

since

DI TORINO

UNIVERSITÀ

DEGLI STUDI

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Shear zone liquefaction in mass transport deposit emplacement: A multi-scale integration of seismic reflection and outcrop data

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/149103

Published version:

DOI:10.1016/j.margeo.2014.05.001

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

UNIVERSITÀ DEGLI STUDI DI TORINO

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in *[Marine Geology*, v.356, 2014, 50-64, doi: 10.1080/00206814.2014.931260].

You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), <u>http://ees.elsevier.com/margo/</u>

1	Marine geology 4/2014, http://dx.doi.org/10.1016/j.margeo.2014.05-001
2	
3	Shear zone liquefaction in mass transport deposit
4	emplacement: A multi-scale integration of seismic reflection
5	and outcrop data
6	
7	Ogata, K. ^{1,5} , Mountjoy, J.J. ² , Pini, G.A. ³ , Festa, A. ⁴ and Tinterri, R. ⁵
8	
9	¹ Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171,
10	Longyearbyen, Norway (kei.ogata@gmail.com)
11	
12	² National Institute of Water and Atmospheric Research, Private Bag 14901,
13	Wellington, New Zealand (joshu.mountjoy@niwa.co.nz)
14	
15	³ Università degli Studi di Trieste, Dipartimento di Matematica e Geoscienze, 34128
16	Trieste, Italy (gpini@units.it)
17	
18	⁴ Dipartimento di Scienze della Terra, Università di Torino, 10125 Torino, Italy
19	(andrea.festa@unito.it)
20	
21	⁵ Dipartimento di Fisica e Scienze della Terra "Macedonio Melloni", Università degli
22	Studi di Parma, Campus Universitario - Parco Area delle Scienze 157/A, I-43124
23	Parma, Italy (roberto.tinterri@unipr.it)
24	

26

27 Abstract

28 We present the integrated outcrop-geophysical study of two mass transport 29 complexes, the exhumed Specchio unit in the Northern Apennines of Italy and the 30 Holocene Poverty unit in the Hikurangi margin of New Zealand. The combination of 31 micro- to meso-scale structural, stratigraphic and sedimentologic analyses carried on 32 continuous three-dimensional outcrops, with large-scale structural and morphologic 33 data deriving from seismic/acoustic imaging of the present-day continental margins, 34 allow important considerations on submarine landslide processes and mechanisms 35 through the broader (up-scaled and down-scaled) understanding of the mass transport-36 related structural associations. We compare the discontinuous high-amplitude, 37 reverse-polarity reflectors observed within the Poverty with the syn-sedimentary, 38 ductile shear zones found within the Specchio mass transport complex. The seismic 39 signature of such structures suggests localized fluid overpressure along 40 detachment/thrust zones due to shearing and loading of undrained, water-saturated, 41 fine-grained material, developed along with the slide mass movement. The outcrop 42 expression of these structures is tentatively attributed to m- to tens of m-thick shear 43 zones comprising large amounts of sedimentary matrix which separate and 44 accommodate the differential movements of the internal slide components (e.g. slide 45 blocks, olistoliths). The sedimentary matrix is an unsorted, lithologically mixed 46 medium characterized by a scale-invariant "block-in-matrix" fabric (i.e. brecciated, 47 mud-supported), that injects, sustain and surrounds discrete slide elements (from 48 particles to blocks) and interpreted as a hyper-concentrated (liquefied/fluidized) 49 suspension of water and scattered sediments developed in fluid overpressure 50 conditions. We highlight the fundamental role of shearing-related liquefaction as one 51 of the main factors controlling slide mobility through the "lubrication" of the internal 52 and basal friction forces. The analysis of such features can therefore provide 53 important information for the characterization of mass transport deposits developed 54 from potentially catastrophic, long run-out mass transport events, and consequently, 55 to better understand their possible socio-economic impact in terms of tsunamigenic 56 potential.

57

58 Keywords: exhumed mass transport complexes; sedimentary matrix; ductile shear
59 zones; liquefaction; fluid overpressure

60

61 **1. Introduction**

62 The recent achievements in marine geology on seafloor and sub-seafloor 63 mapping allow important consideration on recent to modern submarine landslides, 64 giving general clues on their overall morphology and areal extent (Canals et al., 2004; 65 Frey-Martinez et al., 2006; Gee et al., 2007; Bull et al., 2009). One of the main 66 challenges arising from these studies revolves around the characterization of the 67 complex internal anatomy of such deposits, and thus, the correct understanding of the 68 genetic mechanisms and processes, which is crucial for offshore hydrocarbon 69 exploration, and geohazard assessment and mitigation (see Hampton et al., 1996; 70 Mosher et al., 2009; Kawamura et al., 2012).

Most of the internal structures of a slide body are developed at the meso-scale (meters to ten of meters), and therefore hardly recognizable through geophysical methods being well below the standard seismic resolution. Moreover, the high internal heterogeneities and the combined occurrence of materials with different

75 degrees of consolidation contribute to complicate the seismic signal, resulting in 76 acoustic artifacts and transparent zones. On the other hand, at the outcrop scale, these 77 internal structures can be observed and described in detail (Lucente and Pini, 2003; 78 Callot et al., 2008a; 200b; Ogata et al., 2012a), and, depending on the quality and the 79 continuity of the exposures, such analyses could be up-scaled to fit to the seismic field 80 of observation. In this framework we believe that a systematic comparison with fossil 81 mass transport deposits cropping out in orogenic belts (i.e. sedimentary mélanges) 82 would strongly contribute in solving these problems (Festa et al., 2010a, 2010b, 83 2012). Currently, apart from the general and useful review of the mass transport 84 deposits' seismic-scale structures provided by Bull et al. (2009) and the preliminary 85 (and generally conceptual) attempt of comparison between seismic and outcrop data 86 recently proposed by Bull and Cartwright (2010), there is still a general lack of works 87 using an integrated approach in the study of submarine landslides. This leads to a gap 88 in the basic knowledge of the meso-scale internal processes and related structures, and 89 their relationship with larger scale features.

90 We present an attempt to combine and integrate geophysical and outcrop data in 91 order to establish a continuity of observation at different scales, crucial for the study 92 of vertically- and laterally-extensive submarine landslide deposits. Whereas the 93 standard subsurface and seafloor imagery technology provides the gross morphology, 94 areal extension and internal organization of a mass transport deposit, often providing 95 a complete picture of a mass transport complex, the highest resolution of multi-96 channel seismic reflection data required to image such features is ca. 5 m or coarser. 97 On the other hand, outcrop studies allow multi-scale analyses (depending on the 98 exposure conditions), providing resolution from the microscopic scale up to the 99 cartographic scale (comparable with the geophysical scale). Through the study of

comparable onland and offshore analogues it is virtually possible to fill the mutual
gaps of the two different approaches, allowing the construction of a more
comprehensive and better-constrained framework.

103 The aim of this work is to address these issues providing a detailed integration 104 of structural data coming from geophysical and outcrop examples characterized by 105 comparable scales and depositional settings. We present a compilation of outcrop data 106 coming from the Specchio mass transport complex, belonging to the Eocene-107 Oligocene intra-slope basin succession (*i.e.* Epiligurian Units) developed atop the 108 exhumed Ligurian accretionary wedge in the Northern Apennines in Italy (Ogata et 109 al., 2012a, 2012b). These field-based observations are tentatively up-scaled and 110 compared to the Holocene Poverty mass transport complex of the Hikurangi margin in 111 New Zealand (Mountjoy and Micallef, 2012).

112

113 **2.** Geological background and case studies overview

114 Our data come from two examples of large submarine mass failures emplaced in 115 subduction/collision-related wedge top depositional settings and characterized by 116 comparable physiographic and depositional contexts. The Specchio mass transport 117 complex is an ancient, exhumed example from the Northern Apennines of Italy, while 118 the Poverty mass transport complex comprises Holocene slide deposits emplaced in 119 an active subduction system off the East Coast of New Zealand (fig. 1). These two 120 examples are well suited for comparison as they are of a similar scale (both in terms 121 of areal extension and thickness), depositional setting (i.e. intra-slope, wedge-top) and 122 overall internal architecture (i.e. stacking/amalgamation of more events). These 123 general common features are summarized in the table of fig. 1C.

124

125 **2.1 The Specchio mass transport complex**

126 The upper Priabonian-lower Rupelian Ranzano Unit of the Epiligurian 127 succession of the Northern Apennines represents a perfect example of syn-orogenic, 128 siliciclastic infilling of an intra-slope, wedge-top mini-basin (i.e. small-scale) system characterized by depocenters about 5-10 km in size. These structurally confined 129 130 basins were located atop the deforming Ligurian oceanic accretionary prism during its 131 tectonic transport toward the eastern sectors, following the complex continental 132 convergence between African (Adria) and European plates, in a time interval 133 comprised between the latest stages of the Alpine orogenesis and the inflection (i.e. 134 flexural down-bending) of the Apenninic foreland (Castellarin, 1994; Mutti et al., 135 1995; Martelli et al., 1998; Cavazza et al., 2004; Marroni et al., 2010).

136 The analyzed Specchio unit is a mass transport complex hosted in the middlebasal part of the Ranzano Sandstone stratigraphic succession (Martelli et al. 1998), 137 138 which is mainly constituted by proximal, coarse-grained, low efficiency (sensu Mutti, 139 1992) turbidite deposits accumulated in relatively deep water setting (middle-upper 140 bathyal depth; Di Giulio et al., 2002). This mass transport complex is characterized by an estimated areal extent conservatively calculated around $\sim 1.500 \text{ km}^2$ and an 141 142 average thickness of ~ 100 m, and it is generated by the rapid, polyphased 143 accumulation of at least three mass transport deposits characterized by different 144 paleo-transport directions: 1) a basal one(s), coming from the southern sectors, of 145 mixed extra- and intrabasinal composition, originated from shallow-tectonic positive 146 structures (e.g. anticline culminations) and other topographic highs close to the 147 depocentral areas, 2) a middle one, coming from the northern sectors, of mainly 148 intrabasinal composition, originated from structural highs located in a relatively distal 149 position from the main depocenters, and 3) an upper one(s) coming from northern 150 sectors, composed of shallow-water related sediments failed from the basin margins, 151 in proximal position with respect to the inferred feeding areas (*i.e.* coastal areas) (fig. 152 2). In this framework, the Specchio unit is thought to represent the rapid sedimentary 153 response to a general rearrangement of the source-depositional system, operated by 154 the synergic effect of an active syn-sedimentary tectonism and sea level changes, 155 possibly acting together from the Early Oligocene (Ogata *et al.*, 2012b).

156 In terms of sedimentary processes, each individual depositional event comprises 157 a bipartite flow made up by a lower matrix-dominated and an upper block-dominated 158 parts (Ogata et al., 2012a; 2012b) which in turn correspond to debris flows and blocky 159 flows, respectively (in the sense of Mutti et al., 2006). The local occurrence of slump-160 type deformations (i.e. coherent slide movement achieved through syn-sedimentary 161 shear zones; see Ogata et al., 2012a) is restricted to the sand-dominated substrate and 162 the internally folded oversized blocks. The matrix composition and amalgamation, 163 and the various expressions of post-emplacement fluid escape and depressurization 164 acting together, suggest that the Specchio mass transport deposits are composed by (i) 165 a cohesive upper part (i.e. block-dominated portion), behaving as a relatively coherent 166 sheet of separated, passively-transported rafts ("rigid plug" of Middleton and 167 Hampton, 1973), and (ii) a non-cohesive, lower part (i.e. matrix-dominated portion) 168 behaving as a non-Newtonian fluid (hyperconcentrated suspension in the sense of 169 Mutti, 1992). In this framework, the matrix itself is thought to support internal slide 170 elements (from mm-sized clasts to m-sized blocks) due to its yield strength, whereas 171 at larger scale, the matrix-dominated portion is inferred to sustain the entire flow 172 through the upward and dispersive forces of the fluid excess pressure, reducing the 173 basal/internal frictions and enhancing the slide mobility (Ogata et al., 2012a; 2012b; 174 Pini et al., 2012). The same mechanisms have been also hypothesized for some

175 modern, long run-out submarine landslides (Mulder and Alexander, 2001).

176

177 **2.2 The Poverty mass transport complex**

The modern mass transport complex discussed in this paper occurs on the upper
slope of the Hikurangi Margin, an active subduction margin off the East Coast of New
Zealand (fig. 3) (Barnes *et al.*, 2010; Lewis and Pettinga, 1993).

181 The Poverty mass transport complex, also referred to as the Poverty Debris Avalanche in literature, is the result of slope modification within the Poverty re-182 183 entrant (Mountjoy and Micallef, 2012). The Poverty re-entrant is a margin-scale 184 morpho-tectonic feature interpreted to be the result of seamount impacts from the 185 incoming Pacific Plate, initiating approximately 1 Ma ago (Pedley et al., 2010). The 186 structural and sedimentary post-impact reconfiguration of the margin is achieved by 187 the development of submarine canyon and slope-gully systems, as well as large-scale mass failures (Orpin, 2004; Walsh et al., 2007; Mountjoy et al., 2009; Pedley et al., 188 189 2010). In this area, Quaternary sedimentation developed thick shelf-basin sequences 190 and shelf-edge clinoforms, unconformably overlying, with draping and onlapping 191 relationships, Cretaceous to Miocene rocks, which are exposed in the gullies and 192 canyon heads of the Poverty re-entrant headwall (Mountjoy and Barnes, 2011).

The Poverty mass transport complex is one of the largest (~250 km²) blocky debris deposits of the Hikurangi margin, and covers most of the gently inclined (ca. 1°) seafloor of the Paritu basin between 1100 and 1500 m water depth. The deposit is sourced from a restricted head area (34-46 km³) below the shelf break (900-1150 m water depth) and has likely failed in multiple (2-4), retrogressive depositional events (Mountjoy and Micallef, 2012; Pouderoux *et al.*, 2012). Seismic reflection data indicate complex internal deformation that is the topic of this study.

3. Methods and data

3.1 The Specchio mass transport complex

The Specchio mass transport complex has been primarily investigated through a detailed field mapping (1:5.000 scale) to detail the overall internal and external characteristics of the component mass transport deposits, their vertical and lateral changes, relationships with the host sedimentary succession and general tectonicstratigraphic context.

208 High-resolution analyses and observations have been performed within the 209 different unit at various locations and stratigraphic levels in order to identify the 210 different mass transport facies (Ogata, 2012a; 2012b): meso- to micro-scale structural 211 and sedimentologic analyses have been performed to represent the spatial/geometric 212 distribution of the internal elements, their provenance and to highlight their bulk 213 deformation mechanism. Detailed stratigraphic logging (1:50 scale) of the over- and 214 underlying bedded successions has been performed to constrain the position of the 215 investigated unit within the sedimentary column and reconstruct the syn- to post-216 depositional physiographic variations related to the slide emplacement. 217 Complementary micro-structural and sedimentologic analyses (i.e. transmitted light 218 optical microscopy) have been performed on thin sections coming from the 219 sedimentary matrix of the component mass transport deposits.

To clarify the used terminology, we here define as "ductile-like" the structures showing mesoscale to microscale continuous deformation caused by independent (i.e. intergranular) particulate flow occurred without appreciable mechanical grain breakage (cataclasis, Knipe, 1986) within non-consolidated sediments with the effective stress strongly reduced by fluid overpressure (mesoscopic ductile behavior;

Pini, 1999). By analogy, these structures (sometimes resembling metamorphic ductile zones of concentrated deformation, such as the classical mylonites), are classified with the standard terms (Passchier and Trouw, 2005) with the addiction of the suffix "pseudo-" to stress their non-tectonic origin and the absence of any kind of intracrystalline plasticity, and used as kinematic indicators to solve the shearing sense of the associated structures.

231 Since the identification of the source areas and the run-out paths is not obvious 232 in outcrop studies, we used a combination of the standard methods proposed in the 233 literature to unravel the local and general paleo-transport directions (Bradley and 234 Hanson, 1998; Lucente and Pini, 2003; Strachan and Alsop, 2006), collecting and 235 analyzing standard meso-structural data on plastic, soft-sediment deformation 236 structures and structural associations such as 1) non-cylindrical and asymmetrical 237 folds (i.e. vergences, axes, axial planes, plunges, sheath-fold main axes, etc.), and 2) 238 low-angle syn-sedimentary faults and shear zones (i.e. shear planes, lineations, long 239 axes of elongated elements, axes of associated drag folds, etc.), observed within the 240 matrix- and block-dominated parts of the component mass transport deposits bodies.

- 241
- 242 **3.2** The Poverty mass transport complex

The Poverty mass transport complex has been imaged with a combination of multibeam bathymetric data and multi-channel seismic reflection data. Multibeam data on the continental slope are gridded at 25 m and are from Simrad EM300 and EM302 surveys carried out between 2001 and 2011 (Mountjoy and Micallef, 2012; Pedley *et al.*, 2010). Shelf/upper slope data, gridded at 10 m, include Simrad EM 3000 and Atlas Hydrosweep MD-2/30 (Royal New Zealand Navy) data. Highresolution data are augmented with a regional 100 m bathymetric grid built from a

250 combination of 12 kHz SIMRAD EM12 Dual multibeam and single beam echo 251 sounder bathymetric data held in the NIWA database. Three multichannel seismic 252 reflection (MCS) datasets are presented in this study: 1) 6-fold, 24-channel seismic 253 profiles acquired with a GI-gun source in 45/105 mode in 2001, 2) up to 960-channel 254 high fold 2D seismic reflection data recorded to 12 seconds TWT in 2005, and 3) 12-255 fold, 48-channel seismic profiles acquired with a twin GI-gun source in 45/105 mode 256 in 2011 (Barker et al., 2009; Mountjoy and Barnes, 2011; Pedley et al., 2010). An 257 assumed sediment velocity of 1.800 m/s has been used for volume calculations and 258 time-depth conversion.

259

260 **4. Results**

261 **4.1. The Specchio mass transport complex**

262 Ductile-like, syn-sedimentary shear-zones are commonly expressed by low-263 angle thrust and subordinately normal faults, sometimes and locally steep-dipping, 264 affecting both matrix and blocks but with different characteristics. Such shear zones 265 are represented by discrete intervals, centimeters- to several meters-thick and meters-266 to tens of meters-long, characterized by a contrasting texture with the surrounding 267 lithologies. These structures do not show discrete shear surfaces or planes, being 268 instead represented by intervals of remolded and mixed appearance, due to the 269 internal occurrence of elongated bands and lenses of sedimentary matrix, comprising 270 different types of pseudo-ductile shearing clues: 1) pseudo-SC (i.e. Shear/Cleavage) structures, 2) pseudo-Sigma structures, 3) hydroplastic, intrafolial folds, 4) iso-271 272 orientation of rigid oblate clasts, 5) preferential elongation of plastic intra-clasts, 6) 273 disaggregation/deformation bands and 7) rheomorphic-like, fluidal structures (fig. 4). 274 Depending on the composition and consolidation degree of the involved

materials, these shear zones are usually characterized by a local enhancement in the concentration of matrix, developed through frictional deformation and disaggregation of the involved sediments. The internally banded pattern, defined by isoclinally folded and elongated mud intraclasts and particle alignments, is generally coherent with the associated shear plane testifying shearing in overall visco-plastic conditions (fig. 5).

280 The basal shear zone is usually thicker and more laterally continuous than the 281 internal ones and it is also typically characterized by the occurrence of higher amount 282 of intrabasinal, liquefied material belonging to the substrate. Secondary internal shear 283 zones mainly develop along the boundaries of discrete slide elements (i.e. blocks, un-284 dissociated masses), comprising a relatively small amount of matrix arranged in 285 discontinuous pinching-and swelling seams and lenses. Sometimes such shear zones 286 are rooted into the basal shear interval, suggesting that the same liquefied material of 287 the basal shear zone has been injected upward (fig. 6).

288 Microstructural observations performed on thin sections reveal no evidence of 289 tectonic-related brittle deformations (e.g. cataclasis, syn-kinematic mineralized veins 290 or fractures, stylolites) within such structures. Microinjections of matrix into 291 preexisting discontinuities and voids affecting the single grains (0.5 mm scale), 292 pseudo deformation/disaggregation bands, iso-orientation of elongated particles and 293 fluidal structures suggest shearing under low confining stress and generalized fluid 294 overpressure conditions (fig. 7). These observations are supported by the results of 295 experimental and numerical modeling, as summarized in Goren et al., (2010) and 296 Goren et al. (2011).

297 Combining the structural data from the shear zones, tuned with the above-298 mentioned kinematic indicators used to define the general shearing sense, with the 299 spatial distribution of asymmetric folds (i.e. separation-arc, mean-axis and sheath-fold

long axis methods; Bradley and Hanson, 1998; Lucente and Pini, 2003; Alsop and Holdsworth, 2004; Strachan and Alsop, 2006), and the arrangement of the internal element imbrication (Ogata *et al.*, 2012a, 2012b), an overall down-slope transport direction has been estimated for each component mass transport deposits. The general vergence and the stacking relationships of these shear zones, mostly represented by low-angle thrusts arranged in splays and imbricated sets, provide additional kinematic information to understand their mechanism and mode of emplacement.

307 Structural associations typically align parallel to the inferred position of the 308 lateral boundaries of the slide mass (i.e. slide margins/levees). Detailed observations 309 on three-dimensional outcrops, integrated with the estimation of paleo-transport 310 directions, highlight a strong lateral anisotropy/heterogeneity of the internal meso-311 scale structural arrangement, either in cross and longitudinal view. In cross section 312 (i.e. looking parallel to the slide movement), this is evident from the common 313 occurrence of low-angle shear zones and structural associations (e.g. pop up- and 314 flower structures, double-vergent box folds, sheath folds, folds' interference patterns) 315 characterized by non-concordant to opposite shearing and verging sense recording an 316 overall lateral buckling transversally to the mean transport direction, whereas in long 317 section (i.e. looking laterally to the slide movement) they appear to record an overall 318 preferential down-slope direction (fig. 8).

319

320 **4.2 The Poverty mass transport complex**

The internal structure of the Poverty mass transport complex is revealed in multi-channel seismic reflection data (MCS). Mass transport deposits are identified by discontinuous weak reflectivity compared to the overall coherent reflectivity of the host sediments (e.g. Lamarche *et al.*, 2008).

325 In multibeam data the upper surface of the Poverty mass transport complex is 326 irregular and it shows a blocky roughness characterized by marked lateral changes. 327 The uneven surface of the deposit is given by the presence of individual rafted slide 328 blocks varying from ca. 1000 m across in the up-slope part to less than 100-150 m in 329 the down-slope part, defining two different portions of the slide mass characterized by 330 different geometry and roughness characteristics (figs. 3C). In cross section, these slide blocks appear as localized zones with internally coherent and continuous 331 332 reflectors, sometimes deformed but usually pseudo-concordant with the basal surface, 333 surrounded by a background of discontinuous reflectors and transparent zones (see 334 figs. 3D and 9E).

335 Down with the length of the landslide body we recognize distinctive 336 longitudinal transformations in the structural style. Within the upper portion of the 337 body, thrusts and folds, indicating a compressional regime, dominate the structural 338 style. Further down the length of the slide mass, structures become more subdued and 339 dominated by normal faulting, indicating down-slope tensions within the debris body. 340 These structures show curved to roughly rectilinear axes, mostly disposed 341 perpendicular to the inferred slide movement and becoming progressively parallel to 342 it toward the slide margins, following the overall lobate-like shape of the slide body.

In the down-slope portion, the deposit indicates compressional deformation in multiple locations, as suggested by the occurrence of tens of meters-sized thrust faults defined by hanging wall and footwall cutoffs. In places it is apparent that internal units have been thrust over one another (figs. 9B and 9C).

Remarkably, the above described thrust faults are in many cases accompanied by high amplitude reflectors bounding the surface that define the basal *décollement*. These internal discontinuous reflectors are commonly defined by inverse polarity,

350 indicating discrete low-density contrast zones (figs. 9D and 9E). As recognized 351 elsewhere in seismic reflection data (e.g. Bull et al., 2009; Yamada et al., 2012) the 352 basal slide horizon is a distinct unit of lower acoustic impedance compared to the 353 coherent high amplitude underlying reflectors below (defining non-mass transport sedimentation), which may be extensively deformed or completely scoured by the 354 355 overlying material (Vardy et al., 2012). Accordingly, the semi-continuous, coherent 356 reflectors found within the slide body are interpreted to separate (at least 2) different 357 deposits from the same general source area (see figs. 9D and 9E).

358

359 **5. Discussion**

360 5.1 Mass transport-related liquefaction/fluidization: processes and products

Within the analyzed slide masses liquefaction/fluidization-related structures generally develop above a main, basal shear zone and, depending on the mechanical coupling between sliding mass and substrate, also into the underlying succession.

Evidence of liquefaction/fluidization processes is the sedimentary matrix represented by an unsorted, hyper-concentrated mixture of loose and poorly consolidated fine-grained sediments. This element is a fundamental component of a slide body along with other discrete parts that behave coherently (*e.g.* slide blocks, un-dissociated masses, *etc.*), usually marking the internal and basal shear zones as discontinuous or continuous, cm- to m-sized (and up to tens of m-sized) elongated lenses and bands, respectively.

Our data suggest that the basic deformation mechanism is the high-rated, generalized shearing of undrained (i.e. water saturated, low-permeability) sediments at low confining stress and fluid overpressure conditions. Besides the herein proposed process, instantaneous frictional heating is another possible mechanism able to cause

increase pore pressure up to liquefaction (Goren and Aharonov, 2007).

As observed from both outcrop and geophysical data, most of the shearing achieved during the slide movement is likely accommodated within the basal interval, resulting in a sort of "overpressured carpet" that mechanically separates the slide mass from the substrate due to hampered hydraulic diffusivity. These overpressured basal interval are represented in a mass transport deposits by the lower matrix-dominated portions on outcrop and by the high-amplitude, inverse polarity reflectors on seismic profiles.

383 When the mechanical coupling becomes strong enough (e.g. during slide mass 384 deceleration and freezing), the momentum can then be partly transferred downward, 385 with the consequent involvement of the underlying sediments. This deformation is 386 likely caused by dynamic/static overloading and rear push of the sliding mass. A 387 similar geophysical evidence of this kind of mass transport-induced substrate 388 deformation and incorporation (i.e. erosion in sedimentological meaning) is for 389 instance shown by the high-resolution seismic profiles of small-scale lacustrine mass 390 transport deposits provided by Schnellmann et al. (2005).

391 At the scale of the entire slide mass, compressional stress is mainly located at 392 the front of the slide mass and then, transferred to the surrounding sediments. Folding 393 and thrusting at various scales are the most common structural evidence of these 394 processes in outcrops. The external arrangement of the final mass transport deposit is 395 therefore characterized by low- to high-angle thrusts, isolated and/or rooted in the 396 basal shear plane (*i.e.* blind thrusting), forming meso- to mega-scale folds which 397 culminations may deform the upper surface forming elongated topographic highs (e.g. 398 "pressure ridges"). At this scale, these shear zones seem to develop some kind of 399 "backstepping" trend, following the upslope migration of the deformation kink-point

400 due to the progressive stopping of slide mass front and margins.

401 During the emplacement, the extensional structures achieved during the failure 402 and transport phases are thus likely overprinted and/or reworked in a generally 403 compressive regime, as suggested by the predominance of compressional features 404 recorded in the outcrop database.

405

406 **5.2 Post-depositional processes and consequences**

407 It is important to note that post-depositional processes seem to play a major role 408 in the final anatomy of a slide body, as observed on ancient (Strachan, 2002, 2008) 409 modern examples (Diviacco et al., 2006; Moernaut et al., 2009; Rebesco et al., 2009;) 410 and inferred from experimental and numerical modeling (Major and Iverson, 1999; 411 Major, 2000). During the early post-depositional compaction, the internal fluid 412 overpressure may be dissipated through developing of fluid-escape structures, 413 sometimes reaching the slide surface as mud/sand volcanoes, or can be retained for a 414 relatively long time interval, favoring slow differential movements of the entire mass. 415 Such later movements develop as a generalized creeping of the upper surface of the 416 slide deposit, with decreasing displacement towards its bottom, reworking and 417 crosscutting earlier stage structures.

If the boundary conditions are favorable (*e.g.* slope steepness, weak layers in the substrate prone to liquefy, *etc.*) the frontal impact of a slide mass against seafloor highs or preceding landslide accumulations, and secondary movements of the deposit during the post-depositional stage may reactivate the material accumulated at the front of the body causing another secondary slide to start ("progressive landsliding"). This is well expressed in the frontal part of the Poverty mass transport complex, where the impact of secondary events has had a significant impact on the surface morphology

425 and the internal structure of the landslide complex. Towards the upper portion of the 426 slide, where extensional deformation may be expected repeated blocky failures 427 impacting the upper slide debris have formed a zone dominated by large scale 428 compressional deformation and thrust faulting. Towards the distal end of the 429 landslide, where compression may be expected and particularly in frontally confined 430 landslides, the landslide body shows widespread extension related to remobilization 431 of the debris interpreted to occur in response to compressional impacts in the upper 432 slide mass (fig. 10b). Further complicating this framework, smaller, secondary slide 433 events, mainly in form of flows, may occur on the upper surface of slide masses, 434 during the transport, accumulation and post-depositional stages.

435

436 **5.3 Conceptual model of the internal mass transport deposit deformation**

Combining the observations made on the two investigated mass transport deposits we tentatively propose a conceptual model of the deformation mechanisms acting within the slide mass, from up-slope to down-slope, on the basis of the amount of sedimentary matrix and its dominant position within the deposit. This model is represented in fig. 11.

In this framework the bulk of the deformation (both within the slide mass and in the underlying substrate) and the consequent *loci* of enhanced matrix production is supposed to be located where the slope gradient of the basal shear interval changes (e.g. flat-ramp transition, slope-basin transition, intra-basinal or intra-slope seafloor morphology).

447 It is important to point out that the described slide masses evolve within a 448 morphologically confined setting. The resulting internal deformation and related 449 structures are thus strongly influenced by the forced frontal and lateral

450 compression/transpression with the intrabasinal highs, slide levees and the other 451 preceding slide deposits. In a relatively unconfined depositional context, such as a 452 foredeep basin plain, the frontal part of the slide mass could instead virtually spread 453 out long distances with the resulting development of mainly over 454 extensional/transtensional structures at the top of the slide masses (Lucente and Pini, 455 2003). Similar characteristics have been also observed in the morpho-bathymetric and 456 seismic profiles of Eastern Mediterranean Slope, where frontally-confined and 457 frontally-emergent mass transport complexes have been described (Frey-Martinez et 458 al., 2006).

459 Further work is planned to include in the model the lateral variations in the460 deformation style of the slide anatomy due to structural confinement.

461

462 **6.** Conclusions

Seismic reflection data reveal large-scale characteristics of emplacement processes in a complete mass transport complex, whereas outcrop analyses provide subtle details of controlling failure processes. The integration of the two different approaches is crucial for the correct understanding of the submarine landslide dynamics. Our key results are summarized as follows:

Liquefaction, fluidization and soft-sediment deformation are common
processes in the internal structural evolution of submarine landslide
bodies. The final product of such processes is an overpressured
sedimentary matrix localized within discrete shear zones, which
accommodate internal and basal friction forces, eventually enhancing
slide mobility.

The main mechanisms invoked are a combination of (i) undrained
shearing of water-saturated, poorly-consolidated sediments due to
dragging forces acting along internal elements' boundaries (internal
differential movements) and at the very base of the slide mass (downslope movement), and (ii) dynamic loading and un-loading cycles due
to the pulsating nature of the mass transport events.

3) At the scale of the entire deposit, such zones of concentrated fluid 480 481 excess pore pressure can be visualized in seismic profiles, especially 482 at the very base of the unit where horizons of trapped high fluid 483 pressure may induce high amplitude reflectivity and even negative 484 polarity. Such reflectors can be observed also within the slide mass, 485 and depending on their lateral continuity, may indicate the amalgamation surface/interval between two subsequent bodies, 486 therefore representing a powerful tool to distinguish single 487 488 depositional units (mass transport deposits) from composite, multiple 489 accumulation complexes (mass transport complexes).

490 4) The whole slide mass can be longitudinally subdivided into different
491 zones characterized by different stress regime and consequent
492 deformation mechanisms, as evidenced by the different relative
493 amount of sedimentary matrix.

The systematic integration of available geophysical data with detailed outcrop studies represents the most reliable method for the study of submarine landslides. This synergic approach permits observations covering all the scales (from the microscopic to the regional scale) and allows overcoming the intrinsic resolution limits of the single methods. Accordingly, the hypotheses coming from the modern marine

499 geology surveys can be tested and calibrated directly on selected analogues on the 500 field, and *vice versa*, especially in terms of genetic and evolutionary processes and 501 slide dynamics, which in turn represent the key factors that control forecasting and 502 mitigation of submarine landslide-related geohazards.

503

504 Acknowledgments

505 We would like to thank Hans-Juergen Gawlick, Dusan Plasienka and an

anonymous reviewer for having deeply improved the quality of the manuscript with

- 507 their constructive comments and suggestions. Joshu Mountjoy supported by NIWA
- 508 under Coasts and Oceans Research Programme 1 (2013/14 SCI).
- 509

510 **References**

- 511
- Alsop, G.I., Holdsworth, R.E. 2004. The geometry and topology of natural sheath
 folds: a new tool for structural analysis Journal of Structural Geology, v. 26,
 1561–1589.
- 515 Barker, D.H.N., Sutherland, R., Henrys, S., Bannister, S., 2009. Geometry of the
- 516 Hikurangi subduction thrust and upper plate, North Island, New Zealand.517 Geochem. Geophys. Geosyst., 10.
- 518 Barnes, P.M., Lamarche, G., Bialas, J., Henrys, S., Pecher, I.A., Netzeband, G.L.,
- 519 Greinert, J., Mountjoy, J.J., Pedley, K., Crutchley, G., 2010. Tectonic and
- 520 Geological Framework for Gas hydrates and Cold Seeps on the Hikurangi
- 521 Subduction Margin, New Zealand. Marine Geology 272(1-4), 26-48.
- 522 Bradley, D., Hanson, L., 1998. Paleoslope Analysis of Slump Folds in the Devonian
 523 Flysch of Maine. Journal of Geology 106, 305–318.

524	Bull, S., Cartwright, J., 2010. Small-Scale Insights into Seismic-Scale Slumps: A
525	Comparison of Slump Features from the Waitemata Basin, New Zealand, and
526	the Møre Basin, Off-Shore Norway. In D.C. Mosher et al. (Eds.), Submarine
527	Mass Movements and Their Consequences, 257 Advances in Natural and
528	Technological Hazards Research 28, 257-266.
529	Bull, S., Cartwright, J., Huuse, M., 2009. A review of kinematic indicators from
530	mass-transport complexes using 3D seismic data. Marine and Petroleum
531	Geology 26/7, 1132-1151.
532	Callot, P., Odonne, F., Sempere, T., 2008a. Liquification and soft-sediment
533	deformation in a limestone megabreccia: The Ayabacas giant collapse,
534	Cretaceous, southern Peru. Sedimentary Geology 212, 49-69.
535	Callot, P., Sempere, T., Odonne, F., Robert, E., 2008b. Giant submarine collapse of a
536	carbonate platform at the Turonian-Coniacian transition: The Ayabacas
537	Formation, southern Peru. Basin Research 20, 333-357. doi: 10.1111/j.1365-
538	2117.2008.00358.x.
539	Canals, M., Lastras, G., Urgeles, R., Casamor, J.L., Mienert, J., Cattaneo, A., De
540	Batist, M., Haflidason, H., Imbo, Y., Laberg, J.S., Locat, J., Long, D., Longva,
541	O., Masson, D.G., Sultan, N., Trincardi, F., Bryn, P., 2004. Slope failure
542	dynamics and impacts from seafloor and shallow sub-seafloor geophysical
543	data: case studies from the COSTA project. Marine Geology 213, 9-72.
544	Castellarin, A., 1994. Strutturazione eo-mesoalpina dell'Appennino Settentrionale
545	attorno al "nodo ligure. In: Capozzi, R., Castellarin, A. (Eds.), Studi
546	preliminari all'acquisizione dati del profilo CROP 1-1A La Spezia-Alpi
547	orientali. Studi Geologici Camerti, Volume Speciale 1992/2: Camerino,
548	Università degli Studi di camerino, 99-108.

549	Cavazza, W., Roure, F., Ziegler, P.A., 2004. The Mediterranean area and the
550	surrounding regions: active processes, remnants of former Tethyan oceans and
551	related thrust belts. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M.,
552	Ziegler, P.A. (Eds.), The TRANSMED Atlas: The Mediterranean Region from
553	crust to mantle. Springer, 1–29.
554	Di Giulio, A., Mancin, N., Martelli, L., 2002. Geohistory of the Ligurian orogenic
555	wedge: first inferences from Epiligurian sediments. Boll. Soc. Geol. It., Spec.
556	vol. 1, 375-384.
557	Diviacco, P., Rebesco, M., Camerlenghi, A., 2006. Late Pliocene mega debris flow
558	deposit and related fluid escapes identified on the Antarctic Peninsula
559	continental margin by seismic reflection data analysis. Marine Geophysical
560	Research 27, 109–128.
561	Festa, A., Dilek, Y., Pini, G.A., Codegone, G., Ogata, K., 2012. Mechanisms and
562	processes of stratal disruption and mixing in the development of mélanges and
563	broken formations: Redefining and classifying mélanges. Tectonophysics 568-
564	569, 7-24, doi: 10.1016/j.tecto.2012.05.021.
565	Festa, A., Pini, G.A., Dilek, Y., Codegone, G., 2010a. Mélanges and mélange-forming
566	processes: a historical overview and new concepts, in: Dilek, Y. (Ed.), Alpine
567	Concept in Geology. Int. Geol. Rev. 52 (10-12), 1040-1105, doi:
568	10.1080/00206810903557704.
569	Festa, A., Pini, G.A., Dilek, Y., Codegone, G., Vezzani, L., Ghisetti, F., Lucente,
570	C.C., Ogata, K., 2010b. Peri-Adriatic mélanges and their evolution in the
571	Tethyan realm, in: Dilek, Y. (Ed.), Eastern Mediterranean geodynamics (Part
572	II). Int. Geol. Rev. 52 (4-6), 369-406, doi: 10.1080/00206810902949886.

- 573 Frey-Martinez, J., Cartwright, J., James, D., 2006. Frontally confined versus frontally
 574 emergent submarine landslides: a 3D seismic characterization. Marine and
 575 Petroleum Geology 23, 585-604.
- 576 Gee, M.J.R., Uy, H.S., Warren, J., Morley, C.K., Lambiase, J.J., 2007. The Brunei
- 577 slide: A giant submarine landslide on the North West Borneo Margin revealed
 578 by 3D seismic data. Marine Geology 246/1, 9-23.
- Goren, L., Aharonov, E. 2007. Long run-out landslides: the role of frictional heating
 and hydraulic diffusivity. Geophysical Research Letters 34, 1-7.
- Goren, L., Aharonov, E., Sparks, D., Toussaint, R. 2010. Pore pressure evolution in
 deforming granular material: A general formulation and the infinitely stiff
 approximation, J. Geophys. Res. 115, B09216.
- Goren, L., Aharonov, E., Sparks, D., Toussaint, R. 2011. The Mechanical Coupling of
 Fluid-Filled Granular Material Under Shear. Pure and Applied Geophysics
- 586 168, 10.1007/s00024-011-0320-4.
- Hampton, M.A., Lee, H.J., Locat, J., 1996. Submarine Landslides. Rev Geophys 34,
 33-59.
- 589 Kawamura, K., Sasaki, T., Kanamatsu, Y., Arito, S., Ogawa, Y., 2012. Large
- 590 submarine landslides in the Japan Trench: A new scenario for additional
- 591 tsunami generation. Geophys Res Lett 39, L05308
- 592 Knipe, R.J., 1986. Deformation mechanism path diagrams for sedi- ments undergoing
- 593 lithification. In: Moore, J. C. (Ed.), Structural Fabrics in D. S. D. P. Cores
- 594 from Forearcs. Mem. geol. Soc. Am. 166, 151-160.
- Lamarche, G., Joanne, C., Collot, J.-Y., 2008. Repetitive Large Submarine Mass
 Transport Complexes in the South-Kermadec Forearc Basin: The Matakaoa

- 597 Submarine Instability System. Geochemistry Geophysics Geosystems 9(4),598 Q04001.
- 599 Lewis, K.B., Pettinga, J.R., 1993. The emerging, imbricate frontal wedge of the 600 Hikurangi margin. In: Ballance P.F. (Ed.), South Pacific sedimentary basin. Sedimentary Basins of the World 2. Elsevier Sciences publishers, Amsterdam, 601 602 pp. 225-250. 603 Lucente, C.C., Pini, G.A. 2003. Anatomy and emplacement mechanism of a large 604 submarine slide within a Miocene foredeep in the Northern Appennines, Italy: 605 a field perspective. American Journal of Science 303, 565-602. 606 Macdonald, D.I.M, Moncrieff, A.C.M., Butterworth, P.J., 1993. Giant slide deposits 607 from a Mesozoic fore-arc basin, Alexander Island, Antarctica. Geology 21/11,

608 1047-1050.

- 609 Major, J.J., 2000. Gravity-driven consolidation of granular slurries: implications for
- 610 debris-flow deposition and deposit characteristics. Journal of Sedimentary611 Research 70/1, 64-83.
- Major, J.J., Iverson, R.M., 1999. Debris-flow deposition: effects of pore-fluid pressure
 and friction concentrated at flow margins. GSA Bulletin 111, 1424–1434.
- 614 Marroni, M., Meneghini, F., Pandolfi, L., 2010. Anatomy of the Ligure-Piemontese
- 615subduction system: evidence from Late Cretaceous-middle Eocene convergent616margin deposits in the Northern Apennines, Italy. Int. Geol. Rev. 52, 1160-
- 6171192.
- 618 Martelli, L., Cibin, U., Di Giulio, A., Catanzariti, R., 1998. Litostratigrafia della
- 619 Formazione di Ranzano (Priaboniano sup.-Rupeliano, Appennino
- 620 Settentrionale e Bacino Terziario Ligure Piemontese). Boll. Soc. Geol. It., vol.
- 621 117, 151-185.

622	Middleton, G.V., Hampton, M.A., 1973. Sediment gravity flows: mechanics of flow
623	and deposition In. Middleton G.V., Bouma, A.H. (Eds.), Turbidites and
624	Deep-water Sedimentation. SEPM Pacific Section, Short Course Notes, 1-38.
625	Moernaut, J., De Batist, M., Heirman, K., Van Daele, M., Pino, M., Brümmer, R.,
626	Urrutia, R., 2009. Fluidization of buried mass-wasting deposits in lake
627	sediments and its relevance for paleoseismology: results from a reflection
628	seismic study of lakes Villarrica and Calafquén (South-Central Chile).
629	Sedimentary Geology 213, 121–135.
630	Mosher, D.C., Austin, J.A. Jr., Fisher, D., Gulick, S.P.S., 2009. Deformation of the
631	northern Sumatra accretionary prism from high-resolution seismic reflection
632	profiles and ROV observations. Marine Geology 252, 89-99.
633	Mountjoy, J., Barnes, P., Pettinga, J., 2009. Morphostructure of submarine canyons on
634	an active margin: Cook Strait Canyon system, New Zealand. Marine Geology
635	260, 45-68. doi:10.1016/j.margeo.2009.01.006.
636	Mountjoy, J.J., Barnes, P.M., 2011. Active upper-plate thrust faulting in regions of
637	low plate-interface coupling, repeated slow slip events, and coastal uplift:
638	Example from the Hikurangi Margin, New Zealand. Geochem. Geophys.
639	Geosyst., 12, Q01005. doi:10.1029/2010GC003326.
640	Mountjoy, J.J., Micallef, A., 2012. Polyphase Emplacement of a 30 km3 Blocky
641	Debris Avalanche and Its Role in Slope-Gully Development. In: Y. Yamada,
642	K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. Chaytor, M.
643	Strasser (Eds.), Submarine Mass Movements and Their Consequences.
644	Advances in Natural and Technological Hazards Research. Springer,
645	Netherlands, pp. 213-222.

646	Mulder, T., Alexander, J., 2001. The physical character of subaqueous sedimentary
647	density flows and their deposits. Sedimentology 48, 269-299.
648	Mutti, E., Carminatti, M., Moreira, J.L.P., Grassi, A.A., 2006. Chaotic Deposits:
649	examples from the Brazilian offshore and from outcrop studies in the Spanish
650	Pyrenees and Northern Apennines, Italy. A.A.P.G. Annual Meeting, April 9-
651	12, Houston, Texas.
652	Mutti, E., Papani, L., Di Biase, D., Davoli, G., Mora, S., Segadelli, S., Tinterri, R.,
653	1995. Il Bacino Terziario Epimesoalpino e le sue implicazioni sui rapporti tra
654	Alpi ed Appennino. Memorie di Scienze Geologiche di Padova 47, 217 – 244.
655	Mutti, E.,1992. Turbidite Sandstones. San Donato Milanese, Agip-Istituto di
656	Geologia, Università di Parma, 275 pp.
657	Ogata, K., Mutti, E., Pini G.A., Tinterri, R., 2012a. Mass transport-related stratal
658	disruption within sedimentary mélanges. Tectonophysics 568-569, 185-199.
659	Ogata, K., Tinterri, R., Pini, G.A., Mutti, E., 2012b. The Specchio Unit (Northern
660	Apennines, Italy): an ancient mass transport complex originated from near-
661	coastal areas in an intra-slope setting. In: Yamada, Y., Kawamura, K., Ikehara,
662	K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M. (Eds.),
663	Submarine Mass Movements and Their Consequences. Advances in Natural
664	and Technological Hazards Research. Springer Netherlands, 595-605.
665	Orpin, A.R., 2004. Holocene sediment deposition on the Poverty-slope margin by the
666	muddy Waipaoa River, East Coast New Zealand. Marine Geology 209, 69-90.
667	Passchier, C.W., Trouw, R.A., 2005. Microtectonics. Springer Berlin Heidelberg New
668	York, 365 pp.
669	Pedley, K.L., Barnes, P.M., Pettinga, J.R., Lewis, K.B., 2010. Seafloor structural
670	geomorphic evolution of the accretionary frontal wedge in response to

671 seamount subduction, Poverty Indentation, New Zealand. Marine Geology672 270(1-4), 119-138.

673	Pini, G.A., Ogata, K., Camerlenghi, A., Festa, A., Lucente, C.C., Codegone, G., 2012.
674	Sedimentary mélanges and fossil mass-transport complexes: a key for better
675	under- standing submarine mass movements? In: Yamada, Y., Kawamura, K.,
676	Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M.
677	(Eds.), Submarine Mass Movements and Their Consequences. Advances in
678	Natural and Technological Hazards Research. Springer Netherlands, 585-594.
679	Pini, G.A., 1999. Tectonosomes and olistostromes in the Argille Scagliose of the
680	Northern Apennines, Italy. Geol. Soc. of America Special 335, 73 pp
681	Pouderoux, H., Lamarche, G., Proust, J.N., 2012. Building an 18 000-year-long paleo-
682	earthquake record from detailed deep-sea turbidite characterisation in Poverty
683	Bay, New Zealand. Nat Hazard Earth Sys, 12(6), 2077-2101.
684	Rebesco, M., Neagu, R.C., Cuppari, A., Muto, F., Accettella, D., Dominici, R., Cova,
685	A., Romano, C., Caburlotto, A., 2009. Morphobathymetric analysis and
686	evidence of submarine mass movements in the western Gulf of Taranto
687	(Calabria margin, Ionian Sea). Int. J. Earth Sci. (Geol. Rundsch.) 98, 791-805.
688	DOI 10.1007/s00531-009-0429-1
689	Schnellmann, M., Anselmetti, F. Giardini, D., McKenzie, J. 2005. Mass movement-
690	induced fold-and-thrust belt structures in unconsolidated sediments in Lake
691	Lucerne (Switzerland). Sedimentology 52, 271-289. doi: 10.1111/j.1365-
692	3091.2004.00694.x
693	Strachan, L.J., 2002. Slump-initiated and controlled syndepositional sandstone
694	remobilization: an example from the Namurian of County Clare, Ireland.
695	Sedimentology 49, 25-41.

696	Strachan, L.J., 2008. Flow transformations in slumps: a case study from the
697	Waitemata Basin, New Zealand. Sedimentology 55, 1311–1332.
698	Strachan, L.J., Alsop, G.I., 2006. Slump folds as estimators of palaeoslope: a case
699	study from the Fisherstreet Slump of County Clare, Ireland. Basin Research
700	18, 451-470.
701	Vardy, M.E., L'Heureux, JS., Vanneste, M., Longva, O., Steiner, A., Forsberg, C.F.,
702	Haflidason, H., Brendryen, J. 2012. Multidisciplinary investigation of a
703	shallow near-shore landslide, Finneidfjord, Norway. Near Surface Geophysics
704	10(4), 267-277. (doi:10.3997/1873-2012022).
705	Walsh, J.P., Alexander, C.R., Gerber, T., Orpin, A.R., Sumners, B.W., 2007. Demise
706	of a submarine canyon? Evidence for highstand infilling on the Waipaoa River
707	continental margin, New Zealand. Geophysical Research Letters 34, L20606.
708	Woodcock, N.H., 1979. The use of slump structures as palaeoslope orientation
709	estimators. Sedimentology 26/1, 83 – 99.
710	Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D.,
711	Chaytor, J., Strasser, M. (Eds.), 2012. Submarine Mass Movements and Their
712	Consequences. Advances in Natural and Technological Hazards Research,
713	Springer Netherlands.
714	

715 Figure caption

Figure 1: A) Geographic location of the two case studies. B) Thickness vs. width
diagram showing relative sizes of ancient (dashed line envelope) and presentday (solid line envelope) mass transport deposits (MTDs) and mass transport
complexes (MTCs). The relative dimensions o the two studied examples are

- 721 plotted. Modified from Lucente and Pini (2003) after Woodcock (1979) and
- 722 Macdonald et al. (1993). C) Table listing the parameters of comparison
- between the two analyzed examples: the Specchio MTC (Italy) and the
- 724 Poverty MTC (New Zealand).

Figure 2: A) Schematic representation of the sedimentary remnants (i.e. outliers) of
the Epiligurian succession scattered across the eastern side of the Northern
Apennines (location in the left inset). Redrawn and modified from Martelli et

729 al. (1998). B) Close up of A showing the reciprocal distances and location of the three Epiligurian outliers (i.e. Pessola Valley, Mt. Roccone and Mt. 730 Barigazzo sections) where the Specchio MTC has been investigated. C) 731 732 Simplified stratigraphic logs and correlation of the Specchio MTC across the three investigated Epiligurian outliers (location in B). The internal 733 734 subdivisions, lithologies, main component and mean paleo-transport directions are labeled (modified after Ogata et al., 2012a, 2012b). D) Schematic log of a 735 736 blocky flow deposits, showing the basic component MTD of the Specchio unit. In the photograph a line drawing of the MTD 2 (see C) labeling the main 737 738 structural elements is depicted.

739

Figure 3: A) Bird's eye view of the northeastern continental margin of New Zealand
(looking toward the SW; location of the area in the inset). Plate boundaries
and position of the investigated Poverty MTC are labeled. B) Interpreted
geomorphic map of the upper Poverty Re-entrant showing the main MTDs
(labeled in yellow) and the major characterizing structures (see explanation

745	inset). C) Morphologic map of the Poverty MTC with water-depth ranges
746	indicated. The inset shows a secondary superficial failure (i.e. subordinate
747	MTD) affecting the frontal part of the main MTD. MCS profiles' paths shown
748	in D and Fig. 9D are labeled. D) Internal stratigraphy of the Poverty MTC and
749	host sedimentary succession as resolvable in MCS data. The entire length of
750	the Poverty MTC is covered, showing in particular 1) an upslope
751	compressional part and a downslope extensional part (labeled) due to base-of-
752	slope accumulation, 2) a complex basal flat-ramp erosional surface (basal
753	solid line) and 3) weak, discontinuous internal reflectors suggesting the
754	amalgamation of at least 2 main depositional events (internal solid lines). In
755	addiction, the underlying sedimentary succession is characterized by the
756	occurrence of at least 3 other MTDs testifying that submarine landsliding is a
757	recurrent process in this setting.

759	Figure 4: Early Rupelian Specchio MTC (Pessola Valley section). A) Photomosaic of
760	the middle component (MTD 2) of the Specchio unit. B) Interpretation and
761	line drawing of the recognizable internal bedding (black lines). C)
762	Photomosaic of the upper component (MTD 3) of the Specchio unit. D)
763	Interpretation and line drawing of the main structures. E) Simplified
764	stratigraphic column of the Specchio MTC in the type locality in the Pessola
765	Valley outlier. The component MTDs and the relative thickness ranges are
766	indicated. Explanation of labels in B and D: a - thick-bedded, coarse-grained
767	sandstone elements; b - thin-bedded, fine-grained sandstone-mudstone

- elements; c medium-bedded, fine- to medium-grained sandstone-siltstone
 elements; d pebbly to cobbly conglomerate elements; e carbonate elements;
- 770

MDP - matrix-dominated portion; BDP - block-dominated portion.

771

Figure 5: Early Rupelian Specchio MTC (Mt. Roccone section), MTD 2. A)

Photomosaic and line drawing of ductile-like shear zones affecting a slide

774	block made up of thin-bedded sandstone-mudstone interlayers. Circled
775	hammer for scale. B) Close-up of A showing the soft sediment folds (solid
776	lines) and the fluidal structures within the host sedimentary matrix (dashed
777	lines) at the slide block lateral boundary (location in A). This matrix forms
778	sub-horizontal injection into the slide block roughly along the termination of
779	the shear planes labeled in A. C) Detail of the sedimentary matrix showing
780	well-rounded pebbles and granules dispersed within a fine-grained unsorted
781	sedimentary matrix containing well-rounded pebbles and granules dispersed
782	within a clayey-marly lithology. D) Close-up of the isoclinal fold represented
783	in B, showing the extreme, localized thickening of a cm-thick sandstone bed in
784	the hinge zone, testifying liquefaction of the sandy material. E) Close-up of A
785	showing an isoclinal synform fold with the upper limb truncated and matrix
786	injection along the axial plane. F) Detail of E showing the injected matrix into
787	the fold's hinge zone. G) A cm-thick shear zone (thick solid line and white
788	arrows indicating the shear sense) overlain by a slide block made of thin-
789	bedded, fine-gained sandstone layers (thin solid lines) plastically deformed
790	into a meso-scale sheath fold (axis trend marked by dashed line). The white
791	arrow indicates the mean paleo-transport direction inferred. H) Close-up of the
792	shear zone in G showing the ductile-like, pseudo-SC shear structures (dotted
793	lines). White arrows indicate the inferred shear sense. I) Detail of the shear
794	zone in G showing sigmoidal-type structures and small-scale duplexes (dotted
795	lines). The inferred shear sense is labeled (white arrows). J) Close up of the
796	base of the slide block in G showing upward matrix injections (e.g. fluid
797	escape) rooted in the shear zone. Note the fluidal structures defined by
798	extremely plastically deformed marly intraclasts within the pebbly mudstone.

802	Figure 6: Early Rupelian Specchio MTC (Pessola Valley and Mt. Roccone sections);
803	lower-middle MTDs 2 and 3. A) Example of sedimentary matrix coming from
804	a cm-thick shear zone (location in fig. 5G). Note the shearing-related,
805	asymmetric boudinage of the marly intraclasts. B) Example of the unsorted,
806	pebbly mudstone sedimentary matrix. Some elements, especially the elongated
807	intraclasts, show a rough iso-orientation of the long axes. C) Example of the
808	fluidal structures (e.g. hydroplastic folds) found within the sedimentary matrix
809	shown in B. D) Thick (ca. 60 cm) shear zone marked by a discontinuous band
810	of unsorted, mixed and generally massive pebbly sandstone in a sandy block-
811	dominated portion. E) A detached isoclinal fold developed in an exotic
812	(Cretaceous Ligurian AVV unit, see text) shaly slide block at the boundary
813	between the matrix- and block-dominated portions. F) Detail of the shear zone
814	in D showing the appearance of the pebbly sandstone matrix. Note the
815	hydroplastically folded, fine sandstone and mudstone intraclasts. G) Matrix-
816	rich shear zone developed at the lateral contact between two slide blocks
817	within the block-dominated portion shown in D. The pebbly sandstone matrix
818	displays pseudo-SC shears and rotated/deformed clasts characterized by
819	pseudo-sigma shapes. H) Detail of the host pebbly sandstone/mudstone matrix
820	characterizing the matrix-dominated portion. Note the overall alignment and
821	the iso-orientation of the mudstone intraclasts. I) Dome-topped pebbly
822	sandstone dyke injecting into the host pebbly mudstone matrix of the matrix-
823	dominated portion in E. This structure suggests later (i.e. post-depositional)
824	liquefaction of pressurized discrete sandy elements (i.e. slide blocks) with
825	consequent intrusion into the more impermeable, compacting host pebbly
826	mudstone matrix. J) Close up of I showing in detail the pebbly-sandy material

- 827 comprising the matrix injection. K) Dome-shaped lateral injection of host
- 828 pebbly mudstone matrix into a sandstone block with associated plastic folding
- 829 of the sandstone beds. Circled lens cap for scale.

Figure 7: Early Rupelian Specchio MTC, optical microscope observations of the 831 matrix for each component MTD. A) Fine-grained portions of the matrix 832 833 showing the "brecciated" texture and the occurrence of both rounded and 834 angular grains. Close-up: detail of the finer granulometric population of the 835 matrix. Note the occurrence of well-preserved microfossils (radiolarians?) and 836 the "fluidal" appearance of the finer matrix, enveloping grains and filling 837 voids between elements. B) Sub-rounded lithic grain showing a fracture filled 838 with finer material of the host matrix. Close-up: detail the injection of fine-839 grained matrix within the fracture (red arrow). This evidence indicates fluid

840 overpressure conditions of the matrix, possibly up to hydro-fracturing. C) 841 Medium- to coarse-grained sand particles with mud infillings within inter-842 granular spaces. Elongated patches of fine-grained material, sharing the same 843 characteristics of the muddy component are aligned to the overall oblique 844 banding (from the upper-left to the lower-right), expressed by iso-orientation 845 of grains' long axes and by elongated clustering of particles sharing similar 846 dimensions. Close-up: detail of the transitional border of the fine-grained 847 elongated patches with the surrounding matrix material. The fine-grained 848 lithology is the same of that filling inter-granular spaces and sustaining sandy 849 particles. Note the "fluidal" appearance of the fine-grained material and the 850 development of faint planar discontinuity (e.g. psudo-foliation) marked by the 851 preferential alignment of elongated/platy grains. D) Matrix with fine-grained 852 material more diffused and diluted within the sandy grains, and lineations and 853 banding less evident. The overall appearance is more "matrix-sustained" than 854 that observed in C. Partial close up: detail of a fractured sub-angular quartz grain, characterized by a thin calcite halo, and surrounded by fine-grained 855 856 material. The latter seems to inject into internal voids of the grain (red arrow); other minor injections along fractures are present. Along with this, the fine-857 858 grained material envelops particles (even where grains are almost in contact) 859 testifying its plastic/fluidal nature. E) Matrix showing a thinly banded 860 appearance. Note the fine-grained material arranged in "ribbon"-like patches. 861 Lineations are also highlighted by the preferential alignment of particles, 862 along their long axis. Close-up: boundary between two relatively fine- and coarse-grained elongated clusters. These structures suggest overall simple 863 864 shear conditions achieved through an independent particulate flow without

865 cataclasis (i.e. grain breakage) and, are here defined as pseudo-866 deformation/disaggreagation bands. F) Homogeneous unsorted matrix. The well-rounded, mm-sized, lithic pebble (metamorphic?) observable in the 867 868 lower-left side of the photo is internally characterized by the intrusion of the finer material into the voids left by leached out, previously mineralized vein. 869 870 Note also the faintly recognizable shear-like band passing tangentially to the upper-right margin of largest pebble, and trending obliquely the photo, from 871 872 the upper-left side to the lower-right side (boundaries labeled with white 873 dashed lines). Close-up: detail of the primary mineralized vein and the injected 874 fine-grained material. This evidence supports the fluid-like state of the matrix. 875 Note the fluidal-like appearance of the surrounding matrix, simulating pebble 876 boundaries. G) Rigid particles dispersed and sustained within a fine-grained, unconsolidated lithology. Partial close-up: relationships between particles and 877 878 the finer material, which envelopes grains and seems to be structurally 879 arranged in a crude oblique lineation (deformation bands-like structures), as underlined by particles alignment. H) Overview of the matrix close to a major, 880 881 mm-sized, well-rounded pebble of sedimentary origin. Close-up: detail the 882 finer matrix surrounding the pebble. Note the presence of a coal fragment 883 (vegetal organic matter) enveloped by a thin calcite halo, as observed for the 884 other rigid elements.

886	Figure 8: Early Rupelian Specchio MTC (Pessola Valley outlier). A) Conceptual
887	block diagram representing structural associations (inspired from Bradley and
888	Hanson, 1998), which characterize block-dominated portions (BDP).
889	Representative features and relative structural data used for kinematic analysis
890	are indicated. B) Photo-mosaic and line drawing representing a shear zone
891	underlined by a matrix horizon, which separates two block portions (intra-
892	block thrust). This structural association represents the longitudinal side of the
893	block diagram shown in A. Hammer for scale. C) Photo-mosaic and line
894	drawing showing a block overriding another through an intra-block shear

895	zone. The cut is roughly perpendicular to the main inferred transport direction
896	(transparent red arrow). D) and E) Close-ups showing in detail the same shear
897	surface characterized by two apparent opposite shear senses. This structural
898	association represents the transversal side of the block diagram shown in A.
899	Hammer and Camera lens cap (circled) for scale, 7 cm in diameter. F)
900	Conceptual block diagram representing structural associations (inspired from
901	Bradley and Hanson, 1998), which characterize matrix-dominated portions
902	(MDP). Representative features and relative structural data used for kinematic
903	analysis are indicated. G) Photo-mosaic and interpretation of a meso-scale
904	folding system involving a single thick, coarse-grained sandstone bed,
905	comprised within a MDP (structural data are labeled). Asymmetries and
906	relative vergences are roughly uniform (apart from few minor backthrusts).
907	Note the sheath-like geometry shown by the main fold apex (left side). This
908	structural association represents the longitudinal side of the block diagram
909	shown in F. H) Photo and line drawing of a MDP characterized by complex
910	folding due to the occurrence of several opposite verging shear zones, causing
911	a generalized buckling of structures. This structural association represents the
912	transversal side of the block diagram shown in F.

915 Figure 9: A) Shaded relief map showing the location of the following MCS profiles 916 (B, C and D), extent of the landslide deposits (dotted line) and the interpreted 917 source area. Inferred directions of transport (black arrows) and main thrust fault traces (red toothed lines). B) MCS profile of the Poverty MTC (light and 918 919 dark blue overlays represent the two main component bodies) showing its 920 internal reflections and the host stratigraphy characterized by buried MTDs 921 (gray overlay). In the inset is represented an enlargement of the MCS profile 922 in the distal part of the MTC, showing the amalgamation between at least two

923	MTDs (weak continuous reflector) and the basal shear zone (strong
924	discontinuous reflector). C) MCS profile of the Poverty MTC roughly parallel
925	to the line represented in B with inclusion of the most proximal zone and part
926	of the headwall slide scar. The same features observed in B are labeled. The
927	inset represents a close-up of the MCS profile in the proximal part of the MTC
928	characterized by the thickest accumulation and overall compressional regime,
929	as testified by the dominance of thrust faults. D) Slice and E) interpretation of
930	part of the MCS profile of B with indication of the main recognizable features.
931	Note the structurally confined depositional patterns of the sedimentary cover.
932	The weak, discontinuous reflectors characterizing the slide blocks and the
933	strong, coherent reflector representing the main basal shear zone and the flat
934	part of a ramping thrust fault cutting the entire deposit. Modified from
935	Mountjoy and Micallef (2012).

947	Figure 11: Conceptual profile of a submarine landslide complex with identification of
948	the possible zones where the bulk of mass transport-related deformation
949	occurs and indication of the inferred deformation mechanisms. Relatively
950	thick, matrix-dominated portions and matrix-rich shear zones are thought to
951	represent the products of such localized enhanced progressive deformation
952	(from extensional to compressional, and combination thereof), characterizing
953	specific portions of the MTD which in turn roughly define the three main steps
954	of the slide evolution. Inspired from Frey-Martinez et al. (2006).
955	