) |Dd(M,S) > δ} is a G+

S ,d-neighbourhood of A, hence

it follows from (Aσ)σ∈Σ

G+
S ,d−→ A that there is σ ∈ Σ such that Aσ′ ∈ A (S, δ) for σ′ ≥ σ, i.e.

Dd(Aσ′ , S) ≥ Dd(S,A)− ε for every σ′ ≥ σ.
(2) ⇒ (3). Assume (2) and suppose ∃S ∈ S , ∃0 < µ < α with A ∩ Bd(S, α) = ∅ and

Aσ ∩ Bd(S, µ) 6= ∅ frequently. Then Dd(S,A) ≥ α and Dd(S,Aσ) ≤ µ frequently. Thus
lim infσ∈Σ Dd(S,Aσ) ≤ µ < α ≤ Dd(S,A), a contradiction.

(3) ⇒ (1). Let A +
d (S1, . . . , Sn; ε1, . . . , εn) be an arbitrary basic G+

S ,d-neighbourhood of
A; then Dd(Si, A) > εi for i = 1, ..., n. Select, for all i = 1, ..., n, λi and µi such that
εi < λi < µi < Dd(Si, A). Thus A ∩ Bd(Si, µi) = ∅ and Aσ ∩ Bd(Si, λi) = ∅ eventually;
it follows that Dd(Aσ, Si) ≥ λi > εi eventually, for all i = 1, ..., n, and Aσ belongs to
A +
d (S1, . . . , Sn; ε1, . . . , εn) eventually.
Case (ii): all three conditions are equivalent to limσDd(S,Aσ) = +∞ ∀S ∈ S . 2

Remark 1.1 (i) G+
S ,d = G+

Σ(S ),d;

(ii) ∅ is isolated for G+
S ,d if and only if ∃S, ∃r > 0 : Bd(S, r) = X;

(iii) In general G+
↓S ,d may be strictly stronger than G+

S ,d;

(iv) G+
S ,d is the weakest topology on P(X) such that ∀S ∈ S , Dd(S, ·) is lower semicon-

tinuous.

Proof.

(i) follows from the fact that A +(S1 ∪ · · · ∪ Sn; ε) = A +(S1; ε) ∩ · · · ∩ A +(Sn; ε) for
every S1, . . . , Sn ∈ S and every ε > 0;

(ii) suppose Bd(S, r) = X and (Aσ)σ∈Σ

G+
S ,d−→ ∅; then Aσ ∩ Bd(S, r) = ∅ eventually, that

is Aσ = ∅ eventually. For the converse, we can suppose, by (i), that S = Σ(S );
assume ∀S, ∀r Bd(S, r) 6= X and pick xS,r ∈ X \ Bd(S, r). Order S × R as follows:
(S, r) ≤ (S ′, r′) iff S ⊆ S ′ and r ≤ r′, so that (xS,r) is a net in X based on S × R.
It is clear that the net of singletons {xS,r} G+

S ,d-converges to the empty set.

(iii) if S = {X}, G+
S ,d is the indiscrete topology on P0(X), while G+

↓S ,d is the upper
Hausdorff pseudometric topology, as we shall see in Proposition 1.3 below.

(iv) This is an immediate consequence of our last result (apply for instance Theorem
1.2.8 of [4] where each gap functional is viewed as a function with values in [0,+∞]
equipped with the topology consists of all sets of form {(α,+∞] : α ≥ 0} in addition
to ∅ and [0,+∞] ).

2

We will now show that some well-known upper topologies fit into our framework.

7



Definition 1.2 The upper Wijsman topology W+
d on the hyperspace P(X) of a metric

space (X, d) is generated by the base{
A +(x1, . . . , xn; ε1, . . . , εn)

∣∣n ∈ N, x1, . . . , xn ∈ X, ε1, . . . , εn > 0
}
,

where A +(x1, . . . , xn; ε1, . . . , εn) =
{
C ∈P(X)

∣∣∀i ∈ {1, . . . , n} : d(xi, C) > εi
}

for every
x1, . . . , xn ∈ X and every ε1, . . . , εn > 0 (of course, this notation is consistent with (1; 1),
once we identify every element x of X with {x} and define d(x, ∅) = +∞).

For every net (Aσ)σ∈Σ in P(X) and every A ∈P(X), we have the well known equiva-
lence:

(Aσ)σ∈Σ

W+
d−→ A⇐⇒ ∀x ∈ X : d(x,A) ≤ lim inf

σ∈Σ
d(x,Aσ).

If S (X) is the collection of all singleton subsets of X, we immediately obtain the following:

Proposition 1.2 Let (X, d) be a metric space. Then G+
S (X),d = W+

d on P(X).

Let (X, d) be a metric space. We now recall the standard presentation of Hausdorff
distance Hd as defined on P(X) (see, e.g., [4]). Let S, T be subsets of X; then

Hd(S, T ) := inf {α > 0 : T ⊆ Bd(S, α) ∧ S ⊆ Bd(T, α)}

Hausdorff distance so defined is an infinite-valued pseudometric on P(X) which, when
restricted to the d-closed and d-bounded nonempty subsets of X, becomes a bona fide
metric. A local base for the Hausdorff pseudometric topology Hd at T ∈P(X) is given by
all sets of the form

{S : T ⊆ Bd(S, α) ∧ S ⊆ Bd(T, α)} (α > 0)

Analogously, the (pseudometrizable) Attouch-Wets topology AWd on P(X) [1, 4, 27]
has as a local base at T ∈P(X) all sets of the form

{S : T ∩D ⊆ Bd(S, α) ∧ S ∩D ⊆ Bd(T, α)} (α > 0, D ∈ Bd(X)).

As our next examples, we will consider the upper Hausdorff pseudometric topology H+
d

and the upper Attouch-Wets topology AW+
d on P(X) which we formally present in terms

of convergence (the reader is invited to describe these in terms of a local base at each point
of the hyperspace).

Definition 1.3

(a) A net (Aσ)σ∈Σ in P(X) converges to A ∈P(X) for H+
d , provided ∀ε > 0

Aσ ⊆ Bd (A, ε) eventually.
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(b) A net (Aσ)σ∈Σ in P(X) converges to A ∈P(X) for AW+
d , provided ∀ε > 0

and ∀D ∈ Bd(X), D ∩ Aσ ⊆ Bd(A, ε) eventually.

Note that ∅ is isolated for H+
d and isolated for AW+

d if and only if the metric d is bounded.

Proposition 1.3 Let (X, d) be a metric space. Then G+
P0(X),d = H+

d and G+
Bd(X),d = AW+

d

on P(X).

Proof.

(a) G+
P0(X),d ≤ H+

d on P0(X) by Theorem 3 of [11], while G+
P0(X),d ≥ H+

d on P0(X) by

Proposition 2, (2), (ii) of [11]; moreover ∅ is isolated for both topologies;

(b) the proof for AW+
d is similar on P0(X); moreover, if d is bounded, ∅ is isolated

for both topologies and, if d is unbounded, it is easy to check that a net (Aσ)σ∈Σ

converges to ∅ for G+
Bd(X),d if and only if it converges to ∅ for AW+

d .

2

The two-sided gap topology GBd(X),d has been called the bounded proximal topology in
the literature [4, p. 111].

2 Comparison between two upper gap topologies

Definition 2.1 Let (X, d) be a metric space and S a collection of nonempty subsets of
X. We will say that a subset L of X is strictly (S , d)-included in another subset M of
X if there exists a finite subset {S1, . . . , Sn} of S , and for every i ∈ {1, . . . , n} there are
λi, σi with 0 < λi < σi, such that:

L ⊆
n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆M. (2; 3)

This definition originates in the paper [19], where it was given for the family of singletons.

Lemma 2.1 Let d, ρ be two metrics on a set X, S, S1, . . . , Sn subsets of X and
ϑ, µ1, . . . , µn > 0. Then the following holds:

(1) if Bρ (S, ϑ) ⊆
⋃n
i=1 Bd (Si, µi), then A +

d (S1, . . . , Sn;µ1, . . . , µn) ⊆ A +
ρ (S, ε)

for every 0 < ε < ϑ;

(2) if A +
d (S1, . . . , Sn;µ1, . . . , µn) ⊆ A +

ρ (S, ϑ), then Bρ (S, ϑ) ⊆
⋃n
i=1Bd (Si, λi)

whenever µi < λi for every i ∈ {1, . . . , n}.
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Proof. To prove (1), suppose C /∈ A +
ρ (S, ε): then Dρ(S,C) ≤ ε < ϑ, hence there

exists x̄ ∈ C such that ρ(x̄, S) < ϑ, i.e. x̄ ∈ Bρ (S, ϑ) ⊆
⋃n
i=1Bd (Si, µi). There-

fore, x̄ ∈ Bd (Si, µi) for some i ∈ {1, . . . , n}, whence Dd(Si, C) < µi. Thus, C /∈
A +
d (S1, . . . , Sn;µ1, . . . , µn).
To prove (2), we argue again by considering complementary sets; therefore, suppose

x /∈
⋃n
i=1Bd (Si, λi), so that d(x, Si) ≥ λi > µi for every i ∈ {1, . . . , n}. Then {x} ∈

A +
d (S1, . . . , Sn;µ1, . . . , µn) ⊆ A +

ρ (S, ϑ), whence ρ(x, S) > ϑ and hence x /∈ Bρ (S, ϑ). 2

Theorem 2.2 Let d, ρ be two metrics on a set X, and S ,T two collections of nonempty
subsets of X. Then the following are equivalent:

(a) G+
S ,d ≥ G+

T ,ρ on P(X);

(b) for every T ∈ T and every ε, α with 0 < ε < α, the set Bρ (T, ε) is strictly (S , d)-
included in Bρ (T, α).

Proof. (a)=⇒(b).
Let T ∈ T and 0 < ε < α be given and put C = X\Bρ (T, α): fixing ϑ with ε < ϑ < α,
we see that C ∈ A +

ρ (T, ϑ). Then there exist S1, . . . , Sn ∈ S and µ1, . . . , µn > 0 such that

C ∈ A +
d (S1, . . . , Sn;µ1, . . . , µn) ⊆ A +

ρ (T, ϑ). (2; 4)

For every i ∈ {1, . . . , n}, fix λi, σi with µi < λi < σi < Dd(Si, C). Then, on the one hand,
it follows that

C ∈ A +
d (S1, . . . , Sn;σ1, . . . , σn), (2; 5)

and this implies the inclusion
⋃n
i=1 Bd (Si, σi) ⊆ Bρ (T, α) (otherwise, there would be

x ∈ Bd (Si, σi)\Bρ (T, α) for some i ∈ {1, . . . , n}, so that Dd(C, Si) ≤ d(x, Si) < σi,
contradicting (2; 5)). On the other hand, from the inclusion in (2; 4) and the fact that
µi < λi for i = 1, . . . , n, it follows by Lemma 2.1 that Bρ (T, ϑ) ⊆

⋃n
i=1Bd (Si, λi), hence

also (as ε < ϑ) Bρ (T, ε) ⊆
⋃n
i=1Bd (Si, λi). Therefore, we conclude that

Bρ (T, ε) ⊆
n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆ Bρ (T, α).

(b)=⇒(a).
We must show that for every C ∈P(X), every T ∈ T and every 0 < ε < Dρ(T,C), there
exists a G+

S ,d-neighbourhood of C included in A +
ρ (T, ε).

Put r = Dρ(T,C), and fix ϑ with ε < ϑ < r: then it follows from (b) that there exist
S1, . . . , Sn ∈ S and λ1, . . . , λn, σ1, . . . , σn with 0 < λi < σi for 1 ≤ i ≤ n, such that

Bρ (T, ϑ) ⊆
n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆ Bρ (T, r). (2; 6)
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We claim that C ∈ A +
d (S1, . . . , Sn;λ1, . . . , λn) ⊆ A +

ρ (T, ε). Indeed, the inclusion follows
from Lemma 2.1 (use the first inclusion in (2; 6) and 0 < ε < ϑ). On the other hand,
Dρ(T,C) = r implies that C ∩ Bρ (T, r) = ∅, whence (by the last inclusion in (2; 6))
C ∩Bd (Si, σi) = ∅, ∀i = 1, ..., n and hence Dd(Si, C) ≥ σi > λi, so that C ∈ A +

d (Si, λi). 2

Denote by Cρ(X) the ρ-closed subsets of X; then a further equivalent condition is the
following: (a′) G+

S ,d ≥ G+
T ,ρ on Cρ(X). As it is clear that (a)⇒ (a′), we only have to show

that (a′) ⇒ (b). Note that the above set C belongs to Cρ(X) and that the inclusion in
(2; 4) still implies (b), even when restricted to the Cρ(X)-context.

Let us take a look at the case in which ∃T ∈ T ,∃r > 0 : Bρ(T, r) = X; this means
(Remark 1.1) that ∅ is isolated for G+

T ,ρ; the full strength of condition (b) above then

implies that ∅ is isolated for G+
S ,ρ too, since

Bρ(T, r) = X =
n⋃
i=1

Bd(Si, λi) = Bd(S1 ∪ .... ∪ Sn,max(λ1, ..., λn)),

as we can assume that S = Σ(S ).
However, consider the following example [19, p. 145]: let d be an unbounded metric on

X, put ρ = min(1, d) and consider W+
d and W+

ρ ; then W+
d ≥ W+

ρ on P0(X), but ∅ is not
isolated for W+

d , while it is isolated for W+
ρ . We are thus lead to the next result, whose

proof is left to the reader:

Theorem 2.3 Let d, ρ be two metrics on a set X, and S ,T two collections of nonempty
subsets of X. Then the following are equivalent:

(i) G+
S ,d ≥ G+

T ,ρ on P0(X);

(ii) for every T ∈ T and every ε, α with 0 < ε < α, such that Bρ (T, α) 6= X, the set
Bρ (T, ε) is strictly (S , d)-included in Bρ (T, α).

Taking Proposition 1.2 into account, the two previous results can be considered as gen-
eralizations of [19, Theorems 5] and [19, Theorems 5′], respectively. In [19], however, the
metrics d and ρ were assumed to be equivalent; here, as a complement, we can state that,
if W+

d ≥ W+
ρ , then the metric d is stronger than the metric ρ (Corollary 2.6 below) and

Bρ(X) ⊆ Bd(X), as each ρ-ball is d-bounded.
The next two corollaries are stated for the base space X, but the proofs go through

the hyperspace P(X) (it is unlikely that the two corollaries would have been otherwise
discovered):

Corollary 2.4 The following are equivalent:
(1) ∀T ∈P0(X), ∀0 < ε < α,∃S1, ..., Sn ∈P0(X),∃0 < λi < σi(i = 1, ..., n) such that

Bρ (T, ε) ⊆
n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆ Bρ (T, α).
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(2) the uniformity generated by d is stronger then the uniformity generated by ρ
(3) ∀T ∈P0(X), ∀0 < ε < α,∃S ∈P0(X),∃0 < λ < σ such that

Bρ (T, ε) ⊆ Bd (S, λ) ⊆ Bd (S, σ) ⊆ Bρ (T, α).

Proof. A straightforward modification of Theorem 3.3.2 of [4] shows that condition (2)
is equivalent to H+

d ≥ H+
ρ on P0(X) or P(X); therefore (1) and (2) are equivalent by

Theorem 2.2.
Clearly (3) implies (1); now assume (2) and take δ > 0 such that d(x,w) < δ implies

ρ(x,w) < α− ε; put S = Bρ (T, ε), λ = 1
2
δ , σ = δ and apply the triangle inequality. 2

Corollary 2.5 The following are equivalent:
(1) ∀T ∈ Bρ(X),∀0 < ε < α, ∃S1, ..., Sn ∈ Bd(X),∃0 < λi < σi(i = 1, ..., n) such that

Bρ (T, ε) ⊆
n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆ Bρ (T, α).

(2) Every ρ-bounded subset is d-bounded and the identity mapping i : (X, d)→ (X, ρ) is
strongly uniformly continuous on each ρ-bounded subset of X, i.e., whenever B ∈ Bρ(X)
and ε > 0,∃δ > 0 such that whenever x ∈ B and w ∈ X and d(x,w) < δ,
then ρ(x,w) < ε.

Proof. A slight modification of Theorem 3.1 of [8] shows that condition (2) above is
equivalent to AW+

d ≥ AW+
ρ on P(X); thus, (1) and (2) are equivalent by Theorem 2.2. 2

We will now look at the role played by the family of singletons.

Corollary 2.6 Suppose that G+
S ,d ≥ G+

T ,ρ on P0(X) and the family T contains the sin-
gletons. Then the metric d is stronger than the metric ρ.

Proof. Fix x ∈ X and choose α such that Bρ(x, α) 6= X. By Theorem 2.3 there exist
S1, ..., Sn ∈ S , ∃0 < λi < σi(i = 1, ..., n) such that

Bρ

(
{x}, 1

2
α

)
⊆

n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆ Bρ ({x}, α).

In particular, for some i ≤ n we have x ∈ Bd(Si, λi) and so for some w ∈ Si it follows that
x ∈ Bd(w, λi) ⊆ Bρ(x, α) and this shows that d defines a finer topology than ρ. 2

By Theorem 1.1, convergence of the net (Aσ) to A for G+
S ,d can be characterized by the

condition ∀S ∈ S : Dd(S,A) ≤ lim infσ∈Σ Dd(S,Aσ). We will say that the net (Aσ) tends
to A for the lower gap topology G−S ,d if ∀S ∈ S : Dd(S,A) ≥ lim supσ∈Σ Dd(S,Aσ) and that
(Aσ) tends to A for the “full” topology GS ,d if ∀S ∈ S : Dd(S,A) = limσ∈ΣDd(S,Aσ). Of
course, the lower gap topology is a lower topology, according to Definition 1.1, and the
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”full“ topology is the weak topology determined by the family of functionals Dd(S, .), where
S ∈ S .

Let us denote by V− the lower Vietoris topology. Lemma 1 of [11] states that, if the
family S covers X, then V− ≥ G−S ,d; on the other hand, if S contains the singletons, it
is easy to check that the opposite inequality holds. Therefore, in that case, the lower gap
topology is none other than the familiar lower Vietoris topology (which does not depend
on the choice of the metric d) and the ”full” gap topology is an admissible hyperspace
topology (that is, the map x → {x} is an embedding of X into P0(X)). The next result
generalizes Proposition 1 of [19] and has a similar proof:

Proposition 2.7 Let d and ρ be two metrics on X and suppose the families S and T both
contain the singletons. Then the inequalities GS ,d ≥ GT ,ρ and G+

S ,d ≥ G+
T ,ρ are equivalent.

As a corollary, we obtain that the following condition (a′′) is equivalent (on P0(X) or
Cρ(X)) to conditions (a) or (a′): (a′′) GS ,d ≥ GT ,ρ.

3 A natural operator on families of subsets of X

We now define an operator which is at the core of our investigation of upper gap topologies.

Definition 3.1 Let d and ρ be two metrics on X and let S be a family of nonempty
subsets of X. We define the subfamily Γρ,d(S ) of P0(X) by

Γρ,d(S ) := {T ⊆ X : ∀0 < ε < α,∃n ∈ N,∃S1, . . . , Sn ∈ S ,

∃λ1, . . . , λn, σ1, . . . , σn such that ∀i ∈ {1, . . . , n}, 0 < λi < σi

∧ Bρ (T, ε) ⊆
⋃n
i=1 Bd (Si, λi) ⊆

⋃n
i=1Bd (Si, σi) ⊆ Bρ (T, α)}.

Of course, Γρ,d(S ) is the family of all nonempty subsets T of X such that Bρ(T, ε) is
strictly (S , d)-included in Bρ(T, α) for every 0 < ε < α, so that whenever Γρ,d(S ) is
nonempty, it forms by Theorem 2.2 the largest family of nonempty subsets of X whose
induced upper gap topology with respect to ρ is contained in G+

S ,d. That this operator
may produce no subsets whatsoever is illustrated by the next example.

Example. Let X = N equipped with the Euclidean metric d and let f : N → Q be a
bijection. Let ρ be a second metric on N defined by ρ(n, k) = |f(n)− f(k)|. Suppose that
S consists of the singleton subsets of X, so that G+

S ,d is the upper d-Wijsman topology.
Notice that each ρ-ball consists of infinitely many points and thus fails to be d-bounded.
As a result, whenever T 6= ∅ and ε > 0, the enlargement Bρ(T, ε) is unbounded with
respect to the metric d and thus cannot be contained in any d-bounded set of the form⋃n
i=1Bd (Si, λi) where S1, S2, . . . , Sn are singletons and λ1, λ2, . . . , λn are positive scalars.

We conclude Γρ,d(S ) is empty.
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As a courtesy to the reader, who could easily be intimated by the definition of Γρ,d(S ),
we next identify in a very simple setting a nonempty Γρ,d(S ) and its induced upper gap
topology which must of course satisfy G+

Γρ,d(S ),ρ ≤ G+
S ,d.

Example. Let X = R, let d be the discrete 0-1 metric, and let ρ be the Euclidean
metric. We take for S the family of nonempty finite subsets of X which we have denoted
by F0(X). This of course gives rise to the same upper gap topology as determined by
the family of singletons. Viewing this as the weakest topology such that each member of
{D(·, S) : S ∈ F0(X)} is upper semicontinuous, we see that the upper gap topology is
generated by all sets of the form

{A ∈P(X) : Dd(A, S) > ε} =


P(X) if ε < 0

{B : B ⊆ X\S} if 0 ≤ ε < 1

{∅} if ε ≥ 1

where S runs over F0(X).
We intend to show that Γρ,d(S ) coincides with the ρ-dense subsets of R. First, suppose

that T is ρ-dense; then whenever 0 < ε < α, we have

Bρ(T, ε) = R ⊆ Bd({0}, 2) ⊆ Bd({0}, 3) ⊆ Bρ(T, α)

as required. On the other, if T 6= ∅ is not ρ-dense, choose α > 0 with Bρ(T, α) 6= R.
Noting that Bρ(T, α/2) is not a finite set, we cannot find finite sets S1, S2, . . . , Sn and
positive scalars λ1, λ2, . . . , λn such that

Bρ(T,
α

2
) ⊆

n⋃
i=1

Bd (Si, λi) ⊆ Bρ (T, α)

as the set in the middle is either finite or is R. We have shown that Γρ,d(S ) = {T :
T is ρ− dense}; clearly, G+

Γρ,d(S ),ρ = {∅,P(X), {∅}}.

It is evident that the ρ-closure of each set in Γρ,d(S ) again lies in Γρ,d(S ) and that
Γρ,d(S ) is stable under taking finite unions. A more interesting stability property is
this: Γρ,d(S ) is closed with respect to the topology on P0(X) determined by ρ-Hausdorff
distance.

Proposition 3.1 Let d and ρ be metrics on X and let S be a nonempty family of subsets
of X. Then the closure of Γρ,d(S ) in the Hρ-topology equals Γρ,d(S ).

Proof. Suppose A ∈P0(X) is in the Hρ-closure of Γρ,d(S ). Let 0 < ε < α be given and
pick δ > 0 such that 3δ < α−ε. Choose T ∈ Γρ,d(S ) such thatHd(T,A) < δ. By definition,
we can find S1, S2, . . . , Sn ∈ S , and scalars 0 < λ1 < σ1, 0 < λ2 < σ2, . . . , 0 < λn < σn
satisfying
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Bρ(T, ε+ δ) ⊆
n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆ Bρ(T, α− δ).

Since Bρ(A, ε) ⊆ Bρ(T, ε+ δ) and Bρ(T, α− δ) ⊆ Bρ(A,α), we obtain

Bρ(A, ε) ⊆
n⋃
i=1

Bd (Si, λi) ⊆
n⋃
i=1

Bd (Si, σi) ⊆ Bρ(A,α)

as required. 2

Of particular interest is Γd,d(S ) which evidently contains S and so Σ(S ) as well.

Proposition 3.2 Let S be a family of nonempty subsets of X. Then Γd,d(S ) is the
largest family of subsets T of X such that G+

T ,d = G+
S ,d on P(X).

Proof. Since S ⊆ Γd,d(S ) we have by the monotonicity of T 7→ G+
T ,d that G+

Γd,d(S ),d ≥
G+

S ,d. By the definition of Γd,d(S ) and Theorem 2.2, we get equality.

Now suppose G+
T ,d = G+

S ,d. Then clearly G+
T ,d ≤ G+

S ,d which means by Theorem 2.2 that
T ⊆ Γd,d(S ), showing that Γd,d(S ) is the largest such family. 2

In view of the last proposition, it is natural to call S 7→ Γd,d(S ) a saturation operator
on P0(X). We leave the proof of the next elementary but important transitivity property
to the reader, in part because it is notationally cumbersome.

Proposition 3.3 Let d1, d2 and d3 be metrics on X and let S a family of nonempty
subsets of X; then

Γd3,d2 [Γd2,d1(S )] ⊆ Γd3,d1(S ). (transitivity)

As an immediate consequence of transitivity and the monotonicty of S 7→ Γρ,d(S ),
we see that for each pair of metrics d and ρ on X, and each S ⊆ P0(X), we have
Γρ,d[Γd,d(S )] = Γρ,d(S ). This observation plays a role in the next basic result.

Theorem 3.4 Let S and T be families of nonempty subsets of a metric space (X, d).
The following conditions are equivalent:

(a) G+
S ,d = G+

T ,d on P(X);

(b) Γd,d(S ) = Γd,d(T );

(c) For each metric ρ on X, Γρ,d(S ) = Γρ,d(T ).
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Proof. Condition (a) implies condition (b) by Proposition 3.2. If condition (b) holds,
then by Proposition 3.2 again, we have

G+
S ,d = G+

Γd,d(S ),d = G+
Γd,d(T ),d = G+

T ,d.

Also by condition (b) and transitivity, for each metric ρ on X,

Γρ,d(S ) = Γρ,d[Γd,d(S )] = Γρ,d[Γd,d(T )] = Γρ,d(T ),

i.e., condition (c) holds. On the other if condition (c) holds for all metrics ρ, then in
particular it holds for the choice ρ = d, so (b) holds. 2

We next present a second equally basic result.

Theorem 3.5 Let S and T be families of nonempty subsets of X and let d and ρ be
metrics on X. The following conditions are equivalent:

(a) G+
S ,d = G+

T ,ρ on P(X);

(b) Γρ,ρ(T ) = Γρ,d(S ) and Γd,d(S ) = Γd,ρ(T );

(c) Γρ,ρ(T ) ⊆ Γρ,d(S ) and Γd,d(S ) ⊆ Γd,ρ(T ).

Proof. (a) ⇒ (b). Γρ,ρ(T ) is the largest family of subsets whose upper gap topology
with respect to ρ is contained in G+

T ,ρ. On the other hand, Γρ,d(S ) is the largest family

of subsets whose upper gap topology with respect to ρ is contained in G+
S ,d. Equality of

these upper gap topologies ensures equality of the families. Similarly, Γd,d(S ) = Γd,ρ(T ).

(b)⇒ (c). This is trivial.

(c)⇒ (a). The first inclusion implies G+
S ,d ≥ G+

T ,ρ because always G+
Γρ,d(S ),ρ ≤ G+

S ,d and

G+
Γρ,ρ(T ),ρ = G+

T ,ρ. Similarly, the second inclusion implies G+
T ,ρ ≥ G+

S ,d. 2

In the rest of this section, we focus our attention exclusively on the case ρ = d, and for
notational simplicity, we put Γ = Γd,d when d is understood. The structural properties of
the operator Γ are summarized in the following theorem:

Theorem 3.6 Let (X, d) be a metric space and let S ⊆P0(X). Then:

(a) S ⊆ Γ(S );

(b) S ⊆ T ⇒ Γ(S ) ⊆ Γ(T );

(c) Σ(Γ(S )) = Γ(S ) = Γ(Σ(S ));

(d) Γ(Γ(S )) = Γ(S );
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(e) T Bd(X) ⊆ Γ(F0(X)) ⊆ Bd(X).

Proof. (a), (b) and (c) are clear and have been discussed more generally already. Be-
cause of (a) and (b), Γ(S ) ⊆ Γ(Γ(S )). On the other hand, by Proposition 3.2, we have
Γ(Γ(S )) ⊆ Γ(S ) and (d) follows.

To prove (e), let T be a totally bounded subset of X and let 0 < ε < α. Select
r < 1

2
(α− ε); then there exist x1, .., xk ∈ T such that T ⊆

⋃k
i=1Bd(xi, r) and so

Bd(T, ε) ⊆
k⋃
i=1

Bd(xi, r + ε) ⊆
k⋃
i=1

Bd(xi, 2r + ε) ⊆ Bd(T, α).

Note that the first inclusion in (e) also follows from Proposition 3.1. The second inclusion
in (e) is clear. 2

As we shall see shortly, in any infinite dimensional normed linear space equipped with
metric determined by the norm, both inclusions in (e) are proper; further in this context,
on the negative side, the family Γ(F0(X)) is not hereditary. These statements fall out
of a consideration of Γ(F0(X)) in the context of almost convex metric spaces, a class of
spaces which contain the normed linear spaces, and where membership to Γ(F0(X)) is
more easily understood.

A subset T of X lies in Γ(F0(X)) provided whenever 0 < ε < α, ∃ {x1, x2, . . . , xn}
⊆ X and λ1, . . . , λn, σ1, . . . , σn such that ∀i ≤ n, 0 < λi < σi, and

(♠) Bd(T, ε) ⊆
⋃n
i=1Bd(xi, λi) ⊆

⋃n
i=1Bd(xi, σi) ⊆ Bd(T, α).

A metric space (X, d) is called an almost convex metric space provide whenever α > 0
and β > 0 and A ∈ P0(X), then Bd(Bd(A,α), β) = Bd(A,α + β). This is known to be
equivalent to the following condition [4, p. 108]: whenever 0 < d(x1, x2) < α and β ∈ (0, α)
there exists x3 ∈ X with d(x1, x3) < β and d(x3, x2) < α − β. In an almost convex
metric space, it is clear that each open ball lies in Γ(F0(X)), because Bd(Bd(x0, µ), ε) =
Bd(x0, µ + ε) and Bd(Bd(x0, µ), α) = Bd(x0, µ + α). In particular, each open ball in a
normed linear belongs to Γ(F0(X)), while such sets fail to be totally bounded whenever
the space is infinite dimensional.

Open balls need not belong to Γ(F0(X)) in an arbitrary metric space (X, d).

Example. Our metric space X will consist of a countable set {p} ∪ {xn : n ∈ N} ∪ {yn :
n ∈ N} equipped with the metric d defined by cases as follows: (1) ∀n, d(p, xn) = 2; (2)
∀n, d(p, yn) = 2.5; (3) d(x1, y1) = 1.5; d(xn, yn) = 1 for n ≥ 2; (4) d(x, y) = 1.5 for x 6= y
otherwise. We intend to show that T := Bd(p, 2.1) = {p} ∪ {xn : n ∈ N} fails to lie in
Γ(F0(X)). Note that Bd(T, 1.1) = Bd(T, 1.3) = T ∪ {yn : n ≥ 2}. We claim that this set
cannot be realized as a finite union of balls.

First note that any open ball with center p contained in Bd(T, 1.1) can have radius at
most 2.5, and thus is a subset of T . On the other hand, each open ball with center xn or
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yn contained in Bd(T, 1.1) must have radius at most 1.5 and hence contains at most two
points. Thus it is impossible to capture {yn : n ≥ 2} by a finite union of such balls.

Since Σ(Γ(F0(X)) = Γ(F0(X)), each finite union of balls in an almost convex metric
space belongs to Γ(F0(X)). It turns out that in this setting, Γ(F0(X)) consists of all
subsets of X that can be approximated in d-Hausdorff distance by a finite union of balls
(cf. [4, Lemma 4.1.2 and Corollary 4.18]).

As a prelude to our next result, note that in a general metric space, a subset of X is
totally bounded if and only if it can be so approximated by a finite union of balls each
with the same arbitrarily small radius.

Theorem 3.7 Let (X, d) be a metric space.

(a) If T ∈ Γ(F0(X)), then ∀ε > 0 there exists a finite collection of open balls

{B1, B2, . . . , Bn} such that Hd(T,∪ni=1Bi) ≤ ε;

(b) If (X, d) is an almost convex metric space, then the converse of statement (a) holds.

Proof. For (a), suppose T ∈ Γ(F0(X)) and let ε > 0 be arbitrary. Using just part of
the definition of Γ(F0(X)), we can find {x1, . . . , xn} ⊆ X and positive scalars {σ1, . . . , σn}
such that

Bd(T,
ε

2
) ⊆

n⋃
i=1

Bd(xi, σi) ⊆ Bd(T, ε).

It immediately follows that Hd(∪ni=1Bd(xi, σi), T ) ≤ ε.
Condition (b) follows from Theorem 3.1, Theorem 3.6(c), and the fact that each open

ball in an almost convex metric space belongs to Γ(F0(X)). 2

In view of Proposition 1.2, Theorem 2.2 and Proposition 2.7, we may state this corollary.

Corollary 3.8 Let (X, d) be an almost convex metric space. Let B be the closure in
P0(X) with respect to the Hausdorff pseudometric topology of the family of all finite unions
of open balls in X. Then B is the largest subfamily S of P0(X) such that G+

S ,d = W+
d ,

equivalently, GS ,d = Wd.

As we mentioned above, Γ(F0(X)) need not be a hereditary family. In the setting of
almost convex metric spaces, we intend to characterize those members of Γ(F0(X)) each of
whose nonempty subsets again belongs to Γ(F0(X)). For this purpose, we introduce some
notation for iterated enlargements: given T ∈P0(X) and α > 0 put B1

d(T, α) = Bd(T, α)
and Bn+1

d (T, α) = Bd(B
n
d (T, α)) for n ∈ N. Almost convexity assures Bn

d (T, α) = Bd(T, nα)
for all n.
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Proposition 3.9 Let (X, d) be an almost convex metric space. For a nonempty subset T
of X, the following conditions are equivalent:

(a) each nonempty subset of T belongs to Γ(F0(X));

(b) T is totally bounded.

Proof. Only (a) ⇒ (b) requires proof. Suppose T ∈ Γ(F0(X)) fails to be totally
bounded, yet (a) holds. Then for some δ > 0 we can find a countably infinite subset
E := {xm : m ∈ N} of T such that d(xm, xj) ≥ 3δ for m 6= j. Now by the last theorem, we
can find a finite family of closed balls {B1, B2, . . . , Bn} such that Hd(E,∪ni=1Bi) < δ. This
means that for each m ∈ N, some ball hits Bd(xm, δ) and that ∪ni=1Bi ⊆ Bd(E, δ). By the
pigeon-hole principle, we can find distinct indices m1 and m2 and a fixed ball - without
loss of generality B1 - such that Bd(xm1 , δ) contains the center of B1 and Bd(xm2 , δ) hits
B1. We now write B1 = Bd(y, α) and take w ∈ Bd(y, α) ∩Bd(xm2 , δ).

Choose ε ∈ (0,min{δ, α − d(y, w)}). Let k be the smallest integer such d(y, w) <
kε; this choice ensures that kε < α. By almost convexity, we can find a finite string
y0, y1, y2, y3, . . . , yk with y0 = y and yk = w such that d(yj, yj+1) < ε for j = 0, 1, . . . , k− 1
so that each yj lies in Bd(y, α). Now y0 ∈ B(xm1 , δ) and by the choice of δ, yk /∈ B(xm1 , δ).
Thus, there is a first index j > 0 such that yj /∈ B(xm1 , δ). Since yj−1 ∈ B(xm1 , δ)
and ε < δ, we have δ < d(xm1 , yj) < 2δ. From this, yj ∈ ∪ni=1Bi\Bd(E, δ) which is a
contradiction. 2

By our last result, each ball in a normed linear space, while lying in Γ(F0(X)), must
have a nonempty subset that does not. Equivalently, such a subset cannot be approximated
by a finite union of balls in Hausdorff distance.

4 First and second countability

We begin this section with a characterization of first countability of upper gap topologies.
We will state this result with respect to the hyperspace P0(X) of all nonempty subsets of
X, but it will be clear that an analogous characterization holds on every hyperspace of X.

Let (X, d) be a metric space. For a collection S of nonempty subsets of X, and an
A ∈ P0(X), put SA = {S ∈ S |Dd(S,A) 6= 0}. If SA = ∅, it is clear that P0(X) is the
unique G+

S ,d-neighborhood of A. So we will focus on the case SA 6= ∅.
Let us put, for S1, . . . , Sk ∈ S and ε1, . . . , εk > 0,

U (S1, . . . , Sk; ε1, . . . , εk) = {C ∈P0(X) | ∀i ∈ {1, . . . , k} : Bd(C, εi) ∩ Si = ∅}.

The next result complements Lemma 2.1:

Lemma 4.1
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(1) the family of all U (S1, . . . , Sk; ε1, . . . , εk), with S1, . . . , Sk ∈ SA and Dd(A, Si) > εi
for i = 1, . . . , k, forms a local base at A for G+

S ,d;

(2) U (S1, . . . , Sk; ε1, . . . , εk) ⊆ U (T1, . . . , Tn; r1, . . . , rn) if and only if

n⋃
j=1

Bd(Tj, rj) ⊆
k⋃
j=1

Bd(Sj, εj). (4; 7)

Proof.

(1) To prove (1), note that

A ∈ A +(S1, . . . , Sk; ε1, . . . , εk) ⊆ U (S1, . . . , Sk; ε1, . . . , εk),

so that the latter is a neighborhood of A. Now consider, for i = 1, . . . , k, ri > 0
such that εi + ri < Dd(Si, A): we then have the relations A ∈ U (S1, . . . , Sk; ε1 +
r1, . . . , εk + rk) ⊆ A +(S1, . . . , Sk; ε1, . . . , εk).

(2) Suppose the inclusion among neighborhoods holds and there exists b ∈
(⋃n

j=1 Bd(Tj, rj)
)
\⋃k

j=1Bd(Sj, εj); then {b} ∈ U (S1, . . . , Sk; ε1, . . . , εk) but {b} /∈ U (T1, . . . , Tn; r1, . . . , rn).
Suppose, conversely, that (4; 7) holds; then, if Bd(C, εj) ∩ Sj = ∅ (j = 1, . . . , k), we
have

C ∩
( k⋃
j=1

Bd(Sj, εj)
)

= ∅;

therefore C ∩ (
⋃n
j=1Bd(Tj, rj) = ∅ and Bd(C, rj) ∩ Tj = ∅ (j = 1, . . . , n).

2

We begin with an important particular case:

Proposition 4.2 Suppose the family S is hereditary and has a countable cofinal subfam-
ily; then G+

S ,d is first countable.

Proof. By Remark 1.1, without loss of generality, we may assume
∑

(S ) = S . With
this in mind, let (Sn) be an increasing cofinal sequence in S and A a non-empty subset
of X. Suppose A ∈ A +(S, ε) , r is a rational larger than ε and S ⊆ Sn; then A ∈
A +(Sn ∩ (Ar)c, r) ⊆ A +(S, ε) and this is enough to prove first countability at A. 2

Corollary 4.3 The topologies AW+
d and H+

d are first countable.

The general case is given by the following theorem. We use in the proof the notation
A<ω for the set of all finite sequences from the nonempty set A.
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Theorem 4.4 Let S be a collection of nonempty subsets of a metric space (X, d), and
let A ∈ P0(X) be such that SA 6= ∅. Then G+

S ,d is first countable at A if and only if
there exists a countable subfamily LA = {Sn |n ∈ N} ⊆ SA with the following property:
for every S ∈ SA and for every 0 < ε < Dd(S,A), there exist k ∈ N, Sj1 , . . . , Sjk ∈ LA

and 0 < εr < Dd(Sjr , A) for r = 1, .., k, such that

Bd(S, ε) ⊆
k⋃
r=1

Bd(Sjr , εr). (4; 8)

Proof. i) Suppose the stated condition is verified and let S ∈ SA, 0 < ε < Dd(S,A) be
given. Then, choosing the Sjr and εr as above, inclusion (4; 8) holds and, by Lemma 4.1,
U (Sj1 , . . . , Sjk ; ε1, . . . , εk) ⊆ U (S, ε).

Let t1, .., tk be rationals such that

εr < tr < Dd(Sjr , A) for r = 1, . . . , k;

then
U (Sj1 , . . . , Sjk ; ε1, . . . , εk) ⊆ U (S, ε).

As [LA]<ω × [Q]<ω is countable, we have found a countable local base at A.
ii) If G+

S ,d is first countable at A, there exists a countable local base {Un |n ∈ N} at A.
By Lemma 4.1 we can write

Un = U (S
(n)
1 , . . . , S

(n)
jn

; ε1
(n), . . . , εjn

(n))

with Dd(A, S
(n)
k ) > εk for k = 1, . . . , jn. Put LA =

⋃∞
n=1{S1

(n), . . . , S
(n)
jn
} and let S ∈ SA,

0 < ε < Dd(S,A). Then there exists n ∈ N such that Un ⊆ U (S, ε), so that again by
Lemma 4.1

Bd(S, ε) ⊆
jn⋃
k=1

Bd(Sk
(n), εk

(n))

2

If our family S contains the singleton subsets of X and A is a nonempty subset, then
SA 6= ∅ if and only if A 6= X. This leads to the following corollary:

Corollary 4.5 Let A ∈ P0(X) with A 6= X. The upper Wijsman topology W+
d is first

countable at A if and only if there exists a countable set LA = {xn |n ∈ N} ⊆ X \ A with
the following property:

∀x ∈ X \ A : ∀0 < ε < d(x,A) : ∃k ∈ N : ∃x1, . . . , xk ∈ LA : ∃ε1, . . . , εk :((
∀j ∈ {1, . . . , k} : 0 < εj < d(xj, A)

)
∧ B(x, ε) ⊆

k⋃
j=1

B(xj, εj)
)
.

(4; 9)

21



With the above results we are in a position to prove that first countability of the upper
Wijsman topology is equivalent to separability of the base space. The analogous result for
the lower Wijsman topology or the full Wijsman topology is well-known and much easier
to prove. To the authors’ knowledge, the next statement does not appear in the literature.

Theorem 4.6 Let (X, d) be a metric space. The following conditions are equivalent:

(a) X is separable;

(b) the upper Wijsman topology is first countable on P0(X);

(c) the upper Wijsman topology is first countable on C0(X).

Proof.
(a)=⇒(b).

Suppose X is separable and let A ∈P0(X) with A 6= X; let {xn |n ∈ N} be a dense subset
of X \A. Fix x ∈ X \A and 0 < ε < d(x,A); choose xn such that d(xn, x) < 1

2
(d(x,A)−ε)

and put εn = ε + d(xn, x). We wish to show that d(xn, A) > εn. Suppose, instead,
that d(xn, A) ≤ εn; then d(xn, A) ≤ ε + d(xn, x) < d(x,A) − d(xn, x) and d(xn, x) <
d(x,A)− d(xn, A) ≤ d(xn, x), a contradiction. Finally, it is clear that B(x, ε) ⊆ B(xn, εn).
First countability of W+

d at A now follows from Corollary 4.5.
(b)=⇒(c).
This is obvious
(c)=⇒(a).

Suppose (X, d) is a non-separable metric space. Then, as is well-known, it is possible to
find a ϑ > 0 and a ϑ-uniformly discrete subset D of X with |D| = ℵ1. (This may be proved,
for example, by considering for every n ∈ N+ a maximal 1

n
-uniformly discrete subset Dn of

X: since the set
⋃
n∈N+ Dn is easily seen to be dense in X, it must be uncountable, hence

at least one of the sets Dn is uncountable, too). Let D′ = {x ∈ D |x is isolated in (X, d)}
and D′′ = D\D′: of course, at least one of the two sets D′, D′′ will be uncountable.

1st case: |D′′| = ℵ1.
For every x ∈ D′′ let a(x) be an element of X\{x} such that d

(
x, a(x)

)
< ϑ

3
, and choose a

δ(x) with

0 < δ(x) < d
(
x, a(x)

)
<
ϑ

3
; (4; 10)

then let A = X\
⋃
x∈D′′ Bd (x, δ(x)). Notice that A contains {a(x) : x ∈ D′′} and clearly A

is closed. We claim that
∀x ∈ D′′ : a(x) ∈ A. (4; 11)

Indeed, on the one hand, (4; 10) implies that a(x) /∈ Bd (x, δ(x)). On the other hand,
if x′ ∈ D′′\{x}, then we cannot have a(x) ∈ Bd (x′, δ(x′)), because this would imply
by (4; 10) (applied for x = x′) that d(a(x), x′) < δ(x′) < d(x′, a(x′)) < ϑ

3
, so that
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d(x, x′) ≤ d(x, a(x)) + d(a(x), x′) < ϑ
3

+ ϑ
3

= 2
3
ϑ (we have applied (4; 10) again, this

time for x = x), contradicting the fact that D′′ is ϑ-uniformly discrete. Therefore,
a(x) /∈

⋃
x′∈D′′ Bd (x′, δ(x′)), i.e. a(x) ∈ A.

Now, we claim that A does not satisfy the condition of Corollary 4.5. Indeed, consider an
arbitrary countable subset LA of X\A: since X\A =

⋃
x∈D′′ Bd (x, δ(x)), for every y ∈ LA

there is xy ∈ D′′ with
d(y, xy) < δ(xy). (4; 12)

This implies that

∀y ∈ LA : d(y, A) <
2

3
ϑ : (4; 13)

indeed, if y ∈ LA, then using (4; 11), (4; 12) and (4; 10) we see that d(y, A) ≤ d(y, a(xy)) ≤
d(y, xy) + d(xy, a(xy)) < δ(xy) + d(xy, a(xy)) <

ϑ
3

+ ϑ
3

= 2
3
ϑ.

Now, consider the set D′′\{xy | y ∈ LA}: since LA is countable while D′′ is not, such a
set cannot be empty, hence we may fix a point x̄ ∈ D′′\{xy | y ∈ LA}. Clearly, if (4; 10)
held for x = x̄, then in particular there would be y1, . . . , yn ∈ LA and ε1, . . . , εn with
0 < εi < d(yi, A) for i = 1, . . . , n, such that x̄ ∈

⋃n
i=1Bd (yi, εi). However, for every

i ∈ {1, . . . , n}, (4; 13) implies that εi < d(yi, A) < 2
3
ϑ, while (4; 12) and (4; 10) combine to

show that d(yi, xyi) < δ(xyi) <
ϑ
3
; therefore x̄ ∈ Bd (yi, εi) would imply that d

(
x̄, xyi

)
≤

d(x̄, yi) + d
(
yi, xyi

)
< εi + ϑ

3
< 2

3
ϑ + ϑ

3
= ϑ, which is impossible because x̄ and xyi are

distinct elements of D′′ and D′′ is ϑ-uniformly discrete.
Thus, we conclude that (4; 9) does not hold in this 1st case.

2nd case: |D′| = ℵ1.
Using transfinite induction, we will define for every α ∈ ω1 an xα ∈ D′ and an Mα ∈ [D′]≤ω

in the following way. Suppose we have defined x′α and Mα′ for α′ < α: then pick any

xα ∈ D′\
(
{xα′ |α′ < α} ∪

⋃
α′<αMα′

)
, (4; 14)

and let Mα be a countable subset of X\{x′α |α′ ≤ α} such that

d
(
xα, X\{xα′ |α′ ≤ α}

)
= d(xα,Mα). (4; 15)

Consider the set A = X\{xα |α ∈ ω1} (which is closed, as every point xα belongs to D′

and hence is isolated in (X, d)): we claim that A disproves (4; 9).
First of all, we point out that Mα ⊆ A (i.e., that Mα ∩ {xα′ |α′ ∈ ω1} = ∅) for every

α ∈ ω1. Indeed, on the one hand each Mα is by definition a subset of X\{x′α |α′ ≤ α},
hence it misses the set {x′α |α′ ≤ α}; on the other hand, for every α∗ > α we see by (4; 14)
that xα∗ /∈

⋃
α′<α∗Mα′ , hence in particular xα∗ /∈ Mα. Therefore Mα misses the whole set

{xα′ |α′ ∈ ω1}.
Now, let LA be any countable subset of X\A = X\A = {xα |α ∈ ω1}: to prove that (4; 9)

fails it will suffice to show—as in the 1st case—that there is an x̂ ∈ X\A = {xα |α ∈ ω1}
such that for every y1, . . . , yn ∈ LA and every ε1, . . . , εn with 0 < εi < d(yi, A) for i =
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1, . . . , n, we have the relation x̂ /∈
⋃n
i=1Bd (yi, εi). Actually, write LA =

{
xα
∣∣α ∈ S}, with

S a countable subset of ω1, and choose x̂ = xα̂ with α̂ ∈ ω1 such that

α̂ > α for every α ∈ S. (4; 16)

Now, if y1, . . . , yn and ε1, . . . , εn are as above, then each yi is xα(i) for some α(i) ∈ S; we
see that for every i ∈ {1, . . . , n} the relation x̂ (= xα̂) ∈ Bd (yi, εi)

(
= Bd

(
xα(i), εi

))
would

imply that
d(xα̂, xα(i)) < εi < d(yi, A) = d(xα(i), A) ≤ d(xα(i),Mα(i))

(as we have proved before that Mα ⊆ A for every α ∈ ω1). Thus, by (4; 15), we
conclude that d(xα(i), xα̂) < d

(
xα(i), X\{xα′ |α′ ≤ α(i)}

)
; but this is a contradiction, as

(4; 16) and the one-to-one character of α 7→ xα (take (4; 14) into account) imply that
xα̂ ∈ X\{xα′ |α′ ≤ α(i)}.

Therefore, we have shown that x̂ /∈ Bd (yi, εi) for i = 1, . . . , n, i.e. that

x̂ /∈
n⋃
i=1

Bd (yi, εi).

2

We will now consider second countability of upper gap topologies.

Theorem 4.7 Let S be a collection of subsets of a metric space (X, d). Then the following
are equivalent:

(1) the space (P0(X),G+
S ,d

)
is second countable;

(2) there exists a countable subcollection D of S such that S ⊆ Γ(D).

Proof. (1)=⇒(2).
Since the collection

V =
{
A +
d (S1, . . . , Sn; ε1, . . . , εn)

∣∣n ∈ N, S1, . . . , Sn ∈ S , ε1, . . . , εn > 0
}

is a base for (P0(X),G+
S ,d

)
, and this space has weight ℵ0, by a well-known general result

(see [20, Theorem 1.1.15]) there exists a countable subcollection B of V which is still a base
for (P0(X),G+

S ,d

)
. Then write B as

{
P0(X)

}
∪ {U j | j ∈ N}, and for every j ∈ N let

Sj1, . . . , S
j
n(j) ∈ S and εj1, . . . , ε

j
n(j) > 0 be such that U j = A +

d

(
Sj1, . . . , S

j
n(j); ε

j
1, . . . , ε

j
n(j)

)
(with n(j) ∈ N+). Now, if for some S ∈ S and α > 0 we have the equality Bd (S, α) = X,
set

D = {Ŝ} ∪
{
Sji
∣∣ j ∈ N, 1 ≤ i ≤ n(j)

}
,
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where Ŝ is an element of S for which there is a λ̂ > 0 such that Bd(Ŝ, λ̂) = X; otherwise,
if Bd (S, α) $ X for every S ∈ S and α > 0, set

D =
{
Sji
∣∣ j ∈ N, 1 ≤ i ≤ n(j)

}
.

We claim that S ⊆ Γ(D).
Indeed, let S ∈ S and 0 < ε < α be arbitrarily given. If Bd (S, α) = X, then we are

in the case where D = {Ŝ} ∪
{
Sji
∣∣ j ∈ N, 1 ≤ i ≤ n(j)

}
with Bd

(
Ŝ, λ̂

)
= X; thus, fixing

a σ̂ > λ̂, we see that Bd

(
Ŝ, λ̂

)
= Bd

(
Ŝ, σ̂

)
= Bd (S, α) = X, and hence, in particular,

Bd (S, ε) ⊆ Bd

(
Ŝ, λ̂

)
⊆ Bd

(
Ŝ, σ̂

)
⊆ Bd (S, α).

Thus, we may assume that Bd (S, α) 6= X, which means that C = X\Bd (S, α) ∈P0(X).
Since Dd(S,C) ≥ α > ε, i.e. C ∈ A +

d (S, ε), and B is a base for G+
S ,d, there must exist

̂ ∈ N such that
C ∈ A +

d

(
S ̂1, . . . , S

̂
n(̂); ε

̂
1, . . . , ε

̂
n(̂)

)
⊆ A +

d (S; ε). (4; 17)

Now, on the one hand, the relation C ∈ A +
d

(
S ̂1, . . . , S

̂
n(̂); ε

̂
1, . . . , ε

̂
n(̂)

)
means that

∀i ∈ {1, . . . , n(̂)} : Dd

(
S ̂i , C

)
> ε̂i,

and this allows us to choose for every i = 1, . . . , n(̂) some σi, λi ∈ R so that

∀i ∈ {1, . . . , n(̂)} : Dd

(
S ̂i , C

)
> σi > λi > ε̂i; (4; 18)

consequently, Bd

(
S ̂i , σi

)
∩ C = Bd

(
S ̂i , σi

)
∩
(
X\Bd (S, α)

)
= ∅ for i = 1, . . . , n(̂), i.e.

n(̂)⋃
i=1

Bd

(
S ̂i , σi

)
⊆ Bd (S, α). (4; 19)

On the other hand, the inclusion A +
d

(
S ̂1, . . . , S

̂
n(̂); ε

̂
1, . . . , ε

̂
n(̂)

)
⊆ A +

d (S; ε) (from (4; 17))
implies, because of lemma 2.1, that

Bd (S, ε) ⊆
n(̂)⋃
i=1

Bd

(
S ̂i , λi

)
; (4; 20)

Therefore, (4; 19), (4; 20) and the inequality 0 < λi < σi for every i ∈ {1, . . . , n(̂)} (take
again (4; 18) into account) combine to show that S ∈ Γ(D).

(2)=⇒(1).
Let D be a countable subcollection of S with S ⊆ Γ(D), and let

B =
{
P0(X)

}
∪
{
A +
d (T1, . . . , Tm;λ1, . . . , λm)

∣∣m ∈ N+, T1, . . . , Tm ∈ C ,

λ1, . . . , λm ∈ Q∩ ]0,+∞[
}
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(so that B is in its turn countable); we claim that B is a base for
(
P0(X),G+

S ,d

)
.

Indeed, let C ∈ P0(X), and consider an arbitrary G+
S ,d-neighbourhood U of C. If

U = P0(X), we are done, as P0(X) ∈ B. Otherwise, we may assume U to be of the
form A +

d (S1, . . . , Sn; ε1, . . . , εn) with n ∈ N+, S1, . . . , Sn ∈ S and 0 < εi < Dd(Si, C) for
every i ∈ {1, . . . , n}; since B is closed under finite intersections, if we can show that for
every i ∈ {1, . . . , n} there is Ui ∈ B with C ∈ Ui ⊆ A +

d (Si; εi), then
⋂n
i=1 Ui will be an

element of B such that C ∈
⋂n
i=1 Ui ⊆ A +

d (S1, . . . , Sn; ε1, . . . , εn).
Actually, given i ∈ {1, . . . , n}, since 0 < εi < Dd(Si, C) we may consider ε∗, α∗ such that

0 < εi < ε∗ < α∗ < Dd(Si, C). Then the relations Si ∈ S ⊆ Γ(D) imply that there exist
T1, . . . , Tm ∈ D and λ1, . . . , λm, σ1, . . . , σm with 0 < λ` < σ` for ` = 1, . . . ,m, such that

Bd (Si, ε
∗) ⊆

m⋃
`=1

Bd (T`, λ`) ⊆
m⋃
`=1

Bd (T`, σ`) ⊆ Bd (Si, α
∗); (4; 21)

moreover, up to replacing each λ` with a λ′` such that λ` < λ′` < σ` and λ′` ∈ Q, we may
assume that each λ` in (4; 21) is already in Q.

Now, on the one hand, the inclusion Bd (Si, ε
∗) ⊆

⋃m
`=1Bd (T`, λ`) entails by Lemma 2.1

(as 0 < εi < ε∗) that A +
d (T1, . . . , Tm;λ1, . . . , λm) ⊆ A +

d (Si; εi). On the other hand, since
Dd(Si, C) > α∗, and hence in particular C ∩ Bd (Si, α

∗) = ∅, it follows from the inclusion⋃m
`=1Bd (T`, σ`) ⊆ Bd (Si, α

∗) that C ∩
(⋃m

`=1Bd (T`, σ`)
)

= ∅, whence Dd(T`, C) ≥ σ` > λ`
for ` = 1, . . . ,m; thus, we conclude that C ∈ A +

d (T1, . . . , Tm;λ1, . . . , λm). Therefore, we
may choose A +

d (T1, . . . , Tm;λ1, . . . , λm) as the desired element Ui of B such that C ∈ Ui ⊆
A +
d (Si; εi). 2

Using the fact that two families S and T induce the same upper gap topologies if and
only if their saturations Γ(S ) and Γ(T ) coincide, in view of Theorem 3.6, we get the
following corollary.

Corollary 4.8 The following conditions are equivalent:

1) (P0(X),G+
S ,d

)
is second countable;

2) there exists a countable subfamily D of S such that Γ(D) = Γ(S );

3) there exists a countable subfamily D of P0(X) such that Γ(D) = Γ(S ).

Corollary 4.9 The following conditions are equivalent:

1) X is separable;

2) W+
d is first countable;

3) W+
d is second countable.
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Proof. With the definition of the Γ operator in mind, this follows from Theorem 4.6 and
Theorem 4.7. 2

Proposition 4.10 The upper Hausdorff pseudometric topology on the hyperspace of a met-
ric space (X, d) is second countable if and only if the space (X, d) is totally bounded.

Proof. The “if” part is well-known; therefore, we assume that (X, d) is not totally
bounded, and prove that

(
P0(X),H+

d

)
is not second countable.

Actually, since (X, d) is not totally bounded, there exist a ϑ > 0 and a countably infinite
subset D of X such that

∀x, y ∈ D :
(
x 6= y =⇒ d(x, y) ≥ ϑ

)
. (4; 22)

Let E be an uncountable collection of infinite subsets of D such that

∀E1, E2 ∈ E :
(
E1 6= E2 =⇒ (E1 6⊆ E2 ∧ E2 6⊆ E1)

)
(4; 23)

(for instance, we may choose as E an uncountable almost-disjoint family on D1). We know
that the upper Hausdorff pseudometric topology on P0(X) coincides with the topology
G+

S ,d, when taking as S the collection P0(X) of all nonempty subsets of X. Therefore, the

second countability of
(
P0(X),H+

d

)
is equivalent to the existence of a countable subcol-

lection D of P0(X) such that P0(X) ⊆ Γ(D). Now, if we assume towards a contradiction
that

(
P0(X),H+

d

)
is second countable, then in particular it will be possible to associate to

every E ∈ E some SE,1, . . . , SE,n(E) ∈ D and some λE,1, . . . , λE,n(E), σE,1, . . . , σE,n(E) with
0 < λE,i < σE,i for 1 ≤ i ≤ n(E), such that

Bd

(
E,

ϑ

2

)
⊆

n(E)⋃
i=1

Bd (SE,i, λE,i) ⊆
n(E)⋃
i=1

Bd (SE,i, σE,i) ⊆ Bd (E, ϑ).

Picking, for every E ∈ E and every i ∈ {1, . . . , n(E)}, a rational number rE,i such that
λE,i < rE,i < σE,i, we have the inclusions:

Bd

(
E,

ϑ

2

)
⊆

n(E)⋃
i=1

Bd (SE,i, rE,i) ⊆ Bd (E, ϑ). (4; 24)

We may consider the map:

E 7→ (SE,1, . . . , SE,n, rE,1, . . . , rE,n)

1Remember that a collection E of infinite subsets of a countably infinite set D is said to be almost-
disjoint if the intersection of any two distinct elements of E is finite. It is well-known that on every
countably infinite set there is an almost-disjoint family having the cardinality of the continuum (see, for
instance, [23, Theorem 1.3])
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as a function from E to D<ω×Q<ω. Since the latter set is countable while the former is not,
there must exist two distinct E1, E2 ∈ E with n(E1) = n(E2) and SE1,i = SE2,i, rE1,i = rE2,i

for every i ∈ {1, . . . , n(E1)} ( = {1, . . . , n(E2)} ). Letting M =
⋃n(E1)
i=1 Bd (SE1,i, rE1,i) =⋃n(E2)

i=1 Bd (SE2,i, rE2,i), it follows from the first inclusion in (4; 24), for E = E1, that

Bd

(
E1,

ϑ

2

)
⊆M,

while the last inclusion in (4; 24) gives, for E = E2:

M ⊆ Bd (E2, ϑ);

thus we conclude that E1 ⊆ Bd

(
E1,

ϑ
2

)
⊆ M ⊆ Bd (E2, ϑ). However, this leads to a

contradiction, because by (4; 23) the set E1\E2 is nonempty, but (according to (4; 22)) no
element of E1\E2 can be in the ϑ-enlargement of E2. 2

5 Applications

In this final section we use the operator Γ to prove some structural properties of metric
spaces. Our first result is in part a remake of Theorem 5.5 of [12] in terms of the operator
Γ which shifts the burden of the proof from the base space X to the hyperspace P0(X).

Theorem 5.1 Let (X, d) be a metric space. The following conditions are equivalent:

(a) (X, d) is totally bounded;

(b) Γ(F0(X)) = P0(X);

(c) W+
d = H+

d ;

(d) the Wijsman topology and the proximal topology coincide.

Proof. By Remark 1.1 and Theorem 3.4, the equality Γ(F0(X)) = P0(X) is equivalent to
W+
d = H+

d , i.e., (b) and (c) are equivalent. Further, if (b) holds, then W+
d is first countable

because H+
d always is, and applying Corollary 4.9, X is separable. Thus W+

d is second
countable and so is H+

d . Applying Proposition 4.10, (X, d) is totally bounded. On the
other hand if (X, d) is totally bounded, then W+

d = H+
d (see, for instance, [21, Proposition

2.5]); to obtain condition (b), we apply Theorem 3.4. Finally, conditions (c) and (d) are
equivalent by Proposition 2.7 2

The weaker condition ↓ Γ(F0(X)) = P0(X) is equivalent to X being d-bounded. This
is recorded in the following more comprehensive result.

Theorem 5.2 Let (X, d) be a metric space. The following conditions are equivalent
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(a) ↓ Γ(F0(X)) = P0(X);

(b) (X, d) is bounded;

(c) AW+
d = H+

d ;

(d) the bounded proximal topology and the proximal topology coincide.

Proof. If (X, d) is bounded it is clear that X ∈ Γ(F0(X)) and therefore ↓ Γ(F0(X)) =
P0(X). If, conversely, ↓ Γ(F0(X)) = P0(X), then X can be covered by a finite family of
open balls and is thus bounded. The equivalence of (b) and (c) is due to Theorem 3.4 and
the fact that either condition ensures Γ(Bd(X)) = Γ(P0(X)) = P0(X). Finally, (c) and
(d) are equivalent because both Bd(X) and P0(X) contain the singletons. 2

The next result generalizes Theorem 3.1.4 in [4] (notice how the introduction of the
operator Γ allows such a generalization):

Theorem 5.3 Let (X, d) be a metric space. The following conditions are equivalent:

(a) T Bd(X) = Bd(X);

(b) Γ(F0(X)) = Bd(X);

(c) W+
d = AW+

d ;

(d) AW+
d is second countable;

(e) the Wijsman topology and the bounded proximal topology coincide.

Proof. Condition (a) implies (b) by the last property in Theorem 3.6. If condition (b)
holds, then by idempotency of the Γ operator, Γ(F0(X)) = Γ(Bd(X)) also holds, so (c)
holds by Theorem 3.4. If W+

d = AW+
d , by Corollary 4.3, W+

d is first countable, and X is
therefore separable by Theorem 4.6. Thus W+

d and AW+
d are second countable by Corollary

4.9. To see that condition (d) implies (a), assume now second countability of AW+
d and

suppose there exists a subset T of X which is bounded but not totally bounded. The proof
presented in Proposition 4.10 applies to T and we reach a contradiction because of the
previous theorem. The equivalence of conditions (c) and (e) is argued as before. 2

Corollary 5.4 Suppose (X, d) is an almost convex metric space; then the above five con-
ditions are equivalent to the following one:

(f) Γ(F0(X)) is hereditary

Proof. In almost convex spaces balls belong to Γ(F0(X)). 2

Note that the previous corollary is valid in any metric space having the property that
↓ Γ(F0(X)) = Bd(X) which is in turn equivalent to each ball of (X, d) being a subset of
some set in Γ(F0(X)).
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