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Abstract 

The Zn4Sb3 phase is considered one of the most interesting compounds for thermoelectric applications in the 

intermediate temperature range (400-600 K) because of its very low thermal conductivity . Typical processing routes of 

this material for technological applications require several steps, in order to obtain an homogeneous single phase with 

fine microstructure. 

In this work, melt spinning was used as an intermediate processing step for improving structural homogenization and 

microstructure refinement of Zn4Sb3. The effect of rapid solidification on the phase stability and microstructure was 

investigated. 

Melt spun samples show, on the one hand, other crystalline phases in addition to the expected Zn4Sb3-type phase, 

probably because the high cooling rate did not allow the system to reach the thermodynamic equilibrium. On the other 

hand, rapid solidification induced a remarkable decrease of crystallites size down to the limit of the nanoscale, as 

estimated by the peak broadening in the X-ray diffraction patterns and shown by scanning electron micrographs. 

Additionally, the presence of an irreversible exothermic peak in the DSC trace can be likely related to the crystallization 

of a small amount of amorphous phase, formed because of the high cooling rate, that could not be detected by XRD. 

The results suggest that melt spun flakes can be used as a starting material in the subsequent compaction steps. 
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Introduction 



Today an enormous amount of unused waste heat could be converted to electricity by using thermoelectrics solid-state 

devices[1]. Research in the thermoelectric field covers a lot of different materials such as intermetallics, composites, 

nanomaterials, etc. [1,2]. Thermoelectric efficiency of these materials can be improved by doping, nanostructuring or 

non equilibrium syntheses routes [1,3]. Up to now, intermetallics are the most studied materials for thermoelectric 

applications due to their stability and mechanical properties in thermoelectric devices. 

Intermetallic Zn4Sb3 compound has raised great interest due to its glass-like thermal conductivity and consequently to 

its good thermoelectric performance in the intermediate temperature range (400 – 600 K) [2]. Several studies were 

carried out on this compound to evaluate the influence of different processing routes on its efficiency [4-7]. Processing 

of this material for technological applications requires several steps, in order to obtain a fully dense homogeneous 

single phase with fine microstructure [1]. In fact, it is well known that phonon contribution to thermal conductivity can 

be significantly depressed by a very high density of grain boundaries, leading to an increase of the figure of merit ZT. 

Among non equilibrium processing techniques, melt spinning allows fast quenching, promoting the formation of 

amorphous or metastable phases, together with a significant grain size refinement [8]. Furthermore, the short processing 

time required strongly reduces contamination due to the working atmosphere. Such a technique could be effective in 

producing  starting materials suitable for further processing, in view of an efficiency increase of thermoelectric 

properties. 

In this paper, the effect of melt spinning on microstructural, structural and thermal properties of Zn4Sb3 intermetallic 

compound is investigated in view of thermoelectric applications. 

 

Experimental 

Bulk samples of the intermetallic binary compound Zn4Sb3 were synthesized with a simple preparation route. 

Stoichiometric quantities of zinc and antimony (purity 99.99 mass %) sealed in silica vials under Ar flow were heated 

up to  750 °C in a muffle furnace, annealed at this temperature for 10 h and, finally, spontaneously cooled. 

Rapidly solidified samples of Zn4Sb3 were obtained with a melt spinning (MS) apparatus by Edmund Bühler GmbH. 

The bulk alloy was induction melted in a BN crucible and ejected by an Ar overpressure (0.2 bar) on a copper wheel 

rotating at 20 m/s. 

Chemical analyses of the bulk and melt-spun samples were performed by Induction Coupled Plasma – Atomic Electron 

Spectroscopy analyses. The ICP-AES system used was an axially-viewed Varian (Springvale, Australia) Vista PRO.  

The microstructure and the composition of the samples before and after melting spinning were investigated by scanning 

electron microscopy and energy dispersive X-ray spectroscopy (EDXS) , using a SEM EVO 40 by Carl Zeiss. Structural 

characterization was performed by X-ray diffraction (XRD). The measurements were performed on bulk or powdered 



samples in the angular range 10°-100°, with a step of 0.002°, using a PANalytical X’Pert Pro model diffractometer with 

Cu k radiation. XRD measurements were also performed using an environmental chamber in order to study the 

structural evolution of as-spun samples as a function of temperature. Refinement of the XRD pattern was performed 

using Rietveld method by Full Prof Suite software in order to determine the lattice parameters and the relative phase 

fractions. 

Thermal stability of the samples was investigated by differential scanning calorimetry (DSC) using a power 

compensation Perkin Elmer Diamond DSC. 

 

Results and discussion 

X-ray diffraction analyses of the bulk samples show only the reflections of the ε -Zn4Sb3 equilibrium phase (not shown 

here), in accordance with the chemical composition measured by ICP (Zn57.3Sb42.7 at.%) and the equilibrium phase 

diagram [9]. The first DSC heating cycle of the bulk sample, Figure 1(a), shows a sequence of four endothermic signals 

between 409 °C and 411 °C, around 440 °C, 493 °C and 532 °C. The sequence of endothermic peaks can be explained 

by the invariant reactions proposed in the equilibrium phase diagram. However, the two signals at lower temperature 

(409 - 411 °C and 440 °C) are not compatible with the nominal and measured  composition, suggesting that the sample 

is not fully homogeneous, and can be related to the presence of a small amount of regions richer in Zn due to local 

fluctuation of the chemical composition. In the second DSC heating cycle, the first two peaks disappear, while those at 

higher temperature are reproduced, indicating that after the first DSC heating cycle the  sample results chemically 

homogeneous. 

The XRD pattern of the as-spun sample (pattern at 30 °C start, in Figure 2) shows the presence of the equilibrium phase 

ε -Zn4Sb3 and additional phases that could not be indexed. On the basis of the phase diagram, it is likely that some high 

temperature phase has been retained as a consequence of the rapid quenching. The broadening of the reflections 

suggests that a highly defective microstructure was produced by rapid solidification. Furthermore, the low intensity of 

the pattern and the relative high value of baseline at low angle reflections, suggests the presence of amorphous phases 

consistent with the rapid solidification proper of the melt spinning process. The values obtained for the lattice 

parameters of the rhombohedral cell (R,-3c) are in agreement (a = 1.2228 nm, c = 1.2424 nm)   with those reported in 

the literature for the ε -Zn4Sb3 phase [10,11]. 

The microstructure of the as spun sample is shown by the SEM micrographs in Figure 3. The as spun sample reveal a 

cross section about 2-10 µm thick, Figure 3(a), and a fine microstructure constituted by small elongated particles (about 

2 µm x 6 µm), Figure 3(b), which are separated by small pores.  



The DSC measurements of the as spun sample, Figure 1(b), show as main feature a sequence of two irreversible 

exothermic signals between 200 °C and 260°C that disappear in the second heating cycle. Such signals are compatible 

with the presence of amorphous or other metastable phases that irreversibly transform to more stable phases.  

The structural evolution of the spun samples as a function of temperature is shown in Figure 2. The XRD pattern at 200 

°C does not show any significant variation with respect the one measured at 30 °C (start). At 285 °C the pattern clearly 

shows the disappearance of the peaks related to secondary metastable phases and the appearance of some peak related 

to the phase ZnSb (oP16-CdSb) as indicated by the star in Fig. 2. Furthermore, the signal/baseline ratio tends to become 

higher after annealing at 285 °C and the profile of the crystallographic reflections becomes sharper indicating the 

occurrence of a recrystallization process and the disappearance of an amorphous phase responsible for the low 

intensities observed in the pattern of the as spun sample. Finally, the XRD pattern at 30 °C (end) after the thermal cycle 

confirms the presence of the same phases formed at 285 °C indicating that the structural transformation into the 

equilibrium phases ZnSb and ε -Zn4Sb3 is irreversible and compatible with the transformation observed by DSC. 

On the basis of the results obtained, it can be concluded that rapid solidification is a suitable technique for producing in 

a controlled way (i.e. no contamination, short processing time) microstructurally refined ε -Zn4Sb3, that can be 

successfully used in the subsequent compaction step [12]. 

 

Conclusions 

Melt spinning was used as an intermediate technique in the processing sequence for the preparation of thermoelectric 

Zn4Sb3. 

Rapid solidification leads to an non equilibrium solidification path with the possible formation of amorphous and 

metastable phases, together with the desired ε -Zn4Sb3 equilibrium phase. The broadening of the XRD patterns indicates 

the presence of a highly defective microstructure. From the morphological point of view, the as spun samples are 

characterized by  thin foils (2 - 10 µm) constituted by an agglomeration of small elongated particles (around 2 µm wide 

and 6 µm long). 

Irreversible transformations of the metastable phases in the as spun sample was evidenced by DSC measurements and 

X-ray diffraction analysis upon heating, showing the formation of the ZnSb and ε -Zn4Sb3 equilibrium phases after 

thermal cycling up to 285 °C. 
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Figures captions 

Fig. 1. DSC traces of the bulk sample at 2 °C/min, (a), and the as spun sample at 20 °C/min, (b). 

Fig. 2. X-ray diffraction pattern of the as spun ribbon as a function of temperature: 30 °C (start), 200 °C, 285 °C and 30 

°C (end). 

Fig. 3(a). Secondary electron SEM micrograph showing the cross section of the as spun sample.  

Fig. 3(b). SEM micrograph showing the texture of the as spun sample, constituted by small elongated particles divided 

by submicrometric pores. Left image: secondary electron detector. Right image: backscattered electron detector. 
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Figure 2 

 

 



Figure 3(a) 

 

 

 

 

 

Figure 3(b) 

 

 


